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Abstract—For some realtime systems, it is possible to tradeoff
precision for timeliness. For such systems, typically considered
under the imprecise computation model, a function assigns re-
ward to the application depending on the amount of computation
allotted to it. Also, these systems often have stringent energy
constraints since many such applications run on battery powered
devices. We address in this paper, the problem of maximizing
rewards for imprecise computation systems that have energy
constraints, more specifically, the problem of determining the
voltage at which each task runs as well as the number of optional
cycles such that the total reward is maximal while time and energy
constraints are satisfied. We propose a quasi-static approach that
is able to exploit, with low online overhead, the dynamic slack
that arises from variations in the actual number of task execution
cycles. In our quasi-static approach, the problem is solved in
two steps: first, at design-time, a set of voltage/optional-cycles
assignments are computed and stored (offline phase); second, the
selection among the precomputed assignments is left for runtime,
based on actual completion times and consumed energy (online
phase). The advantages of the approach are demonstrated through
numerous experiments with both synthetic examples and a real
life application.

Index Terms—Energy management, imprecise computation,
quasi-static, realtime.

I. INTRODUCTION

THERE exists several application areas, such as image pro-
cessing and multimedia, in which approximate, but timely,

results are acceptable. For example, fuzzy images in time are
often preferable to perfect images too late. In these cases it is,
thus, possible to tradeoff precision for timeliness. Such systems
have been studied in the frame of imprecise computation (IC)
techniques [23], [14]. These techniques assume that tasks are
composed of mandatory and optional parts: both parts must be
finished by the deadline but the optional part can be left incom-
plete at the expense of the quality of results. There is a function
associated with each task that assigns a reward as a function of
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the amount of computation allotted to the optional part: the more
the optional part executes, the more reward it produces.

Also, power and energy consumption have become very im-
portant design considerations for embedded systems, in par-
ticular for battery powered devices with stringent energy con-
straints. The availability of vast computational capabilities at
low cost has promoted the use of embedded systems in a wide
variety of application areas where power and energy consump-
tion play an important role.

The tradeoff between energy consumption and performance
has extensively been studied under the framework of dynamic
voltage scaling (DVS): by lowering the supply voltage quadratic
savings in dynamic energy consumption can be achieved, while
the performance is approximately degraded in linear fashion.
One of the earliest papers in this area is by Yao et al. [29], where
the case of a single processor with continuous voltage scaling is
addressed. The discrete voltage selection for minimizing energy
consumption in monoprocessor systems was formulated as an
integer linear programming (ILP) problem by Okuma et al. [19].
DVS techniques have been applied to distributed systems [9],
[12], [15], and even considering overheads caused by voltage
transitions [31] and leakage energy [1]. DVS has also been con-
sidered under fixed [25] and dynamic priority assignments [13].

While DVS techniques have mostly been studied in the con-
text of hard realtime systems, IC approaches have, until now,
disregarded the power/energy aspects. Rusu et al. [20] recently
proposed the first approach in which energy, reward, and dead-
lines are considered under a unified framework. The goal of the
approach is to maximize the reward without exceeding dead-
lines or the available energy. This approach, however, statically
solves at compile-time the optimization problem and, therefore,
considers only worst cases, which leads to overly pessimistic
results. A similar approach (with similar drawbacks) for maxi-
mizing the total reward subject to energy constraints, but con-
sidering that tasks have fixed priority, was presented in [30].
Such approaches can only exploit the static slack, which is due
to the fact that at nominal voltage the processor runs faster than
needed.

Most of the techniques proposed in the frame of DVS, for
instance, are static approaches in the sense that they can only
exploit the static slack [19], [20], [29]. Nonetheless, there has
been a recent interest in dynamic approaches [3], [9], [24], that
is, techniques aimed at exploiting the dynamic slack, which is
caused by tasks executing less number of clock cycles than their
worst case. Solutions by static approaches are computed offline,
but have to make pessimistic assumptions, typically in the form
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of worst case execution times. Dynamic approaches recompute
solutions at runtime in order to exploit the slack that arises
from variations in the execution time, but these online computa-
tions are typically nontrivial and, consequently, their overhead
is high.

In this paper, we focus on realtime systems for which it is pos-
sible to tradeoff precision for timeliness as well as energy con-
sumption for performance. We study such systems under the IC
model. The goal is to find the voltages at which each task runs
and the number of optional cycles, such that the objective func-
tion is optimized and the constraints are satisfied. That is, we
aim at finding a voltage/optional (V/O)-cycles assignment (ac-
tually a set of assignments, as explained later), such that the total
reward is maximal while guaranteeing the deadlines and the en-
ergy budget. An important contribution of our work is that we
exploit the dynamic time and energy slack caused by variations
in the actual number of execution cycles. Furthermore, we take
into consideration the time and energy overhead incurred during
voltage transitions.

In this paper, static V/O assignment refers to finding one as-
signment of voltages and optional cycles that makes the reward
maximal at design-time while guaranteeing the time and en-
ergy constraints (this is the problem addressed by [20]). Dy-
namic V/O assignment refers to finding at runtime, every time
a task completes, a new assignment of voltages and optional
cycles for those tasks not yet started, but considering the ac-
tual execution times by tasks already completed. On the one
hand, static V/O assignment causes no online overhead but is
rather pessimistic because actual execution times are typically
far off from worst case values. On the other hand, dynamic
V/O assignment exploits information known only after tasks
complete and accordingly computes new assignments; however,
the energy and time overhead for online computations is high,
even if polynomial-time algorithms can be used. We propose
a quasi-static approach that is able to exploit, with low online
overhead, the dynamic slack: first, at design-time, a set of V/O
assignments are computed and stored (offline phase); second,
the selection among the precomputed assignments is left for run-
time, based on actual completion times and consumed energy
(online phase).

