378 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

Reducing the Abstraction and Optimality Gaps in
the Allocation and Scheduling for Variable
Voltage/Frequency MPSoC Platforms

Martino Ruggiero, Davide Bertozzi, Luca Benini, Fellow, IEEE,
Michela Milano, and Alexandru Andrei, Student Member, IEEE

Abstract—This paper proposes a novel approach to solve the
allocation and scheduling problems for variable voltage/frequency
multiprocessor systems-on-chip, which minimizes overall system
energy dissipation. The optimality of derived system configu-
rations is guaranteed, while the computation efficiency of the
optimizer allows for solving problem instances that were tradi-
tionally considered beyond reach for exact solvers (optimality
gap). Furthermore, this paper illustrates the development- and
run-time software infrastructures that assist the user in developing
applications and implementing optimizer solutions. The proposed
approach guarantees a high level of power, performance, and
constraint satisfaction predictability as from validation on the
target platform, thus bridging the abstraction gap.

Index Terms—Allocation, Benders decomposition, multiproces-
sor systems-on-chip (MPSoCs), scheduling, virtual platform.

I. INTRODUCTION

NUMBER of multiprocessor system-on-chip (MPSoC)
platforms support variable frequency and voltage opera-
tion [14]-[16], and many authors have pointed out that optimal
allocations, schedules, and frequency/voltage settings lead to
major power savings [3], [17]. Unfortunately, this optimization
problem is known to be NP-hard [17] even in much simplified
variants [18], and most authors propose simplified models and
heuristic approaches to solve it in reasonable time.

Model simplification is often achieved by abstracting away
platform implementation details such as the penalties and the
discrete range for frequency and voltage switching or the actual
connectivity of communicating cores. As a result, optimization
problems become more tractable, even reaching polynomial
time complexity [17]. Unfortunately, this approach creates an
abstraction gap between the optimization model and the real
hardware—software (HW—-SW) platform. Validation is therefore

Manuscript received December 4, 2007; revised June 6, 2008 and
October 12, 2008. Current version published February 19, 2009. The works
of M. Ruggiero, L. Benini, and M. Milano were supported in part by the
PREDATOR Project funded by the European Community’s 7th Framework
Programme under Contract FP7-ICT-216008 and in part by the European
Network of Excellence ARTIST DESIGN. This paper was recommended by
Associate Editor V. Narayanan.

M. Ruggiero, L. Benini, and M. Milano are with the Electronics, Computer
Sciences, and Systems Department, University of Bologna, 40126 Bologna,
Italy (e-mail: mruggiero@unibo.it; Ibenini @unibo.it; mmilano @unibo.it).

D. Bertozzi is with the Engineering Department, University of Ferrara,
44100 Ferrara, Italy (e-mail: dbertozzi @ing.unife.it).

A. Andrei is with Embedded Systems Laboratory, Linkoping University,
581 83 Linkoping, Sweden, and also with Ericsson AB, 164 83 Stockholm,
Sweden (e-mail: alean @ida.liu.se).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2013536

required, and the accuracy of the solutions must be carefully
assessed through extensive simulation runs or executions on the
target HW platform.

Heuristic approaches rely on two main strategies: problem
decomposition and incomplete search. Decomposition splits
the problem into a set of subproblems that are then solved in
sequence. A common decomposition strategy for the mapping
problem is to first perform allocation, followed by schedul-
ing, and, finally, voltage and frequency assignment [19], [20].
Incomplete search [21] relies on flexible iterative algorithmic
frameworks (e.g., genetic algorithm or tabu search) that are
customized for the target problem and generally find good
solutions in a reasonable computation time. The main issue with
decomposition and incomplete search is that they introduce an
optimality gap of an unknown size. In other words, they provide
very limited or no information on the distance between the
best computed solution and the optimal one. Even worse, when
attempting to solve constrained problems, they may fail to find
existing feasible solutions.

The goal of this paper is to address both abstraction and
optimality gaps. Namely, we formulate an accurate model for
allocation, scheduling, and frequency/voltage settings, which
accounts for a number of nonidealities in real-life HW plat-
forms. We also developed a novel mapping algorithm that
deterministically finds optimal solutions. Although its worst-
case run time is obviously exponential, our search strategy is
computationally efficient in practice and achieves low run times
(i.e., minutes) for problem instances of practical relevance (i.e.,
up to hundreds of tasks). This is much beyond the instance
sizes that could be handled in the past by complete-search
algorithms. On the other hand, we achieve consistently lower
power results than previously reported heuristics. More impor-
tantly, we find feasible solutions for tightly constrained problem
instances where heuristic search fails.

Our optimizer is based on an algorithmic framework called
logic-based Benders decomposition (LBBD) [22], [23] which
solves the allocation, scheduling, and voltage/frequency selec-
tion problems to optimality in a computation-efficient fashion
through the cooperation between two solvers: an integer linear
programming (IP) solver for allocation and voltage/frequency
setting and a constraint programming (CP) solver for schedul-
ing. It is important to emphasize that LBBD is not a heuristic
decomposition strategy; the two solvers interact in an iterative
fashion that is guaranteed to achieve convergence to optimality.
The computational efficiency of our optimizer comes from
three main factors: 1) We use solvers that are well matched
to the subproblems they handle; 2) we use problem-specific

0278-0070/$25.00 © 2009 IEEE

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 11, 2009 at 05:32 from |IEEE Xplore. Restrictions apply.

RUGGIERO et al.: REDUCING GAPS IN ALLOCATION FOR VARIABLE VOLTAGE/FREQUENCY MPSoC PLATFORMS 379

relaxations and Benders cuts to propagate information from
one solver to the other, which rapidly achieve convergence in
practice; 3) by splitting the problem in two, we obtain easier to
solve and balanced subproblems.

Furthermore, a second main contribution of this paper is the
implementation of the static (design time) and dynamic (run
time) SW infrastructure required to run applications on the
target platform. This is a critical and nontrivial task, as we must
guarantee that actual execution accurately matches, in time and
space, the solution computed by the optimizer. We can therefore
validate the optimizer against cycle-accurate performance and
power analysis on a virtual platform. Experiments on a large
number of problem instances demonstrate that the accuracy
of our model is high and that execution traces match model
predictions with an average error below 5% (worst case, 10%).

We target statically configured systems, where allocation,
scheduling, and frequency settings are precomputed at design
time. Such systems require design-time knowledge of appli-
cation behavior under the assumption of minimum run-time
fluctuations. Many signal processing, data encryption, or video
graphics applications fall into this category. For them, our
methodology makes the precomputation of optimal solutions
still affordable in spite of the increasing number of integrated
processor cores and of the growing exposition of task-level
parallelism. Without lack of generality, in this paper, we do
not consider conditional task graphs, which we leave for
future work.

This paper is structured as follows. After reviewing pre-
vious work, the target architecture and the virtual platform
environment are presented in Section III. Section IV provides
background on LBBDs. Our approach to the mapping problem
is presented in Sections V and VI. Computation efficiency is
assessed in Section VII. The design- and run-time supports to
make the optimization framework interact with the HW-SW
platform are illustrated in Sections VIII and IX, respectively.
Accuracy validation of the optimizer and demonstrators follow
in Section X, while a comparison with a heuristic approach is
reported in Section XI.

II. RELATED WORK

In the following, we focus on offline voltage/frequency se-
lection techniques, since our approach falls into this category.

A number of techniques have been developed for single-
processor systems. Yao et al. proposed, in [24], the first dy-
namic voltage scaling (DVS) approach which can dynamically
change the supply voltage over a continuous range. Ishihara and
Yasuura [25] modeled the discrete voltage selection problem
using an IP formulation. Xie ef al. [26] present an algorithm
for calculating the bounds on the power savings achievable
through voltage selection. Jejurikar and Gupta [27] propose an
algorithm that combines voltage scaling and shutdown in order
to minimize dynamic and leakage energies.

Andrei et al. [3], [17] proposed an approach that optimally
solves the voltage scaling problem for multiprocessor systems
with imposed time constraints. The continuous voltage scaling
is solved using convex nonlinear programming with polynomial
time complexity, while the discrete problem is proved to be
strongly NP-hard and is formulated as mixed IP (MILP).

The previously mentioned approaches assume that the map-
ping and scheduling are given. However, the achievable energy

savings of DVS are greatly affected by the mapping and the
scheduling of the tasks on the target processors.

Task mapping and scheduling are known NP-hard problems
[28] that have been previously addressed, without and with the
objective of minimizing the energy. Both heuristic [4], [29],
[30] and exact solutions [31] have been proposed.

Assuming that the mapping of the tasks on the processors is
given as input, Gruian and Kuchcinski [32] present a scheduling
technique that maximizes the available slack, which is then
used to reduce the energy via voltage scaling. Schmitz et al.
[29] present a heuristic approach for mapping, scheduling, and
voltage scaling on multiprocessor architectures.

A leakage-aware approach for combined dynamic voltage
selection and adaptive body biasing has been proposed in [17]
and [33]. However, the approach in [33] is restricted to the
single-processor case. A multiprocessor setting is addressed in
[17] through an MILP approach. Although we concentrate, in
this paper, on the dynamic power and supply voltage selection,
our methodology can handle (with minor changes) the com-
bined supply and body-bias scaling problem with only marginal
implications on computational complexity.

