
Linköping Studies in Science and Technology

Dissertation No. 920

Verification and Scheduling Techniques
for Real-Time Embedded Systems

Luis Alejandro Cortés

Department of Computer and Information Science
Linköping University, S-581 83 Linköping, Sweden

Linköping, 2005

ISBN 91-85297-21-6 ISSN 0345-7524
Printed by UniTryck
Linköping, Sweden

Copyright c© 2005 Luis Alejandro Cortés

To Lina Marı́a

Abstract

Embedded computer systems have become ubiquitous. They are used in
a wide spectrum of applications, ranging from household appliances and
mobile devices to vehicle controllers and medical equipment.

This dissertation deals with design and verification of embedded systems,
with a special emphasis on the real-time facet of such systems, where the
time at which the results of the computations are produced is as important
as the logical values of these results. Within the class of real-time systems
two categories, namely hard real-time systems and soft real-time systems,
are distinguished and studied in this thesis.

First, we propose modeling and verification techniques targeted towards
hard real-time systems, where correctness, both logical and temporal, is of
prime importance. A model of computation based on Petri nets is defined.
The model can capture explicit timing information, allows tokens to carry
data, and supports the concept of hierarchy. Also, an approach to the formal
verification of systems represented in our modeling formalism is introduced,
in which model checking is used to prove whether the system model sat-
isfies its required properties expressed as temporal logic formulas. Several
strategies for improving verification efficiency are presented and evaluated.

Second, we present scheduling approaches for mixed hard/soft real-time
systems. We study systems that have both hard and soft real-time tasks
and for which the quality of results (in the form of utilities) depends on the
completion time of soft tasks. Also, we study systems for which the quality
of results (in the form of rewards) depends on the amount of computation
allotted to tasks. We introduce quasi-static techniques, which are able to
exploit at low cost the dynamic slack caused by variations in actual execution
times, for maximizing utilities/rewards and for minimizing energy.

Numerous experiments, based on synthetic benchmarks and realistic case
studies, have been conducted in order to evaluate the proposed approaches.
The experimental results show the merits and worthiness of the techniques
introduced in this thesis and demonstrate that they are applicable on real-life
examples.

Acknowledgments

It has been a long path towards the completion of this dissertation and many
people have along the way contributed to it. I wish to express my sincere
gratitude to them all.

First of all, and not merely because it is the convention, I want to thank
my thesis advisors, Zebo Peng and Petru Eles. Not only have they given me
invaluable support and guidance throughout my doctoral studies but also,
and more importantly, they have always encouraged me the way a good
friend does.

Many thanks to former and present members of the Embedded Systems
Laboratory (ESLAB), and in general to all my colleagues in the Department
of Computer and Information Science at Linköping University, for providing
a friendly working environment.

My friends, those with whom I shared the “wonder years” as well as
those I met later, have in many cases unknowingly made this journey more
pleasant. The simple fact that I can count on them anytime is a source of
joy.

I wish to acknowledge the financial support of CUGS—Swedish National
Graduate School of Computer Science—and SSF—Swedish Foundation for
Strategic Research—via the STRINGENT program. This work would not
have been possible without their funding.

I am thankful to my family for their constant support. Especially I
owe my deepest gratitude and love to Dad and Mom for being my great
teachers. And finally, Lina Maŕıa, my beloved wife, deserves the most special
recognition for her endless patience, encouragement, and love. The least I
can do is to dedicate this work to her.

Luis Alejandro Cortés
Linköping, January 2005

Table of Contents

I Preliminaries 1

1 Introduction 3

1.1 Motivation . 5

1.2 Generic Design Flow . 7

1.3 Contributions . 10

1.4 List of Papers . 12

1.5 Thesis Overview . 13

II Modeling and Verification 15

2 Related Approaches 17

2.1 Modeling . 17

2.2 Formal Verification . 21

3 Design Representation 23

3.1 Fundamentals of Petri Nets 24

3.2 Basic Definitions . 25

3.3 Description of Functionality 27

3.4 Dynamic Behavior . 28

3.5 Notions of Equivalence and Hierarchy 30

3.5.1 Notions of Equivalence 32

3.5.2 Hierarchical PRES+ Model 35

3.6 Modeling Examples . 41

3.6.1 Filter for Acoustic Echo Cancellation 41

3.6.2 Radar Jammer . 43

4 Formal Verification of PRES+ Models 47

4.1 Background . 48

4.1.1 Formal Methods . 48

4.1.2 Temporal Logics . 49

viii Table of Contents

4.1.3 Timed Automata . 51

4.2 Verifying PRES+ Models . 52

4.2.1 Our Approach to Formal Verification 53

4.2.2 Translating PRES+ into Timed Automata 55

4.3 Verification of an ATM Server 59

5 Improving Verification Efficiency 65

5.1 Using Transformations . 65

5.1.1 Transformations . 66

5.1.2 Verification of the GMDFα 69

5.2 Coloring the Concurrency Relation 73

5.2.1 Computing the Concurrency Relation 73

5.2.2 Grouping Transitions 77

5.2.3 Composing Automata 79

5.2.4 Remarks . 79

5.2.5 Revisiting the GMDFα 81

5.3 Experimental Results . 82

5.3.1 Ring-Configuration System 82

5.3.2 Radar Jammer . 83

III Scheduling Techniques 87

6 Introduction and Related Approaches 89

6.1 Systems with Hard and Soft Tasks 90

6.2 Imprecise-Computation Systems 91

6.3 Quasi-Static Approaches . 92

7 Systems with Hard and Soft Real-Time Tasks 95

7.1 Preliminaries . 96

7.2 Static Scheduling . 99

7.2.1 Single Processor . 101

7.2.1.1 Optimal Solution 102

7.2.1.2 Heuristics . 104

7.2.1.3 Evaluation of the Heuristics 107

7.2.2 Multiple Processors 111

7.2.2.1 Optimal Solution 111

7.2.2.2 Heuristics . 113

7.2.2.3 Evaluation of the Heuristics 113

7.3 Quasi-Static Scheduling . 116

7.3.1 Motivational Example 116

7.3.2 Ideal On-Line Scheduler and Problem Formulation . . 118

Table of Contents ix

7.3.2.1 Ideal On-Line Scheduler 118

7.3.2.2 Problem Formulation 119

7.3.3 Optimal Set of Schedules and Switching Points 120

7.3.3.1 Single Processor 120

7.3.3.2 Multiple Processors 127

7.3.4 Heuristics and Experimental Evaluation 130

7.3.4.1 Interval Partitioning 131

7.3.4.2 Tree Size Restriction 136

7.3.5 Cruise Control with Collision Avoidance 140

8 Imprecise-Computation Systems with Energy Considera-

tions 143

8.1 Preliminaries . 144

8.1.1 Task and Architectural Models 144

8.1.2 Energy and Delay Models 146

8.1.3 Mathematical Programming 147

8.2 Maximizing Rewards subject to Energy Constraints 147

8.2.1 Motivational Example 147

8.2.2 Problem Formulation 150

8.2.3 Computing the Set of V/O Assignments 153

8.2.3.1 Characterization of the Space Time-Energy . 154

8.2.3.2 Selection of Points and Computation of As-
signments . 158

8.2.4 Experimental Evaluation 160

8.3 Minimizing Energy subject to Reward Constraints 166

8.3.1 Problem Formulation 166

8.3.2 Computing the Set of V/O Assignments 169

8.3.3 Experimental Evaluation 172

IV Conclusions and Future Work 177

9 Conclusions 179

10 Future Work 183

Bibliography 185

Appendices 199

A Notation 201

x Table of Contents

B Proofs 207

B.1 Validity of Transformation Rule TR1 207
B.2 NP-hardness of MSMU . 208
B.3 MSMU Solvable in O(|S|!) Time 210
B.4 Interval-Partitioning Step Solvable in O((|H|+ |S|)!) Time . 211
B.5 Optimality of EDF . 212

Part I

Preliminaries

Chapter 1

Introduction

The semiconductor industry has evolved at an incredible pace since the con-
ception of the transistor in 1947. Such a high pace of development could
hardly be matched by other industries. If the automotive industry, often
used as a comparison point, had advanced at the same rate as the the semi-
conductor industry, an automobile today would cost less than a cent, weigh
less than a gram, and consume less than 10−5 liters per hundred kilometers
[Joh98].

The amazing evolution of the electronic technologies still continues at
the present time, progressing rapidly and making it possible to fabricate
smaller and cheaper electronic devices that perform more complex functions
at higher speeds. And yet, beyond the technological achievements, the so-
called electronic revolution has opened up new challenges and frontiers in
the human capabilities.

The first electronic digital computer, ENIAC (Electronic Numerical In-
tegrator And Computer), contained 18.000 vacuum tubes and hundreds of
thousands of resistors, capacitors, and inductors [McC99]. It weighed over 30
tons, took up 167 m2, and consumed around 175 kW of power. ENIAC could
perform 5.000 addition operations per second. Today, a state-of-the-art mi-
croprocessor contains around 50 million transistors and can execute billions
of additions per second, in an area smaller than a thumbnail, consuming a
couple of tens of watts.

The remarkable development of computer systems is partly due to the
advances in semiconductor technology. But also, to a great extent, new
paradigms and design methodologies have made it possible to design and
deploy devices with such extraordinary computation capabilities. Innovative
design frameworks have thus exploited the rapid technological progress in
order to create more powerful computer systems at lower cost.

In the mid-1960s Gordon Moore made the observation that the number

4 1. Introduction

of transistors on an integrated circuit would double approximately every 18
months [Moo65]. This exponential growth has held since the invention of the
integrated circuit in 1959. While fundamental physical limits will eventually
be reached, the trend predicted by Moore’s law is expected to continue for
at least one more decade.

With semiconductor technology advancing rapidly, it is nowadays feasible
to fully integrate complex systems on a single chip. However, the capabilities
to design such systems are not growing at the same rate as the capabilities
to fabricate them. The semiconductor technology is simply outpacing the
design capabilities, which creates consequently a productivity gap: every
year, the number of available raw transistors increases by 58% while the
designer’s capabilities to design them grows only by 21% [Kah01]. This
drives the need for innovative design frameworks that help to bridge this
gap. And these design paradigms will play an increasing role in sustaining
the development of computer-based systems.

Digital computer-based systems have become ubiquitous. These systems
have various types of applications including automotive and aircraft con-
trollers, cellular phones, network switches, household appliances, medical
devices, and consumer electronics. Typical households in developed coun-
tries have, for instance, desktop or laptop computers, scanners, printers,
fax machines, TV sets, DVD players, stereo systems, video game consoles,
telephones, food processors, microwave ovens, washing machines, vacuum
cleaners, refrigerators, video and photo cameras, and personal digital assis-
tants, among many others. Each one of the devices listed above has at its
heart at least one microprocessor controlling or implementing the functions
of the system. This widespread use of digital systems has been boosted by
the enormous computation capabilities that are nowadays available at very
low cost.

In the devices mentioned above, except desktops and laptops, the com-
puter is a component within a larger system. In such cases the computer
is embedded into a larger system, hence the term embedded systems. In
the case of the desktop and the laptop, the computer is the system itself.
Desktop and laptop computers, as well as workstations and mainframes,
belong to the class of general-purpose systems. They can be programmed
to implement any computable function. Embedded systems, as opposed
to general-purpose systems, implement a dedicated set of functions that is
particular to the application.

The vast majority of computer systems is today used in embedded ap-
plications. Less than 2% of the billions of microprocessors sold annually are
actually used in general-purpose systems [Tur02]. The number of embedded
systems in use will continue to grow rapidly as they become more pervasive

1.1. Motivation 5

in our everyday life.

1.1 Motivation

Embedded systems are used in a large number of applications and the spec-
trum of application fields will continue to expand. Despite the variety and
diversity of application areas, embedded systems are characterized by a num-
ber of generic features:

• Embedded systems are intended for particular applications, that is, one
such system performs a set of dedicated functions that is well defined in
advance and, once the system is deployed, the functionality is not modi-
fied during normal operation. The digital controller of a home appliance
such as a vacuum cleaner, for example, is designed and optimized to per-
form that particular function and will serve the same function during the
operational life of the product.

• Due to the interaction with their environment, embedded systems must
fulfill strict temporal requirements, typically in the form of deadlines.
Thus the term real-time system is frequently used to emphasize this as-
pect. The correct behavior of these systems depends not only on the
logical results of the computations but also on the time at which these
results are produced [But97]. For instance, the ABS (Anti-locking Brake
System) controller in modern vehicles must acquire data from the sen-
sors, process it, and output the optimal force to be applied to the brake
pads, in a time frame of few milliseconds subject to a maximal-reaction
time constraint.

• For many embedded applications, especially mobile devices, energy con-
sumption is an essential design consideration. For this type of devices,
it is crucial to use as efficiently as possible the energy provided by an
exhaustible source such as a battery.

• Embedded systems are generally heterogeneous, that is, they include
hardware as well as software elements. The hardware components, such
as application-specific integrated circuits and field-programmable gate
arrays, provide the speed and low-power dimension needed in many ap-
plications. The software components, such as programmable processors,
give the flexibility for extending the system with increased functionality
and adding more features to new generations of the product.

• Embedded systems have high requirements in terms of reliability and
correctness. Errors in safety-critical applications, such as avionics and
automotive electronics, may have disastrous consequences. Therefore
safety-critical applications demand techniques that ensure the reliable
and correct operation of the system.

6 1. Introduction

The design of systems with such characteristics is a difficult task. Em-
bedded systems must not only implement the desired functionality but must
also satisfy diverse constraints (power and energy consumption, performance,
correctness, size, cost, flexibility, etc.) that typically compete with each
other. Moreover, the ever increasing complexity of embedded systems com-
bined with small time-to-market windows poses great challenges for the de-
signers.

A key issue in the design of embedded systems is the simultaneous op-
timization of competing design metrics [VG02]. The designer must explore
several alternatives and trade off among the different design objectives, hence
the importance of sound methodologies that allow the systematic exploration
of the design space. It is through the application of rigorous and systematic
techniques that the design of embedded systems can be carried out in an
efficient and productive manner.

Due to the diversity of application areas, design techniques must be tai-
lored to the particular class of embedded systems. The type of system dic-
tates thus the most relevant design goals. The design methods must con-
sequently exploit the information characteristic of the application area. In
portable, battery-powered devices, such as mobile phones, for example, en-
ergy consumption is one of the most important design considerations, which
might not necessarily be the case for a home appliance such as a washing
machine.

In this thesis we place special emphasis on the real-time aspects of embed-
ded systems. Depending on the consequences of failing to meet a deadline,
real-time systems are usually categorized in two classes, namely hard real-
time systems and soft real-time systems [Kop97], [Lap04]. Basically, a hard
real-time system is one in which a deadline miss may lead to a catastrophic
failure. A soft real-time system is one in which a deadline miss might de-
grade the system performance but poses no serious risk to the system or
environment integrity.

We propose in this thesis techniques targeted towards these two classes
of systems. In Part II (Modeling and Verification) we address hard real-time
systems, where correctness, both logical and temporal, is of prime impor-
tance. In Part III (Scheduling Techniques) we discuss several approaches
for mixed hard/soft real-time systems, which may include parts that are
loosely constrained, for example, soft tasks for which deadline misses can be
tolerated at the expense of quality of results.

In the next section we elaborate on a generic design flow, indicating the
particular steps to which the techniques proposed in Parts II and III can be
applied.

1.2. Generic Design Flow 7

1.2 Generic Design Flow

This section presents a generic design flow for embedded systems. We high-
light the parts of such a flow that are directly addressed in this thesis in
order to demarcate the different contributions of our work.

A generic design flow is shown in Figure 1.1. The process starts with a
system specification which describes the functionality of the system as well
as performance, cost, energy, and other constraints of the intended design.
Such a specification states the functionality without giving implementation
details, that is, it specifies what the system must do without making as-
sumptions about how it must be implemented. In the design of embedded
systems many different specification languages are available [GVNG94]. The
system specification can be given using a variety of languages that range from
natural language to languages with strong formal semantics, although it is
preferable to specify the system using a language with precise semantics as
this allows the use of tools that assist the designer from the initial steps of
the design flow.

Once the system specification is given, the designer must come up with
a system model that captures aspects from the functional part of the spec-
ification as well as non-functional attributes. Modeling is a fundamental
aspect of the design methodology. A model of computation with precise
mathematical meaning is essential for carrying out in a systematic way the
different steps from specification to implementation: a sound representation
allows the designer to capture unambiguously the functionality of the system
as well as non-functional constraints, verify the correctness of the system,
reason formally about the refinement steps during the synthesis process, and
use CAD tools throughout the different stages of the design flow [SLSV00].
As detailed in Section 2.1, a large variety of modeling formalisms have been
used for representing embedded systems. These models of computation en-
compass diverse styles, attributes, and application domains.

Then, once the system model has been obtained, the designer must decide
the underlying architecture of the system, that is, select the type and number
of components as well as the way to interconnect them. This stage is known
as architecture selection. The components may include various processor
cores, custom modules, communication elements such as buses and buffers,
I/O interfaces, and memories. The architecture selection step, as well as
subsequent design steps, corresponds to the exploration of the design space in
search of solutions that allow the implementation of the desired functionality
and the satisfaction of the non-functional constraints.

Based on the selected system architecture, in the partitioning and map-
ping phase, the tasks or processes of the system model are grouped and

8 1. Introduction

SW

SynthesisSynthesis

CommunicationHW

Synthesis

Partitioning

and Mapping

Architecture

System

Selection

Architecture

Specification

System

Estimation

Modeling

Scheduling

S
y
st

e
m

 L
e
v
e
l

Formal

Verification

Simulation Model

System

Mapped and

L
o
w

e
r

L
e
v
e
ls

Formal

Verification

Simulation

Analysis

Testing

Prototype

Prototyping

Scheduled Model

Figure 1.1: A generic design flow for embedded systems

mapped onto the selected components. Hardware/software partitioning in
the context of embedded systems refers to the physical partition of system
functionality into custom integrated circuits (hardware components) and
programmable processors (software components) [DeM97]. The partition of

1.2. Generic Design Flow 9

the system into hardware and software has particularly a great impact on
the cost and the performance of the resulting design.

Once it has been determined what parts are to be implemented on which
components, certain decisions concerning the execution order of tasks or
their priorities have to be taken. This design step is called scheduling. Since
several computational tasks have typically to share the same processing re-
source, as dictated by the mapping of tasks onto processing elements, it is
necessary to make a temporal distribution of each of the resources among
the tasks mapped onto it, in such a way that precedence and timing con-
straints are fulfilled. This includes selecting the criteria (scheduling policies)
for assigning the computational resources to the various tasks as well as the
set of rules that determine the order in which tasks are executed [But97].
Moreover, power and energy considerations have become very important in
the design of embedded systems and must be taken into account during the
system-level design phases, especially during the scheduling phase: modern
processors allow the supply voltage to be dynamically varied, which has a
direct impact on the energy consumption as well as on the performance (re-
ducing the supply voltage has the benefit of quadratic energy savings at the
expense of approximately linear performance loss). Thus the voltage level is
a new dimension that has to be taken into consideration in the exploration of
solutions that satisfy the timing constraints. Therefore scheduling concerns
not only the execution order of tasks but also the selection of voltages at
which such tasks run.

At this point, the model must include the information about the de-
sign decisions taken in the stages of architecture selection, partitioning, and
scheduling (mapped and scheduled model).

The design process continues further with the so-called lower-level
phases, including SW synthesis, HW synthesis, and communication synthe-
sis, and later with prototyping. Once the prototype has been produced, it
must thoroughly be checked during the testing phase in order to find out
whether it functions correctly.

The design flow includes iterations, where it is sometimes necessary to go
back to previous steps because some of the design goals cannot be fulfilled,
and therefore it is needed to explore different design alternatives by revising
decisions taken earlier in precedent design phases.

Simulation can be used to validate the design at different stages of the
process and, therefore, can be carried out at different levels of accuracy
[Row94], [FFP04]. Validation of modern embedded systems has become an
enormous challenge because of their size and complexity. The nature of
simulation (generating functional test vectors, executing the model of sys-
tem according to these vectors, and observing the behavior of the system

10 1. Introduction

under the test stimuli) means that is not feasible to validate large designs
by exhaustive simulation. In spite of the advances in simulation techniques,
the fraction of system behavior that can be covered by simulation is de-
clining [Dil98]. Formal Verification has emerged as a viable alternative to
the problem of verifying complex systems. Formal verification methods em-
body analytical and mathematical techniques to prove properties about a
design. Formal verification can also be performed at different points of the
design flow, for example, on the initial system model or on the mapped and
scheduled model. Formal verification methods have grown mature and can
overcome some of the limitations of traditional validation methods like sim-
ulation. Formal verification, however, does not provide a universal solution
and there still exist issues to be tackled in this field. Nonetheless, formal
verification has proved to be a powerful tool when it comes to the goal of
designing correct systems.

Our work contributes to various system-level phases of the flow presented
above. The main contributions of this thesis correspond to the parts high-
lighted in Figure 1.1 as shaded boxes/ovals and are detailed in Section 1.3.
Part II deals with modeling and formal verification and and Part III ad-
dresses the scheduling phase.

1.3 Contributions

Different classes of real-time embedded systems and different stages of their
design cycle are addressed in this thesis. The main contributions of this
dissertation are summarized as follows:

Modeling and Verification

• We define a sound model of computation. PRES+, short for Petri Net
based Representation for Embedded Systems, is an extension to the clas-
sical Petri nets model that captures explicitly timing information, allows
systems to be represented at different levels of granularity, and improves
expressiveness by allowing tokens to carry information. Furthermore,
PRES+ supports the concept of hierarchy [CEP99], [CEP00a], [CEP00c],
[CEP01], [CEP03].

• We propose an approach to the formal verification of systems represented
in PRES+. Model checking is used to automatically determine whether
the system model satisfies its required properties expressed in temporal
logics. A systematic procedure to translate PRES+ models into timed
automata is presented so that it is possible to make use of existing model
checking tools [CEP00b], [CEP00c], [CEP01], [CEP03].

1.3. Contributions 11

• Strategies for improving verification efficiency are introduced. First,
correctness-preserving transformations are applied to the system model
in order to obtain a simpler, yet semantically equivalent, one. Thus the
verification effort can be reduced. Second, by exploiting the structure
of the system model and, in particular, information concerning the de-
gree of concurrency of the system, the translation of PRES+ into timed
automata can be improved and, therefore, verification complexity can
considerably be reduced [CEP01], [CEP02b], [CEP02a], [CEP03].

Scheduling Techniques

• We present scheduling algorithms for real-time systems that include both
hard and soft tasks, considering that there exist utility functions that
capture the relative importance of soft tasks as well as how the quality
of results is affected when a soft deadline is missed. Static scheduling
techniques are proposed and evaluated. Also, a quasi-static scheduling
approach, aimed at exploiting the dynamic time slack caused by tasks fin-
ishing ahead of their worst-case execution time, is introduced [CEP04c],
[CEP04b], [CEP04a], [CEP05b].

• We propose quasi-static techniques for assigning voltages and allotting
amount of computation in real-time systems with energy considerations,
for which it is possible to trade off performance for energy consumption
and also to trade off precision for timeliness. First, methods for maximiz-
ing rewards (value obtained as a function of the amount of computation
allotted to tasks in the system) subject to energy constraints are pre-
sented. Second, techniques for minimizing energy consumption subject
to constraints in the total reward are introduced [CEP05a].

It must be observed that in this thesis modeling and verification, on the
one hand, and scheduling techniques, on the other hand, are treated sepa-
rately in Parts II and III respectively. However, modeling and verification as
well as scheduling are constituent parts of an integral design flow. Thus in
a practical design flow, as the one presented in Figure 1.1, verification and
scheduling are not completely independent parts. As it was mentioned pre-
viously, verification can be performed at different stages of the design flow,
among which also after the scheduling phase; that is, once the decisions re-
lated to scheduling are taken, it is important to verify the correctness of the
system. Also, scheduling information affects significantly the complexity of
the verification process: on the one hand, the system model grows larger
because information related to the task execution order must be included in
the representation; on the other hand, the temporal distribution of compu-
tational resources among tasks makes the state space much smaller because

12 1. Introduction

the degree of parallelism and non-determinism is reduced.

Nonetheless, although our verification and scheduling techniques are ad-
dressed separately, they all are targeted towards real-time embedded sys-
tems, which are the type of systems we focus on in this dissertation. A dis-
tinguishing feature, that is common to the techniques presented in Parts II
and III—and also differentiates our work from approaches discussed previ-
ously in the literature, is the consideration of varying execution times for
tasks in the form of time intervals.

1.4 List of Papers

Parts of the contents of this dissertation have been presented in the following
papers:

[CEP99] L. A. Cortés, P. Eles, and Z. Peng. A Petri Net based Model for

Heterogeneous Embedded Systems. In Proc. NORCHIP Confer-
ence, Oslo, Norway, pages 248–255, 1999.

[CEP00a] L. A. Cortés, P. Eles, and Z. Peng. Definitions of Equivalence for

Transformational Synthesis of Embedded Systems. In Proc.
Intl. Conference on Engineering of Complex Computer Systems, Tokyo,
Japan, pages 134–142, 2000.

[CEP00b] L. A. Cortés, P. Eles, and Z. Peng. Formal Coverification of Embed-

ded Systems using Model Checking. In Proc. Euromicro Conference
(Digital Systems Design), Maastricht, The Netherlands, volume 1, pages
106–113, 2000.

[CEP00c] L. A. Cortés, P. Eles, and Z. Peng. Verification of Embedded Sys-

tems using a Petri Net based Representation. In Proc. Intl. Sym-
posium on System Synthesis, Madrid, Spain, pages 149–155, 2000.

[CEP01] L. A. Cortés, P. Eles, and Z. Peng. Hierarchical Modeling and Ver-

ification of Embedded Systems. In Proc. Euromicro Symposium on
Digital System Design, Warsaw, Poland, pages 63–70, 2001.

[CEP02a] L. A. Cortés, P. Eles, and Z. Peng. An Approach to Reducing

Verification Complexity of Real-Time Embedded Systems. In
Proc. Euromicro Conference on Real-Time Systems (Work-in-progress
Session), Vienna, Austria, pages 45–48, 2002.

[CEP02b] L. A. Cortés, P. Eles, and Z. Peng. Verification of Real-Time Em-

bedded Systems using Petri Net Models and Timed Automata.
In Proc. Intl. Conference on Real-Time Computing Systems and Appli-
cations, Tokyo, Japan, pages 191–199, 2002.

[CEP03] L. A. Cortés, P. Eles, and Z. Peng. Modeling and Formal Verifi-

cation of Embedded Systems based on a Petri Net Represen-

tation. Journal of Systems Architecture, 49(12-15):571–598, December
2003.

[CEP04a] L. A. Cortés, P. Eles, and Z. Peng. Combining Static and Dynamic

Scheduling for Real-Time Systems. In Proc. Intl. Workshop on

1.5. Thesis Overview 13

Software Analysis and Development for Pervasive Systems, Verona, Italy,
pages 32–40, 2004. Invited paper.