Quasi-static scheduling has been previously studied, mostly
in the context of formal synthesis and without considering an
explicit notion of time, but only the partial order of events [5],
[21], [26]. Recently, in the context of realtime systems, Shih
et al. have proposed a template-based approach that combines
offline and online scheduling for phase array radar systems [22],
where templates for schedules are computed offline considering
performance constraints, and tasks are scheduled online such
that they fit in the templates. The online overhead, though, can
be significant when the system workload is high. Quasi-static
scheduling for real-time systems with hard and soft tasks was
recently discussed [7], but without any energy consideration.

The problem of quasi-static voltage scaling for energy mini-
mization in hard realtime systems was recently addressed [2].
This approach prepares and stores at design-time a number of
voltage settings, which are used at runtime for adapting the
processor voltage based on actual execution times. Another,
somehow similar, approach in which a set of voltage settings

is precalculated was discussed in [28]. It considers that the
application is given as a task graph composed of subgraphs,
some of which might not execute for a certain activation of the
system. The selection of a particular voltage setting is, thus,
done online based on which subgraphs will be executed at that
activation. For each subgraph worst case values are assumed
and, consequently, no dynamic slack is exploited. Such ap-
proaches, however, target only hard realtime systems and, as
opposed to our work, do not consider the reward produced by
the soft component of the system (in our case the optional part
of tasks).

To the best of our knowledge, the quasi-static approach pre-
sented in this paper is the first of its type, that is, it is the first one
in which reward, energy, and deadlines are considered together
in a quasi-static framework. The chief merit of our approach is
its ability to exploit the dynamic slack, caused by tasks com-
pleting earlier than in the worst case, at a very low online over-
head. This is possible because a set of solutions are prepared and
stored at design-time, leaving only for runtime the selection of
one of them.

The rest of this paper is structured as follows. Section II
introduces notations and definitions used in this paper. In
Section III, we motivate the advantages of our approach
through an example. The precise formulation of the problem
addressed in this paper is presented in Section IV. We propose,
in Section V, a method for computing at design-time the set
of V/O assignments. Our approach is extensively evaluated in
Section VI through numerous synthetic benchmarks and a real-
istic application. Finally, conclusions are drawn in Section VII.

II. PRELIMINARIES

A. Task and Architectural Models

We consider that the functionality of the system is captured
by a directed acyclic graph where the nodes

correspond to the computational tasks and the
edges indicate the data dependencies between tasks. For the
sake of convenience in the notation, we assume that tasks are
named according to a particular execution order (as explained
later in this subsection) that respects the data dependencies [8].
That is, task executes immediately after .

Each task is composed of a mandatory part and an optional
part, characterized in terms of the number of CPU cycles and

, respectively. The actual number of mandatory cycles of
a task at a certain activation of the system is unknown before-
hand but lies in the interval bounded by the best case number of
cycles and the worst case number of cycles , that is,

. The optional part of a task executes imme-
diately after its corresponding mandatory part completes. For
each task , there is a deadline by which both mandatory
and optional parts of must be completed.

For each task , there is a reward function that takes
as an argument the number of optional cycles assigned to ;
we assume that 0. We consider nondecreasing concave1

reward functions as they capture the particularities of most real

1A function f(x) is concave iff f (x) � 0, that is, the second derivative is
negative.
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life applications [20]. Also, as detailed in Section IV, the con-
cavity of reward functions is exploited for obtaining solutions
to particular optimization problems in polynomial time. We as-
sume also that there is a value , for each , after which no
extra reward is achieved, that is, if .
The total reward is the sum of individual reward contributions
and is denoted .

We consider that tasks are nonpreemptable and have equal re-
lease time 0, . All tasks are mapped onto a
single processor and executed in a fixed order, determined of-
fline, that respects the data dependencies and according to an
earliest deadline first (EDF) policy. For nonpreemptable tasks
with equal release time and running on a single processor, EDF
gives the optimal execution order [6].2 denotes the -th task
in this sequence.

Observe that the nonpreemption assumption is exploited in
order to characterize the space from which possible V/O assign-
ments can be selected (as explained in Section V-A) and, thus,
obtain a good-quality solution. Note also that our approach deals
with voltage levels and optional cycles but not with executing
orders. Scheduling and voltage scaling together requires a solu-
tion significantly different to the one discussed here and, thus,
beyond the scope of this paper.

The target processor supports voltage scaling and we assume
that the voltage levels can be varied in a continuous way in the
interval . If only a discrete set of voltages are sup-
ported by the processor, our approach can easily be adapted
by using well-known techniques for determining the discrete
voltage levels that replace the calculated continuous one [19].

In our quasi-static approach we compute a number of V/O-
cycles assignments. The set of precomputed V/O assignments
is stored in a dedicated memory in the form of lookup tables,
one table for each task . The maximum number of V/O
assignments that can be stored in memory is a parameter fixed
by the designer and is denoted .