The closest approach to this paper is the one of Leung et al.
[34]. They propose a mixed integer nonlinear programming
formulation for mapping, scheduling, and voltage scaling of
a given task graph to a target multiprocessor platform. They
assume continuous voltages; hence, the overall result is sub-
optimal. More importantly, they do not take into account com-
munication time and energy in their model. In this paper, this
aspect is strategic for reducing the abstraction gap between the
model and the real application behavior.

Whenever allocation and scheduling can be performed of-
fline due to the features of the application (predictable work-
load), our approach is to solve these problems to optimality. In
order to overcome the challenge posed by the increasing level
of parallelism both in the HW and in the SW architectures,
we address the need for more computation-efficient solving
techniques in this paper.

III. TARGET ARCHITECTURE

The objective of this paper is to map an application with
exposed task-level parallelism onto a homogeneous multicore
platform while minimizing overall system power and meeting
real-time constraints.

The target architecture for our mapping strategy is a general
template for a distributed MPSoC architecture. The platform
consists of a scalable number of homogeneous processing
cores, a shared communication infrastructure, and a shared
memory for intertile communication. Processing cores embed
instruction and data caches and are directly connected to tightly
coupled SW-controlled scratch-pad memories.

The architecture is assumed to provide a harmonized
HW-SW support for messaging, targeting scalability to a large
number of communicating cores. Messages can be exchanged
by tasks through SW communication queues, which can be
physically allocated either in scratch-pad or shared memory,
depending on whether tasks are mapped onto the same proces-
sor or not. This assumption avoids the generation of bus traffic
and incurring congestion delays for local communications.
We also target architectures where synchronization between
producer—consumer pairs does not give rise to semaphore

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 11, 2009 at 05:32 from |IEEE Xplore. Restrictions apply.

380 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

?@
= Support
B
Buff =
1 &8 @
Semaphore J ﬁ
—_
<
........... c
=
L
1}
2
-
ARM?7 | |Buffer queue = 3 S
Scratchpad \l'w E g
=
Semaphore g 8
9]

Fig. 1. Distributed MPSoC architecture.

polling traffic on the bus, since this might unpredictably and
unacceptably degrade performance of ongoing message ex-
changes. Interrupt-based synchronization and the implementa-
tion of distributed semaphores at each computation tile are two
example mechanisms matching our requirements.

As in many recent multicore architectures, we assume that
the target platform supports different working frequencies and
voltages for each processor core. In practice, each computation
tile has its own clock tree, and synchronization mechanisms
are provided for interfacing with the system bus (clock domain
crossing). Moreover, we assume that the voltage/frequency
settings can be adjusted at run time.

An embodiment of this template architecture is considered
in this paper and is shown in Fig. 1. SystemC-based simulation
models of this architecture were developed within the MPARM
simulation environment [5] and feature systemwide clock-cycle
accuracy. The virtual platform serves to provide input data to
the optimization framework and to validate its solutions with
functional simulation (accuracy of objective function values,
constraint satisfaction).

ARMT7 processor cores with 32-kB instruction and data
caches build up the computation section of the platform, while
an interconnect compliant with advance microcontroller bus
architecture (AMBA) advanced high-performance bus (AHB)
specification is selected. Frequency/voltage decoupling be-
tween the processor cores and the bus is implemented through
dual-clock FIFOs featuring a latency of four clock cycles of the
slowest clock frequency [36]. A maximum operating frequency
of 200 MHz (with 1-V supply voltage) is assumed for the
bus, to which per-core frequency dividers are applied. The
correspondent scaling factor for the power supply was inspired
by Nowka et al. [10].

We set up a communication and synchronization library,
abstracting away low-level architectural details to program-
mers, such as memory maps or explicit management of HW
semaphores and shared memory. More details can be found in
Section IX and, more extensively, in [35]. System resources are
controlled by the RTEMS real-time operating system running
on each processor core.

Our virtual platform environment provides power statistics
for ARM cores, caches, on-chip memories, and AMBA AHB
bus by leveraging technology-homogeneous power models for a
0.13-pm technology provided by STMicroelectronics. When all
tasks mapped on a processor core are suspended, the core enters

power save mode, where the power consumption is assumed to
be negligible.

IV. LBBD

The technique we use in this paper for finding the optimal
allocation, voltage/frequency assignment, and scheduling of
tasks is derived from a method, known in operations research as
Benders decomposition [1] and refined by Hooker and Ottosson
[22] with the name of LBBD. The classical Benders decomposi-
tion method decomposes a problem into two loosely connected
subproblems. It enumerates values for the connecting variables.
For each set of enumerated values, it solves the subproblem
that results from fixing the connecting variables to these values.
The solution of the subproblem generates a constraint, called
Benders cut, which the connecting variables must satisfy in
all subsequent solutions enumerated. The process continues
until the master problem fails to find a solution better than
the current upper bound. The classical Benders approach,
however, requires that the subproblem be a continuous linear
or nonlinear programming problem. This requirement poses
severe applicability restrictions. For instance, scheduling is a
combinatorial problem that has no practical linear or nonlinear
programming model. Therefore, the Benders decomposition
idea can be extended to a logic-based form (LBBD) that accom-
modates an arbitrary subproblem, such as a discrete scheduling
problem. More formally, as introduced in [22], a problem can be
written as

min f(z,y) (H
s.t. p;(y) @ € I; Master Problem Constraints 2)
gi(x) i € I Subproblem Constraints 3)
¢i(y) — h;(x) i € I3 Conditional Constraints (4)
y € Y Master Problem Variables ®)
x; € D; Subproblem Variables. (6)

We have master problem constraints, subproblem constraints,
and conditional constraints linking the two models. If we solve
the master problem to optimality, we obtain values for variables
y in I, namely, ¢, and the subproblem is thus formulated as

min f(x,7) @)
gi(x) i € Iy Subproblem Constraints)
qi(y) — h;(x) i € I5 Conditional Constraints 9)

x; € D;Subproblem Variables. (10)

The heart of Benders decomposition is somehow to derive
a function that gives a valid lower bound on the optimal
value of the original problem for any fixed value of y. This
function yields to a valid Benders cut. The algorithm proceeds
as follows. At each iteration 1, ..., h, the Benders cuts so far
generated are added to the master problem model that is formed
by (1), (2), (5), and

B,,(y)i € 1,...,hBenders cuts. (11)

vy; is the solution found at iteration 7 of the master problem.

In practice, to avoid the generation of master problem solu-
tions that are trivially infeasible for the subproblem, it is worth
adding a relaxation of the subproblem to the master problem.

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 11, 2009 at 05:32 from |IEEE Xplore. Restrictions apply.

RUGGIERO et al.: REDUCING GAPS IN ALLOCATION FOR VARIABLE VOLTAGE/FREQUENCY MPSoC PLATFORMS 381

V. HIGH-IMPACT MODELING CHOICES

Deciding to use the LBBD to solve a combinatorial optimiza-
tion problem does not simply require the definition of a problem
model but implies a number of design choices that strongly
affect the overall performance of the algorithm. First, we should
decide the master problem and the subproblem variables, along
with the corresponding constraints. Second, depending on the
variables and constraints that each problem is composed of, we
should choose the solver that is more suited for the problem
at hand. To improve efficiency, a proper relaxation of the
subproblem should be inserted in the master so as to avoid
the generation of trivially infeasible master problem solutions.
Finally, we have to design proper Benders cuts that remove a
set of infeasible and suboptimal solutions in the master problem
and enable the performance of a low number of iterations.

The degrees of freedom of LBBD were fixed as follows.
Master problem variables represent allocation and voltage se-
lection choices for both execution and communication tasks.
Corresponding constraints are also part of the master problem.
The objective function is the energy consumed for running
each task. The subproblem variables instead correspond to
scheduling choices for execution and communication activi-
ties. Precedence and resource constraints are enforced in the
subproblem. As an objective function, we minimize the energy
dissipation associated with frequency switchings.

The choice of the best solver comes from the structure of the
master and the subproblem. For some problems, it is widely
recognized that either the integer programming or CP is the
technique of choice. We therefore propose for the master prob-
lem an integer-programming model. It is effective for coping
with optimization problems, since the integer-programming
model has a global problem view due to the use of linear re-
laxations, and it therefore better copes with objective functions
based on the sum of assignment costs. The model feeding the
IP solver will be described in Section VI-A.

For the scheduling subproblem, the solver is instead based
on CP. It has an effective way of coping with the so-called
feasibility reasoning, encapsulating efficient and incremental
filtering algorithms into global constraints. It better copes with
temporal resource constraints and finer time granularities, and
this explains why scheduling is the most successful application
area of CP to date. In particular, many resource and temporal
constraints have been devised so as to solve large problem
instances, see [12]. A corresponding IP model for the schedul-
ing problem would require a binary variable for each activity
and each time step of the schedule horizon, leading to overly
large models. Our CP scheduling subproblem model will be
illustrated in Section VI-B.

An important addition to the master problem is a relaxation
of the subproblem that avoids the generation of trivially infea-
sible master problem solutions. Real-time constraints are not
taken into account in the allocation problem solver, leading
this latter to pack computation and communication activities
in the same processor and exceeding the real-time constraints.
We should state in the master problem that the sum of the
overall execution and communication times should not exceed
the deadline for that processor. In addition, using a subproblem
relaxation, we can compute a bound on the energy and the
time for frequency switching for tasks allocated on the same
processor. The relaxations used are described in Section VI-C.