[CEP04b] L. A. Cortés, P. Eles, and Z. Peng. Quasi-Static Scheduling for Real-

Time Systems with Hard and Soft Tasks. In Proc. Design, Automa-
tion and Test in Europe Conference, Paris, France, pages 1176–1181,
2004.

[CEP04c] L. A. Cortés, P. Eles, and Z. Peng. Static Scheduling of Monopro-

cessor Real-Time Systems composed of Hard and Soft Tasks.
In Proc. Intl. Workshop on Electronic Design, Test and Applications,
Perth, Australia, pages 115–120, 2004.

[CEP05a] L. A. Cortés, P. Eles, and Z. Peng. Quasi-Static Assignment of

Voltages and Optional Cycles for Maximizing Rewards in Real-

Time Systems with Energy Constraints. 2005. Submitted for pub-
lication.

[CEP05b] L. A. Cortés, P. Eles, and Z. Peng. Quasi-Static Scheduling for Mul-

tiprocessor Real-Time Systems with Hard and Soft Tasks. 2005.
Submitted for publication.

1.5 Thesis Overview

This thesis is divided into four parts and consists of ten chapters. The first
part presents the introductory discussion and general overview of the thesis.
The second part presents our modeling and verification techniques for hard
real-time systems, where correctness plays a primordial role. The third part
addresses approaches that target hard/soft real-time systems, where the soft
part provides the flexibility for trading off quality of results with other design
metrics. The fourth and last part concludes the dissertation by summarizing
its main points and discussing ideas for future work. The structure of the
rest of this thesis, together with a brief description of each chapter, is as
follows:

Part II: Modeling and Verification

• Chapter 2 (Related Approaches) addresses related work in the areas of
modeling and formal verification.

• Chapter 3 (Design Representation) defines a model of computation based
on Petri nets, PRES+, that is used as design representation in Part II.
Several notions of equivalence are introduced and, based on them, a con-
cept of hierarchy for PRES+ models is presented.

• Chapter 4 (Formal Verification of PRES+ Models) introduces an ap-
proach to the formal verification of systems modeled using PRES+. A
translation procedure from PRES+ into the input formalism of available
verification tools is proposed.

14 1. Introduction

• Chapter 5 (Improving Verification Efficiency) discusses two techniques
for ameliorating the verification process: first, a transformation-based
approach that seeks to simplify the system model is presented; second, a
technique that exploits information on the degree of concurrency of the
system is introduced.

Part III: Scheduling Techniques

• Chapter 6 (Introduction and Related Approaches) gives a brief introduc-
tion to Part III and presents related approaches in the areas of scheduling
for systems composed of hard and soft real-time tasks as well as schedul-
ing under the framework of the Imprecise Computation model.

• Chapter 7 (Systems with Hard and Soft Real-Time Tasks) addresses the
problem of scheduling for real-time systems with hard and soft tasks.
Static scheduling solutions for both monoprocessor and multiprocessor
systems are discussed. The problem is also addressed under the frame-
work of a quasi-static approach with the goal of improving the quality of
results by exploiting the dynamic time slack.

• Chapter 8 (Imprecise-Computation Systems with Energy Considerations)
studies real-time systems (under the Imprecise Computation model) for
which it is possible to trade off precision for timeliness as well as perfor-
mance for energy. Two different approaches, in which deadlines, energy,
and reward are considered under a unified framework, are addressed in
this chapter.

Part IV: Conclusions and Future Work

• Chapter 9 (Conclusions) summarizes the main points of the proposed
techniques and presents the thesis conclusions.

• Chapter 10 (Future Work) discusses possible directions in our future re-
search based on the results presented in this dissertation.

Part II

Modeling and Verification

Chapter 2

Related Approaches

Modeling is an essential part of any design methodology. Many models of
computation have been proposed in the literature to represent computer
systems. These models encompass a broad range of styles, characteristics,
and application domains. Particularly in embedded systems design, a variety
of models have been developed and used as system representation.

In the field of formal verification, many approaches have also been pro-
posed. There is a significant amount of theoretical results and many of them
have been applied in realistic settings. However, approaches targeted espe-
cially to embedded systems and considering systematically real-time issues
have until now not been very common.

This chapter presents related work in the areas of modeling and formal
verification for embedded systems.

2.1 Modeling

Many different models of computation have been proposed to represent em-
bedded systems [ELLSV97], [LSVS99], [Jan03], including extensions to finite
state machines, data flow graphs, communicating processes, and Petri nets,
among others. This section presents various models of computation for em-
bedded systems reported in the literature.

Finite State Machines

The classical Finite State Machine (FSM) representation [Koz97] is probably
the most well-known model used for describing control systems. One of the
disadvantages of FSMs, though, is the exponential growth of the number
of states that have to be explicitly captured in the model as the system

18 2. Related Approaches

complexity rises. A number of extensions to the classical FSM model have
been suggested in different contexts.

Codesign Finite State Machines (CFSMs) are the underlying model of
computation of the POLIS design environment [BCG+97]. A CFSM is
an extended FSM including a control part and a data computation part
[CGH+93]. Each CFSM behaves synchronously from its own perspective. A
system is composed of a number of CFSMs that communicate among them-
selves asynchronously through signals, which carry information in the form
of events. Such a semantics provides a GALS model: Globally Asynchronous
(at the system level) and Locally Synchronous (at the CFSM level). CFSMs
are mainly intended for control-oriented systems.

In order to make it more suitable for data-oriented systems, the FSM
model has been extended by introducing a set of internal variables, thus lead-
ing to the concept of Finite State Machine with Datapath (FSMD) [GR94].
The transition relation depends not only on the present state and input sig-
nals but also on a set of internal variables. Although the introduction of
variables in the FSMD model helps to reduce the number of represented
states, the lack of explicit support for concurrency and hierarchy is a draw-
back because the state explosion problem is still present.

The FunState model [STG+01] consists of a network and a finite state
machine. The so-called network corresponds to the data intensive part of
the system. The network is composed of storage units, functions, and arcs
that relate storage units and functions. Data is represented by valued tokens
in the storage units. The activation of functions in the network is controlled
by the state machine. In the FunState model, an arbitrary number of com-
ponents (network and FSM) can be arranged in a hierarchical structure.

Statecharts extend FSMs by allowing hierarchical composition and con-
currency [Har87]. A particular state can be composed of substates which
means that being in the higher-level state is interpreted as being in one of
the substates. In this way, Statecharts avoids the potential for state explo-
sion by permitting condensed representations. Furthermore, timing is spec-
ified by using linear inequalities in the form of time-outs. The problem with
Statecharts is that the model falls short when representing data-oriented
systems.

Dataflow Graphs

Dataflow graphs [DFL72] are very popular for modeling data-dominated sys-
tems. Computationally intensive systems might conveniently be represented
by a directed graph where the nodes describe computations and the arcs
capture data dependencies between tasks. The computations are executed
only when the required operands are available and the operations behave as

2.1. Modeling 19

atomic operations without side effects. However, the conventional dataflow
graph model is inadequate for representing the control unit of systems.

Dataflow Process Networks are mainly used for representing signal pro-
cessing systems [LP95]. Programs are specified by directed graphs where
nodes (actors) represent computations and arcs (streams) represent se-
quences of data. Processing is done in series of iterated firings in which
an actor transforms input data into output ones. Dataflow actors have fir-
ing rules to determine when they must be enabled and then execute a specific
operation. A special case of dataflow process networks is Synchronous Data
Flow (SDF) where the actors consume and produce a fixed number of data
tokens in each firing because of their static rules [LM87].

Conditional Process Graph (CPG) is an abstract graph representation
introduced to capture both the data- and the control-flow of a system
[EKP+98]. A CPG is a directed, acyclic, and polar graph, consisting of
nodes as well as simple and conditional edges. Each node represents a pro-
cess which can be assigned to one of the processing elements. The graph has
two special nodes (source and sink) used to represent the first and the last
task. The model allows each process to be characterized by an execution
time and a guard which is the condition necessary to activate that process.
In this way, it is possible to capture control information in a dataflow graph.

Communicating Processes

Several models have been derived from Hoare’s Communicating Sequential
Processes (CSP) [Hoa85]. In CSP, systems are composed of processes that
communicate with each other through unidirectional channels using a syn-
chronizing protocol.

SOLAR is a model of computation based on CSP, where each process
corresponds to an extended FSM, similar to Statecharts, and communication
is performed by dedicated units [JO95]. Thus communication is separated
from the rest of the design so that it can be optimized and reused. By focus-
ing on efficient implementation and refinement of the communication units,
SOLAR is best suited for communication-driven design processes. SOLAR
is the underlying model of the COSMOS design environment [IAJ94].

Interacting Processes are also derived from CSP and consist of indepen-
dent interacting sequential processes [TAS93]. The communication is per-
formed through channels but, unlike CSP, there exist additional primitives
that permit unbuffered transfer and synchronization without data.

The Formal System Design (ForSyDe) methodology [SJ04] uses a de-
sign representation where the system is modeled as network of concurrent
processes which communicate with each other through signals (ordered se-
quences of events). The ForSyDe methodology provides a framework for the

20 2. Related Approaches

stepwise design process of embedded systems where a high-level functional
model is transformed through a number of refinements into an synthesizable
implementation model.

Petri Nets

Modeling of systems using Petri Nets (PN) has been applied widely in many
fields of science [Pet81], [Mur89]. The mathematical formalism developed
over the years, which defines its structure and firing rules, has made Petri
nets a well-understood and powerful model. A large body of theoretical
results and practical tools have been developed around Petri nets. Several
drawbacks, however, have been pointed out, especially when it comes to
modeling embedded systems:

• Petri nets tend to become large, even for relatively small systems. The
lack of hierarchical composition makes it difficult to specify and under-
stand complex systems using the conventional model

• The classical PN model lacks the notion of time. However, as pointed
out in Section 1.1, time is an essential factor in embedded applications.

• Regular Petri nets lack expressiveness for formulating computations as
long as tokens are considered as “black dots”.

Several formalisms have independently been proposed in different con-
texts in order to overcome the problems cited above, such as introducing the
concepts of hierarchy [Dit95], time [MF76], and valued tokens [JR91]. Some
of the PN formalisms previously proposed to be used in embedded systems
design are described in the following.

Petri net based Unified REpresentation (PURE) is a model with data
and control notation [Sto95]. It consists of two different, but closely related,
parts: a control unit and a computational/data part. Timed Petri nets with
restricted transition rules are used to represent the control flow. Hardware
and software operations are represented by datapaths and instruction de-
pendence graphs respectively. Hierarchy is however not supported by this
model.

In Colored Petri Nets (CPN), tokens may have “colors”, that is, data
attached to them [Jen92]. The arcs between transitions/places have expres-
sions that describe the behavior associated to transitions. Thus transitions
describe actions and tokens carry values. The CPN model permits hierarchi-
cal constructs and a strong mathematical theory has been built up around it.
The problem of CPN is that timing is not explicitly defined in the model. It
is possible to treat time as any other value attached to tokens but, since there
is no semantics given for the order of firing along the time horizon, timing
inconsistencies can happen. Approaches using CPN that target particularly

2.2. Formal Verification 21

embedded systems include [Ben99] and [HG02].

Dual Transition Petri Nets (DTPN) are another model of computation
where control and data flow are tightly linked [VAH01]. There are two types
of transitions (control and data transitions) as well as two types of arcs
(control and data flow arcs). Tokens may have values which are affected
by the firing of data transitions. Control transitions may have guards that
depend on token values so that guards constitute the link between the control
and data domains. The main drawback of DTPN is that it lacks an explicit
notion of time. Nor does it support hierarchical constructs.

Several other models extending Petri nets have been used in embedded
systems design [MBR99], [SLWSV99], [ETT98]. A more detailed discussion
about Petri nets and their fundamentals is presented in Section 3.1.

Our design representation, defined in Chapter 3, differs from other mod-
eling formalisms in the area of Petri nets in several aspects: our model
includes an explicit notion of time; it supports hierarchical composition; it
can capture both data and control aspects of the system. Some models of
computation introduced previously in the literature address separately the
points mentioned above. The key difference is that our modeling formalism
combines these aspects in a single design representation.

2.2 Formal Verification

Though formal methods are not yet very common in embedded systems
design, several verification approaches have been proposed recently. Some
of them are presented in this section. We focus on the more automatic
approaches like model checking since these are closely related to our work.
However, it is worthwhile to mention that theorem proving [Fit96], [Gal87]
is a well-established approach in the field of formal verification. This section
presents related work in the area of verification of embedded systems.

The verification of Codesign Finite State Machines (CFSMs) has been
addressed in [BHJ+96]. In this approach, CFSMs are translated into tradi-
tional state automata in order to make use of automata theory techniques.
The verification task is to check whether all possible sequences of inputs
and outputs of the system satisfy the desired properties (specification). The
sequences that meet the requirements constitute the language of another
automaton. The problem is then reduced to checking language containment
between two automata. Verification requires showing that the language of
the system automaton is contained in the language of the specification au-
tomaton. The drawback of the approach is that it is not possible to check
explicit timing properties, only order of events.

22 2. Related Approaches

Most of the research on continuous-time model checking is based on the
timed automata model [Alu99]. Efficient algorithms have been proposed
to verify systems represented as timed automata [ACD90], [LPY95]. Also
tools, such as Uppaal [Upp] and Kronos [Kro], have successfully been
developed and tested on realistic examples. However, timed automata are a
fairly low-level representation, especially during the system-level phases of
the design flow.

Based on the hybrid automata model [ACHH93], model checking tech-
niques have also been developed [AHH96], [Hsi99]. Arguing that the hard-
ware and software parts of the system have different time scales, Hsiung’s
approach uses different clock rates to keep track of the time in the hardware
and software parts [Hsi99]. It must be mentioned that while the linear hy-
brid automata model is more expressive than timed automata, the problem
of model checking of hybrid automata is harder than the one based on timed
automata.

The FunState model can formally be verified by using model checking,
as discussed in [STG+01]. The proposed verification strategy is based on
an auxiliary representation, very much alike a FSM, into which the Fun-
State model is translated. The set of required properties are expressed as
Computation Tree Logic (CTL) formulas. However, no quantitative timing
behavior can be reasoned based on CTL.

Model checking based of the Dual Transition Petri Nets (DTPN) model
has been addressed in [VAHC+02]. The DTPN model is translated into a
Kripke structure and then BDD-based symbolic model checking is used to
determine the truth of Linear Temporal Logic (LTL) and CTL formulas.
Since there is no explicit notion of time in DTPN, however, timing require-
ments cannot be verified.

The approaches cited above show that model checking is gaining popu-
larity in the system design community and different related areas are being
explored. There has been, for example, a recent interest in defining coverage
metrics in terms of the incompleteness of a set of formal properties, that is,
in finding out up to which extent a system is considered correct if all the
defined properties are satisfied [FPF+03]. This and other works show that
special attention is being paid to using formal methods in the system-level
phases of the design flow.

In this thesis (Chapters 4 and 5) we propose an approach to the formal
verification of embedded systems, which differs from the related work pre-
sented in this section in several regards: we deal with quantitative timing
properties in our verification approach; and the underlying model of compu-
tation allows representations at different levels of granularity so that formal
verification is possible at several abstraction levels.

Chapter 3

Design Representation

From the initial conception of a computer system to its final implementation,
several design activities must be accomplished. These activities require an
abstraction, that is a model, of the system under design. The model cap-
tures the characteristics and properties of the system that are relevant for a
particular design activity [Jan03].

Along the design flow, different design decisions are taken and these
are progressively incorporated into the model of the system. Therefore, an
essential issue of any systematic methodology aiming at designing computer
systems is the underlying model of computation.

We introduce in this chapter a model of computation called PRES+
(Petri Net based Representation for Embedded Systems). PRES+ captures
relevant features of embedded systems and can consequently be used as de-
sign representation when devising such systems. PRES+ is an extension to
the classical Petri nets model that captures explicitly timing information, al-
lows systems to be represented at different levels of granularity, and improves
the expressiveness by allowing tokens to carry information.

It can be mentioned at this point that system specifications given in
the functional programming language Haskell [Has] can automatically be
translated into the design representation introduced in this chapter by using
a systematic translation procedure defined in [CPE01] and assisted by a
software tool developed by our research group. This illustrates that our
modeling formalism can indeed be used as part of a realistic design flow for
embedded systems.

First we present a number of basic concepts related to the theory of Petri
nets that will facilitate the presentation of our ideas in subsequent sections
and chapters. Then we formally define our model of computation PRES+
and present several modeling examples.

24 3. Design Representation

3.1 Fundamentals of Petri Nets

Petri nets are a model applicable to many types of systems. They have
been used as a graphical and mathematical modeling tool in a wide variety
of application areas [Mur89]. A Petri net can be thought of as a directed
bipartite graph (consisting of two types of nodes, namely places and transi-
tions) together with an initial state called the initial marking. The classical
definition of a Petri net is as follows.

Definition 3.1 A Petri net is a five-tuple N = (P,T, I,O,M0) where: P =
{P1, P2, . . . , Pm} is a finite non-empty set of places; T = {T1, T2, . . . , Tn} is
a finite non-empty set of transitions; I ⊆ P × T is a finite non-empty set
of input arcs which define the flow relation between places and transitions;
O ⊆ T × P is a finite non-empty set of output arcs which define the flow
relation between transitions and places; and M0 : P → N0 is the initial
marking. ❏

Figure 3.1 shows an example of a Petri net where P = {Pa, Pb, Pc, Pd},
T = {T1, T2}, I = {(Pa, T1), (Pb, T1), (Pb, T2)}, and O = {(T1, Pc), (T2, Pd)}.
Places are graphically represented by circles, transitions by boxes, and arcs
by arrows.

T2

c PP

Pa

d

bP

T1

Figure 3.1: A Petri net

In the classical Petri nets model a marking M : P → N0 assigns to a
place P a non-negative integer M(P), representing the number of tokens
in P . For the example shown in Figure 3.1, M0(Pa) = 2, M0(Pb) = 1,
M0(Pc) = M0(Pd) = 0.

Definition 3.2 The pre-set ◦T = {P ∈ P | (P, T) ∈ I} of a transition
T ∈ T is the set of input places of T . Similarly, the post-set T ◦ = {P ∈
P | (T, P) ∈ O} of a transition T ∈ T is the set of output places of T . The
pre-set ◦P and the post-set P ◦ of a place P ∈ P are given by ◦P = {T ∈ T |
(T, P) ∈ O} and P ◦ = {T ∈ T | (P, T) ∈ I} respectively. ❏

The dynamic behavior of a Petri net is given by the change of marking
which obeys the firing rule stated by the following definition.

3.2. Basic Definitions 25

Definition 3.3 A transition T is enabled if M(P) > 0 for all P ∈ ◦T .
The firing of an enabled transition (which changes the marking M into a
new marking M ′) removes one token from each input place of T (M ′(P) =
M(P) − 1 for all P ∈ ◦T) and adds one token to each output place of T
(M ′(P) = M(P) + 1 for all P ∈ T ◦). ❏

The rest of the definitions presented in this section are related to the
classical Petri nets model but they are also valid for our design representa-
tion PRES+. We include here those notions that are needed for the later
discussion.

Definition 3.4 A marking M ′ is immediately reachable from M if there
exists a transition T ∈ T whose firing changes M into M ′. ❏

Definition 3.5 The reachability set R(N) of a net N is the set of all mark-
ings reachable from M0 and is defined by:

(i) M0 ∈ R(N);
(ii) If M ∈ R(N) and M ′ is immediately reachable from M , then M ′ ∈

R(N). ❏

Definition 3.6 Two transitions T and T ′ are in conflict if ◦T ∩ ◦T ′ 6= ∅. ❏

Definition 3.7 A net N is conflict-free if, for all T, T ′ ∈ T such that T 6= T ′,
◦T ∩ ◦T ′ = ∅. ❏

Definition 3.8 A net N is free-choice if, for any two transitions T and T ′

in conflict, |◦T | = |◦T ′| = 1. ❏

Definition 3.9 A net N is extended free-choice if, for any two transitions
T and T ′ in conflict, ◦T = ◦T ′. ❏

Definition 3.10 A net N is safe if the number of tokens in each place, for
any reachable marking, is at most one. ❏

Definition 3.11 A net N is live if, for every reachable marking M ∈ R(N)
and every transition T ∈ T, there exists a marking M ′ reachable from M
that enables T . ❏

3.2 Basic Definitions

In the following we present the formal definition of the design representation
introduced in this chapter.

26 3. Design Representation

Definition 3.12 A PRES+ model is a five-tuple N = (P,T, I,O,M0)
where: P = {P1, P2, . . . , Pm} is a finite non-empty set of places; T =
{T1, T2, . . . , Tn} is a finite non-empty set of labeled transitions; I ⊆ P×T is
a finite non-empty set of input arcs; O ⊆ T×P is a finite non-empty set of
output arcs; and M0 is the initial marking (see Definition 3.15) with tokens
carrying values and time stamps. ❏

We make use of the example shown in Figure 3.2 in order to il-
lustrate the different definitions corresponding to our model. For this
example, the set of places is P = {Pa, Pb, Pc, Pd, Pe}, the set of
transitions is T = {T1, T2, T3, T4, T5}, the set of input arcs is I =
{(Pa, T1), (Pb, T1), (Pc, T2), (Pd, T3), (Pd, T4), (Pe, T5)}, and the set of output
arcs is O = {(T1, Pc), (T1, Pd), (T2, Pa), (T3, Pb), (T4, Pe), (T5, Pb)}.

c 2-1

T
e

5

Ta+b 1
d>0[]T-d 3

T
d

4
+

2
d

<
0

[

]

Pc

Pa Pb

Pd

Pe

[3,5]
[4

,5
]

d

a

d

c

e
b

[1,4]

2
[1,2]

(3,0)

T

(1,0)

Figure 3.2: A PRES+ model

The definition of a PRES+ model (Definition 3.12) seems at first sight
almost identical to that of a classical Petri net (Definition 3.1). Note, how-
ever, that PRES+ extends Petri nets in a number of ways that make such a
representation suitable for the modeling of embedded systems. The coming
definitions introduce those extensions.

Definition 3.13 A complex token in a PRES+ model is a pair K = (v, t)
where v is the token value and t is the token time. The type of the token
value is referred to as token type. The token time is a non-negative real
number representing the time stamp of the complex token. ❏

In the sequel, whenever it is clear that the net under consideration cor-
responds to a PRES+ model, complex tokens will simply be referred to as
tokens and labeled transitions will just be referred to as transitions.

For the initial marking in the example net presented in Figure 3.2, for
instance, in place Pa there is a token Ka with token value va = 3 and token
time ra = 0.

3.3. Description of Functionality 27

A token value may be of any type, for example boolean, integer, string,
etc., or user-defined type of any complexity such as a list, a set, or any data
structure. A token type is defined by the set of possible values that the
token may take. We use ζ in order to denote the set of all possible token
types for a given system. For example, for a system in which token values
may only be integer numbers, as it is the case of the PRES+ model shown
in Figure 3.2, ζ = {Z}.
Definition 3.14 The type function ζ : P→ ζ associates every place P ∈ P

with a token type. ζ(P) denotes the set of possible token values that tokens
may bear in P . ❏

The set of possible tokens in place P is given by KP ⊆ {(v, r) | v ∈
ζ(P) and r ∈ R+

0 }. We use K =
⋃

P∈P
KP to denote the set of all tokens.

It is worth pointing out that the token type related to a certain place is
fixed, that is, it is an intrinsic property of that place and will not change
during the dynamic behavior of the net. For the example given in Figure 3.2,
ζ(P) = Z for all P ∈ P, that is all places have token type integer. Thus the
set of all possible tokens in the system is K ⊆ {(v, r) | v ∈ Z and r ∈ R+

0 }.
Definition 3.15 A marking M is an assignment of tokens to places of the
net. The marking of a place P ∈ P, denoted M(P), can be represented as
a multi-set1 over KP . For a particular marking M , a place P is said to be
marked iff M(P) 6= ∅. ❏

The initial marking M0 in the net of Figure 3.2 shows Pa and Pb as
the only places initially marked: M0(Pa) = {(3, 0)} and M0(Pb) = {(1, 0)},
whereas M0(Pc) = M0(Pd) = M0(Pe) = ∅.
Definition 3.16 All output places of a given transition have the same token
type, that is, P,Q ∈ T ◦ ⇒ ζ(P) = ζ(Q). ❏

The previous definition is motivated by the fact that there is one tran-
sition function associated to a given transition (as formally stated in Defi-
nition 3.17), so that when it fires all its output places get tokens with the
same value and therefore such places must have the very same token type.

3.3 Description of Functionality

Definition 3.17 For every transition T ∈ T in a PRES+ model there exists
a transition function f : ζ(P1) × ζ(P2) × . . . × ζ(Pa) → ζ(Q) associated to
T , where ◦T = {P1, P2, . . . , Pa} and Q ∈ T ◦. ❏

1A multi-set or bag is a collection of elements over some domain in which, unlike a
set, multiple occurrences of the same element are allowed. For example, {a, b, b, b} is a
multi-set over {a, b, c}.

28 3. Design Representation

Transition functions are used to capture the functionality associated with
the transitions. They allow systems to be modeled at different levels of gran-
ularity with transitions representing simple arithmetic operations or complex
algorithms. In Figure 3.2 we inscribe transition functions inside transition
boxes: the transition function associated to T1, for example, is given by
f1(a, b) = a + b. We use inscriptions on the input arcs of a transition in
order to denote the arguments of its transition function.

Definition 3.18 For every transition T ∈ T, there exist a best-case transi-
tion delay τbc and a worst-case transition delay τwc, which are non-negative
real numbers such that τbc ≤ τwc, and represent, respectively, the lower
and upper limits for the execution time of the function associated to the
transition. ❏

Referring again to Figure 3.2, for instance, the best-case transition delay
of T2 is τbc

2 = 1 and its worst-case transition delay is τwc
2 = 2 time units.

Note that when τbc = τwc = τ we just inscribe the value τ close to the
transition, like in the case of the transition delay τ5 = 2.

Definition 3.19 A transition T ∈ T may have a guard g associated to it.
The guard of a transition T is a predicate g : ζ(P1)× ζ(P2)× . . .× ζ(Pa)→
{0, 1} where ◦T = {P1, P2, . . . , Pa}. ❏

The concept of guard plays an important role in the enabling rule for
transitions in PRES+ models (see Definition 3.21). Note that the guard of
a transition T is a function of the token values in places of its pre-set ◦T .
For instance, in Figure 3.2, d < 0 represents the guard

g4(d) =

{
1 if d < 0,

0 otherwise.

3.4 Dynamic Behavior

Definition 3.20 A transition T ∈ T is bound, for a given marking M , iff all
its input places are marked. A binding B of a bound transition T with pre-set
◦T = {P1, P2, . . . , Pa}, is an ordered tuple of tokens B = (K1,K2, . . . ,Ka)
where Ki ∈M(Pi) for all Pi ∈ ◦T . ❏

Observe that, for a particular marking M , a transition may have different
bindings. This is the case when there are several tokens in at least one of the
input places of the transition. Let us consider the net shown in Figure 3.3.
In this case M(Pa) = {(2, 0)}, M(Pb) = {(6, 0), (4, 1)}, and M(Pc) = ∅. For
this marking, T has two different bindings Bi = ((2, 0), (6, 0)) and Bii =
((2, 0), (4, 1)).