B. Energy and Delay Models

The power consumption in CMOS circuits is the sum of dy-
namic, static (leakage), and short-circuit power. The short-cir-
cuit component is negligible. The dynamic power is at the mo-
ment the dominating component. However, the leakage power
is becoming an important factor in the overall power dissipa-
tion. For the sake of simplicity and clarity in the presentation
of our ideas, we consider only the dynamic energy consump-
tion. Nonetheless, the leakage energy and adaptive body biasing
(ABB) techniques [1] can easily be incorporated into the formu-
lation without changing our general approach. The amount of
dynamic energy consumed by task is given by the following
expression [16]:

(1)

2By optimal in this context, we mean the task execution order that, among
all feasible orders, admits the V/O assignment which yields the highest total
reward. We have demonstrated in [6] that an EDF execution order is the one
that least constraints the space of V/O solutions and, henceforth, optimal in the
above sense.

where is the effective switched capacitance, is the supply
voltage, and is the total number of cycles executed by
the task. The energy overhead caused by switching from to

is as follows [16]:

(2)

where is the capacitance of the power rail. We also consider,
for the quasi-static solution, the energy overhead originated
from the need to look up and select one of the precomputed V/O
assignments. The way we store the precomputed assignments
makes the lookup and selection process take time. There-
fore, is a constant value. Also, this value is the same for all
tasks ( , for ). For consistency reasons,
we keep the index in the notation of the selection overhead

. The energy overhead caused by online operations is de-
noted . In a quasi-static solution the online overhead is just
the selection overhead [8].

The total energy consumed up to the completion of task
(including the energy consumed by the tasks themselves as well
as the overheads) is denoted .
We consider a given energy budget, denoted , that imposes
a constraint on the total amount of energy that can be consumed
by the system.

The execution time of a task executing cycles at
supply voltage is [16]

(3)

where is a constant dependent on the process technology, is
the saturation velocity index (also technology dependent, typi-
cally 1.4 2), and is the threshold voltage. The time
overhead, when switching from to , is given by the fol-
lowing expression [1]:

(4)

where is a constant. The time overhead for looking up and
selecting one V/O assignment in the quasi-static approach is
denoted and, as explained above, is constant and is the same
value for all tasks.

The starting and completion times of a task are denoted
and , respectively, with , where captures
the total time overheads. , where is the
online overhead. Note that in a quasi-static solution this online
overhead is just the lookup and selection time, that is,

.

III. MOTIVATIONAL EXAMPLE

Let us consider the motivational example shown in Fig. 1.
The nondecreasing reward functions are of the form

. The energy constraint is 1 mJ and
the tasks run, according to a schedule fixed offline in confor-
mity to an EDF policy, on a processor that permits continuous
voltage scaling in the range 0.6–1.8 V. For clarity reasons, in
this example, we assume that transition overheads are zero.
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Fig. 1. Motivational example.

TABLE I
OPTIMAL STATIC V/O ASSIGNMENT

The optimal static V/O assignment for this example is given
by Table I. It produces a total reward 3.99. The assign-
ment gives, for each task , the voltage at which must
run and the number of optional cycles that it must execute in
order to obtain the maximum total reward, while guaranteeing
that deadlines are met and the energy constraint is satisfied.

The V/O assignment given by Table I is optimal in the static
sense. It is the best possible that can be obtained offline without
knowing the actual number of cycles executed by each task.
However, the actual number of cycles, which are not known in
advance, are typically far off from the worst case values used
to compute such a static assignment. The implication of such
a situation is illustrated by the following case. The first task
starts executing at 1.654 V, as required by the static as-
signment. Assume that executes 60 000 (instead of

100 000) mandatory cycles and then its assigned
35 optional cycles. At this point, knowing that has com-
pleted at 111.73 s and that the consumed energy
is 114.97 J, a new V/O assignment can ac-
cordingly be computed for the remaining tasks, aiming at ob-
taining the maximum total reward for the new conditions. We
consider, for the moment, the ideal case in which such an on-
line computation takes zero time and energy. Observe that, for
computing the new assignments, the worst case for tasks not
yet completed has to be assumed as their actual number of exe-
cuted cycles is not known in advance. The new assignment gives

1.446 V and 51 396. Then runs at 1.446
V and let us assume that it executes 100 000 (instead of

160 000) mandatory cycles and then its newly assigned
51 396 optional cycles. At this point, the completion time

is 461.35 s and the energy so far consumed
is 494.83 J. Again, a new assignment can
be computed taking into account the information about com-
pletion time and consumed energy. This new assignment gives

1.472 V and 60 000.
For such a situation, in which 60 000, 100 000,

150 000, the V/O assignment computed dynamically
(considering 0 and 0) is summarized in

TABLE II
DYNAMIC V/O ASSIGNMENTS (FOR M = 60 000,

M = 100 000,M = 150 000)

TABLE III
PRECOMPUTED SET OF V/O ASSIGNMENTS

Table II(a). This assignment delivers a total reward
16.28. In reality, however, the online overhead caused by com-
puting new assignments is not negligible. When considering
time and energy overheads, using for example 65 s
and 55 J, the V/O assignment computed dynamically
is evidently different, as given by Table II(b). This assignment
delivers a total reward 6.26. The values of and

are, in practice, several orders of magnitude higher than
the ones used in this hypothetical example. For instance, for
a system with 50 tasks, computing one such V/O assignment
using a commercial solver takes a few seconds. Even online
heuristics, which produce approximate results, have long ex-
ecution times [20]. This means that a dynamic V/O scheduler
might produce solutions that are actually inferior to the static
one (in terms of total reward delivered) or, even worse, a
dynamic V/O scheduler might not be able to fulfill the given
time and energy constraints, due to the overheads.