Obj. Function:
Overall system energy

Resource constraints ALLOCATION
s 4
. » (ofp ors and frequencies |
Relaxation of the SP to tasks (depends on MP and SP

“UNTEGER PROGRAMMING variables)

Benders Cuts
“the solution just computed is the

optimal one unless a better one
exists with a different allocation”

Valid
allocation

Real time

- Obj. Function:
constraints

Minimize frequency
switching overhead

SCHEDULING:
CONSTRAINT PROGRAMMING

Fig. 2. Application of LBBD to the DVSP. MP and SP stand for master and
subproblem, respectively.

Benders cuts are essential for the interaction between the
two solvers. Note that the overall system energy minimization
function involves both master and subproblem variables. We
solve the allocation problem first and the scheduling problem
later. The subproblem could return infeasibility, indicating that
no feasible schedule exists for a given allocation. In this case,
the master problem solver will be constrained not to return
the same allocation through proper Benders cuts. Alternatively,
a feasible schedule is derived for the given allocation, and
a new iteration of the master problem solver is triggered.
This way, the computed allocation and scheduling solution at
the first iteration is retained as the optimal solution unless a
more energy-efficient one exists with a different allocation and
frequency assignment. More details follow in Section VI-D.

The resulting cooperative solving framework for the power-
aware mapping problem is shown in Fig. 2 and detailed in
Section VL.

VI. DVSP

We consider a task graph G whose nodes represent a set
of T tasks, which are annotated with their deadline dl; and
with the worst-case number of clock cycles WCN;. Arcs
represent dependences among tasks. Each arc is annotated with
the amount of data that two dependent tasks ¢; and ¢; should
exchange and, therefore, the number of bus clock cycles for
exchanging (reading and writing) these data WC'Ngy,¢; and
WC Nyyy,,. Both the read and write activities are performed at
the same speed of the task and use the bus (which instead works
at the maximum speed). Execution, read, and write activities are
modeled as atomic. Tasks run on a set of processors P. Without
lack of generality, we assume that each task has enough local
memory to meet its storage requirements, since these latter can
be easily included in an extended model version.

Each processor can run with M energy/speed modes and
has a maximum load constraint dl,. Each task spends energy
both in computing and in communicating. In addition, when
the processor switches between two modes, it spends time and
energy. We have a matrix E describing energy overhead Ey, ;.
for switching from any frequency f; to any f;. Similarly, a
matrix T describing time switching overhead 7%, r, is defined.

The DVS problem (DVSP) is the problem of allocating tasks
to processors, defining the running speed of each task, and
scheduling each of them while minimizing the total energy
consumed. In order to solve the DVSP to optimality without
simplifying assumptions relieving computation constraints but

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 11, 2009 at 05:32 from |IEEE Xplore. Restrictions apply.

382 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

impairing solution accuracy, we applied the LBBD technique
[22] to this new application domain.

As introduced in Section V, we decompose the problem in
two parts. The first, called master problem, is the allocation of
processors and frequencies to tasks, and the second, called sub-
problem, is the scheduling of tasks given the static allocations
and frequency assignments provided by the master.

A. Master Problem Model

We model the allocation problem using IP. We have binary
variables X,,;,,, which take the value of one if task ¢ is mapped
on the processor p and runs in (energy speed) mode m; it is zero
otherwise. Since we also take into account communication, we
assume that two tasks consume energy and time for commu-
nication only if they are allocated on two different processors.
Variables Ry, t,m and Wy, ¢, take the value of one if the task
t1 running on processor p reads (resp. writes) data (at mode
m) from (resp. for) a task ¢5 not running on p. We assume that
tasks running on the same processor do not consume energy
and do not spend time in communication for the sake of the
optimization problem, while we include the actual minor costs
for local communication in execution time and energy for the
sake of modeling accuracy. They are input data provided with
the task graph.

Any task can be mapped to only one processor and can run
at only one speed, i.e.,

P M
ZZXptm=1 Vt.

p=1m=1

Moreover, each task reads data (resp. writes data) atomically
while executing in a given mode and on a given processor, thus
constraining variables Ry, ¢,m and Wi, 1om

P M

S Rypim <1 Vit
p=1m=1
Z Z Wotitom <1 Vi1, to.
p=1m=1

Since each write activity corresponds to a related read activ-
ity, we have

>y

p=1m=1

— Rpiytym) =0 Vi1, to.

ptitam

The objective function OF is to minimize the energy con-
sumption for task execution Ecqny, and for task communication
Eread and Ewrite

P M T
Ecomp = § § § pthCNt clockmptm
p=1m=1t=1
M T

read — § E § RpttﬂnWCNth‘l clockatm

p=1m=1t¢t,tl1=1
P M T

Z Z Z Wptt1mWCNth1 (l()(,katm

p=1m=1t,t1=1
OF = Ecomp + Eread + Ewrite

wrlte

where Py, is the power consumed by task ¢ when running in
execution mode m and .ok, is the clock cycle at mode m.

The objective function defined until now depends only on
master problem variables. However, switching from one speed
to another introduces transition costs but their value can be
computed only at scheduling time. Therefore, we update the
objective function of the master problem with frequency transi-
tion (or setup) costs

P
OF\aster = OF + Z Setupy,

p=1

where Setup, is the cost of frequency switching on processor
p. Note that, in the master problem model, the Setup, variables
are not constrained. This is true only in the first iteration of the
LBBD algorithm, where all the Setup,, variables are forced to
be zero. From the second iteration on, instead, cuts are produced
by the subproblem, constraining variables Setup, such that
they might no longer be zero. These cuts will be described in
Section VI-D. In addition, for this variable, we can compute a
bound using a relaxation of the subproblem. We will explain
this relaxation in Section VI-C.

The problem exhibits symmetries. For instance, given a
solution with cost C, where tasks ¢1 and ¢3 are allocated on
processor P1 while tasks ¢2 and ¢4 are allocated on processor
P2, the solution obtained by allocating ¢1 and ¢3 on P2 and ¢2
and t4 on P1 does not change the solution cost. To avoid the
generation and exploration of symmetric solutions, we add to
the model a set of symmetry-breaking constraints. In particular,
the first task is always allocated on the first processor. Each task
1 should be allocated on a processor j only if 7 < 7. In addition,
a task uses a new processor only if it is not mappable to an
already-used one.

B. Subproblem Model

For the scheduling part, we use a CP model. Each task ¢
has an associated variable representing its starting time Start,;.
The duration is fixed since the frequency has been decided in
the master problem, i.e., duration; = WCN;/ f;. In addition,
if two communicating tasks ¢; and t; are allocated on two
different processors, we should introduce two additional activ-
ities (one for writing data to the shared memory and one for
reading data from the shared memory). We model the starting
time of these activities StartWrite;; and Start Read;;. These
activities are carried on at the same frequency of the corre-
sponding task. If ¢; writes and ¢; reads data, the writing activity
is performed at the same frequency of ¢;, and its duration
dWrite;; depends on the frequency and on the amount of data
t; writes, i.e., WC Ny ;;/ f;. Analogously, the reading activity
is performed at the same frequency of ¢;, and its duration
dRead;; depends on the frequency and on the amount of data ¢
reads, i.e., WCN, Ry /f;. Clearly, the read and write activities
are linked to the corresponding task

Start; + duration; < StartWrite;; Vj
StartRead;; + dRead;; < Start; Vi.
The constraint is not an equality constraint since each task

can produce data for and can read from many tasks. Moreover,
reads and writes on the same queue are linked from

StartWrite;; + dWrite;; < StartRead;; Vi, j.

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 11, 2009 at 05:32 from |IEEE Xplore. Restrictions apply.

RUGGIERO et al.: REDUCING GAPS IN ALLOCATION FOR VARIABLE VOLTAGE/FREQUENCY MPSoC PLATFORMS 383

EX1 |W'R1TE13 |
EX2

TASK 1 PROC1

TASK 2 | WRITE23 PROC2

| READI13 | WAIT

TASK 3 READ23 I EX3 |PROC1

Fig. 3. Example of multiple input data reads and their scheduling in time.

The way reading and writing activities are scheduled heavily
depends on the task graph structure. If we restrict our analysis
to pipelined task graphs (i.e., dependences among tasks are
such that they are logically ordered in a pipeline, as in [2]
and [8]), then input data reading activities can be considered
tightly coupled with the computation activities of each task.
Therefore, tasks writing their output data to shared memory just
have their execution time increased by a quantity WC Ny / fr.,
where W C Nyy is the number of clock cycles for writing data (it
depends on the amount of data to write) between a task and its
successor in the pipeline and f,,, is the frequency of the clock
when task ¢ is performed. Similarly, tasks reading input data
from shared memory have their duration increased by a quantity
WCNR/ fn-

On the contrary, for generic task graphs, a task might need
to read multiple input queues before executing, with possi-
ble suspensions between the consecutive reading activities, as
shown in Fig. 3. Our modeling framework accounts for this
general case.

Therefore, we introduce constraints forcing the execution of
a task to start immediately after its last reading activity is com-
pleted, and the writes of one task to be executed sequentially
without intermediate suspensions beginning from the execution
completion of that task. For this purpose, we need to introduce
two additional activities for each task named M acroRead; and
MacroWrite;. These latter group all the reading and writing
activities of the associated task with index ¢. Durations of these
macroactivities can be expressed as (symbol — indicates a
precedence constraint)

dMacroRead; > Y dRead;; Vi
70—t
> dWrite; Vi

Jsi—=J

dMacroWrite; =

This leads to new constraints linking communication and
execution activities

Start; + duration; = StartMacroW rite; Vi

StartMacroRead; + dMacroRead; = Start; Vi.