3.4. Dynamic Behavior 29

(6,0)

b<

(4,1)

[]

P

5

Pa b

cP

b

(2,0)

[2,7]

b-a T

a

Figure 3.3: Net used to illustrate the concept of binding

The existence of a binding is a necessary condition for the enabling of
a transition. For the initial marking of the net shown in Figure 3.2, for
example, transition T1 is bound: it has a binding B1 = ((3, 0), (1, 0)). Since
T1 has no guard, it is enabled for the initial marking (as formally stated in
Definition 3.21).

We introduce the following notation which will be useful in the coming
definitions. Given a binding B = (K1,K2, . . . ,Ka), the token value of the
token Ki is denoted vi and the token time of Ki is denoted ti.

Definition 3.21 A bound transition T ∈ T with guard g is enabled, for a
binding B = (K1,K2, . . . ,Ka), if g(v1, v2, . . . , va) = 1. A transition T ∈ T

with no guard is enabled if T is bound. ❏

The transition T in the example given in Figure 3.3 has two bindings but
it is enabled only for the binding Bii = ((2, 0), (4, 1)), because of its guard
b < 5. Thus, upon firing T , the tokens (2, 0) and (4, 1) will be removed
from Pa and Pb respectively, and a new token will be added to Pc (see
Definition 3.24).

Definition 3.22 The enabling time et of an enabled transition T ∈ T for
a binding B = (K1,K2, . . . ,Ka) is the time instant at which T becomes
enabled. The value of et is given by the maximum token time of the tokens
in the binding B, that is, et = max(t1, t2, . . . , ta). ❏

The enabling time of transition T in the net of Figure 3.3 is et =
max(0, 1) = 1.

Definition 3.23 The earliest trigger time ttbc = et + τbc and the latest
trigger time ttwc = et + τwc of an enabled transition T ∈ T, for a binding
B = (K1,K2, . . . ,Ka), are the lower and upper time limits for the firing of
T . An enabled transition T ∈ T may not fire before its earliest trigger time
ttbc and must fire before or at its latest trigger time ttwc, unless T becomes
disabled by the firing of another transition. ❏

30 3. Design Representation

Definition 3.24 The firing of an enabled transition T ∈ T, for a binding
B = (K1,K2, . . . ,Ka), changes a marking M into a new marking M ′. As a
result of firing the transition T , the following occurs:

(i) The tokens K1,K2, . . . ,Ka corresponding to the binding B are removed
from the pre-set ◦T , that is, M ′(Pi) = M(Pi)− {Ki} for all Pi ∈ ◦T ;

(ii) One new token K = (v, t) is added to each place of the post-set T ◦,
that is, M ′(P) = M(P) + {K} 2 for all P ∈ T ◦. The token value of K
is calculated by evaluating the transition function f with token values
of tokens in the binding B as arguments, that is, v = f(v1, v2, . . . , va).
The token time of K is the instant at which the transition T fires, that
is, t = tt where tt ∈ [ttbc, ttwc];

(iii) The marking of places different from input and output places of T
remains unchanged, that is, M ′(P) = M(P) for all P ∈ P \ ◦T \T ◦. ❏

The execution time of the function of a transition is considered in the
time stamp of the new tokens. Note that, when a transition fires, all the
tokens in its output places get the same token value and token time. The
token time of a token represents the instant at which it was “created”. The
timing semantics of PRES+ makes the firing of transitions be consistent
with an implicit global system time, that is, the firing of transitions occurs
in an order that is in accordance to the time horizon.

In Figure 3.2, transition T1 is the only one initially enabled (binding
((3, 0), (1, 0))) so that its enabling time is et1 = 0. Therefore, T1 may not
fire before 1 time units and must fire before or at 4 time units. Let us assume
that T1 fires at 2 time units: tokens (3, 0) and (1, 0) are removed from places
Pa and Pb respectively, and a new token (4, 2) is added to both Pc and Pd.
At this moment, only T2 and T3 are enabled (T4 is bound but not enabled
because 4 ≮ 0, hence its guard is not satisfied for the binding ((4, 2))). Note
also that transition T2 has to fire strictly before transition T3: according
to the firing rules for PRES+ nets, T2 must fire no earlier than 3 and no
later than 4 time units, while T3 is restricted to fire in the interval [5, 7].
Figure 3.4 illustrates a possible behavior of the PRES+ model presented in
Figure 3.2.

3.5 Notions of Equivalence and Hierarchy

Several notions of equivalence for systems modeled in PRES+ are defined
in this section. Such notions constitute the foundations of a framework for

2Observe that the multi-set sum + is different from the multi-set union ∪. For instance,
given A = {a, c, c} and B = {c}, A + B = {a, c, c, c} while A ∪ B = {a, c, c}. An example
of multi-set difference − is A − B = {a, c} .

3.5. Notions of Equivalence and Hierarchy 31

5

Ta+b 1
d>0[]T-d 3

T
d

4
+

2
d

<
0

[

]

Pc

Pa Pb

Pd

Pe

[3,5]

d

d

[4
,5

]

b

c

a
[1,2]

[1,4]

e

(3,0) (1,0)

2

Tc -1 2

e
5

T

Ta+b d>
1

[]0-d 3T

T
d
+

2
d

<
4

[

]

P

0

Pa

c

b

P

P

Pe

d

-

[3,5]

[4
,5

]

d

d

b

c

e

[1,2]

[1,4]

a

(3,3)

Tc 2

2

T
e

5
-1 a+b 1

d>0T -d T3
[]

d
4

+
2

d
<

0
T

Pc

Pa P

[

]

Pd

Pe

b

[3,5]

[4
,5

]

d

d

b

c

e

[1,2]

[1,4]
2

(4,2)

a

(4 time units after becoming enabled)

Firing of at 6 time units3T

(4,2)

(1 time unit after becoming enabled)

Firing of at 3 time units2T

(2 time units after becoming enabled)

1TFiring of at 2 time units

T2-1

T
e

5

c a+b 1
d>0[]T T3

T
d

4
+

2

-d

0
[

]

Pc

Pa P

d
<

Pd

Pe

b

Tc 2-1

T
e

(3,3)

[3,5]

[4
,5

]

d

d

a b

c

e

[1,2]

[1,4]

2

(4,2)

(4,6)

Figure 3.4: Illustration of the dynamic behavior of a PRES+ model

comparing PRES+ models. A concept of hierarchy for this design repre-
sentation is also introduced. Hierarchy is a convenient way to structure the
system so that modeling can be done in a comprehensible form. Hierarchi-

32 3. Design Representation

cal composition eases the design process when it comes to specifying and
understanding large systems.

3.5.1 Notions of Equivalence

The synthesis process requires a number of refinement steps starting from
the initial system model until a more detailed representation is achieved.
Such steps correspond to transformations in the system model in such a way
that design decisions are included in the representation.

The validity of a transformation depends on the concept of equivalence
in which it is contrived. When we claim that two systems are equivalent, it
is very important to understand the meaning of equivalence. Two equivalent
systems are not necessarily the same but have properties that are common
to both of them. A clear notion of equivalence allows us to compare systems
and point out the properties in terms of which the systems are equivalent.

The following definition introduces a couple of concepts to be used when
defining the notions of equivalence for systems modeled in PRES+.

Definition 3.25 A place P ∈ P is said to be an in-port if (T, P) 6∈ O for
all T ∈ T, that is, there is no transition T for which P is output place.
Similarly, a place P ∈ P is said to be an out-port if (P, T) 6∈ I for all T ∈ T,
that is, there is no transition T for which P is input place. The set of in-ports
is denoted inP while the set of out-ports is denoted outP. ❏

Before formally presenting the notions of equivalence, we first give an in-
tuitive idea about them. These notions rely on the concepts of in-ports and
out-ports: the initial condition to establish an equivalence relation between
two nets N1 and N2 is that both have the same number of in-ports as well as
out-ports. In this way, it is possible to define a one-to-one correspondence
between in-ports and out-ports of the nets. Thus we can assume the same
initial marking in corresponding in-ports and then check the tokens obtained
in the out-ports after some transition firings in the nets. It is like an ex-
ternal observer putting in the same data in both nets and obtaining output
information. If such an external observer cannot distinguish between N1

and N2, based on the output data he gets, then N1 and N2 are assumed to
be “equivalent”. As defined later, such a concept is called total-equivalence.
We also define weaker concepts of equivalence in which the external observer
may actually distinguish between N1 and N2, but still there is some com-
monality in the data obtained in corresponding out-ports, such as number
of tokens, token values, or token times.

We introduce the following notation to be used in the coming definitions:
for a given marking Mi, mi(P) denotes the number of tokens in place P , that
is, mi(P) = |Mi(P)| .

3.5. Notions of Equivalence and Hierarchy 33

Definition 3.26 Two nets N1 and N2 are cardinality-equivalent iff:

(i) There exist bijections hin : inP1 → inP2 and hout : outP1 → outP2

that define one-to-one correspondences between in(out)-ports of N1 and
N2;

(ii) The initial markings M1,0 and M2,0 satisfy
M1,0(P) = M2,0(hin(P)) 6= ∅ for all P ∈ inP1,
M1,0(Q) = M2,0(hout (P)) = ∅ for all Q ∈ outP1;

(iii) For every M1 ∈ R(N1) such that
m1(P) = 0 for all P ∈ inP1,
m1(R) = m1,0(R) for all R ∈ P1 \ inP1 \ outP1

there exists M2 ∈ R(N2) such that
m2(P) = 0 for all P ∈ inP2,
m2(R) = m2,0(R) for all R ∈ P2 \ inP2 \ outP2,
m2(hout (Q)) = m1(Q) for all Q ∈ outP1

and vice versa. ❏

The above definition expresses that if the same tokens are put in corre-
sponding in-ports of two cardinality-equivalent nets, then the same num-
ber of tokens will be obtained in corresponding out-ports. Let us con-
sider the nets N1 and N2 shown in Figures 3.5(a) and 3.5(b) respectively,
in which we have abstracted away information not relevant for the cur-
rent discussion, like transition delays and token values. For these nets
we have that inP1 = {Pa, Pb}, outP1 = {Pe, Pf , Pg}, inP2 = {P ′

a, P
′
b},

outP2 = {P ′
e, P

′
f , P ′

g}, and hin and hout are defined by hin(Pa) = P ′
a,

hin(Pb) = P ′
b, hout (Pe) = P ′

e, hout (Pf) = P ′
f , and hout (Pg) = P ′

g. Let us
assume that M1,0 and M2,0 satisfy condition (ii) in Definition 3.26. A simple
reachability analysis shows that there exist two cases mi

1 and mii
1 in which

the first part of condition (iii) in Definition 3.26 is satisfied: a) mi
1(P) = 1 if

P ∈ {Pf}, and mi
1(P) = 0 for all other places; b) mii

1(P) = 1 if P ∈ {Pe, Pg},
and mii

1(P) = 0 for all other places. For each of these cases there exists a
marking satisfying the second part of condition (iii) in Definition 3.26, re-
spectively: a) mi

2(P) = 1 if P ∈ {P ′
f , P ′

x}, and mi
2(P) = 0 for all other

places; b) mii
2(P) = 1 if P ∈ {P ′

e, P
′
g, P

′
x}, and mii

2(P) = 0 for all other
places. Hence N1 and N2 are cardinality-equivalent.

Before defining the concepts of function-equivalence and time-equivalence,
let us study the simple nets N1 and N2 shown in Figures 3.6(a) and 3.6(b)
respectively. It is straightforward to see that N1 and N2 fulfill the conditions
established in Definition 3.26 and therefore are cardinality-equivalent. How-
ever, note that N1 may produce tokens with different values in its output:
when T1 fires, the token in Pb will be Kb = (2, tib) with tib ∈ [1, 3], but when
T2 fires the token in Pb will be Kb = (0, tiib) with tiib ∈ [2, 3]. The reason for

34 3. Design Representation

Pe f PP

Pd

g

c

P

P

Pba

(a)

P’a b

P’

P’

P’

P’fP’ g

x

e

(b)

Figure 3.5: Cardinality-equivalent nets

this behavior is the non-determinism of N1. On the other hand, when the
only out-port of N2 is marked, the corresponding token value is vb = 2.

Ta 1 Ta 2-2

Pa

Pb

aa

[2,3][1,3]

(2,0)

(a)

a

Pb

Ta 1

[1,3]

(2,0) P

a

(b)

Figure 3.6: Cardinality-equivalent nets with different behavior

As shown in the example of Figure 3.6, even if two nets are cardinality-
equivalent the tokens in their outputs may be different, although their initial
marking is identical. For instance, there is no marking M2 ∈ R(N2) in which
the out-port has a token with value vb = 0, whereas it does exist a marking
M1 ∈ R(N1) in which the out-port is marked and vb = 0. Thus the external
observer could distinguish between N1 and N2 because of different token
values—moreover different token times—in their out-ports when marked.

Definition 3.27 Two nets N1 and N2 are function-equivalent iff:

(i) N1 and N2 are cardinality-equivalent;
(ii) Let M1 and M2 be markings satisfying condition (iii) in Definition 3.26.

For every (v1, t1) ∈ M1(Q), where Q ∈ outP1, there exists (v2, t2) ∈
M2(hout (Q)) such that v1 = v2, and vice versa. ❏

Definition 3.28 Two nets N1 and N2 are time-equivalent iff:

(i) N1 and N2 are cardinality-equivalent;

3.5. Notions of Equivalence and Hierarchy 35

(ii) Let M1 and M2 be markings satisfying condition (iii) in Definition 3.26.
For every (v1, t1) ∈ M1(Q), where Q ∈ outP1, there exists (v2, t2) ∈
M2(hout (Q)) such that t1 = t2, and vice versa. ❏

Two nets are function-equivalent if, besides being cardinality-equivalent,
the tokens obtained in corresponding out-ports have the same token value.
Similarly, if tokens obtained in corresponding out-ports have the same token
time, the nets are time-equivalent.

Definition 3.29 Two nets N1 and N2 are total-equivalent iff:

(i) N1 and N2 are function-equivalent;
(ii) N1 and N2 are time-equivalent. ❏

Figure 3.7 shows the relation between the notions of equivalence intro-
duced above. Cardinality-equivalence is necessary for time-equivalence and
also for function-equivalence. Similarly, total-equivalence implies all other
equivalences. Total-equivalence is the strongest notion of equivalence de-
fined in this section. Note however that two total-equivalent nets need not
be identical (see Figure 3.8).

function-equivalence time-equivalence

cardinality-equivalence

total-equivalence

Figure 3.7: Relation between the notions of equivalence

3.5.2 Hierarchical PRES+ Model

PRES+ supports systems modeled at different levels of granularity with
transitions representing simple arithmetic operations or complex algorithms.
However, in order to efficiently handle the modeling of large systems, a
mechanism of hierarchical composition is needed so that the model may be
constructed in a structured manner, composing simple units fully under-
standable by the designer. Hierarchy can conveniently be used as a form
to handle complexity and also to analyze systems at different abstraction
levels.

36 3. Design Representation

Tb 2+1

Ta 1+1

2

[1,3]

b

(4,0)

a

(a)

Ta 1+2

[3,5]

(4,0)

a

(b)

Figure 3.8: Total-equivalent nets

Hierarchical modeling can favorably be applied along the design process.
In a top-down approach, for instance, a designer may define the interface to
each component and then gradually refine those components. On the other
hand, a system may also be constructed reusing existing elements such as
Intellectual Property (IP) blocks in a bottom-up approach.

A flat representation of a real-life system can be too big and complex
to handle and understand. The concept of hierarchy allows systems to be
modeled in a structured way. Thus the system may be broken down into a
set of comprehensible nets structured in a hierarchy. Each one of these nets
may represent a sub-block of the current design. Such a sub-block can be a
pre-designed IP component as well as a design alternative corresponding to
a subsystem of the system under design.

In the following we formalize a concept of hierarchy for PRES+ models.
A new element called super-transition is introduced. Super-transitions can
be thought of as “interfaces” in a hierarchical model. Some simple examples
are used in order to illustrate the definitions.

Definition 3.30 A transition T ∈ T is an in-transition of N =
(P,T, I,O,M0) if

⋃
P∈inP

P ◦ = {T}. In a similar manner, a transition
T ∈ T is an out-transition of N if

⋃
P∈outP

◦P = {T}. ❏

Note that the existence of non-empty sets inP and outP (in- and out-
ports) is a necessary condition for the existence of in- and out-transitions.
Also, according to Definition 3.30, if there exists an in-transition Tin in
a given net N , it is unique (Tin is the only in-transition in N). Simi-
larly, an out-transition Tout is unique. For the net N1 shown in Figure 3.9,
inP1 = {Pa, Pb}, outP1 = {Pd}, and Tx and Ty are the in-transition and
out-transition respectively.

3.5. Notions of Equivalence and Hierarchy 37

uy,[]

lx ux,[]

y

Pa Pb

Pc

Pd

Txxf

Tyyf

l

Figure 3.9: A simple subnet N1

Definition 3.31 An abstract PRES+ model is a six-tuple H = (P,T,ST, I,
O,M0) where P = {P1, P2, . . . , Pm} is a finite non-empty set of places;
T = {T1, T2, . . . , Tn} is a finite set of transitions; ST = {ST 1,ST 2, . . . ,ST l}
is a finite set of super-transitions (T∪ST 6= ∅); I ⊆ P× (T∪ST) is a finite
set of input arcs; O ⊆ (T ∪ ST)×P is a finite set of output arcs; M0 is the
initial marking. ❏

Observe that a (non-abstract) PRES+ net is a particular case of an ab-
stract PRES+ net with ST = ∅. Figure 3.10 illustrates an abstract PRES+
net. Super-transitions are represented by thick-line boxes.

1f ST

T2f2

T
3

f 3
T

4
f 4

P3

P2P1

P5P4

l 4
u

4
,

[

]
l 3

u
3

,
[

]

l1 u1,[]l2 u2,[]

1

Figure 3.10: An abstract PRES+ model

Definition 3.32 The pre-set ◦ST and post-set ST ◦ of a super-transition
ST ∈ ST are given by ◦ST = {P ∈ P | (P,ST) ∈ I} and ST ◦ = {P ∈ P |
(ST , P) ∈ O} respectively. ❏

Similar to transitions, the pre(post)-set of a super-transition ST ∈ ST

is the set of input(output) places of ST .

38 3. Design Representation

Definition 3.33 For every super-transition ST ∈ ST there exists a high-
level function f : ζ(P1)×ζ(P2)× . . .×ζ(Pa)→ ζ(Q) associated to ST , where
◦ST = {P1, P2, . . . , Pa} and Q ∈ ST ◦. ❏

Recall that ζ(P) denotes the token type associated with the place P ∈ P,
that is the type of value that a token may bear in that place. High-level func-
tions associated to super-transitions may be rather useful in, for instance, a
top-down approach: for a certain component of the system, the designer may
define its interface and a high-level description of its functionality through a
super-transition, and in a later design phase refine the component. In current
design methodologies it is also very common to reuse predefined elements
such as IP blocks. In such cases, the internal structure of the component
is unknown to the designer and therefore the block is best modeled by a
super-transition and its high-level function.

Definition 3.34 For every super-transition ST ∈ ST there exist a best-case
delay τbc and a worst-case delay τwc, where τbc ≤ τwc are non-negative real
numbers that represent the lower and upper limits for the execution time of
the high-level function associated to ST . ❏

Definition 3.35 A super-transition may not be in conflict with other tran-
sitions or super-transitions, that is:

(i) ◦ST 1 ∩ ◦ST 2 = ∅ and ST ◦
1 ∩ ST ◦

2 = ∅ for all ST 1,ST 2 ∈ ST such that
ST 1 6= ST 2;

(ii) ◦ST ∩ ◦T = ∅ and ST ◦ ∩ T ◦ = ∅ for all T ∈ T, ST ∈ ST. ❏

In other words, a super-transition may not share input or output places
with other transitions/super-transitions. The restriction imposed by Defini-
tion 3.35 avoids time inconsistencies when refining a super-transition with
a lower-level subnet. In what follows, the input and output places of a
super-transition ST ∈ ST will be called the surrounding places of ST .

Definition 3.36 A super-transition ST i ∈ ST together with its surround-
ing places in the net H = (P,T,ST, I,O,M0) is a semi-abstraction of the
subnet Ni = (Pi,Ti,STi, Ii,Oi,Mi,0) (or conversely, Ni is a semi-refinement
of ST i and its surrounding places) if:

(i) There exists an in-transition Tin ∈ Ti;
(ii) There exists an out-transition Tout ∈ Ti;
(iii) There exists a bijection hin : ◦ST i → inPi that maps the input places

of ST i onto the in-ports of Ni;
(iv) There exists a bijection hout : ST ◦

i → outPi that maps the output
places of ST i onto the out-ports of Ni;

(v) M0(P) = Mi,0(hin(P)) and ζ(P) = ζ(hin(P)) for all P ∈ ◦ST i;

3.5. Notions of Equivalence and Hierarchy 39

(vi) M0(P) = Mi,0(hout (P)) and ζ(P) = ζ(hout (P)) for all P ∈ ST ◦
i ;

(vii) For the initial marking Mi,0, T is disabled for all T ∈ Ti \ {Tin}. ❏

Note that a subnet may, in turn, contain super-transitions. It is simple
to prove that the subnet N1 shown in Figure 3.9 is indeed a semi-refinement
of ST 1 in the net shown in Figure 3.10.

If a net Ni is the semi-refinement of some super-transition ST i, it is
possible to characterize Ni in terms of both function and time, by putting
tokens in its in-ports and then observing the value and time stamp of tokens
in its out-ports after a certain firing sequence. If the time stamp of all tokens
deposited in the in-ports of Ni is zero, the token time of tokens obtained in
the out-ports is called the execution time of Ni. For example, the net N1

shown in Figure 3.9 can be characterized by putting tokens Ka = (va, 0)
and Kb = (vb, 0) in its in-ports Pa and Pb, respectively, and observing the
token Kd = (vd, td) after firing Tx and Ty. Thus the execution time of N1 is
equal to the token time td, in this case bounded by lx + ly ≤ td ≤ ux + uy.
The token value vd is given by vd = fy(fx(va, vb)), where fx and fy are the
transition functions of Tx and Ty respectively.

The above definition of semi-abstraction/refinement allows a complex
design to be constructed in a structured way by composing simpler entities.
However, it does not give a semantic relation between the functionality of
super-transitions and their refinements. Below we define the concepts of
strong and weak refinement of a super-transition.

Definition 3.37 A subnet Ni = (Pi,Ti,STi, Ii,Oi,Mi,0) is a strong refine-
ment of the super-transition ST i ∈ ST together with its surrounding places
in the net H = (P,T,ST, I,O,M0) (or ST i and its surrounding places is a
strong abstraction of Ni) if:

(i) Ni is a semi-refinement of ST i;
(ii) Ni implements ST i, that is, Ni is function-equivalent to ST i and its

surrounding places;
(iii) The best-case delay τbc

i of ST i is equal to the lower bound of the
execution time of Ni;

(iv) The worst-case delay τwc
i of ST i is equal to the lower bound of the

execution time of Ni. ❏

The subnet N1 shown in Figure 3.9 is a semi-refinement of ST 1 in the
net shown in Figure 3.10. N1 is a strong refinement of the super-transition
ST 1 if, in addition: (a) f1 = fy ◦ fx; (b) l1 = lx + ly; (c) u1 = ux + uy

(conditions (ii), (iii), and (iv), respectively, of Definition 3.37).

The concept of strong refinement given by Definition 3.37 requires the
super-transition and its strong refinement to have the very same time limits.

40 3. Design Representation

Such a concept could have limited practical use from the viewpoint of a
design environment, since the high-level description and the implementation
perform the same function but typically have different timings and therefore
their bounds for the execution time do not coincide. Nonetheless, the notion
of strong refinement can be very useful for abstraction purposes. If we relax
the requirement of exact correspondence of lower and upper bounds on time,
this yields to a weaker notion of refinement.

Definition 3.38 A subnet Ni = (Pi,Ti,STi, Ii,Oi,Mi,0) is a weak refine-
ment of the super-transition ST i ∈ ST together with its surrounding places
in the net H = (P,T,ST, I,O,M0) (or ST i and its surrounding places is a
weak abstraction of Ni) if:

(i) Ni is a semi-refinement of ST i;
(ii) Ni implements ST i;
(iii) The best-case delay τbc

i of ST i is less than or equal to the lower bound
of the execution time of Ni;

(iv) The worst-case delay τwc
i of ST i is greater than or equal to the upper

bound of the execution time of Ni. ❏

Given a hierarchical PRES+ net H = (P,T,ST, I,O,M0) and refine-
ments of its super-transitions, it is possible to construct a corresponding
non-hierarchical net. For the sake of clarity, in the following definition we
consider nets with a single super-transition, nonetheless these concepts can
easily be extended to the general case.

Definition 3.39 Let us consider the net H = (P,T,ST, I,O,M0) where
ST = {ST 1}, and let the subnet N1 = (P1,T1,ST1, I1,O1,M1,0) be a
refinement of ST 1 and its surrounding places. Let Tin , Tout ∈ T1 be
unique in-transition and out-transition respectively. Let inP1 and outP1

be respectively the sets of in-ports and out-ports of N1. The net H ′ =
(P′,T′,ST′, I′,O′,M ′

0) one level lower in the hierarchy, is defined as fol-
lows:

(i) ST′ = ST1;
(ii) P′ = P ∪ (P1 \ inP1 \ outP1);
(iii) T′ = T ∪T1;
(iv) (P,ST) ∈ I′ if (P,ST) ∈ I1;

(P, T) ∈ I′ if (P, T) ∈ I, or (P, T) ∈ I1 and P 6∈ inP1;
(P, Tin) ∈ I′ if (P,ST 1) ∈ I;

(v) (ST , P) ∈ O′ if (ST , P) ∈ O1;
(T, P) ∈ O′ if (T, P) ∈ O, or (T, P) ∈ O1 and P 6∈ outP1;
(Tout , P) ∈ O′ if (ST 1, P) ∈ O;

(vi) M ′
0(P) = M0(P) for all P ∈ P;

M ′
0(P) = M1,0(P) for all P ∈ P1 \ inP1 \ outP1. ❏

3.6. Modeling Examples 41

Definition 3.39 can be used in order to flatten a hierarchical PRES+
model. Given the net of Figure 3.10 and being N1 (Figure 3.9) a refinement
of ST 1, we can construct the equivalent non-hierarchical net as illustrated
in Figure 3.11.

Txxf

Tyyf

ly uy,[]

lx ux,[]

T2f2

P4 P5

l2 u2,[]

T
3

f 3

l 3
u

3
,

[

]

T
4

f 4

l 4
u

4
,

[

]

P1 P2

P3

Pc

Figure 3.11: A non-hierarchical PRES+ model

3.6 Modeling Examples

In this section we present two realistic applications that illustrate the mod-
eling of systems using PRES+.