In our quasi-static solution, we compute at design-time a
number of V/O assignments, which are selected at runtime by
the so-called quasi-static V/O scheduler (at very low overhead)
based on the information about completion time and consumed
energy after each task completes.

We can define, for instance, a quasi-static set of assignments
for the example discussed in this section, as given by Table III.
Upon completion of each task, and are selected from the
precomputed set of V/O assignments, according to the given
condition. The assignments were computed considering the se-
lection overheads 0.3 s and 0.3 J.

For the situation 60 000, 100 000,
150 000 and the set given by Table III, the quasi-static V/O
scheduler would do as follows. Task is run at 1.654 V
and is allotted 35 optional cycles. Since, when completing

111.73 130 s and 114.97
135 J, 1.446 43 446 is selected by the quasi-static
V/O scheduler. Task runs under this assignment so that,
when it finishes, 442.99 s and

474.89 J. Then 1.486
46 473 is selected and task is executed accordingly. Table IV
summarizes the selected assignment. The total reward delivered
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TABLE IV
QUASI-STATIC V/O ASSIGNMENT (FORM = 60 000,M = 100 000,M =

150 000) SELECTED FROM THE PRECOMPUTED SET OF TABLE III

by this V/O assignment is 13.34 (compare to
16.28, 6.26, and 3.99). It can be noted that the
quasi-static solution outperforms the dynamic one
because of the large overheads of the latter.

IV. PROBLEM FORMULATION

We tackle the problem of maximizing the total reward subject
to a limited energy budget, in the framework of DVS. In the
following, we present the precise formulation of certain related
problems and of the particular problem addressed in this paper.
Recall that the task execution order is predetermined, with
being the th task in this sequence (see Section II-A).

STATIC V/O ASSIGNMENT: Find, for each task
, the voltage and the number of optional cycles

that

maximize (5)

subject to (6)

(7)

(8)

The previous formulation can be explained as follows. The
total reward, as given by (5), is to be maximized. For each task,
the voltage must be in the range [(6)]. The
completion time is the sum of the start time , the voltage-
switching time , and the execution time , and tasks must
complete before their deadlines [(7)]. The total energy is the
sum of the voltage-switching energies and the energy
consumed by each task, and cannot exceed the available energy
budget [(8)]. Note that a static assignment must consider
the worst case number of mandatory cycles for every task
[(7) and (8)].

For tractability reasons, when solving the above problem, we
consider as a continuous variable and then we round the re-
sult down. By this, without generating the optimal solution, we
obtain a solution that is very near to the optimal one because
one clock cycle is a very fine-grained unit (tasks execute typ-
ically hundreds of thousands of clock cycles). We can rewrite

the above problem as “minimize ,” where
. It can, thus, be noted that: is convex since

is a concave function; the constraint functions are also
convex.3 Therefore, we have a convex nonlinear programming
(NLP) formulation [27] and, hence, the problem can be solved
using polynomial-time methods [18].

Dynamic V/O Scheduler: The following is the problem
that a dynamic V/O scheduler must solve every time a task

completes. It is considered that tasks have
already completed (the total energy consumed up to the
completion of is and the completion time of is

).

Find and , for , that

maximize (9)

subject to (10)

(11)

(12)

where and are, respectively, the time and energy
overhead of computing dynamically and for task .

Observe that the problem solved by the dynamic V/O sched-
uler corresponds to an instance of the static V/O assignment
problem (for and taking into account and

), but considering and .
The total reward delivered by a dynamic V/O sched-

uler, in the ideal case and , represents
an upper bound on the reward that can practically be achieved
without knowing in advance how many mandatory cycles tasks
will execute and without accepting risks regarding deadline or
energy violations.

Although the dynamic V/O assignment problem can be
solved in polynomial-time, the time and energy for solving it
are in practice very large and, therefore, unacceptable at runtime
for practical applications. In our approach, we prepare offline a
number of V/O assignments, one of which is to be selected (at
very low online cost) by the quasi-static V/O scheduler.

Every time a task completes, the quasi-static V/O sched-
uler checks the completion time and the total energy ,
and looks up an assignment in the table for . From the lookup
table it obtains the point , which is the closest
to , such that and , and selects

corresponding to , which are the voltage and
number of optional cycles for the next task . Our aim is to
obtain a reward, as delivered by the quasi-static V/O scheduler,
that is maximal. This problem we discuss in the rest of the paper
as follows.

3Observe that the function abs cannot be used directly in mathematical pro-
gramming because it is not differentiable in 0. However, there exist established
techniques for obtaining equivalent formulations that can be used in NLP prob-
lems [1].
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Fig. 2. Time-energy space.

Set of V/O Assignments: Find a set of assignments
such that: ; the V/O assignment selected by the
quasi-static V/O scheduler guarantees the deadlines

and the energy constraint
, and yields a total

reward that is maximal.

As will be discussed in Section V, for a task , potentially
there exist infinitely many possible values for and . There-
fore, in order to approach the theoretical limit , it would be
needed to compute an infinite number of V/O assignments, one
for each . The problem is, thus, how to select at most

points in this infinite space such that the respective V/O
assignments produce a reward as close as possible to .