In the subproblem, we model precedence constraints in the
following way. If tasks ¢; should precede task ¢; and they run

on the same processor at the same frequency, the precedence
constraint is simply

Start; + Duration; < Start;.

If, instead, the two tasks run on the same processor at
different speeds, we should add the time 7Y, y, for switching

between the two frequencies
Start; + Duration; + Ty, y, < Start;.

If the two tasks run on different processors and should
communicate, we should add the time for communicating

Start; + Duration; + dWrite;; + dRead;; < Start;.

The scheduling engine must also verify that timing and
resource requirements are met. As regards timing, the task and
processor deadlines are forced with proper constraints. In the
simplifying assumption that task and processor deadlines are
set to the same value, we just have to check that

Start; + Duration; < Deadline Vi

otherwise the generalization is straightforward.

Resources are modeled as follows. We have a unary resource
constraint for each processor, modeled through a cumulative
constraint having, as parameters, a list of all tasks sharing the
same resource p, T'askList,, their durations DurationList,,,
their resource consumption (which is a list of 1 s), and the
capacity of the processor, which is one

cumulative(TaskList,, DurationList,, [1],1) Vp.

We model the bus as an additive resource, and we force the
system to work under those operating conditions where the
model holds. When the bus bandwidth used by concurrent tasks
does not exceed an upper threshold, the bus behavior can be
abstracted by means of a very simple additive model; the bus
delivers an overall bandwidth that is approximatively equal to
the sum of the bandwidth requirements of the concurrent tasks.
If the upper utilization threshold is exceeded, then the execution
times of the tasks are stretched by an unpredictable amount due
to bus access contention. Exceeding the threshold does not even
pay off in terms of increased bus offered bandwidth, since a
saturation effect was observed in [2]. This modeling approach
has a number of advantages. First, it avoids the fine granularity
modeling of communication in terms of each individual bus
transaction. From a scheduling viewpoint, this allows one to
model concurrent activities consuming a fraction of the total
bus bandwidth for a given time frame. As a result, a larger gran-
ularity time unit can be used to solve the scheduling problem,
thus reducing the number of variables. Second, the optimizer
can schedule communication in such a way that the additive
threshold is met. This way, run-time execution times of the
tasks will not significantly deviate from those precharacterized
at design time in a contention-free regime. We refer to [2] for a
detailed description and validation of the bus additive model.

The objective function we want to minimize in the scheduling
problem is the setup energy, i.e., the energy spent for frequency
switchings

P
min Z Setup,.
p=1

For this purpose, we use a matrix of precomputed transition
costs E, which reports the energy overhead for switching from

frequency f; (row 7) to f; (column j) and whose diagonal is
obviously null. If we indicate with S}, the set of task pairs which

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 11, 2009 at 05:32 from |IEEE Xplore. Restrictions apply.

384 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

are scheduled consecutively on processor p, then the setup costs

can be derived as
> En; W
(4,5)€Sp

Setup, =

A bound on Setup, is computed in Section VI-C.

C. Relaxation of the Subproblem

The master problem formulation described in Section VI-A
will result in allocations where tasks will potentially run at
their lowest frequencies and on the same processor, since task
and processor deadlines are not yet accounted for in the master
problem. Feeding these allocation solutions to the subproblem
solver will most probably result in infeasible schedules, thus
leading to a lot of computation-inefficient iterations between
the master problem and the subproblem. To avoid this, we
introduce relaxations of the subproblem in the master problem
model. In other words, we impose that, on each processor, the
sum of the time spent for the computation plus the time spent
for communication (read and write) should be less than or equal
to the deadline of the processor, in order to prevent trivially
infeasible solutions

T M
WC Ny
Teomp, = 2 D Xptm=—5 —
t=1 m=1
T M T
s =32 323 F
t=1m=1t=1 m
T T
e = 33 3 Wy L0
t=1m=1t=1 m
Tcpomp + Trlzead + Tvls;rlte < dlp VP'

In the same way, task deadlines can be captured, which
are the same formulas but the final sums are computed for
each task.

Note that, to further improve these constraints, we can add
a contribution concerning the setup time Tiyyitch, i-€., the time
spent to switch between two frequencies in the same processor

Thp + Thond + Tonive T Toiten < dlp, — Vp.

comp write switch

On Twitch, We can only compute a lower bound since the real
switching time can be computed once the schedule is known.
The idea is the following. If we consider all the task frequencies
allocated on a single processor, we know that Tiyitcn 1S at least
the sum of all switches minus the greatest switch time. For
instance, if frequencies f1, f2, and f3 are allocated on processor
PEOQ, we have to sum the minimum time for switching to
frequency fi1, f2, and f3 minus the maximum of the three. To
this purpose, we have defined variables Z,, s taking the value of
one if the frequency f is allocated at least once on the processor
p, and it is zero otherwise. In addition, we can extract from the
matrix T of switching time overheads a vector T corresponding
to the time for the frequency switches, which will be possibly
performed on the processor. The ith element in the vector 7'
is the minimum time for switching to frequency 7. The lower
bound on Tswitch can be imposed as follows:

sw1tch - Z (Pfo - maX{Tf|Z f = 1}) vp

Another aspect of the relaxation, which helps in avoiding the
computation of suboptimal solutions, concerns the computation
of a bound on the switching costs on each processor Setup,.
It is computed in the same way described for Tgyitcn. This
time, however, we have to extract, from the matrix of switching
cost overheads E, a vector E corresponding to the cost of
frequency switches, which will be possibly performed on the
processor. The ith element in the vector E is the minimum cost
for switching to frequency 1

Setup, > Z (ZptEp — max{Ef|pr = 1}) vp.

D. Benders Cuts

At each iteration h, we have an overall problem solution
computed as the sum of the optimal solution of the master
problem OF(") and the corresponding optimal solution of
the subproblem Setup(™. This solution might not be optimal
overall; thus, we have to go on with the iterative process with a
new upper bound on the overall problem objective function

UBM = OF™ 4 Setup™ .

The objective function of the master problem at iteration
h + 1 will therefore be constrained as follows:

Oorhth <yph 1,

In addition, we generate Benders cuts. The cuts are of two
types.

1) If there is no feasible schedule given an allocation, we
have to compute a no-good on variables X, avoiding
the same allocation to be found again.

2) If a feasible and optimal schedule exists, we cannot sim-
ply stop the iteration since the master objective function
depends also on subproblem variables. Therefore, we
have to produce cuts saying that the one just computed
is the optimal solution unless a better one exists for a
different allocation. These cuts produce a lower bound on
the setup costs of the processors.

The procedure converges when the master problem fails to find

a solution whose cost is better then the current upper bound.
The first type of cuts are no-goods. We call J, the set of

(Task, Frequency) pairs allocated to processor p. We impose

> Xpm <l -1 .
(t,m)edp

Let us concentrate on the second type of cuts. The cuts
we produce in this case are bounds on the variable Setup
previously defined in the master problem.

Suppose that the schedule we find for a given allocation
has an optimal setup cost Setup®. It is formed by independent
setups, one for each processor Setup* = Z]I;:l Setup,,.

We have a bound on the setup LBgempp on each proces-
sor, and therefore, a bound on the overall setup LBgetyp =

P
szl LBSetupp

Setup, > 0
Setupp > LBSetupp

LBsetup, = Setup,, — Setup;‘) Z (1 — Xpim)-
(t,m)edp

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 11, 2009 at 05:32 from |IEEE Xplore. Restrictions apply.

RUGGIERO et al.: REDUCING GAPS IN ALLOCATION FOR VARIABLE VOLTAGE/FREQUENCY MPSoC PLATFORMS 385

These cuts remove only one allocation. Indeed, we have also
produced cuts that remove some symmetric solutions.

We have devised even tighter cuts, removing more solutions.
However, they complicate the model too much, and our experi-
mental results show that these cuts, even if tighter, do not lead
to any advantage in terms of computational time.

VII. COMPUTATIONAL EFFICIENCY

We tested the computational efficiency of our hybrid ap-
proach on a 2-GHz Pentium 4 machine with 512-Mb RAM and
leveraged state-of-the-art professional solving tools, namely,
ILOG CPLEX 8.1, ILOG Solver 5.3, and ILOG Scheduler 5.3.
We considered two kinds of DVSP instances: 1) instances with
a pipelined task graph and 2) instances with a generic task
graph, generated using the instance generator presented in [37]
producing realistic task graphs.

If n is the number of tasks in the pipeline, after n repetitions,
the pipeline is at full rate. In a pipeline with n tasks, we have n
execution activities and 2 x (n — 1) communication activities
(a read and a write for each edge in the graph); we therefore
allocate n 4+ 2 x (n — 1) and schedule n x (n + 2 x (n — 1))
activities.

We generated and solved 280 instances with an increasing
number of tasks and processing elements. Overall, we had up to
180 activities to schedule in a system with a dozen of pipelined
tasks. For all the instances, the optimal solution could be found
within 4 min and the algorithm proved to scale quite smoothly
for an increasing number of tasks and processing elements. The
optimal solution could be found after one iteration in 50% of the
cases, and the number of iterations was, at most, five in almost
90% of the cases. This result is due to the tight relaxations
added to the master problem model.

We extended our analysis to instances where the task graph
is generic; hence, an activity can possibly read data from more
than one preceding activity and possibly write data that will
be read by more than one subsequent activity. The number of
reading and writing activities can become considerably higher,
with the higher number of edges in the task graph. We consider
here processing elements that can run at six different frequen-
cies. This problem is much harder than the pipelined one,
considering that the task graph can have a number of parallel
task execution chains and, thus, the macroactivities described
in Section VI-B must be considered, complicating and intro-
ducing symmetries in the model. Differently from the pipelined
instances, we can schedule a single repetition of each task.