3.6.1 Filter for Acoustic Echo Cancellation

In this subsection we model a Generalized Multi-Delay frequency-domain Fil-
ter (GMDFα) [FIR+97] using PRES+. GMDFα has been used in acoustic
echo cancellation for improving the quality of hand-free phone and telecon-
ference applications. The GMDFα algorithm is a frequency-domain block
adaptive algorithm: a block of input data is processed at one time, producing
a block of output data. The impulse response of length L is segmented into
K smaller blocks of size N (K = L/N), thus leading to better performance.
R new samples are processed at each iteration and the filter is adapted α
times per block (R = N/α).

The filter inputs are a signal X and its echo E, and the output is the
reduced or cancelled echo E′. In Figure 3.12 we show the hierarchical PRES+
model of a GMDFα. The transition T1 transforms the input signal X into
the frequency domain by a FFT (Fast Fourier Transform). T2 corresponds
to the normalization block. In each one of the basic cells ST 3.i the filter

42 3. Design Representation

R
ec

E

dTSender

s
T

S
en

d
X

Delay T4.1

Delay T
4. 1K-

1FFT T

XF. 1

XF. 2

XF.K

2
T

N
o
rm

µ F. 2

µ F. 1

F.Kµ

C
el

l
S

T
3

.1
C

el
l
S

T
3

.2
C

el
l
S

T
3

.K

EF.K

EF. 1

EF. 2

Y F. 1

Y F. 2

Y F.K

8
T

F
F

T
5

T
C

o
n

v

6
T

F
F

T
-1

7
T

D
if

f

eTEcho

GMDFα

.

.

.

.

.

.

0.1

E’

.

.

.

.

.

.

8
.

.

.

0.1

X

E

[0
.7

,1
]

[0
.8

,1
.1

]

[0
.1

,0
.2

]

[0.01,0.05]

[0
.3

,0
.4

]

[0.8,1.2]

X

r
T

[0
.8

,1
.2

]

(a)

bTFFT -1

aMult T

cTUpdate

dTFFT

Y F

XF Fµ EF

[0.7,0.9]

Coef

[0.4,0.5]

[0.8,1.1]

[0.8,1.2]

(b)

Figure 3.12: GMDFα modeled using PRES+

coefficients are updated. Transitions T4.i serve as delay blocks. T5 computes
the estimated echo in the frequency domain by a convolution product and
then it is converted into the time domain by T6. The difference between the
estimated echo and the actual one (signal E) is calculated by T7 and output

3.6. Modeling Examples 43

as E′. Such a cancelled echo is also transformed into the frequency domain
by T8 to be used in the next iteration when updating the filter coefficients.

In Figure 3.12(a) we also model the environment with which the GMDFα
interacts: Te models the echoing of signal X, Ts and Tr represent, respec-
tively, the sending of the signal and the reception of the cancelled echo, and
Td is the entity that emits X.

The refinement of the basic cells ST 3.i is shown in Figure 3.12(b) where
the filter coefficients are computed and thus the filter is adapted by using
FFT−1 and FFT operations. Transition delays in Figure 3.12 are given in
ms.

This example shows how hierarchy allows systems to be structured in
an understandable way. It is worth noticing that instances of the same
subnet (Figure 3.12(b)) are used as refinements of the different cells ST 3.i

in Figure 3.12(a). Thus, in cases like this one, the regularity of the system
can be exploited in order to obtain a more succinct model.

Later, in Subsection 5.1.2, we show how the verification of this filter is
performed and the advantages of modeling it in this way.

3.6.2 Radar Jammer

The example described in this subsection corresponds to a real-life applica-
tion used in the military industry [LK01]. The function of this system is to
deceive a radar apparatus by jamming signals.

The jammer is a system placed on an object (target), typically an aircraft,
moving in the area observed by a radar. The radar sends out pulses and some
of them are reflected back to the radar by the objects in the area. When a
radar receives pulses, it makes use of the received information for determining
the distance and direction of the object, and even the velocity and the type
of the object. The distance is calculated by measuring the time the pulse
has traveled from its emission until it returns to the radar. By rotating the
radar antenna lobe, it is possible to find the direction returning maximum
energy, that is, the direction of the object. The velocity of the object is
found out based on the Doppler shift of the returning pulse. The type of
the object can be determined by comparing the shape of the returning pulse
with a library of radar signatures for different objects.

The basic function of the jammer is to deceive a radar scanning the area
in which the object is moving. The jammer receives a radar pulse, modifies
it, and then sends it back to the radar after a certain delay. Based on input
parameters, the jammer can create pulses that contain specific Doppler and
signature information as well as the desired space and time data. Thus the
radar will see a false target. A view of the radar jammer and its environment
is shown in Figure 3.13.

44 3. Design Representation

A8-132

Figure 3.13: Radar jammer and its environment

The jammer has been specified in Haskell using a number of skeletons
(higher-order functions used to model elementary processes) [LK01]. Us-
ing the procedure for translating Haskell descriptions (using skeletons) into
PRES+ [CPE01], we obtained the model shown in Figure 3.14. It contains
no timing information which can later be annotated as transition delays.

modf

delayParLib

trigSelect

opMode

modParLib

delayf

out

sumSig

g
et

P
er

io
d

keepVal copy

g
et

T
y
p

e

k
ee

p
V

a
l

co
p

y

getScenario

doMod

k
ee

p
V

a
l

extractN extractN

k
ee

p
V

a
l

co
p

y

co
p

y

F
F

T

g
et

K
P

S

f

head

getT

getAmp pwPriCnt

copy

detectAmp

k
ee

p
V

a
l

co
p

y

d
et

ec
tE

n
v

co
p

y

adjustDelay

in

threshold

Figure 3.14: A PRES+ model of a radar jammer

3.6. Modeling Examples 45

We briefly discuss the structure of the PRES+ model of the jammer.
We do not intend to provide here a detailed description of each one of
the transitions of the model of the radar jammer shown in Figure 3.14 but
rather present an intuitive idea about it. When a pulse arrives, it is initially
detected and some of its characteristics are calculated by processing the
samples taken from the pulse. Such processing is performed by the initial
transitions, namely detectEnv, detectAmp, . . ., getPer, and getType, based
on internal parameters like threshold and trigSelect. Different scenarios are
handled by the middle transitions, namely getScenario, extractN, and adjust-
Delay. The final transitions doMod and sumSig are the ones that actually
alter the pulse to be returned to the radar.

Using the concept of hierarchy, it is possible to obtain a higher-level
view of the radar jammer represented in PRES+ as depicted in Figure 3.15.
The super-transitions abstract parts of the model given in Figure 3.14. For
example, the super-transition ST 5 corresponds to the abstraction of the
subnet shown in Figure 3.16. Such a subnet (Figure 3.16) can easily be
identified as a portion of the model depicted in Figure 3.14.

out in

ST

ST7 ST8

ST6

S
T

5

ST4

ST3

S
T

1

ST2

9

Figure 3.15: Higher-level abstraction of the radar jammer

g
et

P
er

io
d

g
et

P
er

io
d

F
F

T

g
et

K
P

S

Figure 3.16: Refinement of ST 5 in the model of Figure 3.15

Also, many of the transitions presented in the model of Figure 3.14 could

46 3. Design Representation

be refined (for example, during the design process). In order to illustrate
this, we show how transition doMod, for instance, can be refined according
to our concept of hierarchy. Its refinement is presented in Figure 3.17. In
this form, hierarchy can conveniently be used to structure the design in a
comprehensible manner.

F
IR

d
o
D

el
a

y

xn

delayf

modf

yn

Figure 3.17: Refinement of doMod in the model of Figure 3.14

The verification of the radar jammer discussed above is addressed later
in Subsection 5.3.2.

Chapter 4

Formal Verification
of PRES+ Models

The complexity of electronic systems, among them embedded systems, has
increased enormously in the past years. Systems with intricate function-
ality are now possible due to both advances in the fabrication technology
and clever design methodologies. However, as the complexity of systems
increases, the likelihood of subtle errors becomes much greater. A way to
cope, up to a certain extent, with the issue of correctness is the use of
mathematically-based techniques known as formal methods. Formal meth-
ods offer a rigorous basis for the development of systems because they pro-
vide a framework which aims at obtaining provable correct systems along
the various steps of the design process.

For the levels of complexity typical to modern embedded systems, tradi-
tional validation techniques like simulation and testing are simply not suf-
ficient when it comes to verifying the correctness of the system because,
with these methods, it is feasible to cover just a small fraction of the system
behavior.

As pointed out in Section 1.1, correctness plays a key role in many em-
bedded systems. One aspect is that, due to the nature of the application
(for instance, safety-critical systems like the ones used in transportation,
defense, and medical equipment), a failure may lead to catastrophic situa-
tions. Another important issue to consider is the fact that bugs found late
in prototyping phases have a quite negative impact on the time-to-market
of the product. Formal methods are intended to help towards the goal of
designing correct systems.

The discipline stimulated by formal methods leads very often to a careful
scrutiny of the fundamentals of the system under design, its specification,
and the assumptions built around it, which, in turn, leads to a better un-

48 4. Formal Verification of PRES+ Models

derstanding of the system and its environment. This represents by itself a
benefit when the task is to design complex systems.

In this chapter we introduce our approach to the formal verification of
systems represented in PRES+. First, we present some background notions
in order to make clearer the presentation of our ideas. Then, we explain our
technique and propose a translation procedure from PRES+ into the input
formalism of existing verification tools. Finally, we illustrate the approach
through the verification of a realistic system.

4.1 Background

The purpose of this section is to present some preliminary concepts that will
be needed for the later discussion.

4.1.1 Formal Methods

The weaknesses of traditional validation techniques have stimulated research
towards solutions that attempt to prove a system correct. Formal methods
are analytical and mathematical techniques intended to prove formally that
the implementation of a system conforms its specification. The two well-
established approaches to formal verification are theorem proving and model
checking [CW96].

Theorem proving is the process of proving a property or statement by
showing that it is a logical consequence of a set of axioms [Fit96]. In theorem
proving, when used as verification tool, the idea is to prove a system correct
by using axioms and inference and deduction rules, in the same sense that
a mathematical theorem is proved correct. Both the system (its rules and
axioms) and its desired properties are typically expressed as formulas in
some mathematical logic, often first-order logic, because precise formulations
are needed for manipulating the statements throughout the proving process.
Then, a proof of a given property must be found from axioms and rules of the
system. Although there exist computer tools, called theorem provers, that
assist the designer in verifying a certain property, theorem proving requires
significant interaction with the user and therefore it is a relatively slow and
error-prone process. Nonetheless, theorem proving techniques can handle
infinite-space systems, which constitutes their major asset.

On the other hand, model checking [CGP99] is an automatic approach to
formal verification used to determine whether the model of a system satisfies
a set of required properties. In principle, a model checker searches exhaus-
tively the state space. Since the observable behavior of finite-space systems
can finitely be represented, such systems can be verified using automatic

4.1. Background 49

approaches. Model checking is fully automatic (the user needs not be an
expert in logics or other mathematical disciplines) and can produce coun-
terexamples (it shows why the system fails to satisfy a property that does
not hold, giving insight for diagnostic purposes). The main disadvantage of
model checking, though, is the state explosion problem. Thus key challenges
are the algorithms and data structures that ameliorate the effects of state
explosion and allow handling large search spaces.

Formal methods have grown mature and become a practical alternative
for ensuring the correctness of designs. They might overcome some of the
limitations of traditional validation methods. At the same time, formal
verification can give a better understanding of the system behavior, help to
uncover ambiguities, and reveal new insights of the system. However, formal
methods do have limitations and are not the universal solution to achieve
correct systems. We believe that formal verification is to complement, rather
than replace, simulation and testing methods.

4.1.2 Temporal Logics

A temporal logic is a logic augmented with temporal modal operators which
allow reasoning about how the truth of assertions changes over time [KG99].
Temporal logics are usually employed to specify desired properties of sys-
tems. There are different forms of temporal logics depending on the underly-
ing model of time. In this subsection, we focus on CTL (Computation Tree
Logic) because it is a representative example of temporal logics and it is one
that we use in our verification approach.

Several model checking algorithms have been presented in the literature
[CGP99]. Many of them use temporal logics to express the properties of the
system. One of the well known algorithms is CTL model checking introduced
by Clarke et al. [CES86]. CTL is based on propositional logic of branching
time, that is, a logic where time may split into more than one possible
future using a discrete model of time. Formulas in CTL are composed of
atomic propositions, boolean connectors, and temporal operators. Temporal
operators consist of forward-time operators (G globally, F in the future, X

next time, and U until) preceded by a path quantifier (A all computation
paths, and E some computation path). Figure 4.1 illustrates some of the
CTL temporal operators. The computation tree represents an unfolded state
graph where the nodes are the possible states that the system may reach.
The shaded nodes are those states in which property p holds. Thus it is
possible to express properties that refer to the root node (initial state) using
CTL temporal operators. For instance, AF p holds if for every possible path,
starting from the initial state, there exists at least one state in which p is
satisfied, that is, p will eventually happen.

50 4. Formal Verification of PRES+ Models

AF p

p p

p

p p p p p

p

p

pp p

p

pAG

p

pEF

pEX

p

p

p

pAX

p

pEG

Figure 4.1: CTL temporal operators

CTL does not provide a way to specify quantitatively time. Temporal
operators allow only the description of properties in terms of “next time”,
“eventually”, or “always”.

TCTL (Timed CTL), introduced by Alur et al. [ACD90], is a real-time
extension of CTL that allows the inscription of subscripts on the tempo-
ral operators in order to limit their scope in time. For instance, AF<n q
expresses that, along all computation paths, the property q becomes true
within n time units. When using the notion of dense time (time is treated
as a continuous quantity) the state space has infinitely many states because
of the real-valued clock variables (variables used to count time). However,
it is possible to define an equivalence relation over the states such that any
two equivalent states are indistinguishable by TCTL formulas [ACD90]. In
other words, it is possible to construct a finite representation of the (infinite-
space) system that is consistent with TCTL. This makes feasible the model
checking of real-time systems when dense-time semantics is considered.

4.1. Background 51

4.1.3 Timed Automata

A timed automaton is a finite automaton augmented with a finite set of real-
valued clocks [Alu99]. Timed automata can be thought of as a collection of
automata which operate and coordinate with each other through shared
variables and synchronization labels. There is a set of real-valued variables,
named clocks, all of which change along the time with the same constant
rate. There might be conditions over clocks that express timing constraints.

Definition 4.1 A timed automata model is a tuple ~T = (L,L0, E ,X , x, C,V,
c, v, r,a, i), where:
· L is a finite set of locations;
· L0 ⊆ L is a set of initial locations;
· E ⊆ L × L is a set of edges;
· X is a finite set of labels;
· x : E → X is a mapping that labels each edge in E with some label in X ;
· C is a finite set of real-valued clocks;
· V is a finite set of variables;
· c is a mapping that assigns to each edge e = (l, l′) a clock condition c(e)

over C that must be satisfied in order to allow the automaton to change
its location from l to l′;
· v is a mapping that assigns to each edge e = (l, l′) a variable condition

v(e) over V that must be satisfied in order to allow the automaton to
change its location from l to l′;
· r : E → 2C is a reset function that gives the clocks to be reset on each

edge;
· a is the activity mapping that assigns to each edge e a set of activities

a(e);
· i is a mapping that assigns to each location l an invariant i(l) which allows

the automaton to stay in location l as long as its invariant is satisfied. ❏

A timed automaton may stay in its current location if its invariant is
satisfied, otherwise it is forced to make a transition and change its location.
In order to make a change of location through a particular edge, both its
clock condition and its variable condition must be satisfied. When a change
of location takes place, the set of activities assigned to the edge occur (for
instance, assign to a variable the result of evaluating certain expression) and
the clocks corresponding to the edge that are given by the reset function are
set to zero.

Let us consider the automata shown in Figure 4.2. We use this simple
example in order to illustrate the notation for timed automata presented
above. The model consists of two automata where the set of locations and
initial locations are L = {a1, a2, a3, b1, b2, b3} and L0 = {a1, b1} respectively.

52 4. Formal Verification of PRES+ Models

There are seven edges as drawn in Figure 4.2. For the sake of clarity, only
labels shared by different edges are shown. Such labels are called synchro-
nization labels. In our example, T ∈ X is the only synchronization label,
so that a transition from location a2 to location a3 in the first automaton
must be accompanied by a transition from b1 to b2 in the second automaton.
The set of clocks and variables are C = {ca, cb} and V = {y} respectively.
Examples of clock and variable conditions in the model shown in Figure 4.2
are, respectively, cb > 4 and y == 1. Thus, for instance, a transition from
location b3 to location b1 is allowed only if the clock cb satisfies the condition
cb > 4. Similarly, a transition from b2 to b3 is allowed if y = 1. In Figure 4.2,
ca := 0 represents the reset of the clock ca, that is, r((a2, a3)) = {ca}. Also,
y := 2 represents the activity assigned to the edge (a3, a1), that is, when
there is a transition from location a3 to location a1 the variable y is assigned
the value 2. The invariant of location a3 is ca ≤ 3, which means that the
automaton may stay in a3 only as long as ca ≤ 3.

a1

a3

ca<=3

a2
y:=1

T

ca:=0

y:=2

b1

b3

b2
T

y==2
y==1

cb:=0cb>4

Figure 4.2: A timed automata model

4.2 Verifying PRES+ Models

There are several types of analyses that can be performed on systems rep-
resented in PRES+. The absence or presence of tokens in places of the net
may represent the state of the system at a certain moment in the dynamic
behavior of the net. Based on this, different properties can be studied. For
instance, two places marked simultaneously could represent a hazardous sit-
uation that must be avoided. This sort of safety requirement might formally
be proved by checking that such a dangerous state is never reached. Also, the
designer could be interested in proving that the system eventually reaches a
certain state, in which the presence of tokens in a particular place represents
the completion of a task. This kind of analysis, absence/presence of tokens
in places of the net, is termed reachability analysis.

Reachability analysis is useful but says nothing about timing aspects nor
does it deal with token values. In embedded applications, however, time is an
essential factor. Moreover, in hard real-time systems, where deadlines should

4.2. Verifying PRES+ Models 53

not be missed, it is crucial to quantitatively reason about temporal properties
in order to ensure the correctness of the design. Therefore, it is needed not
only to check that a certain state will eventually be reached but also to
ensure that this will occur within some bound on time. In PRES+, time
information is attached to tokens so that we can analyze quantitative timing
properties. We may prove that a given place will eventually be marked and
that its time stamp will be less than a certain time value that represents a
temporal constraint. Such sort of analysis is called time analysis.

A third type of analysis for systems modeled in PRES+ involves rea-
soning about values of tokens in marked places and is called functionality
analysis. In this work we restrict ourselves to reachability and time analy-
ses. In other words, we concentrate on the absence/presence of tokens in the
places of the net and their time stamps. Note, however, that in some cases
reachability and time analyses are influenced by token values. The way we
handle such cases for verification purposes is addressed later in this chapter.

4.2.1 Our Approach to Formal Verification

As discussed in Subsection 4.1.1, model checking is one of the well-established
approaches to formal verification: a number of desired properties (called in
this context specification) are checked against a given model of the system.
The two inputs to the model checking problem are the system model and
the properties that such a system must satisfy, usually expressed as temporal
logic formulas.

The purpose of our verification approach is to formally reason about
systems represented in PRES+. For the sake of verification, we restrict our-
selves to safe PRES+ nets, that is, nets in which each place P ∈ P holds
at most one token for every marking M reachable from M0. Otherwise,
the formal analysis would become more cumbersome. This is a trade-off
between expressiveness and analysis complexity, and avoids excessive verifi-
cation times for applications of realistic size.

We use model checking in order to verify the correctness of systems mod-
eled in PRES+. In our approach we can determine the truth of formulas
expressed in the temporal logics CTL [CES86] and TCTL [ACD90] with re-
spect to a (safe) PRES+ model. In our approach the atomic propositions of
CTL/TCTL correspond to the absence/presence of tokens in places in the
net. Thus the atomic proposition P holds iff P ∈ P is marked.

There exist different tools for the analysis and verification of systems
based on the Timed Automata (TA) model, including HyTech [HyT], Kro-
nos [Kro], and Uppaal [Upp]. Such tools have been developed along many
years and nowadays are quite mature and widely accepted. On the other
hand, to the best of our knowledge, there are no tools that support TCTL

54 4. Formal Verification of PRES+ Models

model checking of timed Petri nets extended with data information. In or-
der to make use of available tools, we first translate PRES+ models into
timed automata and then use one of the existing tools for model checking of
timed automata. In Subsection 4.2.2 we propose a systematic procedure for
translating PRES+ into timed automata

Figure 4.3 depicts our general approach to formal verification using model
checking. A system is described by a PRES+ model and the properties it
must satisfy are expressed by CTL/TCTL formulas. Once the PRES+ model
has been translated into timed automata, the model checker automatically
verifies whether the required properties hold in the model of the system. In
case the specification (expressed by CTL/TCTL formulas) is not satisfied,
diagnostic information is generated. Given enough computational resources,
the procedure will terminate with a yes/no answer. However, due to the
huge state space of practical systems, it might be the case that it is not
feasible to obtain an answer at all, even though in theory the procedure will
terminate (probably after a very long time and requiring large amounts of
memory).

Pd!(&)

EF Pe<2

Specification (Req. Properties)

CTL/TCTL formula f

NPRES+ model

System Description

AG Pc Diagnostic
Information

yes

PRES+

Translation

Automata

N f
?

Model Checker

no

Figure 4.3: Model checking

The verification of hierarchical PRES+ models is done by constructing
the equivalent non-hierarchical net as stated in Definition 3.39, and then
using the procedure discussed in the next subsection to translate it into
timed automata. Note that obtaining the non-hierarchical PRES+ model
can be done automatically so that the designer is not concerned with how
the net is flattened: he just inputs a hierarchical PRES+ model as well as
the properties he is interested in.

4.2. Verifying PRES+ Models 55

4.2.2 Translating PRES+ into Timed Automata

For verification purposes, we translate the PRES+ model into timed au-
tomata in order to use existing model checking tools. In the procedure
presented in this subsection, the resulting model will consist of one automa-
ton and one clock for each transition in the Petri net. The PRES+ model
shown in Figure 4.4 is used to illustrate the proposed translation procedure.
The resulting timed automata are shown in Figure 4.5.

Pb

Pc Pd

Pe

Pf Pg

Tb 2-1

Tc+d 3

Te 5 e< 1[]e> 1[]T43 e

Ta 1

(,0)b(,0)a

a b

c

e

d

[1,3]1

e

[2,5] 1

Pa

[2,4]

Figure 4.4: PRES+ model to be translated into automata

In the following we describe the different steps of the translation proce-
dure. Given a PRES+ model N = (P,T, I,O,M0), we want to construct
an equivalent timed automata model ~T = (L,L0, E ,X , x, C,V, c, v, r,a, i)
(which is a collection of automata, each denoted ~Ti).

Step 4.1 Define one clock ci in C for each transition Ti of the Petri net.
Define one variable in V for each place Px of the Petri net, corresponding to
the token value vx when Px is marked. ��

The clock ci is used to ensure the firing of the transition Ti within its
earliest-latest trigger time interval. For the example shown in Figure 4.4,
using the short notation x to denote vx (the value of token Kx in place Px),
the sets of clocks and variables are, respectively, C = {c1, c2, c3, c4, c5} and
V = {a, b, c, d, e, f, g}.

Step 4.2 Define the set X of labels as the set of transitions in the Petri net.

��

56 4. Formal Verification of PRES+ Models

In the resulting automata, at the end of the translation process, the
change of location through an edge e labeled x(e) = Ti will correspond to
the firing of transition Ti in the Petri net. For our example, the set of labels
is X = {T1, T2, T3, T4, T5}.
Step 4.3 For every transition Ti in the Petri net, define an automaton ~Ti with
z + 1 locations named s0, s1, . . . , sz−1 and en, where z = |◦Ti| is number of
input places of Ti. ��

During operation of the timed automata, automaton ~Ti being in location
sj represents a state in which the transition Ti has j of its input places

marked. When ~Ti is in location en, it corresponds to the situation in which
all input places of Ti are marked. The resulting model for the net shown in
Figure 4.4 consists of five automata. The automaton ~T3, for instance, has
three locations: s0 corresponds to no tokens in the input places of T3, s1

corresponds to a token in one of the input places, and en corresponds to T3

having both input places marked.

Step 4.4 Let pr (Ti) = {T ∈ T \{Ti} | T ◦∩ ◦Ti 6= ∅} be the set of transitions
different from Ti that, when fired, put a token in some place of the pre-set of
Ti. Let cf (Ti) = {T ∈ T \ {Ti} | ◦T ∩ ◦Ti 6= ∅} be the set of transitions that
are in conflict with Ti. Given the automaton ~Ti, corresponding to transition
Ti, for every Tx ∈ pr (Ti) ∪ cf (Ti):
(a) If m = |T ◦

x ∩ ◦Ti| − |◦Tx ∩ ◦Ti| > 0, define edges (s0, s0+m), (s1, s1+m),
. . ., (sz−m, en), each with label Tx;

(b) If m = |T ◦
x ∩ ◦Ti| − |◦Tx ∩ ◦Ti| < 0, define edges (en, sz+m),

(sz−1, sz−1+m), . . ., (s0−m, s0), each with label Tx;
(c) If m = |T ◦

x ∩ ◦Ti| − |◦Tx ∩ ◦Ti| = 0, define edges (s0, s0), (s1, s1), . . .,
(en , en), each with label Tx.

Then define one edge (en , sn) with synchronization label Ti, where n =
|T ◦

i ∩ ◦Ti|. ��

The above step captures how an automaton ~Ti changes its location, in
accordance to how the marking of transition Ti (more precisely the number
of its input places that are marked) changes when a transition Tx, that either
deposits or removes tokens in/from input places of Ti, fires. For example,
the firing of a transition Tx that puts one token in one of the input places of
Ti, corresponds to a change of location from sj to sj+1 in the automaton ~Ti,
through an edge labeled Tx (recall that sj in the automaton ~Ti represents a
state corresponding to the situation in which the transition Ti has j of its
input places marked).