V. COMPUTING THE SET OF V/O ASSIGNMENTS

For each task , there exists a time-energy space of possible
values of completion time and energy consumed up to the
completion of (see Fig. 2). Every point in this space defines a
V/O assignment for the next task , that is, if completed
at and the energy consumed was , the assignment for the
next task would be . The values and

are those that an ideal dynamic V/O scheduler would give
for the case (recall that we aim at matching
the reward ). Observe that different points define
different V/O assignments. Note also that for a given value
there might be different valid values of , and this is due to
the fact that different previous V/O assignments can lead to the
same but still different .

We need first to determine the boundaries of the time-en-
ergy space for each task , in order to select points in this
space and accordingly compute the set of assignments.
is the number of assignments to be stored in the lookup table

, after distributing the maximum number of as-
signments among tasks. A straightforward way to determine
these boundaries is to compute the earliest and latest comple-
tion times as well as the minimum and maximum consumed
energy for task , based on the values

, and . The earliest completion time
occurs when each of the previous tasks (inclusive )

execute their minimum number of cycles and zero op-
tional cycles at maximum voltage , while occurs
when each task executes cycles at . Sim-
ilarly, happens when each task executes cy-
cles at , while happens when each task exe-
cutes cycles at . The intervals
and bound the time-energy space as shown

Fig. 3. Pessimistic boundaries of the time-energy space.

Fig. 4. � -E space for task T .

in Fig. 3. However, there are points in this space that cannot
happen. For instance, is not feasible because
requires all tasks running at whereas requires all
tasks running at .

A. Characterization of the Time-Energy Space

In this section, we make a characterization of the time-energy
space in order to determine how the points in this space (for
which the V/O assignments are to be computed offline) should
be selected so that good quality results are achieved. We elabo-
rate on the different steps along this characterization.

We now take a closer look at the relation between the energy
consumed by a task and its execution time as given, re-

spectively, by (1) and (3). In this section, we consider that the
execution time is inversely proportional to the supply voltage

, an assumption commonly made in the litera-
ture [19]. Observe, however, that we make such an assumption
only in order to make the illustration of our point simpler, yet
the drawn conclusions are valid, in general, and do not rely on
this assumption.

After some simple algebraic manipulations on (1) and (3), we
get the following expression:

(13)

which, in the - space, gives a family of straight lines, each
for a particular . Thus, and
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Fig. 5. Illustration of the “sum” of spaces � -E and � -E .

Fig. 6. Realistic boundaries of the time-energy space.

define two boundaries in the - space. We
can also write the following equation:

(14)

which gives a family of curves, each for a particular
. Thus, and

define other two boundaries, as shown in Fig. 4.
Note that Fig. 4 represents the energy consumed by one task
(energy if executes for time), as opposed to Fig. 3 that
represents the energy by all tasks up to (total energy
consumed up to the moment when task finishes).

In order to obtain a realistic, less pessimistic, view of the
diagram in Fig. 3, we must “sum” the spaces - previously
introduced. The result of this summation, as illustrated in
Fig. 5, gives the time-energy space - we are interested in.
In Fig. 5, the - space is obtained by sliding the -
space with its coordinate origin along the boundaries of - .
The “south-east” (SE) and “north-west” (NW) boundaries of
the - space are piecewise linear because the SE and NW
boundaries of the individual spaces - , are
straight lines (see Fig. 4). Similarly, the NE and SW boundaries
of the - space are piecewise parabolic because the NE and
SW of the individual spaces - are parabolic. The shape of
the - space, obtained as a result of such a summation, is
depicted by the solid lines in Fig. 6.

In order to further refine the - space, one has to consider,
in addition, deadlines as well as energy constraints .
Note that, for each task, the deadline is explicitly given as part
of the system model, whereas is an implicit constraint in-
duced by the overall energy constraint . The energy con-
straint imposed upon the completion of task comes
from the fact that future tasks will consume at least a certain
amount of energy so that .
The deadline and the induced energy constraint further
restrict the time-energy space, as depicted by the dashed lines
in Fig. 6.

The time-energy space can be narrowed down even further
if we take into consideration that we are only interested in
points as calculated by the ideal dynamic V/O scheduler. This
is explained in the following. Let us consider two different
activations of the system. In the first one, after finishing task

at with a total consumed energy , task runs
under a certain assignment . In the second activation,
after completes at with total energy runs
under the assignment . Since the points
and are, in general, different, the assignments

and are also different. The assignment
defines in the - space a segment of straight line that
has slope , with one end point corresponding to
the execution of cycles at and the other end
corresponding to the execution of cycles at
[see (13)]. defines analogously a different segment of
straight line . The lines and defined, respectively, by
the assignments and are depicted in Fig. 7. It
must be observed that solutions to the dynamic V/O assignment
problem, though, tend toward letting tasks consume as much as
possible of the available energy and finish as late as possible
without risking energy or deadline violations: there is no gain
by consuming less energy or finishing earlier than needed, as
the goal is to maximize the reward. Both solutions and

(that is, the straight lines and in Fig. 7) will,
thus, converge in the - space when
(which is the value of mandatory cycles that has to be assumed
when computing the V/O values to be assigned to after
has terminated). Therefore, if under the assignment
completes at the same time as under the second assignment

, the respective energy values and
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Fig. 7. V =O and V =O converge.

Fig. 8. Actual points in the time-energy space.

will actually be very close as shown in Fig. 7. This means that
in practice the - space is a narrow area, as depicted by the
dash-dot lines and the gray area enclosed by them in Fig. 6.