Table I summarizes the results. Each line represents an
instance that has been solved to optimality. The first three
columns contain the number of allocated and scheduled activ-
ities (execution + communication data writes and reads) and
the number of processing elements considered in the instances.
The last two columns represent, respectively, the search time
and the number of iterations between the master problem and
the subproblem. Each value is the mean over ten instances with
the same number of tasks and processing elements. We can see
that, typically, the behaviors are similar to those found when
solving the pipelined instances; however, we can note some
instances where the number of iterations or the search time
is notably higher. For example, in the last but two lines, the
number of iterations is very high; this is due to the particular

TABLE 1
SEARCH TIME AND NUMBER OF ITERATIONS FOR INSTANCES
WITH GENERIC TASK GRAPHS

Activities

Alloc | Sched | Procs | Time(s) | Iters
]+12 8+12 3 1,48 2
8+12 8+12 3 4,26 6
8+16 8+16 2 1,57 |
8+16 8+16 3 0,81 1
8+16 8+16 4 0,86 1
9+8 9+8 2 2,73 3
9+10 9+10 4 2,60 4
9+12 9+12 4 1,40 3
9+12 9+12 4 2,14 5
9+12 0+12 2 1,11 1
9+16 9+16 3 35,95 43
9+16 9+16 4 29,59 26
9+16 0+16 4 4,84 6
9+20 9+20 3 2,51 1
9+20 9+20 6 158,43 39
0+22 0+22 3 6,62 2
9+24 9+24 2 2,51 1
10+12 | 10+12 4 0,37 1
10+12 | 10+12 4 11,50 27
10+16 | 10+16 3 12,81 3
10+16 | 10+16 4 13,92 14
10+18 | 10+18 2 5,90 |
10+18 | 10+18 3 2,12 |
10+24 | 10+24 4 4,18 5
12+20 | 12+20 5 551,92 213
14422 | 14+22 2 14,11 1
14+62 | 14+62 6 362481 2

structure of the task graph. In fact, it can happen that a high
degree of parallelism between the tasks, i.e., a high number
of tasks that can execute only after a single task, leads to a
number of allocations that are not schedulable. The master
problem solver thus looses time proposing to the scheduler a
high number of infeasible allocations. On the contrary, in the
last line, the number of iterations is low but the search time
is extremely high; this is due to the tasks’ characteristics that
make the scheduling problem very hard to solve.

Finally, we intended to compare the computation efficiency
of our hybrid approach with that of traditional approaches not
leveraging problem decomposition (i.e., the whole mapping
problem modeled through IP or CP). However, such a compari-
son was already reported in [9] for a simpler problem (power
consumption was not accounted for, and only pipelined task
graphs were supported), where a computation efficiency gap
of orders of magnitude was already shown. Considering an
upper bound of 15 min for the search time, CP and IP proved
capable of finding the optimal solution only for extremely small
instances, with a low number of tasks and processing elements,
and of finding a solution (not the optimal one) only in 50% of
the hard instances, while the hybrid approach solved 100%
of the instances to optimality. Given the neat outperformance
of LBBD over CP and IP for a much simpler problem than
the one addressed in this paper, we do not provide a further
comparison between the two approaches for the more complex
problem addressed here.

VIII. DESIGN-TIME SUPPORT

An SW development and optimization flow based on the
aforementioned hybrid solver addresses the optimality gap usu-
ally incurred by fast exploration frameworks. On the other hand,
this flow requires a correspondent design- and run-time support
in the target platform, matching the way that the application and
the architecture are abstracted in the optimization framework
and allowing the precise implementation of computed mapping

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 11, 2009 at 05:32 from |IEEE Xplore. Restrictions apply.

386 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

solutions. In practice, such a support is needed to close the ab-
straction gap (i.e., the deviation between the mapping problem
model and the real behavior of the target platform), which is the
other main objective of this paper.

A. Application and Task Computational Model

Our methodology requires modeling the multitask applica-
tion to be mapped and executed on top of the target HW
platform as a task graph with precedence constraints. The nodes
of the graph represent concurrent tasks, while the arcs indicate
mutual dependences (communication and/or synchronization).

Task execution is structured in three phases. All input com-
munication queues are read (INPUT); computation activity is
performed (EXEC), and finally, all output queues are written
(OUTPUT). Each phase consists of an atomic activity. Each
task also has two kinds of associated memory requirements.

1) Program data: Storage locations are required for compu-
tation data and for processor instructions.

2) Communication queues: The task needs queues to trans-
mit and receive messages to/from other tasks, eventually
mapped on different processors.

Program data are allocated on the private memory of each
processor, while communication queues reside in scratch-pad
memory (in case the communicating tasks run on the same
processor) or in shared memory (for remote communications).

B. Customizable Application Template

We set up a generic customizable application template, al-
lowing SW developers to easily and quickly build their parallel
applications starting from a high-level task and data flow graph
specification. Programmers can, at first, think about their ap-
plications in terms of task dependences and quickly draw the
task graphs, and then use our tools and libraries to translate the
abstract representation into C code. This way, they can devote
most of their effort to the functionality of tasks rather than
the implementation of their communication, sychronization,
scheduling, and energy mode switching mechanisms. Follow-
ing our scalable and parameterizable template, we also ensure
that the final implementation of the target application will be
compliant with the modeling assumptions of the optimizer
and that the value of the objective function and constraint
satisfaction of computed mapping solutions will be achieved
in practice.

Fig. 4 shows a pictorial illustration of how our template
looks like. Programmers can specify the structure of the target
application by simply declaring a series of macros and data
structures. In the example, we have shown a task graph with
12 tasks and with precedence constraints defined in the matrix
queue_consumer| J[]. If task ¢ has a precedence constraint w.r.t.
task j, the element queue_consumer[i][j] will be set to one.
Developers can also specify information about the configura-
tion of the target HW platform and the desired allocation and
schedule, as derived from the optimization tool. N_CPU macro
specifies the number of available processing cores. The two
task_on_core[| and schedule_on_core[][] data structures spec-
ify where tasks should be allocated and which schedule to apply
for each core, while with the task_freq[] vector, developers can
associate an operating voltage/frequency pair to each task.

= Number of nodes : 12 P1
#define TASK_NUMBER 12 T) - P2
= Graph of activities /Cj\\
uint queue_consumer [..] [..] = { {0,1,1,0,..}, FT\ -
{0,0,0, g N2

2
{0,0,0 \ i
0,0/ i
= Number of CPU : 2 @@'@@
#define N_CPU 2 l 1 i \ /
= Allocation AP A
uint task_on_core[TASK_NUMBER] = {1,1,2,1,...}; @ \T‘/‘ N @
o _/
= Scheduling
int schedule_on_core[N_CPUJ[TASK_NUMBER] = {{1,2,4,8}..}; @ >
= Frequencies ~ X
int task_freq[TASK_NUMBER] = {2,4,5,...}; T
o
g
H
§ T1o
T Tiz
Time
Fig. 4. Example of how to use the customizable application template.
Nnitialization
Init_task_structures(); //Task State and Private Data Init.
Init_queues(); //Buffers and Semaphores Init.
P e e
N\ > B
INPUT /[Task Core
//IReading phase
Bfad_lnput();
7/ & 1 - \ ITask Execution
Exec(); /[The only section which is up to
lithe application programmer
././.\-Nriting phase
Write_output();
Fig. 5. Task computational model and generated C code.

For every task indicated within the application template,
C code is automatically generated. Fig. 5 shows the C code for
a task reflecting the considered computation model. At task cre-
ation, the task state and private data structures are instantiated
and initialized, as well as all buffers and semaphores needed for
communication and synchronization. The INPUT phase of the
computational model corresponds to the Read_input() function,
while the OUTPUT phase corresponds to the Write_output()
one. These two functions are blocking, and they handle
the whole communication and synchronization procedures
automatically. The only section which is the burden of the
programmer is the Exec() function; this is the customizable
computational core of the task.

IX. RUN-TIME SUPPORT

We implemented a set of application programming interfaces
(APIs), with which users can easily reproduce optimizer solu-
tions on their target platform with great accuracy.

A. OS-Independent Allocation and Scheduling Support

Once the target application has been implemented using our
generic customizable template, tasks, program data, and com-
munication queues are allocated to the proper HW resources
(processor or memory cores), as indicated by the computed al-
location solution. This is done through the init_task of our tem-
plate, which allocates and launches all the activities at boot time.

In order to reproduce the exact scheduling behavior of the
optimizer, we implemented a scheduling middleware in the
target platform. Using this facility, programmers only have to
specify the desired scheduling for every processor core, which
is handled accordingly by our middleware in a transparent way.

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 11, 2009 at 05:32 from |IEEE Xplore. Restrictions apply.

RUGGIERO et al.: REDUCING GAPS IN ALLOCATION FOR VARIABLE VOLTAGE/FREQUENCY MPSoC PLATFORMS 387

After the boot of the application, our framework sets to active
only the first task in the scheduling list, while the other ones are
set to the sleep state. In this way, we avoid any undesired task
preemption by the operating system scheduler, which would
induce a different behavior with respect to the optimal one
provided by the optimizer.