Let us take, for example, the transition T3 in the model shown in
Figure 4.4. In this case pr (T3) = {T1, T2} and cf (T3) = ∅. Since

4.2. Verifying PRES+ Models 57

|T ◦
1 ∩ ◦T3| − |◦T1 ∩ ◦T3| = 1, for the automaton ~T3, there are two edges

(s0, s1) and (s1, en) with label T1. Since |T ◦
2 ∩ ◦T3| − |◦T2 ∩ ◦T3| = 1, there

are also two edges (s0, s1) and (s1, en) but with label T2 as shown in Fig-
ure 4.5. The one edge that has label T3 is (en, s0) (which means that, after
firing T3, all places in its pre-set ◦T3 get no tokens; this is due to the fact
that |T ◦

3 ∩ ◦T3| = 0).
Let us consider as another example the automaton ~T4 corresponding to

transition T4. In this case pr (T4) = {T3} and cf (T4) = {T5}. Corresponding
to T3, since |T ◦

3 ∩ ◦T4| − |◦T3 ∩ ◦T4| = 1, there is an edge (s0, en) with label
T3. Corresponding to T5, since |T ◦

5 ∩ ◦T4|− |◦T5∩ ◦T4| = −1, there is an edge
(en, s0) with label T5. The automaton ~T4 must have another edge (en, s0),
this one labeled T4.

s0 en

c1<=1

c1==1
T1

c:=a

s0 en

c2<=3

c2>=1,c2<=3
T2

d:=b-1

s0 s1 en

c3<=4

T1 T1 c3:=0

c3>=2,c3<=4

T3

e:=c+d

T2
c3:=0

T2

s0 en

c4<=5

c4>=2,c4<=5
e>=1T4

f:=3*e

T3 c4:=0

T5

e<1

c4:=0

s0 en

c5<=1

c5==1
e<1T5

g:=e

T3
c5:=0

T4

e>=1

c5:=0

T1

T2

T3

T4
T5

Figure 4.5: Timed automata equivalent to the PRES+ model of Figure 4.4

In the following, let fi be the transition function associated to Ti,
◦Ti the

pre-set of Ti, and τbc
i and τwc

i the best-case and worst-case transition delays
of Ti.

Step 4.5 Given the automaton ~Ti, for every edge ek = (sj, en) define r(ek) =

{ci}. For any other edge e in ~Ti define r(e) = ∅. ��

This means that the clock ci will be reset in all edges coming into location
en in the automaton ~Ti. In Figure 4.5, the assignment ci := 0 represents
the reset of ci. The two edges (s1, en) of automaton ~T3, for example, have
c3 := 0 inscribed on them; the clock c3 is used to take into account the time
since T3 becomes enabled and thus ensure to the firing semantics of PRES+.

Step 4.6 Given the automaton ~Ti, define the invariant i(en) of location en
as ci ≤ τwc

i in order to account for the time semantics of PRES+ in which

58 4. Formal Verification of PRES+ Models

the firing of Ti occurs before or at its latest trigger time. For other locations
sj different from en, define their invariant i(sj) as true (a condition that is
always satisfied). ��

In Figure 4.5, only the invariants of locations en are shown. For instance,
c2 ≤ 3 is the location invariant of en in the timed automaton ~T2.

Step 4.7 Given the automaton ~Ti, assign the clock condition τbc
i ≤ ci ≤ τwc

i

to the one edge e = (en, sn) (where n = |T ◦
i ∩ ◦Ti|) labeled Ti. Assign the

clock condition true to all other edges different from (en, sn). ��

For example, in the case of automaton ~T2 the condition 1 ≤ c2 ≤ 3 over
the edge (en , s0) gives the lower and upper limits for the firing of T2.

Step 4.8 Given the automaton ~Ti, assign to the one edge e = (en , sn) with
label Ti the activities vk := fi, for every Pk ∈ T ◦

i . Assign no activities to
other edges. ��

The above step indicates that when changing from location en to loca-
tion sn through the one edge labeled Ti in the automaton ~Ti, the variables
corresponding to out places of Ti in the Petri net will be updated according
to the function fi. This is in accordance with the firing rule of PRES+
which states that token values of tokens in the post-set of a firing transition
Ti are calculated by evaluating its transition function fi. For instance, in
Figure 4.5 the activity d := b− 1 expresses that whenever the automaton ~T2
changes from en to s0 the value b− 1 is assigned to the variable d.

Step 4.9 Given the automaton ~Ti, if the transition Ti in the PRES+ model
has guard gi, assign the variable condition gi to the one edge (en , sn) (where
n = |T ◦

i ∩ ◦Ti|) with label Ti. Then add an edge e = (en, en) with no label,
condition gi (the complement of gi), and r(e) = {ci}. ��

When all input places of a transition Ti are marked (the corresponding
timed automaton is in location en) but its guard gi is not satisfied, the
transition may not fire. This means that in such a case the corresponding
automaton ~Ti may not change its location through the edge labeled Ti. Note,
for example, the condition e < 1 assigned to the edge (en, s0) with label T5

in the automaton ~T5: e < 1 represents the guard of T5. Observe also the
edge (en, en) with condition e ≥ 1 and c5 := 0.

Step 4.10 If there are k places initially marked in the pre-set ◦Ti of the
transition Ti, make sk the initial location of ~Ti. If all places in ◦Ti are
initially marked, make en the initial location of ~Ti. ��

4.3. Verification of an ATM Server 59

For the example discussed in this subsection, en is the initial location
of ~T1 because the only input place of transition T1 is marked for the initial
marking of the net. Since no place in ◦T3 is initially marked, the automaton
~T3 has s0 as initial location.

In Figures 4.6 and 4.7 we draw a parallel of the dynamic behavior of the
PRES+ model used throughout this subsection and its corresponding equiv-
alent time automata model, for a particular firing sequence. Observe how
the locations of the automata change according to the given firing sequence.

Once we have the equivalent timed automata, we can verify properties
against the model of the system. For instance, in the simple system of
Figure 4.4 we could check whether, for given values of a and b, there exists
a reachable state in which Pf is marked. This property can be expressed by
the CTL formula EFPf . If we want to check temporal properties we can
express them as TCTL formulas. Thus, for example, we could check whether
Pg will possibly be marked and the time stamp of its token be less than 5
time units, expressing this property as EF<5 Pg.

Some of the model checking tools, namely HyTech [HyT], are capable of
performing parametric analyses. Then, for the example shown in Figure 4.4,
we can ask the model-checker which values of a and b make a certain property
hold in the system model. For instance, we obtain that EFPg holds if
a + b < 2.

Due to the nature of the model checking tools that we use, the translation
procedure introduced above is applicable for PRES+ models in which tran-
sition functions are expressed using arithmetic operations and token types of
all places are rational. In this case, we could even reason about token values.
Recall, however, that we want to focus on reachability and time analyses.
From this perspective we can ignore transition functions if they affect neither
the absence/presence of tokens nor time stamps. This is the case of PRES+
models that bear no guards and, therefore, they can straightforwardly be ver-
ified even if their transition functions are very complex operations, because
we simply ignore such functions. Those systems that do include guards in
their PRES+ model may also be studied if guard dependencies can be stated
by linear expressions. This is the case of the system shown in Figure 4.4.
There are many systems in which the transition functions are not linear, but
their guard dependencies are, and thus we can inscribe such dependencies
as linear expressions and use our method for system verification.

4.3 Verification of an ATM Server

We illustrate in this section the verification of a practical system modeled
using PRES+. The net shown in Figure 4.8 represents an ATM-based Vir-

60 4. Formal Verification of PRES+ Models

Pb

Pc Pd

Pe

Pf Pg

Tb 2-1

Tc+d 3

Te 5 e< 1[]e> 1[]T43 e

Ta 1

(,0)b(,0)a

a

dc

b

e

[1,3]

e

[2,4]

[2,5]

1

Pa

1

s0 en

c1<=1

c1==1
T1

c:=a

s0 en

c2<=3

c2>=1,c2<=3
T2

d:=b-1

s0 s1 en

c3<=4

T1 T1 c3:=0

c3>=2,c3<=4

T3

e:=c+d

T2
c3:=0

T2

s0 en

c4<=5

c4>=2,c4<=5
e>=1T4

f:=3*e

T3 c4:=0

T5

e<1

c4:=0

s0 en

c5<=1

c5==1
e<1T5

g:=e

T3
c5:=0

T4

e>=1

c5:=0

... T1 fires ...

Pb

Pc Pd

Pe

Pf Pg

Tb 2-1

Tc+d 3

Te 5 e< 1[]e> 1[]T43 e

Ta 1

c,tc()

(,0)b

a b

c

e

d

[1,3]1

e

[2,5] 1

Pa

[2,4]

s0 en

c1<=1

c1==1
T1

c:=a

s0 en

c2<=3

c2>=1,c2<=3
T2

d:=b-1

s0 s1 en

c3<=4

T1 T1 c3:=0

c3>=2,c3<=4

T3

e:=c+d

T2
c3:=0

T2

s0 en

c4<=5

c4>=2,c4<=5
e>=1T4

f:=3*e

T3 c4:=0

T5

e<1

c4:=0

s0 en

c5<=1

c5==1
e<1T5

g:=e

T3
c5:=0

T4

e>=1

c5:=0

... T2 fires ...

Pb

Pd

Pe

Pf Pg

Tb 2-1

Tc+d 3

Te 5 e< 1[]e> 1[]T43 e

Ta 1

Pc d,td()c,tc()

a b

c

e

d

[1,3]1

e

[2,5] 1

Pa

[2,4]

s0 en

c1<=1

c1==1
T1

c:=a

s0 en

c2<=3

c2>=1,c2<=3
T2

d:=b-1

s0 s1 en

c3<=4

T1 T1 c3:=0

c3>=2,c3<=4

T3

e:=c+d

T2
c3:=0

T2

s0 en

c4<=5

c4>=2,c4<=5
e>=1T4

f:=3*e

T3 c4:=0

T5

e<1

c4:=0

s0 en

c5<=1

c5==1
e<1T5

g:=e

T3
c5:=0

T4

e>=1

c5:=0

Figure 4.6: Dynamic behavior of a PRES+ model and its equivalent timed
automata model

tual Private Network (A-VPN) server [FLL+98]. The behavior of the system
can be briefly described as follows. Incoming cells are examined by Check in

4.3. Verification of an ATM Server 61

Pb

Pd

Pe

Pf Pg

Tb 2-1

Tc+d 3

Te 5 e< 1[]e> 1[]T43 e

Ta 1

Pc d,td()c,tc()

a b

c

e

d

[1,3]1

e

[2,5] 1

Pa

[2,4]

s0 en

c1<=1

c1==1
T1

c:=a

s0 en

c2<=3

c2>=1,c2<=3
T2

d:=b-1

s0 s1 en

c3<=4

T1 T1 c3:=0

c3>=2,c3<=4

T3

e:=c+d

T2
c3:=0

T2

s0 en

c4<=5

c4>=2,c4<=5
e>=1T4

f:=3*e

T3 c4:=0

T5

e<1

c4:=0

s0 en

c5<=1

c5==1
e<1T5

g:=e

T3
c5:=0

T4

e>=1

c5:=0

... T3 fires ...

a Pb

Pd

Pe

Pf Pg

Tb 2-1

Tc+d 3

Te 5 e< 1[]e> 1[]T43 e

Ta 1

Pc

e,te()

ba

c d

e e

1 [1,3]

[2,5]

[2,4]

P

1

s0 en

c1<=1

c1==1
T1

c:=a

s0 en

c2<=3

c2>=1,c2<=3
T2

d:=b-1

s0 s1 en

c3<=4

T1 T1 c3:=0

c3>=2,c3<=4

T3

e:=c+d

T2
c3:=0

T2

s0 en

c4<=5

c4>=2,c4<=5
e>=1T4

f:=3*e

T3 c4:=0

T5

e<1

c4:=0

s0 en

c5<=1

c5==1
e<1T5

g:=e

T3
c5:=0

T4

e>=1

c5:=0

... T4 fires ...

a Pb

Pd

Pe

Pf Pg

Tb 2-1

Tc+d 3

Te 5 e< 1[]e> 1[]T43 e

Ta 1

Pc

f,t f()

a

d

b

e

c

[1,3]

e

[2,4]

1

1

P

[2,5]

s0 en

c1<=1

c1==1
T1

c:=a

s0 en

c2<=3

c2>=1,c2<=3
T2

d:=b-1

s0 s1 en

c3<=4

T1 T1 c3:=0

c3>=2,c3<=4

T3

e:=c+d

T2
c3:=0

T2

s0 en

c4<=5

c4>=2,c4<=5
e>=1T4

f:=3*e

T3 c4:=0

T5

e<1

c4:=0

s0 en

c5<=1

c5==1
e<1T5

g:=e

T3
c5:=0

T4

e>=1

c5:=0

Figure 4.7: Dynamic behavior of a PRES+ model and its equivalent timed
automata model

order to determine whether they are faulty. Fault-free cells arrive through
the UTOPIA Rx interface and are eventually stored in the Shared Buffer.

62 4. Formal Verification of PRES+ Models

If the incoming cell is faulty, it goes through the module Faulty and then is
sent out using the UTOPIA Tx interface without processing. The module
Address Lookup checks the Lookup Memory and, for each non-defective in-
put cell, a compressed form of the Virtual Channel (VC) identifier in the cell
header is computed. With this compressed form of the VC identifier, the
module Traffic checks its internal tables and decides whether to accept the
incoming cell or discard it in order to avoid congestion. If the cell is accepted,
Traffic gives instructions to Queue Manager indicating where to store the
incoming cell in the buffer. Traffic also indicates to Queue Manager the cell
(stored in Shared Buffer) to be output. Supervisor is the module in charge
of updating internal tables of Traffic and the Lookup Memory. The selected
outgoing cell is emitted through the module UTOPIA Tx. The specification
of the system includes a time constraint given by the rate (155 Mbit/s) of
the application: one input cell and one output cell must be processed every
2.7 µs.

Queue ManagerUTOPIA_Rx

Address Lookup

Lookup Memory

Traffic

Supervisor

F
a

u
lt

y

C
h

ec
k

U
T

O
P

IA
_
T

x

P1

P11

[]fault

fa
u

lt
[

]

ATM Cell (In)

VC Setup

[0.15,0.2]

[0.3,0.5]

ATM Cell (Out)

[0.14,0.25]

[0.1,0.22]

[0.53,0.86]

[0
.1

,0
.3

]

0
.0

5

[0.45,0.58]

[0.1,0.25]

P

[0
.1

,0
.2

5
]

P13

3

2

P

P

P5

4

6 PP

P10

8

12

P

P

P9

Shared Buffer

7

Figure 4.8: PRES+ model of an A-VPN server

In order to verify the correctness of the A-VPN server, we must prove
that the system will eventually complete its functionality and that such a
functionality will eventually fit within a cell time-slot. The completion of the
task of the A-VPN server, modeled by the net in Figure 4.8, is represented
by the state (marking) in which the place P1 is marked. Then we must prove
that for all computation paths, P1 will eventually get a token and its time

4.3. Verification of an ATM Server 63

stamp will be less than 2.7 µs. These conditions might straightforwardly
be specified using CTL and TCTL formulas, namely AFP1 and AF<2.7 P1.
Note that the first formula is a necessary condition for the second one. Using
the translation procedure described in Subsection 4.2.2 and, in this case,
the HyTech tool, we found out that the CTL formula AFP1 holds while
the TCTL formula AF<2.7 P1 does not. Therefore the specification (set of
required properties) is not fulfilled by the model shown in Figure 4.8 because
it is not guaranteed that the time constraint will be satisfied.

We can consider an alternative solution. To do so, suppose we want to
modify Traffic, keeping its functional behavior but seeking superior perfor-
mance: we want to explore the allowed interval of delays for Traffic in order
to fulfill the system constraints. We can define the best-case and worst-case
transition delays of Traffic as parameters τbc

Traffic and τwc
Traffic, and then use

HyTech in order to perform a parametric analysis and find out the values for
which AF<2.7 P1 is satisfied. We get that if τwc

Traffic < 0.57 and, by definition,

τbc
Traffic ≤ τwc

Traffic then the property AF<2.7 P1 holds. This indicates that the
worst-case execution time of the function associated to Traffic must be less
than 0.57 µs in order to fulfill the system specification.

Running the HyTech tool on a Sun Ultra 10 workstation, both the ver-
ification of the TCTL formula AF<2.7 P1 for the model given in Figure 4.8
and the parametric analysis described in the above paragraph take roughly
1 s.

We have presented in this chapter an approach to the formal verification
of PRES+ models. We studied a practical system for which verification
can be performed in reasonable time. Nonetheless, it is possible to improve
verification efficiency in different ways, as will be discussed in Chapter 5.

Chapter 5

Improving
Verification Efficiency

We presented in Chapter 4 our approach to the formal verification of systems
modeled in PRES+. In order to use available model checking tools, a sys-
tematic procedure for translating PRES+ models into timed automata was
defined in Subsection 4.2.2. In the sequel this method will be referred to as
naive translation. According to such a translation procedure, the resulting
model consists of a collection of timed automata that operate and coordi-
nate with each other through shared variables and synchronization labels:
one automaton with one clock variable is obtained for each transition of
the PRES+ net. However, since the complexity of model checking of timed
automata grows exponentially in the number of clocks, the verification of
medium or large systems would take excessive time.

In this chapter we present two different ways of improving verification
efficiency: first, applying correctness-preserving transformations in order to
simplify the PRES+ model of the system (Section 5.1); second, exploiting
the information about the degree of concurrency of the system in order to
improve the translation procedure into timed automata (Section 5.2).

5.1 Improvement of Verification Efficiency

by Using Transformations

The application of transformations in the verification of systems represented
in PRES+ is addressed in this section. The verification efficiency can be
improved considerably by using a transformational approach. The model
that we use, PRES+, supports such transformations, which is of great benefit
during the formal verification phase.

66 5. Improving Verification Efficiency

For the sake of reducing the verification effort, we first transform the sys-
tem model into a simpler but semantically equivalent one, and then verify the
simplified model. If a given model is modified using correctness-preserving
transformations and then the resulting one is proved correct with respect
to its specification, the initial model is guaranteed to be correct, and no
intermediate steps need to be verified. This simple observation allows us to
improve the verification efficiency.

5.1.1 Transformations

As it was argued in Subsection 3.5.2, the concept of hierarchy makes it
possible to model systems in a structured way. Thus, using the notion of
abstraction/refinement, the system may be broken down into a set of com-
prehensible nets.

Transformations performed on large and flat systems are, in general,
difficult to handle. Hierarchical modeling permits a structural representation
of the system in such a way that the composing (sub)nets are simple enough
to be transformed efficiently.

We can define a set of transformation rules that make it possible to trans-
form a part of the system model. A simple yet useful transformation is shown
in Figure 5.1. It is not difficult to prove the validity of this transformation
rule (see Section B.1 of the Appendix B). It is worthwhile to observe that
if the net N ′ is a refinement of a certain super-transition ST x ∈ ST in the
hierarchical net H = (P,T,ST, I,O,M0) and N ′ is transformed into N ′′,
then N ′′ is also a refinement of ST x and may be used instead of N ′. Such
a transformation does not change the overall system at all. First, having
tokens with the same token value and token time in corresponding in-ports
of the subnets N ′ and N ′′ will lead to a marking with the same token value
and time in corresponding out-ports, so that the external observer (that is,
the rest of the net H) cannot distinguish between N ′ and N ′′. Second, once
tokens are put in the in-ports of the subnets N ′ and N ′′, there is nothing that
externally “disturbs” the behavior of N ′ and N ′′ (for example, a transition
in conflict with the in-transition that could take away tokens from the in-
ports) because, by definition, super-transitions may not be in conflict. Thus
the overall behavior remains the same when using either N ′ or N ′′. Such
a transformation rule can therefore be used with the purpose of simplifying
PRES+ models and accordingly improving the efficiency of the verification
process.

It is worth clarifying the concept of transformation in the context of veri-
fication. Along the design flow, the system model is refined to include differ-
ent design decisions, like architecture selection, partitioning, and scheduling
(see Figure 1.1). Such refinements are what we call vertical transformations.

5.1. Using Transformations 67

Transformation

A
bs

tr
ac

ti
on

/R
ef

in
em

en
t A

bstraction/R
efinem

ent

2 1f = f fo

l = l l1 2
+

u = u u1 2+

0M P0 () =

f T

l,u[]

Q’’1 Q’’m

1P’’ P’’n

. . .

. . .

N’’

xSTfx

l ux,[]x

P1 Pn

Q1 Qm

. . .

. . .

T1f1

T2f2

l1[], 1u

P’n1P’

Q’1 Q’m

l2 u2,[]

total-equivalence

. . .

. . .

N’

P

H

Figure 5.1: Transformation rule TR1

On the other hand, at certain stage of the design flow, the system model
can be transformed into another one that preserves certain properties under
consideration and, at the same time, makes the verification process easier.
These are called horizontal transformations.

Horizontal transformations are a mathematical tool for dealing with ver-
ification complexity. By simplifying the representation to be model-checked,
the verification cost is reduced in a significant manner. We concentrate on
horizontal transformations, that is, those that help us improve the efficiency
of the verification process.

Figure 5.2(a) depicts how the system model, at a given phase of the de-
sign flow, is verified. The model together with the required properties p are
input to the model checking tool with the purpose of finding out whether
the model conforms to the desired properties. It is possible to do better by
trying to apply horizontal transformations in order to get a simpler model,
yet semantically equivalent with respect to the properties p. Our trans-
formational approach to verification is illustrated in Figure 5.2(b). If the
transformations are p-preserving, only the simplest model is to be verified
and there is no need to model-check intermediate steps, thus saving time
during verification.

Other transformation rules are presented in Figures 5.3 through 5.7. It
is assumed that the nets involved in the transformations refine a certain

68 5. Improving Verification Efficiency

?

.
.

.

Model Spec p

(a)

Spec p(0)

.
.

.

Model (n)Model. . .Model (1)
p-preserving p-preserving

?

(b)

Figure 5.2: Usage of transformations for improving verification efficiency

super-transition.

We may take advantage of transformations aiming at improving verifi-
cation efficiency. The idea is to get a simpler model using transformations
from a library. In the case of total-equivalence transformations, since an ex-
ternal observer cannot distinguish between two total-equivalent subnets (for
the same tokens in corresponding in-ports, the observer gets in both cases
the same tokens in corresponding out-ports), the global system properties
are preserved in terms of reachability, time, and functionality. Therefore
such transformations are correctness-preserving: if a property p holds in a
net that contains a subnet N ′′ into which a total-equivalent subnet N ′ has
been transformed, q is also satisfied in the net that contains N ′; if q does
not hold in the second net, it does not in the first either.

If the system model does not have guards, we can ignore transition func-
tions as reachability and time analyses (which are the focus of our verification
approach) will not be affected by token values. In such a case, we can use
time-equivalence transformations in order to obtain a simpler model, as they
preserve properties related to absence/presence of tokens in the net as well
as time stamps of tokens.

Once the system model has been transformed into a simpler but seman-
tically equivalent one, we can formally verify the latter by applying the
approach described in Chapter 4.

5.1. Using Transformations 69

[]a , 2b2

,[]1b1a

2f 2T

1

P’’P’

mQ’’1Q’’

nP’’P’’1
N’’

. . .

. . .

N’

. . .

. . .

ff 1T

total-equivalence

() = 0M P’ 0() =0M P’’

l l1 2+ a a+
1 2=

b b+
1 21 2+u u =

1 1T

[], 2u2l

mQ’1Q’

P’

T2f2

l1[], 1u

P’n1

Figure 5.3: Transformation rule TR2

1 Q’’m

T

l,u[]

1P’’ P’’n

. . .

. . .

N’’

T

l,u[]

P’n1P’

. . .

N’

. . .

mQ’1Q’ Q’’

time-equivalence

Figure 5.4: Transformation rule TR3

5.1.2 Verification of the GMDFα

In this subsection we verify the GMDFα (Generalized Multi-Delay frequency-
domain Filter) modeled using PRES+ in Subsection 3.6.1. We illustrate the
benefits of using transformations in the verification of the filter.

We consider two cases of a GMDFα of length 1024: a) with an overlap-
ping factor of 4, we have the following parameters: L = 1024, α = 4, K = 4,
N = 256, and R = 64; b) with an overlapping factor of 2, we have the fol-
lowing parameters: L = 1024, α = 2, K = 8, N = 128, and R = 64. Having
a sampling rate of 8 kHz, the maximum execution time for one iteration is
in both cases 8 ms (64 new samples must be processed at each iteration).
The completion of one iteration is determined by the marking of the place
E′.

We want to prove that the system will eventually complete its function-
ality. According to the time constraint of the system, it is not sufficient to
finish the filtering iteration but also to do so with a bound on time (8 ms).
This aspect of the specification is captured by the TCTL formula AF<8 E′.
At this point, our task is to verify that the model of the GMDFα shown in

70 5. Improving Verification Efficiency

0() =

P’

M P’0() = M Q’0() = M R’0() = 0

M P’’0() = M Q’’0

N’

. . .

. . .

Q’’

P’’P’

Q’

R’

1P’’ P’’n

Q’’1 Q’’m

time-equivalence

. . .

N’’

. . .

1

u2,[]

T3f3

l3 u3,[]

T

2

T1f1

T2f2

l1[], 1u

l

3

3 u3,[]

Q’1 Q’m

P’n

l1[], 1u

l

f3

T2f2

T1f1

l2 u2,[]

Figure 5.5: Transformation rule TR4

() = 0M P’’ 0() = 0M Q’() =

time-equivalence

N’’

P’’

mQ’’1Q’’

nP’’P’’1

P’ Q’

N’

. . .

. . .

. . .

. . .

0

f 1T

[], 2u2l

u1,[]1l

2f 2T

1f 1T1

M P’

nP’P’1

mQ’1Q’

[], 2u2l

u1,[]1l

2f 2T

Figure 5.6: Transformation rule TR5

Figure 3.12 satisfies the formula AF<8 E′.

A straightforward way could be flattening the system model and apply-
ing directly the verification technique discussed in Chapter 4. However, a
wiser approach would be trying to first simplify the system model by trans-
forming it into an equivalent one, through transformations from a library.
Such transformations are a mathematical tool that allows us to improve the
verification efficiency. Therefore we try to reduce the model aiming at ob-
taining a simpler one, still semantically equivalent from the point of view of
reachability and time analyses, in such a way that correctness is preserved.

We start by using the transformation rule TR1 illustrated in Figure 5.1 on

5.1. Using Transformations 71

0() = M S’0() =

M P’’0() = M Q’’0() = 0

M R’

,21 22= max()

u2 u ,21 u22= max()

M P’0() = M Q’0() = 0

0

N’

. . .

. . .

N’’

. . .

. . .

Q’’

P’’P’ R’

S’Q’

1P’

mQ’1 Q’

time-equivalence

l

T3f3

l3 u3,[]

1P’’ P’’n

Q’’1 Q’’m

T1 T1f1

T2f2

l1[], 1u

l2 u2,[]

f

f22 T22

22l 22u[],21l , 21u[]

P’n

l2 l

[]

1

l1[], 1u

f21 T21

T3f3

l3 u3,

Figure 5.7: Transformation rule TR6

the refinement of the basic cell (Figure 5.8(a)), so that we obtain the subnet
shown in Figure 5.8(b). Note that in this transformation step, no time is
spent on-line in proving the transformation itself because transformations
are proved off-line (only once) and stored in a library. Since the subnets of
Figures 5.8(a) and 5.8(b) are total-equivalent, the functionality of the entire
GMDFα, so far, remains unchanged. We may also use time-equivalence
transformations because the PRES+ model of the GMDFα has no guards.
Recall that time-equivalence transformations do not affect reachability and
time analyses for models without guards. Using the transformation rule TR3
presented in Figure 5.4, it is possible to obtain a simpler representation of the
basic cell as shown in Figure 5.8(c). We apply again the transformation rule
TR1, obtaining thus the subnet shown in Figure 5.8(d), and continue until
the basic cell refinement is further simplified into the single-transition subnet
of Figure 5.8(e). Finally we check the specification against the simplest
model of the system, that is, the one in which the refinement of the basic
cells ST 3.i is the subnet shown in Figure 5.8(e). We have verified the formula
AF<8 E′ and the model of the GMDFα indeed satisfies its specification for
both K = 4 and K = 8. The verification times using the model checking
tool Uppaal are shown in the last row of Table 5.1.