We have conducted a number of experiments in order to
determine how narrow the area of points in the time-energy
space actually is. For each task , we consider a segment of
straight line, called in the sequel the diagonal , defined by
the points and . The point

corresponds to the solution given by the ideal
dynamic V/O scheduler in the particular case when every task

, executes its best case number of mandatory
cycles . Analogously, corresponds to
the solution in the particular case when every task executes
its worst case number of mandatory cycles . We have
generated 50 synthetic examples, consisting of between 10 and
100 tasks, and simulated for each of them the ideal dynamic
V/O scheduler for 1000 cases, each case being a combination
of executed mandatory cycles . Note that we
have used various distributions for the number of mandatory
cycles. For each task of the different benchmarks and for
each set of mandatory cycles, we obtained the actual point

in the - space, as given by the ideal dynamic
V/O scheduler. Each point was compared with the
point (a point with the same abscissa , but on
the diagonal so that its ordinate is ) and the relative
deviation was computed. We found
through our experiments average deviations of around 1% and a
maximum deviation of 4.5%. These results show that the -
space is indeed a narrow area. For example, Fig. 8 shows the
actual points , corresponding to the simulation of the
1000 sets of executed mandatory cycles, in the time-energy
space of a particular task as well as the diagonal . It can

Fig. 9. Regions.

also be mentioned that Fig. 8 corresponds to an experiment
where the number of mandatory cycles were considered to
be uniformly distributed in its interval .

B. Selection of Points and Computation of Assignments

From the discussion in Section V-A, we can draw the con-
clusion that the points in the - space are concentrated in a
relatively narrow area along the diagonal . This observation
is crucial for selecting the points for which we compute, at de-
sign-time, the V/O assignments.

We take points along the diagonal in the
- space of task , and then we compute and store the re-

spective assignments that maximize the total reward
when completes at and the total energy is . It should be
noted that for the computation of the assignment , the
time and energy overheads and (needed for selecting
assignments at run time) are taken into account.

Each one of the points, together with its corresponding V/O
assignment, covers a region as indicated in Fig. 9. The quasi-
static V/O scheduler selects one of the stored assignments based
on the actual completion time and consumed energy. Referring
to Fig. 9, for example, if task completes at and the con-
sumed energy is , the quasi-static V/O scheduler will select
the precomputed V/O assignment corresponding to .

The pseudocode of the procedure we use for computing, of-
fline, the set of V/O assignments is given by Algorithm 1. First,
the maximum number of assignments that are to be stored
is distributed among tasks (line 1). A straightforward approach
is to distribute them uniformly among the different tasks, so
that each lookup table contains the same number of assign-
ments. However, as shown by the experimental evaluation of
Section VI, it is more efficient to distribute the assignments ac-
cording to the size of the time-energy space of tasks (we use the
length of the diagonal as a measure of this size), in such a
way that the lookup tables of tasks with larger spaces get more
points.

After distributing among tasks, the solutions
and are computed (lines 2-3).

is a structure that contains the pairs
, for each task .
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and are the values that the dynamic V/O sched-
uler would compute when every task executes its best and
worst case number of cycles, respectively. In order to obtain
the values and (and,
thus, the structures and ), we solve the
problem, as formulated by (9)–(12), times (corresponding
to each task completion) first, considering the best case of
mandatory cycles for all tasks, and second, considering the
worst case of mandatory cycles for all tasks.

Since the assignment is invariably the same (line 4),
this is the only one stored for the first task (line 5).

For every task , , we compute: 1)
as the sum of execution times —given

by (3) with , and ( , and
)—and time overheads (line 7); 2)

as the sum of energies —given by (1) with
, and ( , and )—and

energy overheads (line 8).
Having the endpoints and

that define the diagonal (as shown in Fig. 9), for every task
, we take equally-spaced points along and,

for each such point, we compute the respective assignment
(we solve the dynamic V/O assignment problem

as formulated by (9)–(12), assuming that the total energy con-
sumed up to the completion of is and the completion
time of is ) and store it accordingly in the th position in
the particular lookup table (lines 10–12).

Algorithm 1: OffLinePhase

input: The maximum number of assignments
output: The set of V/O assignments
1: distribute among tasks ( gets points)
2: sol. by dyn. scheduler when

3: sol. by dyn. scheduler when

4: ;
5: store in
6: for do
7:
8:

9: for
10:
11:
12: compute for and store it in

13: end for
14: end for

The set of V/O assignments, prepared offline, is used online
by the quasi-static V/O scheduler as outlined by Algorithm 2.
Note that the energy consumed up to the completion of
task can be calculated based on the energy consumed
up to the previous task and the actual execution time as given
by line 1. Upon completing task , the lookup table is

consulted. If the point lies above the diagonal (line 2)
the index of the table entry is simply calculated as in line 3, else
as in line 5. Computing directly the index , instead of searching
through the table , is possible because the points
stored in are equally-spaced. Finally, the V/O assignment
stored in is retrieved (line 7). Observe that Algorithm 2
has a time complexity and, therefore, the online operation
performed by the quasi-static V/O scheduler takes constant time
and energy. Also, this lookup and selection process is several
orders of magnitude cheaper than the online computation by the
dynamic V/O scheduler.