After the active task has finished its execution, it is put to
sleep, thus releasing the CPU, while the subsequent task in the
scheduling list is woken up by switching its state to active. If
the subsequent task is allocated to a different CPU, this remote
wake-up mechanism is handled via interrupts. Every time a
new task is scheduled, our middleware sets its right operating
frequency as specified in the application template.

B. Communication and Synchronization Support

SW support for efficient messaging is also provided by our
set of high-level APIs. The communication and synchronization
library abstracts low-level architectural details to the program-
mer, such as memory maps or explicit management of HW
semaphores or interrupt signaling.

The infrastructure for the communication between a
producer—consumer pair is composed by a data queue and by
two semaphores. In order to send a message, a producer core
writes to the message queue in shared memory.

When the message is ready, the consumer can transfer it
from shared memory space to its local scratch pad. Data can be
transferred either by the processor itself or by a direct memory
access controller, when available. As far as synchronization is
concerned, when a producer intends to generate a message, it
locally checks an integer semaphore which contains the number
of free messages in the queue. If enough space is available, it
decrements the semaphore and stores the message in the queue.
Auvailability of the message is signaled to the consumer by re-
motely incrementing its local semaphore. This single write oper-
ation goes through the bus. Semaphores are therefore distributed
among the processing elements, resulting in two advantages;
the read/write traffic to the semaphores is distributed, and the
producer (consumer) can locally poll whether space (a mes-
sage) is available, thereby reducing bus traffic. Furthermore, our
semaphores may interrupt the local processor when released,
providing an alternative mechanism to polling. In fact, if the
semaphore is not available, the polling task registers itself on
a list of tasks waiting for that semaphore and suspends itself.
Other tasks on the processor can then execute. As soon as the
semaphore is released, it generates an interrupt, and the corre-
sponding interrupt routine reactivates all tasks on the waiting list.

If one task has more than one input or output queue, our opti-
mizer can specify the optimal reading/writing sequence from/to
them. We tuned our run-time support to enable this option. This
is a very important feature, since an optimal queue-usage or-
dering can increase the parallelism and thus boost performance.
Fig. 6 better clarifies this issue. It shows a case study in which
six tasks are allocated to two different processing cores.

Task T1 has to communicate with both T2 and T3, which are
allocated to the same core, and with T4 allocated to a different
core. At startup, let us assume that task T1 will be scheduled
on CPUI1 and task T4 on CPU2. While T1 immediately starts
its execution, T4 has to wait for data from T1, thus keeping
CPU2 stalled. The idle wait of T4 depends on the queue-fill
ordering enforced by T1; it will be shorter if T1 gives maximum

Fig. 6. Optimal queue-usage ordering example.
035

03

Probability (%)
s o ©
& e &

o

0.05

I — .

-5% -4% -3% -2% -1% 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 1%
-0.05 Energy consumption difference (%)

Fig. 7. Distribution of energy consumption differences.

priority to queue C3. Both our optimization framework and our
application execution support can handle this additional degree
of freedom for performance optimization.

X. EXPERIMENTAL RESULTS

For each task in the input graph, the optimizer needs the
execution time, the time required for writing and for reading
input data from local memory, and the overhead for writing and
reading input data if queues are allocated onto the shared mem-
ory in the absence of bus contention. The contribution of cache
misses to execution times needs to be considered as well, and
contention-free bus accesses can be assumed for this purpose.

For each task graph, this information can be collected with
only two simulation runs on a virtual platform. As mentioned
in Section III, we used the MPARM platform for complete
MPSoC functional simulation with clock-cycle accuracy [5] in
SystemC. This modeling and simulation environment was used
both to provide input data for the optimization framework and
to validate its solutions.

Two types of validation experiments were performed,
namely: 1) comparison of simulation-based energy and
throughput with optimizer-derived values and 2) proof of vi-
ability of the proposed approach for real-life demonstrators
[global system for mobile communication (GSM) and JPEG].

A. Validation of Optimizer Solutions

We have deployed the virtual platform to implement the
allocations, schedules, and frequency assignments generated by
the optimizer. A tunable multitask application has been used for
this experiment, allowing one to change system and application
parameters (local memory size, execution times, data size,
real-time requirements, etc.) and to generate the 200 problem
instances used for validation. The results of the validation phase
are shown in Fig. 7, which shows the distribution of energy de-
viations. The average difference between the measured and the
predicted energy values is 4.80%, with 1.71 standard deviation
and 95% statistical significance computed with the Student’s ¢

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 11, 2009 at 05:32 from |IEEE Xplore. Restrictions apply.

388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

Fig. 8. GSM implementation with generic task graph structure.

distribution. The distribution of throughput deviations was
found to be similar and, hence, is not reported here for lack
of space. The average difference between the measured and the
predicted throughputs was 4.51%, with 1.94 standard deviation
and more than 90% statistical significance computed with the
Student’s ¢ distribution. This confirms the high level of accuracy
achieved by the developed optimization framework.

B. Demonstrators

1) GSM Demonstrator: The methodology has been applied
to a GSM codec parallelized in two ways. The first variant
features ten generic tasks, while the second one consists of
six tasks ordered in a logic pipeline. Each task has been
precharacterized by the virtual platform to provide task model
parameters to the optimizer. After the optimization stage, the
solution has been validated on the virtual platform.

Fig. 8 shows the task graph of the first GSM implementation
variant. The time taken by the optimizer to come to a solution
was 0.2 s, and Table II shows the results of the optimization run.
The validation process on the virtual platform proved accuracy
by 3.99% on throughput and by 2.91% on energy dissipation.

The results for the pipelined version of the GSM codec
has shown an accuracy on the processor energy dissipation,
as predicted by the optimizer, by 2%. We used the pipelined
version of the GSM demonstrator to explore how the optimizer
minimizes energy dissipation of the processor cores with vary-
ing real-time requirements, and the results are shown in Fig. 9.
The behavior of the optimizer is not specific for the GSM case
study but can be extended to all applications featuring timing
constraints.

When the deadline is loose, all tasks are allocated to a single
processor at the minimum frequency (66 MHz, corresponding
to a divisor of three). As the deadline gets tighter, the optimizer
prefers to employ a second processor and to progressively
balance the load, instead of increasing task frequencies. This
procedure is repeated every time a new processor has to be
allocated to meet the timing constraints. Only under very tight
deadlines, the optimizer leverages increased task frequencies
to speed up the system. To the limit, the system works with
one task on each processor, although not all tasks run at the
maximum frequency. In fact, the GSM pipeline turns out to be
unbalanced; therefore, it would be energy inefficient to run the
shorter tasks at maximum speed and would not even provide
performance benefits. As a result, the optimizer determines
the most energy-efficient configuration that provides the best
performance. The problem becomes infeasible if more stringent
deadlines than 710 ns are required.

2) JPEG Demonstrator: Our methodology was then applied
to a JPEG decoder, which was partitioned in four pipelined
tasks: Huffman dc decoding, Huffman ac decoding, inverse
quantization, and inverse discrete cosine transform. Each stage
processes an 8 x 8§ block, amounting to an exchange of 1024 b
among pipeline stages. The accuracy of the energy estimation
given by the optimizer was found to be within 3.1% with
respect to functional simulation. In contrast to pipelined GSM,
user requirements on a JPEG decoding usually consist of the
minimization of the execution time and not of a deadline to be
met. However, a performance—energy conflict arises, and two
approaches for the allocation and scheduling of a JPEG decoder
task graph are feasible. On one hand, the designer could be
primarily interested in reducing execution time at the cost of
increased energy. On the other hand, the primary objective
function could be the minimization of energy dissipation, what-
ever the decoding performance. This tradeoff has been investi-
gated with the optimizer, and the Pareto-optimal frontier in the
performance—energy space is shown in Fig. 10. The constraint
on the execution time on the x-axis has been translated into a
constraint on the block decoding time. The curve is not linear
since there is a discrete number of voltage—frequency pairs.

As we can observe for a large range of deadlines, the opti-
mizer is good at improving system performance without sig-
nificantly changing processor energy dissipation. This is done
by using one or two processors, changing the allocations and
using high-frequency dividers. Beyond 200 ns, the optimizer is
forced to use low-frequency dividers, thus causing the energy
to skyrocket. Interestingly, the increase of the task frequency is
preferred to an increase of the number of processors, since the
communication energy would involve even higher total energy
consumption. This behavior is different from the one seen
for the GSM, since this time, the computation—communication
ratio is lower than for GSM due a larger size of exchanged
messages.

XI. OPTIMAL VERSUS HEURISTIC APPROACHES

In this section, we illustrate a comparison of mapping and
frequency/voltage assignment solutions generated by our com-
plete solver with those provided by a heuristic approach lever-
aging genetic algorithms.

The heuristic was derived from [4], which extends previous
work in [29]. Its optimization flow is split in three parts:

1) genetic task allocation optimization;
2) genetic schedule optimization;
3) optimal frequency selection.

Originally, the approach presented in [4] associates a com-
munication task that has to be scheduled for each message
exchanged over the bus. In order to have a fair comparison with
our approach, we have implemented the additive bus model
used in this paper.

In the genetic task allocation approach, solution candidates
are encoded into allocation strings. Each gene in these strings
describes a candidate allocation of a task to a processor. One
key feature of this algorithm is the invocation of a genetic
scheduling procedure for each allocation candidate. The genetic
scheduling algorithm finds, for a given allocation, the schedule
that meets all the task deadlines and, furthermore, has the

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 11, 2009 at 05:32 from |IEEE Xplore. Restrictions apply.