Since the transformations used along the simplification of the GMDFα
model are correctness-preserving, the initial model of Figure 3.12 is also
correct, that is, it satisfies the system specification, and therefore need not
be verified. Nonetheless, in order to illustrate the verification cost (time)
at different stages, we have verified the models obtained in the intermediate

72 5. Improving Verification Efficiency

bTFFT -1

aMult T

cTUpdate

dTFFT

Y F

XF Fµ EF

[0.8,1.1]

[0.7,0.9]

[0.8,1.2]

[0.4,0.5] Coef

(a)

Tabfab

cTUpdate

dTFFT

Y F

XF Fµ EF

[0.4,0.5]

[1.5,2]

[0.8,1.2]

Coef

(b)

Tabfab

dTFFT

Y F

XF Fµ EF

cTUpdate

[0.4,0.5]

[0.8,1.2]

[1.5,2]

(c)

dTFFT

Y F

Tabcfabc

XF Fµ EF

[1.9,2.5]

[0.8,1.2]

(d)

Y F

abcd Tf abcd

XF Fµ EF

[2.7,3.7]

(e)

Figure 5.8: Transformations of the GMDFα basic cell

steps (models in which the refinements of the basic cells ST 3.i are given by
the subnets shown in Figures 5.8(b) through 5.8(d)) as well as the initial
model. The results are shown in Table 5.1. Recall, however, that this is not
needed as long as the transformation rules preserve the correctness in terms
of reachability and time analyses. It can be noted how much effort is saved
when the basic cells ST 3.i are refined by the simplest net as compared to
the original model.

Refinement of Verification time [s]
the basic cell α = 4, K = 4 α = 2, K = 8

Figure 5.8(a) 108.9 NA∗

Figure 5.8(b) 61.8 8178.9
Figure 5.8(c) 61.1 8177.2
Figure 5.8(d) 9.8 1368.1
Figure 5.8(e) 0.9 9.7

∗ Not available: out of time

Table 5.1: Verification times for the GMDFα

In this way verification is carried out at low cost (short time) by first us-
ing correctness-preserving transformations aiming at simplifying the system
representation. If the simpler model is correct (its specification holds), the
initial one is guaranteed to be correct and intermediate steps need not be

5.2. Coloring the Concurrency Relation 73

verified.

5.2 Improvement of Verification Efficiency
by Coloring the Concurrency Relation

We proposed in Subsection 4.2.2 a systematic procedure for translating
PRES+ models into timed automata. Such a procedure produces a col-
lection of timed automata where one automaton with one clock variable is
obtained for each transition of the PRES+ net. In order to improve verifica-
tion efficiency, the translation method introduced in Subsection 4.2.2 can be
enhanced by exploiting the structure of the PRES+ net and, in particular,
by extracting the information about the degree of concurrency of the system.

Since the time complexity of model checking of timed automata is expo-
nential in the number of clocks, the translation into timed automata is crucial
for our verification approach. We must therefore try to find an optimal or
near-optimal solution in terms of number of resulting clocks/automata. This
section introduces a technique called coloring that utilizes the information
on the degree of concurrency of the system, with the aim of obtaining the
smallest collection of automata resulting from the translation procedure.

5.2.1 Computing the Concurrency Relation

The first step of the method discussed in this section is to find out the
pairs of transitions that may not fire at the same time for any reachable
marking. Thus, for example, if we know that there is no reachable marking
for which two given transitions may fire in parallel, we can use one clock
for accounting for the firing time semantics of both transitions because they
cannot fire simultaneously.

We use the concept of concurrency relation (Definition 5.2), a relation
that includes the pairs of transitions that can fire concurrently. In order to
compute the concurrency relation we work on the Petri net corresponding
to a given PRES+ model, that is, we take a regular Petri net (as defined
by the classical model—see Definition 3.1) that has the same sets of places
and transitions as well as input and output arcs as the original PRES+
model. For example, Figure 5.9 shows the underlying regular Petri net of
the PRES+ model shown in Figure 3.2. Recall that in the case of regular
Petri nets, the marking M is a function M : P→ N0 from the set of places
P to the set of non-negative integers N0.

Note that if we find out that two transitions may not fire at the same time
in the regular Petri net, it is guaranteed that these two transitions may not
fire in parallel in the PRES+ model from which the Petri net was derived.

74 5. Improving Verification Efficiency

This is due to the fact that the behavior of a PRES+ model (in terms of
transition firings) is a subset of the behavior of its underlying Petri net,
because the in former transitions are time-bounded and may have guards.

It is worthwhile to mention that although the focus of our verification
approach is safe PRES+ models, the discussion in this subsection is also
applicable to non-safe nets.

Pa Pb

Pd

Pe2 TT T31

5
T

T

Pc

4
Figure 5.9: Petri net corresponding to the PRES+ model of Figure 3.2

Definition 5.1 [Kov00] Let N = (P,T, I,O,M0) be a Petri net and let
X = P ∪T be the set of places and transitions. Given X ∈ X, the marking
MX is defined as follows:

(i) If X is a place, MX is the marking that puts one token in X and no
tokens elsewhere;

(ii) If X is a transition, MX is the marking that puts one token in every
input place of X and no tokens elsewhere. ❏

Definition 5.2 [Kov00] The concurrency relation ‖ ⊆ X×X of a Petri net
N = (P,T, I,O,M0) is the set of pairs (X,X ′) such that M ≥ MX + MX′

for some reachable marking M , where X = P ∪T. ❏

In particular, two places belong to the concurrency relation if they are
simultaneously marked for some reachable marking, and two transitions be-
long to the concurrency relation if they can fire concurrently for some reach-
able marking. We are specifically interested in the set of transitions that
might fire at the same time, as stated by the following definition.

Definition 5.3 The concurrency relation on T, denoted ‖T, of a Petri net
N = (P,T, I,O,M0) is the set of pairs of transitions (T, T ′) such that T and
T ′ can fire concurrently for some reachable marking of N . ❏

Definition 5.4 [Kov00] Let N = (P,T, I,O,M0) be a Petri net and let
X = P ∪T be the set of places and transitions. The structural concurrency
relation ‖S ⊆ X×X is the smallest symmetric relation such that:

5.2. Coloring the Concurrency Relation 75

(i) For all P,P ′ ∈ P, M0 ≥MP + MP ′ ⇒ (P,P ′) ∈ ‖S ;
(ii) For all T ∈ T, (T ◦ × T ◦) \ iP ⊆ ‖S ;
(iii) For all X ∈ X and for all T ∈ T, {X} × ◦T ⊆ ‖S ⇒ (X,T) ∈ ‖S and

{X} × T ◦ ⊆ ‖S ,
where iP denotes the identity relation on P. ❏

The condition (i) of Definition 5.4 states that any two places initially
marked are structurally concurrent; condition (ii) states that all output
places of a given transition are pair-wise structurally concurrent; condition
(iii) states that if a node (place or transition) is structurally concurrent with
all input places of a certain transition, then that node is also structurally
concurrent with all output places of the transition [KE96].

Two very important theoretical results, proved by Kovalyov [Kov92], in
the context of computing the concurrency relation are the following:
(a) For live and extended free-choice Petri nets, ‖ = ‖S ;
(b) For any Petri net, ‖ ⊆ ‖S .

There exist polynomial-time algorithms for computing the structural con-
currency relation ‖S , even in the case of arbitrary Petri nets [Kov00], [KE96].
Therefore, due to the above theoretical results, computing the concurrency
relation ‖ (and consequently ‖T) of a live and extended free-choice Petri net
can be done in polynomial time. If the net is not live but extended free-
choice, the concurrency relation ‖ can still be computed in polynomial time
[Yen91].

If the Petri net is not extended free-choice, computing its concurrency
relation ‖ can take exponential time in the worst case [Esp98]. However, it
should be observed that we can compute ‖S (in polynomial time) and exploit
the result stating that ‖ ⊆ ‖S : if we find that (T, T ′) 6∈ ‖S , then we are cer-
tain that (T, T ′) 6∈ ‖ (therefore (T, T ′) 6∈ ‖T). Thus we can still take advan-
tage of this fact for the purpose of reducing the number of automata/clocks
resulting from the translation of PRES+ into timed automata, as will be
explained in Subsection 5.2.2.

The algorithm that we use for computing the structural concurrency
relation of a Petri net is given by Algorithm 5.1. This algorithm has been
derived from the notions and results presented in [Kov00] and [KE96].

The structural concurrency relation ‖S (as computed by Algorithm 5.1)
of the Petri net given in Figure 5.10(a) is shown in Figure 5.10(b). In this
case, this also corresponds to the concurrency relation ‖.

Algorithm 5.1 has a time complexity O(|P|2 · |T| · |X|), where X = P∪T.
This algorithm computes the structural concurrency relation ‖S of arbitrary
Petri nets. In the particular case of live and extended free-choice Petri nets,
it is possible to compute ‖S more efficiently in O(|P| · |X|2) time, as done
by Algorithm 5.2. Extended free-choice nets satisfy the property ◦T1 = ◦T2,

76 5. Improving Verification Efficiency

input: A Petri net N = (P,T, I,O, M0)
output: The structural concurrency relation ‖S
1: R := {(P, P ′) |M0 ≥MP + MP ′} ∪ (

⋃
T∈T

(T ◦ × T ◦) \ iP)
2: E := R

3: while E 6= ∅ do

4: select (X, P) ∈ E

5: E := E \ {(X, P)}
6: for each T ∈ P ◦ do

7: if {X} × ◦T ⊆ R then

8: E := E ∪ (((({X} × T ◦) ∪ (T ◦ × {X})∪ {(T, X)}) ∩ ((P ∪T)×
P)) \R)

9: R := R ∪ ({X} × T ◦) ∪ (T ◦ × {X}) ∪ {(X, T)} ∪ {(T, X)}
10: end if

11: end for

12: end while

13: ‖S := R

Algorithm 5.1: StructConcRel(N)

1

T2 T3

T4

Pa Pb

PdPc

Pe

T

(a) A Petri net

eP

T4

T1

T3T2

PbPa

Pc Pd

(b) ‖S given by Algorithm 5.1

Figure 5.10: Illustration of the concept of concurrency relation

for every two T1, T2 ∈ P ◦. Therefore, in the case of extended free-choice
nets, there is no need to check if {X} × ◦T ⊆ R for each T ∈ P ◦ (lines 6
and 7 of Algorithm 5.1). It suffices to check just one T ∈ P ◦ (lines 7 and
8 of Algorithm 5.2). Algorithm 5.2 has also been obtained from the theory
introduced in [KE96].

In our approach, we are interested in the concurrency relation among
transitions. Using ‖S (defined on P ∪T) makes however the whole process
simpler even if, later on, we do not make use of the elements (P, T), (T, P),
and (P,P ′)—with P,P ′ ∈ P and T ∈ T—that belong to ‖S . Once ‖S has
been computed we simply obtain the structural concurrency relation on T

as ‖S
T

= {(T, T ′) ∈ ‖S | T, T ′ ∈ T}. In a similar way, ‖T = {(T, T ′) ∈ ‖ |
T, T ′ ∈ T}. In the sequel we work based on the relation on T and whenever

5.2. Coloring the Concurrency Relation 77

input: A live and extended free-choice Petri net N = (P,T, I,O, M0)
output: The structural concurrency relation ‖S
1: R := {(P, P ′) |M0 ≥MP + MP ′} ∪ (

⋃
T∈T

(T ◦ × T ◦) \ iP)
2: A := {(P, P ′) | P ′ ∈ (P ◦)◦}
3: E := R

4: while E 6= ∅ do

5: select (X, P) ∈ E

6: E := E \ {(X, P)}
7: select T ∈ P ◦

8: if {X} × ◦T ⊆ R then

9: E := E ∪ ((({(X, P ′) | (P, P ′) ∈ A} ∪ {(P ′, X) | (P, P ′) ∈ A} ∪
{(T, X)}) ∩ ((P ∪T)×P)) \R)

10: R := R ∪ {(X, P ′) | (P, P ′) ∈ A} ∪ {(P ′, X) | (P, P ′) ∈ A} ∪
{(X, T)} ∪ {(T, X)}

11: end if

12: end while

13: ‖S := R

Algorithm 5.2: StructConcRel(N)

we refer to concurrency relation we will mean concurrency relation on T.

As illustrated by the experimental results of Subsection 5.3.1, the cost
of computing the concurrency relation is significantly lower than the cost of
the model checking itself.

5.2.2 Grouping Transitions

The concurrency relation can be represented as an undirected graph G =
(T,E) where its vertices are the transitions T ∈ T and an edge joining two
vertices indicates that the corresponding transitions can fire concurrently.
For instance, for the PRES+ model of a buffer of capacity 4 [Esp94] shown
in Figure 5.11(a), the concurrency relation represented as a graph is depicted
in Figure 5.11(b).

With the naive translation procedure (Subsection 4.2.2), we obtain one
automaton with one clock for each transition. However, we can do better by
exploiting the information given by the concurrency relation. Considering
the model and the concurrency relation shown in Figure 5.11, for instance,
we may group T2 and T3 together since we know that they cannot fire con-
currently. This means that the two timed automata ~T2 and ~T3 corresponding
to these transitions may share the same clock variable. Furthermore, it is
possible to construct a single automaton (with one clock) equivalent to the
behavior of both transitions.

We aim at obtaining as few groups of transitions as possible so that the

78 5. Improving Verification Efficiency

T2 T3 T4 T5[1,2]1 [1,2] [1,2]T1 1

(a) Petri net model

4T

T

5T2T

3T

1

(b) Concurrency relation

Figure 5.11: Buffer of capacity 4

automata equivalent to the PRES+ model have the minimum number of
clocks. This problem can be defined as follows:

Problem 5.1 (Minimum Graph Coloring—MGC) Given the concur-
rency relation as a graph G = (T,E), find a coloring of T, that is a
partitioning of T into disjoint sets T1,T2, . . . ,Tk, such that each Ti is
an independent set1 for G and the size k of the coloring is minimum.

For the example shown in Figure 5.11, the minimum number of colors is
3 and one such optimal coloring is T1 = {T1, T2}, T2 = {T3, T4}, T3 = {T5}.
This means we can get timed automata with 3 clocks (instead of 5 when using
the naive translation) corresponding to the model given in Figure 5.11(a).

Problem 5.1 (MGC) is known to be an NP-hard problem [GJ79]. Though
there is no known polynomial-time algorithm that solves MGC, the prob-
lem is very well-known and many approximation algorithms have been pro-
posed as well as different heuristics that find reasonably good near-optimal
solutions. Note that even a near-optimal solution to MGC implies an im-
provement in our verification approach because the number of clocks in the
resulting timed automata is reduced. There are also algorithms that find
the optimal coloring in reasonable time for some instances of the problem.
For the systems we address in Subsection 5.2.5 and Section 5.3 we are able

1An independent set is a subset Ti ⊆ T such that no two vertices in Ti are joined by
an edge in E.

5.2. Coloring the Concurrency Relation 79

to find the optimal solution in a short time by using an algorithm based on
Brélaz’s DSATUR [Bré79].

5.2.3 Composing Automata

After the concurrency relation has been colored, we can reduce the number
of resulting automata by composing those that correspond to transitions
with the same color. Thus we obtain one automaton with one clock for each
color.

Automata are composed by applying the standard product construction
method [HMU01]. In the general case, the product construction suffers from
the state-explosion problem, that is the number of locations of the prod-
uct automaton is an exponential function of the number of components.
However, in our approach we do not incur a explosion in the number of
states because the automata are tightly linked through synchronization la-
bels and, most importantly, the composing automata are not concurrent.
Recall that we do not construct the product automaton of the whole sys-
tem. We construct one automaton for each color, so that the composing
automata (corresponding to that color) cannot occur in parallel.

Figure 5.12(b) depicts the resulting time automata corresponding to the
net shown in Figure 5.11(a) when following the translation procedure pro-
posed in this section. Observe and compare with the automata shown in
Figure 5.12(a) obtained by applying the naive translation described in Sub-
section 4.2.2.

In the example given in Figure 5.11(a), which we used in order to illus-
trate our coloring technique for improving verification efficiency, for the sake
of clarity we have abstracted away transition functions and token values as
these do not influence the method described above.

5.2.4 Remarks

For the verification of PRES+ models we initially get a collection of timed
automata as given by the naive translation, with one automaton and one
clock for each transition in the PRES+ net. One such automaton uses
a clock in order to constrain the firing of the corresponding transition in
the interval given by its minimum and maximum transition delays. In this
way the timing semantics is preserved in the equivalent timed automata.
Regarding transition functions and guards in the PRES+ model, these are
straightforwardly mapped in the timed automata model as activities and
variable conditions respectively. Thus the naive translation is correct in the
sense that the resulting timed automata have a behavior equivalent to the
original PRES+ model.

80 5. Improving Verification Efficiency

c4<=2
T5 T5 c4:=0

T3 T3
c4:=0

c4>=1, c4<=2
T4

c5<=1

T4
c5:=0

c5==1T5

c3<=2
T4 T4 c3:=0

T2 T2
c3:=0

c3>=1, c3<=2
T3

c1<=1

T2
c1:=0

c1==1T1

c2<=2
T3 T3 c2:=0

T1 T1
c2:=0

c2>=1, c2<=2
T2

(a) Naive translation

c12<=1

c12<=2

c12<=1

c12==1

c12:=0

T1

c12>=1,c12<=2

T2

c12:=0

c12==1

T1

T3

c12:=0
T3

c5<=1

T4
c5:=0

c5==1T5

c34<=2 c34<=2

c34<=2c34<=2

c34:=0

T2

c34:=0

c34>=1,c34<=2

T3

c34>=1,c34<=2

T4

T5

c34:=0

T5

c34:=0

c34>=1,c34<=2

T4

c34>=1,c34<=2

T3

T2

c34:=0

T5

c34:=0

T2

T5 T2

(b) Coloring translation

Figure 5.12: Timed automata equivalent to the Petri net of Figure 5.11(a)

By using the same clock in order to account for the firing time semantics
of two (or more) transitions, we do not change the system behavior. We
group transitions that cannot fire concurrently in the underlying (regular)
Petri net and therefore cannot fire concurrently in the PRES+ model. Con-
sequently, transitions with the same color may share the same clock (so that
the system behavior is preserved) because they are pair-wise non-concurrent.

Finally, since automata composition does not change the system be-

5.2. Coloring the Concurrency Relation 81

havior, the resulting timed automata are indeed equivalent to the original
PRES+ model.

5.2.5 Revisiting the GMDFα

In Subsection 3.6.1 we have modeled a GMDFα (Generalized Multi-Delay
frequency-domain Filter). In Subsection 5.1.2 such an application has been
verified by transforming the system model and using the naive translation
procedure described in Subsection 4.2.2.

In this section we revisit the verification of the GMDFα and compare it
with the results shown previously in Subsection 5.1.2. We also consider here
the two cases of a GMDFα of length 1024: a) with an overlapping factor
α = 4, K = 4; b) with an overlapping factor α = 2, K = 8. Recall that for a
sampling rate of 8 kHz, the maximum execution time for one iteration is 8 ms
in both cases. What we want to prove is that the filter eventually completes
its functionality and does so within a bound on time (8 ms). This is captured
by the TCTL formula AF<8 E′. As seen in Figure 3.12, K affects directly
the dimension of the model and, therefore, the complexity of verification.

The verification times for the GMDFα are shown in Table 5.2. The
second column corresponds to the verification using the approach described
in Section 4.2 (naive translation of PRES+ into timed automata). The third
column shows the results of verification when using the approach discussed in
Section 5.1 (transformation of the model into a semantically equivalent and
simpler one, followed by the naive translation into timed automata). The
verification time for the GMDFα using the coloring method presented in this
section is shown in the fourth column of Table 5.2. These results include the
time spent in computing the concurrency relation, coloring this relation, and
constructing the product automata, as well as model-checking the resulting
timed automata. By combining the transformational approach with the
coloring one, it is possible to further improve the verification efficiency as
shown in the fifth column of Table 5.2.

Verification time [s]
GMDFα Naive Transf. Coloring Transf. and
L = 1024 Coloring

α = 4, K = 4 108.9 0.9 2.2 0.1
α = 2, K = 8 NA∗ 9.7 520.8 1.7

∗ Not available: out of time

Table 5.2: Different verification times for the GMDFα

82 5. Improving Verification Efficiency

5.3 Experimental Results

This section presents a scalable example and an industrial design that illus-
trate our verification approach as well as the proposed improvement tech-
niques.

5.3.1 Ring-Configuration System

This example represents a number n of processing subsystems arranged in
a ring configuration. The model for one such subsystem is illustrated in
Figure 5.13.

T1

T2

T3

T4

T5

T0

Pi +1

Pstart

i +1Q

Pi

. . .

.

. . .

[1,2]

1

1

[1,2]

P

[1,2]

Q

end

1

i

Figure 5.13: Model for one ring-configuration subsystem

Each one of the n subsystems has a bounded response requirement,
namely whenever the subsystem gets started it must strictly finish within a
time limit, in this case 25 time units. Referring to Figure 5.13, the start of
processing for one such subsystem is denoted by the marking of Pstart while
the marking of Pend denotes its end. This requirement is expressed by the
TCTL formula AG(Pstart ⇒ AF<25 Pend).

We have used the tool Uppaal in order to model-check the timing re-
quirements of the ring-configuration system. The results are summarized in
Table 5.3. The second column gives the verification time using the naive
translation of PRES+ into timed automata. The third column shows the
verification time when using the transformational approach (Section 5.1).
The fourth, fifth, sixth, and seventh columns correspond, respectively, to
the time spent in computing the concurrency relation, finding the optimal
coloring of the concurrency relation, constructing the product automata, and
model-checking the resulting timed automata. The total verification time,
when applying the approach proposed in Section 5.2, is given in the eighth
column of Table 5.3. By combining the transformation-based technique and

5.3. Experimental Results 83

the coloring one, it is possible to further improve verification efficiency as
shown in the last column of Table 5.3: we first apply correctness-preserving
transformations in order to simplify the PRES+ model and then translate it
into timed automata by using the coloring method. These results have been
plotted in Figure 5.14. As can be seen in Figure 5.14, the combination of
transformations and coloring outperforms the naive approach by up to two
orders of magnitude. Combining such strategies makes it possible to handle
ring-configuration systems composed of up to 9 subsystems (whereas with
the naive approach we can only verify up to 6 subsystems).

Verification time [s]
Trans- Coloring Transf.

n Naive forma- Comp. Coloring Product Model Total and
tions Conc. Conc. Autom- Check- Verif- Coloring

Relation Relation ata ing cation

2 0.2 0.1 0.002 0.002 0.114 0.1 0.2 0.2
3 2.4 0.6 0.006 0.004 0.153 0.2 0.4 0.2
4 47.3 8.2 0.015 0.014 0.199 1.2 1.4 0.7
5 787.9 114.1 0.026 0.076 0.249 18.2 18.6 5.9
6 13481.2 1200.6 0.046 0.342 0.297 217.8 218.5 55.5

7† NA∗ 18702.5 0.076 0.449 0.349 2402.7 2403.6 465.1
8† NA∗ NA∗ 0.156 0.545 0.405 24705.4 24706.5 3721.7

9† NA∗ NA∗ 0.259 0.698 0.512 NA∗ NA∗ 28192.7
† Specification does not hold
∗ Not available: out of time

Table 5.3: Verification of the ring-configuration example

It is interesting to observe that when n ≥ 7 the bounded response re-
quirement expressed by the TCTL formula AG(Pstart ⇒ AF<25 Pend) is
not satisfied, a fact not obvious at all. An informal explanation is that since
transition delays are given in terms of intervals, one subsystem may take
longer to execute than another; thus different subsystems can execute “out
of phase” and this phase difference may be accumulated depending on the
number of subsystems, causing one such subsystem to take eventually longer
than 25 time units (for n ≥ 7). It is also worth mentioning that, although
the model has relatively few transitions and places, this example is rather
complex because of its large state space which is due to the high degree of
parallelism.

5.3.2 Radar Jammer

This subsection addresses the verification of the radar jammer discussed in
Subsection 3.6.2. We aim at verifying a pipelined version of the jammer

84 5. Improving Verification Efficiency

 0.1

 1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9

V
e
ri

fi
ca

ti
o
n

 T
im

e
 [

s]

Number of Processes

Naive

Transformations

Coloring

Transf. and Coloring

Figure 5.14: Verification of ring-configured subsystems

where the stages correspond precisely to the super-transitions of the model
shown in Figure 3.15. In order to represent a pipelined structure, it is
necessary to add a number of places and arcs as follows. For every place
P ∈ P such that there exists (ST i, P) ∈ O and (P,ST j) ∈ I (for ST i 6=
ST j): a) add a place P ′ initially marked; b) add an input arc (P ′,ST i); c)
add an output arc (ST j, P

′). In this way, all places but in and out will hold
at most one token, and still several of them might be marked simultaneously,
representing the progress of activities along the pipeline.

The model of the pipelined jammer, annotated with timing information,
is shown in Figure 5.15. The minimum and maximum transition delays are
given in ns. We have included in this model a few more places and transitions
that represent the environment, namely transitions sample and emit, and
places inSig and outSig. The input to the jammer is a radar pulse (actually,
a number of samples taken from it). Transition sample will fire n times
(where n is the number of samples), every PW /n (where PW is the pulse
width), depositing the samples in the place inSig which are later buffered in
the place in. In this form, we model the input of the incoming radar pulse.
A token in inSig means that the input is being sampled. Regarding the
emission of the pulse produced by the jammer, the data obtained is buffered
in place out before being transmitted. After some delay, it is sent out by
transition emit so that the marking of place outSig represents a part of the
outgoing pulse being transmitted back to the radar.

We have applied our verification technique to the PRES+ model of the
jammer shown in Figure 5.15. There are two properties that are important
for the jammer. The first is that there cannot be output while sampling
the input. The second requirement is that the whole outgoing pulse must
be transmitted before another pulse arrives. These are due to the fact that
there is only one physical device for reception and transmission of signals.

5.3. Experimental Results 85

S
T

1

ST2

3ST

ST4

S
T

5

ST6

ST7 ST8

ST9

2500

out

emit

sample

in

outSig

100

[100,110]

[70,80][60,70]

[60,70]

[1
0
0
,1

2
0
]

[40,50]

[60,70]

[80,90]

[3
0
,4

0
]

1

1

inSig

30

Figure 5.15: Pipelined model of the jammer

The minimum Pulse Repetition Interval (PRI), i.e. the separation in time of
two consecutive incoming pulses, for our system is 10 µs, so this is the value
we will use for verifying the second property. For a PRI of 10 µs, the Pulse
Width PW can vary from 100 ns up to 3 µs. Therefore, we will consider the
most critical case, that is, when the pulse width is 3 µs. We assume that
the number of samples is n = 30 (so that the delay of transition sample is
100 ns).