Algorithm 2: OnLinePhase

input: Actual completion time of , and lookup table
(contains assignments and the diagonal

—defined
as )
output: The assignment for the next task
1:
2: if then
3:
4: else
5:
6: end if
7: return V/O assignment stored in

VI. EXPERIMENTAL EVALUATION

In order to evaluate the presented approach, we performed a
large number of experiments using numerous synthetic bench-
marks. We generated task graphs containing between 10 and
100 tasks. Each point in the plots of the experimental results
(Figs. 10–12) corresponds to 50 automatically-generated task
graphs, resulting overall in more than 4000 performed evalua-
tions. The technology-dependent parameters were adopted from
[16] and correspond to a processor in a 0.18- m CMOS fabri-
cation process. The reward functions we used along the exper-
iments are of the form ,
with coefficients , and randomly chosen. The experi-
ments in this section were performed using uniform probability
distributions for the number of mandatory cycles.

The first set of experiments was performed with the goal of
investigating the reward gain achieved by our quasi-static ap-
proach compared to the optimal static solution (the approach
proposed in [20]). In these experiments we consider that the time
and energy overheads needed for selecting the assignments by
the quasi-static V/O scheduler are 450 ns and
400 nJ. These are realistic values as selecting a precomputed
assignment takes only tens of cycles and the access time and
energy consumption (per access) of, for example, a low-power
Static RAM are around 70 ns and 20 nJ, respectively, [17].4

Fig. 10(a) shows the reward (normalized with respect to the

4Besides, in order to get a realistic estimation of the number of clock cycles
needed for executing Algorithm 2, we used the MPARM simulation environ-
ment [4]: we found out that it requires about 200 clock cycles in a processor
with floating-point unit, which in the case of the Crusoe 5600 processor at 600
MHz means less than 350 ns.
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Fig. 10. Comparison of the quasi-static and static solutions. (a) Influence of
the deadline slack. (b) Influence of the ratioM =M .

reward given by the static solution) as a function of the dead-
line slack (the relative difference between the deadline and the
completion time when worst case number of mandatory cycles
are executed at the maximum voltage that guarantees the en-
ergy constraint). Three cases for the quasi-static approach (2, 5,
and 50 points per task) are considered in this figure. Very sig-
nificant gains in terms of total reward, up to four times, can be
obtained with the quasi-static solution, even with few points per
task. The highest reward gains are achieved when the system has
very tight deadlines (small deadline slack). This is so because,
when large amounts of slack are available, the static solution
can accommodate most of the optional cycles (recall there is a
value after which no extra reward is achieved) and, there-
fore, the difference in reward between the static and quasi-static
solutions is not big in these cases.

The influence of the ratio between the worst case number of
cycles and the best case number of cycles has also
been studied and the results are presented in Fig. 10(b). In this
case, we have considered systems with a deadline slack of 10%
and 20 points per task in the quasi-static solution. The larger
the ratio is, the more the actual number of execution
cycles deviate from the worst case value (which is the
value that has to be considered by a static solution). Thus, the
dynamic slack becomes larger and, therefore, there are more

Fig. 11. Comparison of the quasi-static and ideal dynamic solutions. (a) Influ-
ence of the deadline slack and number of points. (b) Influence of the distribution
of points among lookup tables.

Fig. 12. Comparison considering realistic overheads.

chances to exploit such a slack and, consequently, improve the
reward.

The second set of experiments was aimed at evaluating the
quality of our quasi-static approach with respect to the theoret-
ical limit that could be achieved without knowing in advance
the exact number of execution cycles (the reward delivered by
the ideal dynamic V/O scheduler, as discussed in Section IV,
in which the dynamic V/O assignment problem formulated by
(9)–(12) is solved assuming zero overheads and ). For
the sake of comparison fairness, since the reward produced by an
ideal dynamic V/O scheduler with no overheads is taken as ref-
erence point, in this set of experiments, we have also considered
zero time and energy overheads and for the proposed
quasi-static approach (as opposed to the previous experiments).
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Fig. 11(a) shows the deviation as a
function of the number of precomputed assignments (points per
task) and for various degrees of deadline tightness. The ordinate
in Fig. 11(a), as well as in Fig. 11(b), shows the average devi-
ation of the reward given by a quasi-static approach in relation
to the reward produced by a dynamic V/O scheduler in the ideal
case of zero time and energy overheads. More points per task
produce higher reward, closer to the theoretical limit (smaller
deviation). Nonetheless, with relatively few points per task, we
can still get very close to the theoretical limit, for instance, in
systems with deadline slack of 20% and for 30 points per task
the average deviation is around 1.3%. As mentioned previously,
when the deadline slack is large even a static solution (which
corresponds to a quasi-static solution with just one point per
task) can accommodate most of the optional cycles. Hence, the
deviation gets smaller as the deadline slack increases, as shown
in Fig. 11(a).

In the previous experiments, it has been considered that, for a
given system, the lookup tables have the same size, that is, con-
tain the same number of assignments. When the number
of assignments is distributed among tasks according to the size
of their time-energy spaces (more assignments in the lookup ta-
bles of tasks that have larger spaces), better results are obtained,
as shown in Fig. 11(b). This figure plots the case of equal-size
lookup tables (QS-uniform) and the case of assignments dis-
tributed nonuniformly among tables (QS-nonuniform), as de-
scribed above, for systems with a deadline slack of 20%. The
abscissa is the average number of points per task.