RUGGIERO et al.: REDUCING GAPS IN ALLOCATION FOR VARIABLE VOLTAGE/FREQUENCY MPSoC PLATFORMS 389

TABLE 1II
MAPPING SOLUTION FOR THE GSM ENCODER

[Deadline (ns) | # of Proc. | Allocation of Tasks to Core | Task Freq. Divider [Energy Consump. (nJ) |
[3000 [2 [TLII21,1,2072 [1222411111 | 7784 |
Task Task Energy The deviation of execution times and energies obtained with
Deadline | Number of | Allocated | Freq y | Cor ption
(ns) |Processors| on Core | Divider) the heuristic methods with respect to the optimal solver is
200 3 RIS NI T 2510 shown in Table III. We found that the heuristic approach never
2500 SRR 2538 provides the optimal solution for the problem instances under
3500 ; 11'1"'2'? 33033, 25 test. Nevertheless, in 70% of the cases, the energy consumption
;238 3 : 3 e difference is within 5%; however, in 10% of the cases, it is
2000 4 ,2,3,3,4,4 , 3,333, 6109 .
500 $2.3,4,5.6] 3,3,3.3.3.3 6304 extremely high (up to 44%).
000 . 4, 3,2 2 6807 o .
200 5.2, 9634 By setting loose search stopping criteria for the heuristic
750 3.4, 12102 method (thus giving it more time to optimize the solution), we

Fig. 9. Behavior of the optimizer with varying real-time requirements. Allo-
cation is given as an array indicating the processor identification on which each
task is mapped. Similarly, the frequency of each task is expressed in terms of
the integer divider of the baseline frequency. Only three dividers are used for
this example.

2000 4

1800

1600

1400

1200
1000

800 \

600 _,_____\‘_____________________—_____________
400 T T

100 200 300 400 500
Block Decoding Time (ns)

Energy consumption (nJ)

Fig. 10. Pareto-optimal frontier in the performance—energy design space.

minimum energy. We deployed one of the most widely used
heuristic approaches to scheduling, namely, list scheduling.

The algorithm proceeds by passing the schedule to a voltage
selection algorithm that identifies the task voltages minimizing
the energy dissipation. After performing the voltage selection,
the fitness Fg of each schedule candidate (capturing total
power) is calculated.

During the genetic scheduling step, a fast voltage scaling
heuristic is used. However, once the genetic algorithms are
completed, we use the optimal frequency scaling algorithm
presented in [3] (extending [17]), restricted to select one single
frequency for each task. Consequently, if the genetic heuristic
method finds the best allocation and schedule, after the last
frequency selection step, we will obtain a globally optimal
result, which is identical to the one produced by the approach
proposed in this paper.

The complete and the heuristic algorithms have been com-
pared on 70 different problem instances divided into seven
groups based on their structure (i.e., number of tasks and
branching factor) and a number of tasks from 10 to 20.
The structure of some task graphs and their annotated values
reflect those of parallelized real-life applications in the signal-
processing domain (such as matrix multiply, fast Fourier trans-
form, data encryption standard encryption, and finite-impulse
response filtering), which were then taken as the starting point
for parametric explorations.

allowed this latter to take a search time comparable with that
of our technique. In spite of this, our complete method is able
to find optimal solutions that the heuristic algorithm is not able
to find.

In the second experiment we performed, we solved a com-
mon problem instance while varying the real-time constraint,
i.e., we varied the task deadline value from a very loose one
(allowing all tasks to run at the lowest speed on the same
processor) to the tightest one.

Results are shown in Fig. 11. We report the energy consump-
tion (y-axis) of the solutions found by the complete and the
heuristic approach as a function of the deadline (x-axis). We can
see that the heuristic solution is never the optimum, even when
the real-time constraint is weak. In fact, the relative difference
for the loosest deadline value is equal to 0.55%. Such difference
then grows as the real-time constraint becomes tighter, and
for deadline values lower than 3 ms (on the left of the black
vertical line in Fig. 11), the heuristic approach is not even able
to find a solution, while the complete solver finds that the lowest
possible deadline value is around 2.1 ms. We find this capability
of our solver to extend the range of problem feasibility very
interesting from an application viewpoint.

XII. CONCLUSION

In this paper, we addressed both the optimality and the
abstraction gaps which impair the results of traditional SW
optimization flows for on-chip multiprocessor systems. On
one hand, we present a cooperative framework to solve the
allocation, scheduling, and voltage/frequency selection prob-
lems to optimality for energy-efficient MPSoCs. This iterative
framework is based on LBBD and provides optimal solutions
at an affordable search time, orders of magnitude shorter than
traditional IP or CP solvers. On the other hand, we set up a
design-time and a run-time support for the target MPSoC plat-
form allowing to specify applications while matching optimizer
modeling assumptions and to accurately implement its mapping
solutions.

APPENDIX
PROOF OF CONVERGENCE OF THE ALGORITHM

We prove here that the LBBD algorithm we propose con-
verges to the optimal solution.

First, we show that the algorithm converges without using
the bound on the switching cost of each processor Setup,
introduced in Sections VI-C and D.

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 11, 2009 at 05:32 from |IEEE Xplore. Restrictions apply.

390 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

TABLE III
COMPARISON BETWEEN COMPLETE AND HEURISTIC ALGORITHMS
Execution time Energy cc ption
Group # Optimal (ns) Heuristic (ns) Diff. (%) Optimal (nJ) Heuristic (nJ) Diff. (%)
T 13666160 16301020 19.28 23292413 23733705 189
2 7856620 8648980 10.08 12961388 13158730 1.52
3 11561360 13651545 18.07 24899620 35795990 43.76
4 5612801 5584947 -0.49 12995149 13129346 1.03
3 6677140 6547810 -1.93 10934681 11731834 7.29
6 3433960 T0889200 2911 12461688 12539983 0.62
7 5093060 5100401 0.01 21638232 29224058 0.013
87 the process. In fact, both the relaxation and the second type of
. Benders cut estimate an optimistic switching cost for a given
ER allocation. If a new allocation plus this optimistic cost are worse
§ than the current upper bound, we have proved optimality.
& 2
=
0n *
s L, REFERENCES
o 22 f, =
§ ’."“ [1] J. E. Benders, “Partitioning procedures for solving mixed-variables pro-
E N gramming problems,” Numerische Mathematik, vol. 4, no. 1, pp. 238-252,
7 5 Dec. 1962.
[2] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti, and M. Milano,
12 M d . . “Communication-aware allocation and scheduling framework for stream-
2 3 4 5 6 7 8 oriented multi-processor systems-on-chip,” in Proc. DATE, 2006, pp. 3-8.

Deadline (ms)

Fig. 11. Comparison between optimal and heuristic solutions.

The objective function of the master problem counts two
terms

P
OFMaster =O0F + Z Setupp.

p=1

Without any bound on Setup variables, every Setup, is
set to zero since the IP solver wants to minimize the overall
objective function. Therefore, the master problem obtains a
lower bound L B on the overall problem objective function.

This solution is passed to the subproblem solver that com-
putes the optimal setups for the given allocation. If the sub-
problem is infeasible, a no-good is added to the master so as
to avoid the generation of the solution just found. If, instead,
the subproblem is solved, we obtain a feasible solution for the
overall problem, which is a valid upper bound U B. The optimal
solution is somewhere between LB and U B.

The convergence is ensured by the constraint that imposes
that the solution just found at iteration h in the master problem
is discarded (i.e., made infeasible) at iteration h 4 1 as an effect
of the first type of Benders cut. Let J, be the set of couples
(Task, Frequency) allocated to processor p. We impose that the
current solution at iteration h is no longer feasible in iteration
h+1

> Xpm <l —-1 V.
(t,m)edp

Given the new constraint, the OF' of the master problem
cannot decrease since the solution space is narrower and the
optimal solution at previous iteration has been discarded.

Since the number of solutions of the problem is finite, the
algorithm converges. The optimality is proved when the master
problem cannot find a solution whose allocation cost is lower
than the current upper bound.

The use of the relaxation introduced in Section VI-C and
the second type of Benders cuts simply help in speeding up

[3] A. Andrei, P. Eles, Z. Peng, M. Schmitz, and B. M. Al-Hashimi, “Energy

optimization of multiprocessor systems on chip by voltage selection,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 3, pp. 262—

275, Mar. 2007.

M. T. Schmitz, P. Eles, and B. M. Al-Hashimi, System-Level Design Tech-

niques for Energy-Efficient Embedded Systems. Norwell, MA: Kluwer,
2004.
M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon, “Analyzing
on-chip communication in a MPSoC environment,” in Proc. DATE, 2004,
pp. 752-757.
[6] 1. E. Grossmann and V. Jain, “Algorithms for hybrid MILP/CP models for
a class of optimization problems,” INFORMS J. Comput., vol. 13, no. 4,
pp- 258-276, 2001.

[7] J. N. Hooker, “A hybrid method for planning and scheduling,” in Proc.
10th Int. Conf. Principles Practice Constraint Program.—CP, Sep. 2004,
pp. 305-316.

[8] M. Ruggiero, G. Pari, A. Guerri, L. Benini, M. Milano, D. Bertozzi,

and A. Andrei, “A cooperative, accurate solving framework for optimal

allocation, scheduling and frequency selection,” in Proc. Int. Symp. SOC,

2006, pp. 183-186.

M. Ruggiero, A. Guerri, D. Bertozzi, M. Milano, and L. Benini,

“A fast and accurate technique for mapping parallel applications on

stream-oriented MPSoC platforms with communication awareness,” Int.