The properties described above can be expressed, respectively, by the for-
mulas AG¬(inSig ∧ outSig) and ¬EF>10000 outSig , where inSig and outSig
are places in the Petri net representing the input and output of the jammer
respectively. The first formula states that the places inSig and outSig are
never marked at the same time, while the second says that there is no com-
putation path for which outSig is marked after 10000 ns. We have verified
that both formulas indeed hold in the model of the system. The verification
times are given in Table 5.4. Verifying these two formulas takes roughly 20 s
when combining the transformational approach and the coloring translation,
whereas the naive verification takes almost 10 minutes.

The radar jammer is a realistic example that illustrates how our mod-
eling and verification approach can be used for practical applications. The

86 5. Improving Verification Efficiency

Verification time [s]
Property Naive Transfor- Coloring Transf. and

mations Coloring

AG¬(inSig ∧ outSig) 262.8 68.7 12.4 7.5
¬EF>10000 outSig 338.3 89.9 23.8 13.6

Table 5.4: Verification of the radar jammer

verified requirements are very interesting as not only do they impose an up-
per bound for the completion of the activities but also a lower one, since
the emission and sampling of pulses cannot overlap. Although there are few
transitions in the model, the state space is very large (5.24×107 states in the
untimed model) because of the pipeline. Despite such a large state space,
the verification of the two studied properties takes relatively short time when
applying the techniques addressed in this work.

Part III

Scheduling Techniques

Chapter 6

Introduction and
Related Approaches

Part III of this dissertation deals with scheduling techniques for mixed
hard/soft real-time systems. The hard component comes from the fact that
there exist hard deadlines that have to be met in all working scenarios to
avoid disastrous consequences. The soft component, for the type of systems
considered in this Part III, is due to fact that either certain tasks have loose
deadlines that may be missed or tasks include optional parts that may be
left incomplete, in both cases at the expense of the quality of results. Thus,
the soft component provides the flexibility for trading off quality of results
with different design metrics.

Real-time systems that include both tasks with hard deadlines and tasks
with soft deadlines are studied in Chapter 7. In these cases the quality of
results, expressed in terms of utilities, is dependent on the completion time
of soft tasks.

Real-time systems in which tasks are composed of mandatory and op-
tional parts and for which optional parts can be left incomplete, still subject
to hard real-time constraints, are addressed in Chapter 8. In these cases
the quality of results, in the form of rewards, depends on the amount of
computation alloted to tasks.

Both in Chapter 7 and in Chapter 8 we introduce quasi-static scheduling
techniques that are able to exploit, with low overhead, the dynamic slack
due to variations in actual execution times.

The rest of this chapter is devoted to present approaches related to the
scheduling of hard/soft real-time systems as well as quasi-static techniques
introduced in different contexts.

90 6. Introduction and Related Approaches

6.1 Systems with Hard and Soft Tasks

Scheduling for hard/soft real-time systems has been addressed, for example,
in the context of integrating multimedia and hard real-time tasks [KSSR96],
[AB98]. The rationale is the need for supporting multimedia soft real-time
tasks coexisting together with hard real-time tasks, in a way such hard dead-
lines are guaranteed while, at the same time, the capability of graceful degra-
dation of the quality of service during system overload is provided.

Most of the scheduling approaches for mixed hard/soft real-time systems
consider that hard tasks are periodic while soft tasks are aperiodic. In such a
framework, both dynamic and fixed priority systems have been considered.
In the former case, the Earliest Deadline First (EDF) algorithm is used
for scheduling hard tasks and the response time of soft aperiodic tasks is
minimized while guaranteeing hard deadlines [BS99], [RCGF97], [HR94].
Similarly, the joint scheduling approaches for fixed priority systems try to
serve soft tasks the soonest possible while guaranteeing hard deadlines, but
make use of the Rate Monotonic (RM) algorithm for scheduling hard periodic
tasks [DTB93], [LRT92], [SLS95].

It has usually been assumed that it is best to serve a soft task as soon
as possible, without making distinction among soft tasks. In many cases,
however, distinguishing among soft tasks allows a more efficient allocation
of resources. In our approach presented in Chapter 7 we employ utility
functions that provide such a distinction. Value or utility functions were
first suggested by Locke [Loc86] for representing significance and criticality
of tasks. Such functions specify the utility delivered to the system resulting
from the termination of a task as a function of its completion time [WRJB04].

Utility-based scheduling [BPB+00], [PBA03] has been addressed before
in several contexts, for instance, the QoS-based resource allocation model
[RLLS97] and Time-Value-Function scheduling [CM96]. The former is a
model that allows the utility to be maximized by allocating resources such
that the different needs of concurrent applications are satisfied. The latter
considers independent tasks running on a single processor, assumes fixed
execution times, and proposes an O(n3) on-line heuristic for maximizing
the total utility; however, such an overhead might be too large for realistic
systems.

Earlier work generally uses only the Worst-Case Execution Time
(WCET) for scheduling, which leads to an excessive degree of pessimism
(Abeni and Buttazzo [AB98] do use mean values for serving soft tasks and
WCET for guaranteeing hard deadlines though). In the approach proposed
in Chapter 7 we take into consideration the fact that the actual execution
time of a task is rarely its WCET. We use instead the expected or mean du-

6.2. Imprecise-Computation Systems 91

ration of tasks when evaluating the utility functions associated to soft tasks.
Nevertheless, we do consider the worst-case duration of tasks for ensuring
that hard time constraints are always met. Moreover, since we consider time
intervals rather than fixed execution times for tasks, we are able to exploit
the slack due to tasks finishing ahead of their worst-case completion times.

6.2 Imprecise-Computation Systems

Another type of “utility”-based scheduling applies to systems in which tasks
produce reward as a function of the amount of computation executed by
them. The term reward-based scheduling is thus used in these cases in or-
der to emphasize this aspect (and differentiate from utility-based scheduling
where the utility produced is a function of tasks’ completion times). Reward-
based scheduling has been addressed in the frame of Imprecise Computation
(IC) techniques [SLC89], [LSL+94]. These assume that tasks are composed
of mandatory and optional parts: both parts must be finished by the dead-
line but the optional part can be left incomplete at the expense of the quality
of results. There is a function associated with each task that assigns a re-
ward as function of the amount of computation allotted to the optional part:
the more the optional part executes, the more reward it produces.

In Chapter 8 we study, under the imprecise computation model, real-time
systems with reward and energy considerations. Dynamic Voltage Scaling
(DVS) techniques permit the trade-off between energy consumption and per-
formance: by lowering the supply voltage quadratic savings in dynamic en-
ergy consumption can be achieved, while the performance is degraded in
approximately linear fashion. One of the earliest papers in the area is by
Yao et al. [YDS95], where the case of a single processor with continuous
voltage scaling is addressed. The discrete voltage selection for minimizing
energy consumption in monoprocessor systems was formulated as an Integer
Linear Programming (ILP) problem by Okuma et al. [OYI01]. DVS tech-
niques have been applied to distributed systems [LJ03], [KP97], [GK01], and
even considering overheads caused by voltage transitions [ZHC03] and leak-
age energy [ASE+04]. DVS has also been considered under fixed [SC99] and
dynamic priority assignments [KL03].

While DVS techniques have mostly been studied in the context of
hard real-time systems, IC approaches have until now disregarded the
power/energy aspects. Rusu et al. [RMM03] proposed recently the first
approach in which energy, reward, and deadlines are considered under a uni-
fied framework. The goal of the approach is to maximize the reward without
exceeding deadlines or the available energy. This approach, however, solves
statically at compile-time the optimization problem and therefore consid-

92 6. Introduction and Related Approaches

ers only worst cases, which leads to overly pessimistic results. A similar
approach (with similar drawbacks) for maximizing the total reward subject
to energy constraints, but considering that tasks have fixed priority, was
presented in [YK04].

6.3 Quasi-Static Approaches

Tasks in real-time systems may finish ahead of their deadlines. The time
difference between deadline and actual completion time is known as slack.
Depending on what causes the slack, it can be classified as either static or
dynamic. Static slack is due to the fact that at nominal voltage the processor
runs faster than needed. Dynamic slack is caused by tasks executing less
number of clock cycles than their worst case.

Most of the techniques proposed in the frame of DVS, for instance, are
static approaches in the sense that they can only exploit the static slack
[YDS95], [OYI01], [RMM03]. Nonetheless, there has been a recent interest
in dynamic approaches, that is, techniques aimed at exploiting the dynamic
slack [GK01], [SLK01], [AMMMA01]. Solutions by static approaches are
computed off-line, but have to make pessimistic assumptions, typically in
the form of WCETs. Dynamic approaches recompute solutions at run-time
in order to exploit the slack that arises from variations in the execution time,
but these on-line computations are typically non-trivial in most interesting
cases and consequently their overhead is high. We propose, for the particular
problems addressed in Chapters 7 and 8, solutions that belong to the class
of the so-called quasi-static approaches. Quasi-static approaches attempt to
perform the majority of computations at design-time, so that only simple
activities are left for run-time.

Quasi-static scheduling has been studied previously, but mostly in the
context of formal synthesis and without considering an explicit notion of
time, only the partial order of events [SLWSV99], [SH02], [CKLW03]. Re-
cently, in the context of real-time systems, Shih et al. have proposed a
template-based approach that combines off-line and on-line scheduling for
phase array radar systems [SGG+03], where templates for schedules are com-
puted off-line considering performance constraints, and tasks are scheduled
on-line such that they fit in the templates. The on-line overhead, though,
can be significant when the system workload is high.

The problem of quasi-static voltage scaling for energy minimization in
hard real-time systems was recently addressed [ASE+05]. This approach
prepares at design-time and stores a number of voltage settings, which are
used at run-time for adapting the processor voltage based on actual execu-
tion times. We make use of these results in Section 8.3. Another, somehow

6.3. Quasi-Static Approaches 93

similar, approach in which a set of voltage settings is pre-calculated was dis-
cussed in [YC03]. It considers that the application is given as a task graph
composed of subgraphs, some of which might not execute for a certain activa-
tion of the system. The selection of a particular voltage setting is thus done
on-line based on which subgraphs will be executed at that activation. For
each subgraph, however, WCETs are assumed and consequently no dynamic
slack is exploited.

To the best of our knowledge, the quasi-static approaches introduced in
Chapters 7 and 8 are the first of their type, that is, they are the first ones
that address mixed hard/soft real-time systems in a quasi-static framework.
The chief merit of these approaches is their ability to exploit the dynamic
slack, caused by tasks completing earlier than in the worst case, at a very
low on-line overhead. This is possible because a set of solutions are prepared
and stored at design-time, leaving only for run-time the selection of one of
them.

Chapter 7

Systems with Hard and
Soft Real-Time Tasks

Many real-time systems are composed of tasks which are characterized by
distinct types of timing constraints. Some of these real-time tasks correspond
to activities that must be completed before a given deadline. These tasks
are referred to as hard because missing one such deadline might have severe
consequences. Such systems can also include tasks that have looser timing
constraints and hence are referred to as soft. Soft deadline misses can be
tolerated at the expense of the quality of results.

As compared to pure hard real-time techniques, scheduling for hard/soft
systems permits dealing with a broader range of applications. As pointed
out in Section 6.1, most of the previous work on scheduling for hard/soft
real-time systems considers that hard tasks are periodic whereas soft tasks
are aperiodic. It has usually been assumed that the sooner a soft task is
served the better, but no distinction is made among soft tasks, and in this
case the problem is to find a schedule such that all hard tasks meet their
deadlines and the response time of soft tasks is minimized. However, by
differentiating among soft tasks, processing resources can be allocated more
efficiently. This is the case, for instance, in videoconference applications
where audio streams are deemed more important than the video ones. We
make use of utility functions in order to capture the relative importance of
soft tasks and how the quality of results is influenced upon missing a soft
deadline.

In this chapter we consider systems where both hard and soft tasks are
periodic and there might exist data dependencies among tasks. We aim
at finding an execution sequence (actually a set of execution sequences as
explained later) such that the sum of individual utilities by soft tasks is max-
imal and, at the same time, satisfaction of all hard deadlines is guaranteed.

96 7. Systems with Hard and Soft Real-Time Tasks

Since the actual execution times do not usually coincide with parameters
like expected durations or worst-case execution times, it is possible to exploit
such information in order to obtain schedules that yield higher utilities, that
is, improve the quality of results.

In the frame of the problem discussed in this chapter, static or off-line
scheduling refers to obtaining at design-time one single task execution order
that makes the total utility maximal and guarantees the hard constraints.
Dynamic or on-line scheduling refers to finding at run-time, every time a
task completes, a new task execution order such that the total utility is max-
imized, yet guaranteeing that hard deadlines are met, but considering the
actual execution times of those tasks which have already completed. On the
one hand, static scheduling causes no overhead at run-time but, by produc-
ing one static schedule, it can be too pessimistic since the actual execution
times might be far off from the time values used to compute the schedule. On
the other hand, dynamic scheduling exploits the information about actual
execution times and computes at run-time new schedules that improve the
quality of results. But, due to the high complexity of the problem, the time
and energy overhead needed for computing on-line the schedules can be un-
acceptable. In order to exploit the benefits of static and dynamic scheduling,
and at the same time overcome their drawbacks, we propose in this chapter
an approach in which the scheduling problem is solved in two steps: first, we
compute a number of schedules at design-time; second, we leave for run-time
only the decision regarding which of the precomputed schedules to follow.
We call such a solution quasi-static scheduling.

7.1 Preliminaries

We consider that the functionality of the system is represented by a directed
acyclic graph G = (T,E) where the nodes T correspond to tasks and data
dependencies are captured by the graph edges E.

The mapping of tasks is defined by a function m : T→ PE where PE is
the set of processing elements. Thus m(T) denotes the processing element on
which task T executes. Inter-processor communication is captured by con-
sidering the buses as processing elements and the communication activities
as tasks. If T ∈ C then m(T) ∈ B, where C ⊂ T is the set of communica-
tion tasks and B ⊂ PE is the set of buses. We consider that the mapping
of tasks to processing elements (processors and buses) is fixed and already
given as input to the problem.

The tasks that make up a system can be classified as non-real-time,
hard, or soft. H and S denote, respectively, the subsets of hard and soft
tasks. Non-real-time tasks are neither hard nor soft, and have no timing

7.1. Preliminaries 97

constraints, though they may influence other hard or soft tasks through
precedence constraints as defined by the task graph G = (T,E). Both hard
and soft tasks have deadlines. A hard deadline di is the time by which a
hard task Ti ∈ H must be completed, otherwise the integrity of the system
is jeopardized. A soft deadline di is the time by which a soft task Ti ∈ S

should be completed. Lateness of soft tasks is acceptable though it decreases
the quality of results.

In order to capture the relative importance among soft tasks and how
the quality of results is affected when missing a soft deadline, we use a non-
increasing utility function ui(ti) for each soft task Ti ∈ S, where ti is the
completion time of Ti. Typical utility functions are depicted in Figure 7.1.
We consider that the delivered utility by a soft task decreases after its dead-
line (for example, in an engine controller, lateness of the task that computes
the best fuel injection rate, and accordingly adjusts the throttle, implies a re-
duced fuel consumption efficiency), hence the use of non-increasing functions.
The total utility, denoted U , is given by the expression U =

∑
Ti∈S

ui(ti).

u

t
d

(0)u

u

t
d

u

u

t
d

(0)u(0)

Figure 7.1: Typical utility functions for soft tasks

The actual execution time of a task Ti at a certain activation of the
system, denoted τi, lies in the interval bounded by the best-case duration τbc

i

and the worst-case duration τwc
i of the task, in other words, τbc

i ≤ τi ≤ τwc
i

(dense-time semantics, that is, time is treated as a continuous quantity). The
expected duration τ e

i of a task Ti is the mean value of the possible execution
times of the task. In the simple case of execution times distributed uniformly
over the interval [τbc

i , τwc
i], the expected duration is τ e

i = (τbc
i + τwc

i)/2. For
an arbitrary continuous execution time probability distribution f(ν), the

expected duration is given by τ e
i =

∫ τwc
i

τbc
i

νf(ν)dν.

We use ◦T to denote the set of direct predecessors of task T , that is,
◦T = {T ′ ∈ T | (T ′, T) ∈ E}. Similarly, T ◦ = {T ′ ∈ T | (T, T ′) ∈ E}
denotes the set of direct successors of task T .

We consider that tasks are periodic and non-preemptable. We assume a
single-rate semantics, that is, each task is executed exactly once for every
activation of the system. Thus a schedule Ω in a system with p processing
elements is a set of p bijections {σ(1) : T(1) → {1, 2, . . . , |T(1)|}, σ(2) : T(2) →
{1, 2, . . . , |T(2)|}, . . . , σ(p) : T(p) → {1, 2, . . . , |T(p)|}} where T(i) = {T ∈

98 7. Systems with Hard and Soft Real-Time Tasks

T | m(T) = PE i} is the set of tasks mapped onto the processing element
PE i and |T(i)| denotes the cardinality of the set T(i). In the particular
case of monoprocessor systems, a schedule is just one bijection σ : T →
{1, 2, . . . , |T|}. We use the notation σ(i) = T1T2 . . . Tn as shorthand for
σ(i)(T1) = 1, σ(i)(T2) = 2, . . . , σ(i)(Tn) = |T(i)|.

In our task model, we assume that the task graph is activated periodically
(all the tasks in a task graph have the same period and become ready at the
same time) and that, in addition to the deadlines on individual tasks, there
exists an implicit hard deadline equal to the period. The latter is easily
modeled by adding a hard task, that is successor of all other tasks, which
consumes no time and no resources, and which has a deadline equal to the
period.

However, if a system contains task graphs with different periods we can
still handle it by generating several instances of the task graphs and building
a graph that corresponds to a set of task graphs as they occur within their
hyperperiod (least common multiple of the periods of the involved tasks), in
such a way that the new task graph has one period equal to the aforemen-
tioned hyperperiod [Lap04].

For a given schedule, the starting and completion times of a task Ti are
denoted si and ti respectively, with ti = si + τi. Thus, for σ(k) = T1T2 . . . Tn,
task T1 will start executing at s1 = maxTj∈◦T1

{tj} and task Ti, 1 < i ≤
n, will start executing at si = max(max Tj∈◦Ti

{tj}, ti−1). In the sequel,
the starting and completion times that we use are relative to the system
activation instant. Thus a task T with no predecessor in the task graph has
starting time s = 0 if σ(k)(T) = 1. For example, in a monoprocessor system,
according to the schedule σ = T1T2 . . . Tn, T1 starts executing at time s1 = 0
and completes at t1 = τ1, T2 starts at s2 = t1 and completes at t2 = τ1 + τ2,
and so forth.

We aim at finding off-line a set of schedules and the conditions under
which the quasi-static scheduler decides on-line to switch from one schedule
to another. A switching point defines when to switch from one schedule to
another. A switching point is characterized by a task and a time interval, as

well as the involved schedules. For example, the switching point Ω
Ti;[a,b]−−−−→ Ω′

indicates that, while Ω is the current schedule, when the task Ti finishes and
its completion time is a ≤ ti ≤ b, another schedule Ω′ must be followed as
execution order for the remaining tasks.

We assume that the system has a dedicated shared memory for storing
the set of schedules, which all processing elements can access. There is an
exclusion mechanism that grants access to one processing element at a time.
The worst-case blocking time on this memory is considered in our analysis as
included in the worst-case duration of tasks. Upon finishing a task running

7.2. Static Scheduling 99

on a certain processing element, a new schedule can be selected (according
to the set of schedules and switching points prepared off-line) which will
then be followed by all processing elements. Our analysis takes care that
the execution sequence of tasks already executed or still under execution is
consistent with the new schedule.

7.2 Static Scheduling

In order to address the quasi-static approach for scheduling systems with
hard and soft tasks that we propose in this chapter, it is needed to first take
up the problem of static scheduling. We present in this section a precise
formulation of the problem of static scheduling and provide solutions for
it, both for monoprocessor systems and for the general case of multiple
processors.

We want to find the schedule that, among all schedules that respect the
hard constraints in the worst case, maximizes the total utility when tasks
last their expected duration. Note that an alternative formulation could
have been to find the schedule that, among all schedules that respect the
hard constraints in the worst case, maximizes the total utility when tasks
last their worst-case duration. For both formulations it is guaranteed that
hard deadlines are satisfied. However, in the the former case the schedule is
constructed such that the resulting total utility is maximal if tasks execute
their expected case, while in the latter case a maximal utility is produced
if tasks execute their worst case. Since, by definition, task execution times
are such that they are “centered” around the expected value (the mean or
expected value is the “center” of the probability distribution, in the same
sense as the center of gravity is the mean of the mass distribution as defined
in physics [Bai71]), we can obtain better results in the former case.

The problem of static scheduling for real-time systems with hard and
soft tasks, in the context of maximizing the total utility, is formulated as
follows:

Problem 7.1 (Scheduling to Maximize Utility—SMU) Find a multi-
processor schedule Ω (set of p bijections {σ(1) : T(1) → {1, 2, . . . , |T(1)|},
σ(2) : T(2) → {1, 2, . . . , |T(2)|}, . . . , σ(p) : T(p) → {1, 2, . . . , |T(p)|}}
with T(l) being the set of tasks mapped onto the processing element
PE l and p being the number of processing elements) that maximizes
U =

∑
Ti∈S

ui(t
e
i) where tei is the expected completion time of task Ti,

subject to: twc
i ≤ di for all Ti ∈H, where twc

i is the worst-case completion
time of task Ti; no deadlock is introduced by Ω.
§1. The expected completion time of Ti is given by

100 7. Systems with Hard and Soft Real-Time Tasks

tei =

{
maxTj∈◦Ti

{tej}+ τe
i if σ(l)(Ti) = 1,

max(max Tj∈◦Ti
{tej}, tek) + τe

i if σ(l)(Ti) = σ(l)(Tk) + 1.

where: m(Ti) = pl; maxTj∈◦Ti
{tej} = 0 if ◦Ti = ∅.

§2. The worst-case completion time of Ti is given by

twc
i =

{
maxTj∈◦Ti

{twc
j }+ τwc

i if σ(l)(Ti) = 1,

max(maxTj∈◦Ti
{twc

j }, twc
k) + τwc

i if σ(l)(Ti) = σ(l)(Tk) + 1.

where: m(Ti) = pl; maxTj∈◦Ti
{twc

j } = 0 if ◦Ti = ∅.
§3. No deadlock introduced by Ω means that when considering a task graph

with its original edges together with additional edges defined by the partial
order corresponding to the schedule, the resulting task graph must be
acyclic.

The items §1 and §2 in Problem 7.1 provide actually the way of obtaining
the expected and worst-case completion times respectively. For the expected
completion time, for instance, if Ti is the first task in the sequence σ(l) of
tasks mapped onto PE l, its completion time tei is computed as the maximum
among the expected completion times tej of its predecessor tasks (which can
be mapped onto different processing elements) plus its own expected du-
ration τ e

i ; if Ti is not the first task in the sequence σ(l) of tasks mapped
onto PE l, we take the maximum among the expected completion times tej
of its predecessor tasks and then the maximum between this value and the
expected completion time tek of the previous task in the sequence σ(l), and
add the expected duration τ e

i .

We also present the formulation of the problem of static scheduling for
real-time systems with hard and soft tasks in the special case of monopro-
cessor systems as we first present solutions for this particular case and then
we generalize to multiple processors.

Problem 7.2 (Monoprocessor Scheduling to Maximize Utility—MSMU)
Find a monoprocessor schedule σ (a bijection σ : T → {1, 2, . . . , |T|})
that maximizes U =

∑
Ti∈S

ui(t
e
i) where tei is the expected completion

time of task Ti, subject to: twc
i ≤ di for all Ti ∈ H, where twc

i is the worst-
case completion time of task Ti; no deadlock is introduced by σ.
§1. The expected completion time of Ti is given by

tei =

{
τe
i if σ(Ti) = 1,

tek + τe
i if σ(Ti) = σ(Tk) + 1.

§2. The worst-case completion time of Ti is given by

twc
i =

{
τwc
i if σ(Ti) = 1,

twc
k + τwc

i if σ(Ti) = σ(Tk) + 1.

§3. No deadlock introduced by σ means that σ(T) < σ(T ′) for all (T, T ′) ∈ E.

We prove in Section B.2 that Problem 7.2 is NP-hard. Therefore the

7.2. Static Scheduling 101

problem of static scheduling for systems with real-time hard and soft tasks
discussed in this section is intractable, even in the monoprocessor case.

We discuss in Subsection 7.2.1 solutions to the problem of static schedul-
ing for systems with hard and soft tasks, as formulated above, in the partic-
ular case of a single processor. The general case of multiprocessor systems
is addressed in Subsection 7.2.2.

7.2.1 Single Processor

In this subsection we address the problem of static scheduling for monopro-
cessor systems composed of hard and soft tasks (Problem 7.2). We present
an algorithm that solves optimally the problem as well as heuristics that find
near-optimal solutions at reasonable computational cost.

We first consider as example a system that has six tasks T1, T2, T3, T4, T5

and T6, with data dependencies as shown in Figure 7.2. The best-case
and worst-case durations of every task are shown in Figure 7.2 in the form
[τbc, τwc]. In this example we assume that the execution time of every task Ti

is uniformly distributed over its interval [τbc
i , τwc

i] so that τ e
i = (τbc

i +τwc
i)/2.

The only hard task in the system is T5 and its deadline is d5 = 30. Tasks T3

and T4 are soft and their utility functions are given in Figure 7.2.

[2,4] [2,10]

[3,9]

[3,5]

30

[1,7]

[2,4]

T3

T5

T2

T4

T1

T6

u3(t3) =





2 if t3 ≤ 10,

24

7
− t3

7
if 10 ≤ t3 ≤ 24,

0 if t3 ≥ 24.

u4(t4) =





3 if t4 ≤ 9,

9

2
− t4

6
if 9 ≤ t4 ≤ 27,

0 if t4 ≥ 27.

Figure 7.2: A monoprocessor system with hard and soft tasks

Because of the data dependencies, there are only six possible schedules,
namely σa = T1T2T3T4T5T6, σb = T1T2T3T5T4T6, σc = T1T2T4T3T5T6, σd =
T1T3T2T4T5T6, σe = T1T3T2T5T4T6, and σf = T1T3T5T2T4T6. The schedule
σa does not guarantee satisfaction of the hard deadline d5 = 30 because the
completion time of T5 is in the worst case t5 = τwc

1 +τwc
2 +τwc

3 +τwc
4 +τwc

5 = 34.
A similar reasoning shows that σc and σd do not guarantee meeting the hard
deadline either. By evaluating the total utility U = u3(t3) + u4(t4) in the
expected case (each task lasts its expected duration) for σb, σe, and σf , we
can obtain the optimal schedule. For the example shown in Figure 7.2, σe

102 7. Systems with Hard and Soft Real-Time Tasks

gives the maximum utility in the expected case (Ue = u3(τ
e
1 + τ e

3) + u4(τ
e
1 +

τ e
3 + τ e

2 + τ e
5 + τ e

4) = u3(10) + u4(22) = 2.83) yet guaranteeing the hard
deadline. Therefore σe = T1T3T2T5T4T6 is the optimal static schedule.