In a third set of experiments, we took into account the on-
line overheads of the dynamic V/O scheduler (as well as the
quasi-static one) and compared the static, quasi-static, and dy-
namic approaches in the same graph. Fig. 12 shows the total re-
ward normalized with respect to the one produced by the static
solution. It shows that, in a realistic setting, the dynamic ap-
proach performs poorly, even worse than the static one. More
importantly, for systems with tight deadlines (small deadline
slack), the dynamic approach cannot guarantee the time and
energy constraints because of its large overheads (this is why
no data is plotted for benchmarks with deadline slack less than
20%). In this set of experiments, the overhead values that have
been considered for the dynamic case correspond actually to
overheads by heuristics [20] and not the overheads incurred by
exact methods, although in these experiments the reward values
produced by the optimal solutions were considered. This means
that, even in the optimistic case of an online algorithm that de-
livers exact solutions in a time frame similar to one of the ex-
isting heuristic methods (which naturally produce values of less
quality than the exact ones), the quasi-static approach outper-
forms the dynamic one.

We have also measured the execution time of Algorithm 1,
used for computing at design-time the set of V/O assignments.
Fig. 13 shows the average execution time as a function of the
number of tasks in the system, for different values of
(total number of assignments). It can be observed that the ex-
ecution time is linear in the number of tasks and in the total
number of assignments. The time needed for computing the set
of assignments, though considerable, is affordable since Algo-
rithm 1 is run offline.

Fig. 13. Execution time of Algorithm 1.

In addition to the synthetic benchmarks previously discussed,
we have also evaluated our approach by means of a real-life
application, namely the navigation controller of an autonomous
rover for exploring a remote place [11]. The rover is equipped,
among others, with two cameras and a topographic map of
the terrain. Based on the images captured by the cameras and
the map, the rover must travel toward its destination avoiding
nearby obstacles. This application includes a number of tasks
described briefly as follows. A frame acquisition task captures
images from the cameras. A position estimation task correlates
the data from the captured images with the one from the topo-
graphic map in order to estimate the rover’s current position.
Using the estimated position and the topographic map, a global
path planning task computes the path to the desired destination.
Since there might be impassable obstacles along the global
path, there is an object detection task for finding obstacles in
the path of the rover and a local path planning task for adjusting
accordingly the course in order to avoid those obstacles. A
collision avoidance task checks the produced path to prevent
the rover from damaging itself. Finally, a steering control task
commands the motors, the direction, and speed of the rover.

For this application, the total reward is measured in terms of
how fast the rover reaches its destination [11]. Rewards pro-
duced by the different tasks (all but the steering control task
which has no optional part) contribute to the overall reward. For
example, higher-resolution images by the frame acquisition task
translates into a clearer characterization of the surroundings of
the rover. This, in turn, implies a more accurate estimation of
the location and, consequently, makes the rover get faster to its
destination (that is, higher total reward). Similarly, running the
global path planning task longer results in a better path which,
again, implies reaching the desired destination faster. The other
tasks make, in a similar manner, their individual contribution to
the global reward, in such a way that the amount of computa-
tion allotted to each of them has a direct impact on how fast the
destination is reached.

The navigation controller is activated periodically every
360 ms and tasks have a deadline equal to the period.5 The en-
ergy budget per activation of the controller is 360 mJ (average
power consumption 1 W) during the night and 540 mJ (average
power 1.5 W) during the daytime [10].

5At its maximum speed of 10 km/h the rover travels in 360 ms a distance of
1 m, which is the maximum allowed without recomputing the path.
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We use two memories, one for the assignments used during
daytime and the other for the set used during the night (these two
sets are different because the energy budget differs), and assume
that 512 assignments can be stored in each memory.
We computed, for both cases, 360 mJ and
540 mJ, the sets of assignments using Algorithm 1. When com-
pared to the respective static solutions, our quasi-static solution
delivers rewards that are in average 3.8 times larger for the night
case and 1.6 times larger for the day case. This means that a
rover using the precomputed assignments can reach its destina-
tion faster than in the case of a static solution and, thus, explore
a larger region under the same energy budget.

The significant difference between the night and day modes
can be explained by the fact that, for more stringent energy con-
straints, fewer optional cycles can be accommodated by a static
solution and, therefore, its reward is smaller. Thus, the relative
difference between a quasi-static solution and the corresponding
static one is significantly larger for systems with more stringent
energy constraints.

VII. CONCLUSION

We have addressed the problem of maximizing rewards for
realtime systems with energy constraints, in the frame of the
imprecise computation model. We have proposed a quasi-static
approach, whose chief merit is the ability to exploit the dynamic
slack at very low online overhead. This is possible because, in
our quasi-static approach, a set of solutions are prepared and
stored at design-time, leaving for runtime only the selection of
one of them.

The number of assignments that can be stored is limited by
the resources of the target system. Therefore, a careful selection
of assignments is crucial because it has a large impact on the
quality of the solution.

We considered that the voltage can continuously be varied.
If only discrete voltages are supported, the approach can easily
be adapted by using well-known techniques for obtaining the
discrete voltage levels that replace the calculated ideal one [19].

We evaluated our approach through numerous synthetic
benchmarks and a real-life application. We found that signifi-
cant gains, up to four times, in terms of reward can be obtained
by the quasi-static approach. We showed also that, due to its
large online overheads, a dynamic approach performs poorly.

The dynamic slack can efficiently be exploited only if ad-
versely high overheads are avoided, as done by our approach.
The methods proposed in this paper succeed in exploiting the
dynamic slack, yet having small online overhead, because the
complex time- and energy-consuming parts of the computations
are performed offline, at design-time, leaving for runtime only
simple lookup and selection operations.
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