J. Parallel Program., vol. 36, no. 1, pp. 3-36, Feb. 2008.

[10] K.J. Nowka, G. D. Carpenter, E. W. MacDonald, H. C. Ngo, B. C. Brock,
K. L. Ishii, T. Y. Nguyen, and J. L. Burns, “A 32-bit PowerPC system-on-
a-chip with support for dynamic voltage scaling and dynamic frequency
scaling,” IEEE J. Solid-State Circuits, vol. 37, no. 11, pp. 1441-1447,
Nov. 2002.

[11] J. C. Régin, “A filtering algorithm for constraints of difference in CSPs,”
in Proc. 12th Nat. Conf. Artif. Intell., 1994, vol. 1, pp. 362-367.

[12] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-Based Scheduling,
ser. International Series in Operations Research and Management Science,
vol. 39. New York: Springer-Verlag, 2001.

[13] E. P. K. Tsang, Foundation of Constraint Satisfaction.
Academic, 1993.

[14] K. Hirata and J. Goodacre, “ARM MPCore: The streamlined and scalable
ARMI1 processor core,” in Proc. ASP-DAC, 2007, pp. 747-748.

[15] K. Nose, A. Shibayama, H. Kodama, M. Mizuno, M. Edahiro, and
N. Nishi, “Deterministic inter-core synchronization with potentially all-
in-phase clocking for low-power multi-core SoCs,” in Proc. Int. Solid-
State Circuits Conf., Dig. Tech. Papers, 2005, pp. 296-299.

[16] Freescale Technologies for Energy Efficiency: 2007 Overview, 2007.
White Paper.

[17] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. Al-Hashimi, “Overhead-
conscious voltage selection for dynamic and leakage power reduction of
time-constraint systems,” in Proc. DATE, 2004, pp. 518-523.

[18] Y. Kwok and I. Ahmad, “Static scheduling algorithms for allocating di-
rected task graphs to multiprocessors,” ACM Comput. Surv., vol. 31, no. 4,
pp. 406471, Dec. 1999.

[4

finar

[5

[ty

[9

—

New York:

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 11, 2009 at 05:32 from |IEEE Xplore. Restrictions apply.

RUGGIERO et al.: REDUCING GAPS IN ALLOCATION FOR VARIABLE VOLTAGE/FREQUENCY MPSoC PLATFORMS 391

[19] P. Eles, Z. Peng, K. Kuchcinski, A. Doboli, and P. Pop, “Scheduling of
conditional process graphs for the synthesis of embedded systems,” in
Proc. DATE, 1998, pp. 132-139.

[20] N. Ventroux, F. Blanc, and D. Lavenier, “A low complex scheduling
algorithm for multi-processor system-on-chip,” in Proc. Parallel Distrib.
Comput. Netw., 2005, pp. 540-545.

[21] J. Axelsson, “Architecture synthesis and partitioning of real-time syn-
thesis: A comparison of 3 heuristic search strategies,” in Proc.
CODES/CASHE, 1997, pp. 161-166.

[22] J. N. Hooker and G. Ottosson, “Logic-based Benders decomposition,”
Math. Program., vol. 96, no. 1, pp. 33-60, Apr. 2003.

[23] M. Milano, Ed., Constraint and Integer Programming: Toward a Uni-
fied Methodology (Operations Research/Computer Sciences Interfaces).
Norwell, MA: Kluwer, 2003.

[24] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced CPU
energy,” in Proc. IEEE Symp. Found. Comput. Sci., 1995, pp. 374-382.

[25] T.Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically
variable voltage processors,” in Proc. ISLPED, 1998, pp. 197-202.

[26] F. Xie, M. Martonosi, and S. Malik, “Bounds on power savings using
runtime dynamic voltage scaling: An exact algorithm and a linear-time
heuristic approximation,” in Proc. ISLPED, 2005, pp. 287-292.

[27] R. Jejurikar and R. Gupta, “Dynamic slack reclamation with procrasti-
nation scheduling in real-time embedded systems,” in Proc. Des. Autom.
Conf., 2005, pp. 111-116.

[28] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.

[29] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, “Iterative schedule opti-
mization for voltage scalable distributed embedded systems,” ACM Trans.
Embedded Comput. Syst., vol. 3, no. 1, pp. 182-217, Feb. 2004.

[30] J. Hu and R. Marculescu, “Energy-aware communication and task
scheduling for network-on-chip architectures under real-time constraints,”
in Proc. DATE, 2004, pp. 234-239.

[31] L. Benini, D. Bertozzi, A. Guerri, and M. Milano, “Allocation and
scheduling for MPSoCs via decomposition and no-good generation,” in
Proc. IJCAI, 2005, pp. 1517-1518.

[32] F. Gruian and K. Kuchcinski, “LEneS: Task scheduling for low-energy
systems using variable supply voltage processors,” in Proc. ASP-DAC,
2001, pp. 449-455.

[33] S. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined dynamic
voltage scaling and adaptive body biasing for lower power microproces-
sors under dynamic workloads,” in Proc. ICCAD, 2002, pp. 721-725.

[34] L. F. Leung, C. Y. Tsui, and W. H. Ki, “Minimizing energy consump-
tion of multiple-processors-core systems with simultaneous task allo-
cation, scheduling and voltage assignment,” in Proc. ASP-DAC, 2004,
pp. 647-652.

[35] F. Poletti and A. Poggiali, “Flexible hardware/software support for mes-
sage passing on a distributed shared memory architecture,” in Proc. DATE
Conf., 2005, pp. 736-741.

[36] M. Ruggiero, A. Acquaviva, D. Bertozzi, and L. Benini, “Application-
specific power-aware workload allocation for voltage scalable MPSoC
platforms,” in Proc. ICCD, 2005, pp. 87-93.

[37] A. Guerri, M. Lombardi, and M. Milano, “Challenging scheduling
problems in the field of system design,” in Proc. ICAPS, 2007. [Online].
Available: http://abotea.rsise.anu.edu.au/satellite-events-icaps07/
workshop4/paper08.pdf

Martino Ruggiero received the M.S. degree in elec-
trical engineering and the Ph.D. degree from Univer-
sity of Bologna, Bologna, Italy, in 2004 and 2007,
respectively.

He is currently with the Electronics, Computer
Sciences, and Systems Department, University of
Bologna, where he holds a postdoctoral position. His
research interests include embedded system archi-
tecture and software (SW) design, with particular
emphasis on low-power SW and architecture design
for ultraportable devices; distributed and parallel
computing; development of a simulation environment at different levels of
abstraction for multiprocessor systems-on-chip; application partitioning for
parallel architectures; and complete algorithmic techniques for mapping and
scheduling.

Davide Bertozzi received the Ph.D. degree in elec-
trical engineering from the University of Bologna,
Bologna, Italy, in 2003.

He was a Visiting Researcher with Stanford
University, Stanford, CA; NEC Research America,
Princeton, NJ; Philips Research Labs, Eindhoven,
The Netherlands; and Samsung Electronics, Korea.
He is currently an Assistant Professor with the Engi-
neering Department, University of Ferrara, Ferrara,
Italy. His main research interest includes multi-
processor system-on-chip design, with an orthogonal
focus ranging from resource management to physical design issues. He is
currently very active in the domain of network-on-chip design.

Luca Benini (S5’94-M’97-SM’04-F’06) received
the Ph.D. degree in electrical engineering from
Stanford University, Stanford, CA, in 1997.

He is currently a Full Professor with the Elec-
tronics, Computer Sciences, and Systems Depart-
ment, University of Bologna, Bologna, Italy, and also
a Consulting Research Professor with the Belgian
Interuniversity MicroElectronics Centre, Leuven,
Belgium. He also holds a Visiting Faculty position
with the Ecole Polytechnique Federale de Lausanne,
Lausanne, Switzerland. His research interest in-
cludes design of system-on-chip platforms for embedded applications. He is
also active in the area of energy-efficient smart sensors and sensor networks,
including biosensors and related data mining challenges. He has published more
than 400 papers in peer-reviewed international journals and conferences, four
books, and several book chapters.

Dr. Benini is a member of the steering board of the ARTEMISIA European
Association on Advanced Research and Technology for Embedded Intelligence
and Systems.

Michela Milano received the Ph.D. degree in elec-
tronics, computer science and telecommunication
from the Electronics, Computer Sciences, and Sys-
tems Department, University of Bologna, Bologna,
Italy, in 1998.

She is currently an Associate Professor of
computer science with the Electronics, Computer
Sciences, and Systems Department, University of
Bologna. Her research interests include combinato-
rial optimization and the integration between con-
straint and integer programming. In this field, she
is a member of the program committee of major conferences, Area Editor of
Constraint Programming Letters, Associate Editor of the Institute for Oper-
ations Research and the Management Sciences Journal of Computing, and a
member of the Editorial Board of Constraints. She is the Editor of Constraint
and Integer Programming: Toward a Unified Methodology (Kluwer, 2003).

Alexandru Andrei (S’03) received the M.S. degree
from Politehnica University Timisoara, Timisoara,
Romania, in 2001 and the Ph.D. degree in computer
engineering from Linkoping University, Linkdping,
Sweden, in 2007.

His research interests include low-power design,
real-time systems, and hardware—software code-
sign. He is currently with Ericsson AB, Stockholm,
Sweden, and also with the Embedded Systems
Laboratory, Linkoping University.

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 11, 2009 at 05:32 from |IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