The above paragraph suggests a straightforward way to obtaining the
optimal static schedule: take all possible schedules that respect data depen-
dencies, check which ones guarantee meeting the hard deadlines, and among
those pick the one that yields the highest total utility in the case of expected
durations for tasks. Such an approach has a time complexity O(|T|!) in the
worst case.

7.2.1.1 Optimal Solution

The optimal static schedule can be obtained more efficiently (still in exponen-
tial time, recall that the problem is NP-hard as demonstrated in Section B.2)
by considering permutations of only soft tasks instead of permutations of all
tasks. Algorithm 7.1 gives the optimal static schedule, in the case of a single
processor, in O(|S|!) time. For each one of the possible permutations Sk of
soft tasks, the algorithm constructs a schedule σk by trying to set the soft
tasks in σk as early as possible respecting the order given by Sk and the
hard deadlines (line 3 in Algorithm 7.1). The schedule σ that, among all σk,
provides the maximum total utility when considering the expected duration
for all tasks is the optimal one.

input: A monoprocessor hard/soft system (see Problem 7.2)
output: The optimal static schedule σ

1: U := −∞
2: for k ← 1, 2, . . . , |S|! do

3: σk := ConstrSch(Sk)
4: Uk =

∑
Ti∈S

ui(t
e
i)

5: if Uk > U then

6: σ := σk

7: U := Uk

8: end if

9: end for

Algorithm 7.1: OptStaticSchMonoproc

Algorithm 7.2 constructs a schedule, for a given permutation of soft tasks
S, by trying to set the soft tasks, according to the order given by S, as
early as possible. The rationale is that, if there exists a schedule which
guarantees that all hard deadlines are met and respects the order given by
S, the maximum total utility for the particular permutation S is obtained
when the soft tasks are set in the schedule as early as possible (the proof is
given in Section B.3).

7.2. Static Scheduling 103

input: A vector S containing a permutation of soft tasks
output: A schedule σ constructed by trying to set soft tasks as early as
possible, respecting the order given by S

1: V := S

2: R := {T ∈ T | ◦T = ∅}
3: σ := ε
4: while R 6= ∅ do

5: A := {T ∈ R | IsSchedulable(σT)}
6: B := {T ∈ A | there is a path from T to V[1]}
7: if B = ∅ then

8: select T̃ ∈ A

9: else

10: select T̃ ∈ B

11: end if

12: if T̃ is in V then

13: remove T̃ from V

14: end if

15: σ := σT̃
16: R := R \ {T̃} ∪ {T ∈ T̃ ◦ | all T ′ ∈ ◦T are in σ}
17: end while

Algorithm 7.2: ConstrSch(S)

Algorithm 7.2 first tries to schedule the soft task S[1] as early as possible.
In order to do so, it will set in first place all tasks from which there exists a
path leading to S[1], taking care of not incurring potential deadlines misses
by the hard tasks. Then, a similar procedure is followed for the rest of tasks
in S.

Algorithm 7.2 keeps a list R of tasks that are available at every step and
constructs the schedule by progressively concatenating tasks to the string
σ (initially σ = ε, where ε is the empty string). A is the set of available
tasks that, at that step, can be added to σ without posing the risk of hard
deadline misses. In other words, if we added a task T ∈ R\A to σ we could
no longer guarantee that the hard deadlines are met. B is the set of ready
tasks that have a path to the next soft task V[1] to be scheduled. Once an

available task T̃ is selected, it is concatenated to σ (line 15 in Algorithm 7.2),
T̃ is removed from R, and all its direct successors that become available are
added to R (line 16).

At every iteration of the while loop of Algorithm 7.2, we construct the
set A by checking, for every T ∈ R, whether concatenating T to the schedule
prefix σ would imply a possible hard deadline miss. For this purpose we use
an algorithm IsSchedulable(ς), which returns a boolean indicating whether
there is a schedule that agrees with the prefix ς and such that hard deadlines

104 7. Systems with Hard and Soft Real-Time Tasks

are met.

IsSchedulable(ς) is a simple algorithm that conceptually works as follows:
first, in a similar spirit as ConstrSch(S), it constructs a schedule σ (that
agrees with the prefix ς) where hard tasks are set as early as possible, ac-
cording to order given by their deadlines (that is, di < dj ⇒ σ(Ti) < σ(Tj));
then, it checks if hard deadlines are satisfied when all tasks take their worst-
case duration and the execution order given by σ is followed.

It is worthwhile to note that the time complexity of Algorithm 7.2
(ConstrSch(S)) is O(|T|3).

Let us consider again the example given in Figure 7.2. There are two
permutations of soft tasks S1 = [T3, T4] and S2 = [T4, T3]. If we follow Algo-
rithm 7.2 for S2 = [T4, T3], the illustration of its different steps is shown in Ta-
ble 7.1. Observe that ConstrSch([T4, T3]) produces σ2 = T1T2T3T5T4T6 and
therefore the order given by [T4, T3] is not respected (σ2(T4) = 5 ≮ σ2(T3) =
3). This means simply that there is no schedule σ such that σ(T4) < σ(T3)
and at the same time hard deadlines are guaranteed. For the former per-
mutation of soft tasks, ConstrSch([T3, T4]) gives σ1 = T1T3T2T5T4T6 which
is the optimal static schedule.

Step R A B T̃ σ

1 {T1} {T1} {T1} T1 T1

2 {T2, T3} {T2, T3} {T2} T2 T1T2

3 {T3, T4} {T3} ∅ T3 T1T2T3

4 {T4, T5} {T5} ∅ T5 T1T2T3T5

5 {T4} {T4} {T4} T4 T1T2T3T5T4

6 {T6} {T6} ∅ T6 T1T2T3T5T4T6

Table 7.1: Illustration of ConstrSch([T4, T3])

7.2.1.2 Heuristics

We have discussed in the previous subsection an algorithm that finds the
optimal solution to Problem 7.2. Since Problem 7.2 is intractable, any al-
gorithm that solves it exactly requires exponential time. We present in this
subsection several heuristic procedures for finding, in polynomial time, a
near-optimal solution to the problem of static scheduling for monoprocessor
systems with hard and soft tasks.

The proposed algorithms progressively construct the schedule σ by con-
catenating tasks to the string σ that at the end will contain the final sched-
ule. The heuristics make use of a list R of available tasks at every step.
The heuristics differ in how the next task, among those in R, is selected

7.2. Static Scheduling 105

as the one to be concatenated to σ. Note that the algorithms presented
in this subsection as well as Algorithm 7.1 introduced in Subsection 7.2.1.1
are applicable only if the system is schedulable in first place (there exists a
schedule that satisfies the hard time constraints). Determining the schedu-
lability of a monoprocessor system with non-preemptable tasks can be done
in polynomial time [Law73].

The algorithms make use of a list scheduling heuristic. Algorithm 7.3
gives the basic procedure. Initially, σ = ε (the empty string) and the list R

contains those tasks that have no predecessor. The while loop is executed
exactly |T| times. At every iteration we compute the set A of ready tasks
that do not pose risk of hard deadline misses if concatenated to the schedule
prefix σ. If all soft tasks have already been set in σ we select any T̃ ∈ A,
else we compute a priority for soft tasks (line 8 in Algorithm 7.3). The way
such priorities are calculated is what differentiates the proposed heuristics.
Among those soft tasks that are not in σ, we take Tk as the one with the
highest priority (line 9). Then, we obtain the set B of ready tasks that cause
no hard deadline miss and that have a path leading to Tk. We select any
T ∈ B if B 6= ∅, else we choose any T ∈ A. Once an available task T̃ is
selected as described above, it is concatenated to σ, T̃ is removed from the
list R, and those direct successors of T̃ that become available are added to
R (lines 17 and 18).

The first of the proposed heuristics makes use of Algorithm 7.3 in com-
bination with Algorithm 7.4 for computing the priorities of the soft tasks.
Algorithm 7.4 (PrioritySingleUtility) assigns a priority to the soft tasks, for a
given schedule prefix ς, as follows. If Ti is in ς its priority is SP[i] := −∞,
else we compute the schedule σ that has ς as prefix and sets Ti the earliest
(that is, we construct a schedule by concatenating to ς all predecessors of
Ti as well as Ti itself before any other task). Then the expected completion
time tei (as given by σ) is used for evaluating the utility function ui(ti) of
Ti, that is, we assign to SP[i] the single utility of Ti evaluated at tei (line 6).
The rationale behind this heuristic is that it provides a greedy manner to
compute the schedule in such a way that, at every step, the construction of
the schedule is guided by the the soft task that produces the highest utility.

Since Algorithm 7.4 (PrioritySingleUtility) assigns priorities to soft tasks
considering their individual utilities, it can be seen as an algorithm that
targets local optima. By considering instead the total utility (that is, the
sum of contributions by all soft tasks) we can devise a heuristic that targets
the global optimum. This comes at a higher computational cost though.
Algorithm 7.5 (PriorityMultipleUtility) also exploits the information of utility
functions but, as opposed to Algorithm 7.4 (PrioritySingleUtility), it considers
the utility contributions of other soft tasks when computing the priority SP[i]

106 7. Systems with Hard and Soft Real-Time Tasks

input: A monoprocessor hard/soft system (see Problem 7.2)
output: A near-optimal static schedule σ

1: R := {T ∈ T | ◦T = ∅}
2: σ := ε
3: while R 6= ∅ do

4: A := {T ∈ R | IsSchedulable(σT)}
5: if all T ∈ S are in σ then

6: select T̃ ∈ A

7: else

8: SP := Priority(σ)
9: take Tk ∈ S such that SP[k] is the highest

10: B := {T ∈ A | there is a path from T to Tk}
11: if B = ∅ then

12: select T̃ ∈ A

13: else

14: select T̃ ∈ B

15: end if

16: end if

17: σ := σT̃
18: R := R \ {T̃} ∪ {T ∈ T̃ ◦ | all T ′ ∈ ◦T are in σ}
19: end while

Algorithm 7.3: HeurStaticSchMonoproc

input: A schedule prefix ς
output: A vector SP containing the priority for soft tasks

1: for i← 1, 2, . . . , |S| do

2: if Ti is in ς then

3: SP[i] := −∞
4: else

5: σ := schedule that agrees with ς and sets Ti the earliest
6: SP[i] := ui(t

e
i)

7: end if

8: end for

Algorithm 7.4: PrioritySingleUtility(ς)

of the soft task Ti. If the soft task Ti is not in ς its priority is computed
as follows. First, we obtain the schedule σ that agrees with ς and sets Ti

the earliest (line 5). Based on σ the expected completion time tei is obtained
and used as argument for evaluating ui(ti). Second, for each soft task Tj ,
different from Ti, that is not in ς, we compute schedules σ′ and σ′′ that set
Tj the earliest and the latest respectively (lines 9 and 10). The expected
completion times t′ej and t′′ej corresponding to σ′ and σ′′ respectively are
then computed. The average of t′ej and t′′ej is used as argument for the

7.2. Static Scheduling 107

utility function uj(tj) and this value is considered as part of the computed
priority SP[i] (line 11).

input: A schedule prefix ς
output: A vector SP containing the priority for soft tasks

1: for i← 1, 2, . . . , |S| do

2: if Ti is in ς then

3: SP[i] := −∞
4: else

5: σ := schedule that agrees with ς and sets Ti the earliest
6: sp := ui(t

e
i)

7: for j ← 1, 2, . . . , |S| do

8: if Tj 6= Ti and Tj is not in ς then

9: σ′ := schedule that agrees with ς and sets Tj the earliest
10: σ′′ := schedule that agrees with ς and sets Tj the latest
11: sp := sp + uj((t

′e
j + t′′

e
j)/2)

12: end if

13: end for

14: SP[i] := sp
15: end if

16: end for

Algorithm 7.5: PriorityMultipleUtility(ς)

To sum up, we have presented two heuristics that are based on a list
scheduling algorithm (Algorithm 7.3) and their difference lies in how the
priorities for soft tasks (which guide the construction of the schedule) are
calculated. The first heuristic uses Algorithm 7.4 whereas the second uses
Algorithm 7.5. We have named the heuristics after the algorithms they
use for computing priorities: MonoprocSingleUtility (MSU) and MonoprocTo-

talUtility (MTU) respectively. The experimental evaluation of the proposed
heuristics is presented next.

7.2.1.3 Evaluation of the Heuristics

We are initially interested in the quality of the schedules obtained by the
heuristics MonoprocSingleUtility (MSU), and MonoprocTotalUtility (MTU)
with respect to the optimal schedule as given by the exact algorithm OptStat-

icSchMonoproc. We use as criterion the deviation dev = (Uopt −Uheur)/Uopt ,
where Uopt is the total utility given by the optimal schedule and Uheur is the
total utility corresponding to the schedule obtained with a heuristic.

We have randomly generated a large number of task graphs in our ex-
periments. We initially considered graphs with 100, 200, 300, 400, and 500
tasks. For these, we considered systems with 2, 3, 4, 5, 6, 7, and 8 soft tasks.
For the case |T|=200 tasks, we considered systems with 25, 50, 75, 100, and

108 7. Systems with Hard and Soft Real-Time Tasks

125 hard tasks. We generated 100 graphs for each graph dimension. The
graphs were generated in such a way that they all correspond to schedulable
systems.

We show the average deviation as a function of the number of tasks in
Figures 7.3(a) and 7.3(b). These correspond to systems with 5 and 8 soft
tasks respectively. All the systems considered in Figures 7.3(a) and 7.3(b)
have 50 hard tasks. These plots consistently show that the MTU gives the
best results for the considered cases.

 0

 1

 2

 3

 4

 5

 100 200 300 400 500

A
v
e
ra

g
e
 D

e
v
ia

ti
o
n

 [
%

]

Number of Tasks

MSU
MTU

(a) 5 soft tasks

 0

 1

 2

 3

 4

 5

 6

 7

 100 200 300 400 500

A
v
e
ra

g
e
 D

e
v
ia

ti
o
n

 [
%

]

Number of Tasks

MSU
MTU

(b) 8 soft tasks

Figure 7.3: Evaluation of the heuristics (50 hard tasks)

The plot in Figure 7.4(a) depicts the average deviation as a function of
the number of hard tasks. In this case, we have considered systems with 200
tasks, out of which 5 are soft. In this graph we observe that the number
of hard tasks does not affect significantly the quality the schedules obtained
with the proposed heuristics.

We have also studied the average deviation as a function of the number
of soft tasks and the results are plotted in Figure 7.4(b). The considered
systems have 100 tasks, 50 of them being hard. We again see that the
heuristic MTU consistently provides the best results in average. We can also

7.2. Static Scheduling 109

note that there is a trend showing an increasing average deviation as the
number of soft tasks grows, especially for the heuristic MSU. Besides, from
Figure 7.4(b), it can be concluded that the quality difference between MSU

and MTU grows as the number of soft tasks increases.

 0

 1

 2

 3

 4

 25 50 75 100 125

A
v
e
ra

g
e
 D

e
v
ia

ti
o
n

 [
%

]

Number of Hard Tasks

MSU
MTU

(a) 200 tasks, 5 soft tasks

 0

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8

A
v
e
ra

g
e
 D

e
v
ia

ti
o
n

 [
%

]

Number of Soft Tasks

MSU
MTU

(b) 100 tasks, 50 hard tasks

Figure 7.4: Evaluation of the heuristics

Note that, in the experiments we have presented so far, the number of
soft tasks is small. Recall that the time complexity of the exact algorithm is
O(|S|!) and therefore any comparison that requires computing the optimal
schedule is infeasible for a large number of soft tasks.

In a second set of experiments, we have compared the two heuristics con-
sidering systems with larger numbers of soft and hard tasks. We normalize
the utility produced by the heuristics with respect to the total utility deliv-
ered by MTU (such a normalized utility is denoted ‖Uheur‖ and is given by
‖Uheur‖ = Uheur/UMTU).

We generated, for these experiments, graphs with 500 tasks and consid-
ered cases with 50, 100, 150, 200, and 250 hard tasks and 50, 100, 150, 200,
and 250 soft tasks. The results are shown in Figures 7.5(a) and 7.5(b), from
which we observe that MTU outperforms MSU even for large number of hard

110 7. Systems with Hard and Soft Real-Time Tasks

and soft tasks.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 0 50 100 150 200 250 300

A
v
e
ra

g
e
 U

ti
li

ty
 (

N
o
rm

a
li

z
e
d

)

Number of Soft Tasks

MSU
MTU

(a) 150 hard tasks

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 0 50 100 150 200 250 300

A
v
e
ra

g
e
 U

ti
li

ty
 (

N
o
rm

a
li

z
e
d

)

Number of Hard Tasks

MSU
MTU

(b) 200 soft tasks

Figure 7.5: Comparison among the heuristics (500 tasks)

From the extensive set of experiments that we have performed and its
results (Figures 7.3 through 7.5) we conclude that, if one of the proposed
heuristics is to be chosen, MTU is the heuristic procedure that should be
used for solving the problem of static scheduling for monoprocessor systems
with hard and soft tasks. In the cases where it was feasible to compute the
optimal schedule, we obtained an average deviation smaller than 2% when
using the heuristic MTU. The heuristic MSU gives in average inferior results
because, during the process of constructing the schedule, MSU is guided by
the individual utility contribution of one soft task whereas MTU takes into
account the utility contribution of all soft tasks for computing the individual
priority of each particular task.

It must be observed, however, that the heuristic MSU is extremely fast
and produces results not far from the optimum. It could be used, for exam-
ple, in the loop of a design exploration process where it is needed to evaluate
quickly several solutions.

Although the superiority of MTU comes at a higher computational cost,

7.2. Static Scheduling 111

MTU is still fast (for systems with 100 tasks, out of them 30 soft tasks and
50 hard tasks, it takes no longer than 1 s) and hence appropriate for solving
efficiently the static scheduling problem discussed in this subsection.

7.2.2 Multiple Processors

We address in this subsection the problem of static scheduling for systems
with hard and soft tasks in the general case of multiple processors, according
to the formulation of Problem 7.1.

7.2.2.1 Optimal Solution

It was discussed in Subsection 7.2.1 that the problem of static scheduling,
in the case of a single processor, could be solved more efficiently in O(|S|!)
time by considering the permutations of soft tasks, instead of using a method
that considers the permutation of all tasks and therefore takes O(|T|!) time.
However, such a procedure (for each one of the possible permutations Sk

of soft tasks, construct schedule σk by trying to set the soft tasks in σk as
early as possible respecting the order given by Sk and the hard deadlines)
is no longer valid when the tasks are mapped on several processors. This is
illustrated by the following example.

We consider a system with four tasks mapped onto two processors as
shown in Figure 7.6 (T1, T3, and T4 are mapped onto PE 1 while T2 is mapped
onto PE2), where tasks T3 and T4 are soft, and there is no hard task. In
this particular example τbc

i = τ e
i = τwc

i for every task Ti.

1

T3

T4

PE1Processor

PE2Processor T24

4

6

T

5

u3(t3) =






5 if t3 ≤ 5,

25

4
− t3

4
if 5 ≤ t3 ≤ 25,

0 if t3 ≥ 25.

u4(t4) =





2 if t4 ≤ 10,

4− t4

5
if 10 ≤ t4 ≤ 20,

0 if t4 ≥ 20.

Figure 7.6: A multiprocessor system with hard and soft tasks

For the example shown in Figure 7.6 there are two permutations of soft
tasks, namely S1 = [T3, T4] and S2 = [T4, T3]. If we use Algorithm 7.2 (with
a slight modification in such a way that we construct a set Ω = {σ(1), σ(2)}
instead of one σ) we get Ω1 = {σ(1)

1 = T1T3T4, σ
(2)
1 = T2} for S1 and Ω2 =

{σ(1)
2 = T4T1T3, σ

(2)
2 = T2} for S2. The total utility delivered by Ω1 is

112 7. Systems with Hard and Soft Real-Time Tasks

U1 = u3(13) + u4(19) = 3.2 while the total utility delivered by Ω2 is U2 =
u3(19) + u4(6) = 3.5. None of these, however, is the optimal schedule. The
schedule Ω = {σ(1) = T1T4T3, σ

(2) = T2} is the one that yields the maximum
total utility (U = u3(15)+u4(10) = 4.5). Hence we conclude that, in case of
multiprocessor systems, a procedure that considers only the permutations of
soft tasks does not give the optimal schedule. This is so because considering
only permutations of soft tasks might lead to unnecessary idle times on

certain processors (for instance, Ω1 = {σ(1)
1 = T1T3T4, σ

(2)
1 = T2} obtained

out of S1 = [T3, T4] makes processor PE1 be idle while T2 executes on PE2—
and this idle time could be better utilized as done by the optimal schedule
Ω = {σ(1) = T1T4T3, σ

(2) = T2}).
For solving optimally Problem 7.1 (SMU) we have to consider the per-

mutations (taking of course into account the data dependencies) of all tasks
mapped onto each processor. For instance, for a system with two processors
PE1 and PE2, we need to consider in the worst case all |T(1)|! permutations
of tasks mapped onto PE 1 combined with all |T(2)|! permutations of tasks
mapped onto PE 2. Then we pick the schedule (among the schedules defined
by such permutations) that gives the highest total utility in the expected
case and guarantees all deadlines in the worst case. The optimal algorithm
is given by Algorithm 7.6.

input: A p-processor hard/soft system (see Problem 7.1)
output: The optimal static schedule Ω

1: U := −∞
2: for j ← 1, 2, . . . , |T(1)|! do

3: for k ← 1, 2, . . . , |T(2)|! do

4:
...

5: for l ← 1, 2, . . . , |T(p)|! do

6: Ωjk...l := {σ(1)
i , σ

(2)
j , . . . , σ

(p)
l }

7: if GuaranteesHardDeadlines(Ωjk...l) then

8: Ujk...l =
∑

Ti∈S
ui(t

e
i)

9: if Ujk...l > U then

10: Ω := Ωjk...l

11: U := Ujk...l

12: end if

13: end if

14: end for

15: end for

16: end for

Algorithm 7.6: OptStaticSchMultiproc

7.2. Static Scheduling 113

7.2.2.2 Heuristics

The heuristics that we use for multiprocessor systems are based on the same
ideas discussed in Subsection 7.2.1 where we presented two heuristics for the
particular case of a single processor. We use list scheduling heuristics that
rely on lists R(i) of ready tasks from which tasks are extracted at every step
for constructing the schedule. Every list R(i) contains the tasks that are
eligible to be scheduled on processing element PE i at every step. We solve
conflicts among ready tasks by computing priorities for soft tasks, in such a
way that the task that has a path leading to the highest priority soft task is
selected.

The multiprocessor version of the general heuristic is given by Algo-
rithm 7.7. The reader shall recall that T(i) denotes the set of tasks mapped
onto PE i. Note that we use a list R(i) for each processing element instead
of a single R for all processors. At every iteration we compute the set A(i)

(line 8) of tasks that are ready (all predecessors are already scheduled) and
that do not make the system non-schedulable (when concatenated to the
respective σ(i) it is still possible to construct a schedule that guarantees the
hard deadlines). If there are soft tasks yet to be scheduled, we compute pri-
orities for soft tasks, take the Tk with the highest priority, and select a task
with a path leading to Tk (lines 12 through 19). Once a task T̃ is selected,
it is concatenated to σ(i), it is removed from R(i), and its direct successors
that become ready are added to the respective R(j) (lines 21 through 25).

For computing the priorities of soft tasks, as required by Algorithm 7.7,
we use algorithms very similar to Algorithm 7.4 (PrioritySingleUtility) and
Algorithm 7.5 (PriorityMultipleUtility), but considering now that a schedule
is a set Ω = {σ(1), σ(2), . . . , σ(p)} instead of one σ, and accordingly a schedule
prefix is not a single ς but a set {ς(1), ς(2), . . . , ς(p)}. The heuristics for the
case of multiple processors have been named SingleUtility (SU) and TotalU-

tility (TU).

7.2.2.3 Evaluation of the Heuristics

The computation of an optimal static schedule using the exact algorithm (Al-
gorithm 7.6) is only feasible for small systems. In order to be able to evaluate
the quality of the proposed heuristics, we have implemented an algorithm
based on simulated annealing. Simulated annealing is a metaheuristic for
solving combinatorial optimization problems [vLA87]. It is based on the
analogy between the way in which a metal cools and freezes into a minimum
energy crystalline structure (the annealing process) and the search for a min-
imum in an optimization process. Simulated annealing has been applied in
diverse areas with good results in terms of the quality of solutions. On the

114 7. Systems with Hard and Soft Real-Time Tasks

input: A p-processor hard/soft system (see Problem 7.1)
output: A near-optimal static schedule Ω

1: for i← 1, 2, . . . , p do

2: R(i) := {T ∈ T(i) | ◦T = ∅}
3: end for

4: Ω := {σ(1) = ε, σ(2) = ε, . . . , σ(p) = ε}
5: while R =

⋃
R(i) 6= ∅ do

6: for i← 1, 2, . . . , p do

7: if R(i) 6= ∅ then

8: A(i) := {T ∈ R(i) | IsSchedulable({σ(1), . . . , σ(i)T, . . . , σ(p)})}
9: if all T ∈ S are in Ω then

10: select T̃ ∈ A(i)

11: else

12: SP := Priority(Ω)
13: take Tk ∈ S such that SP[k] is the highest

14: B(i) := {T ∈ A(i) | there is a path from T to Tk}
15: if B(i) = ∅ then

16: select T̃ ∈ A(i)

17: else

18: select T̃ ∈ B(i)

19: end if

20: end if

21: σ(i) := σ(i)T̃
22: R(i) := R(i) \ {T̃}
23: for j ← 1, 2, . . . , p do

24: R(j) := R(j) ∪ {T ∈ T̃ ◦ | T ∈ T(j) and all T ′ ∈ ◦T are in Ω}
25: end for

26: end if

27: end for

28: end while

Algorithm 7.7: HeurStaticSchMultiproc

other hand, simulated annealing is quite slow.

We compared the solutions produced by SU and TU against the one given
by simulated annealing applied to our static scheduling problem. We used as
criterion the deviation dev = (Usim−ann −Uheur)/Usim−ann , where Usim−ann

is the total utility given by the schedule found using the simulated annealing
strategy and Uheur is the total utility corresponding to the schedule obtained
with a heuristic.

We generated synthetic task graphs (100 systems for each graph dimen-
sion) with up to 200 tasks, mapped on architectures consisting of 2 to 10
processing elements. In a first set of experiments, we varied the size of the
system keeping constant the number of processing elements. The average
deviation as a function of the number of tasks is shown in Figure 7.7. In

7.2. Static Scheduling 115

these experiments we considered that 25% of the total number of tasks are
soft and 25% are hard, and that the architecture has 5 processing elements.
As expected, the heuristic TU performs significantly better than SU, with
average deviations below 10%. It is interesting to note that the simulated
annealing algorithm, which finds the near-optimal solutions that we use as
reference point, takes up to 75 minutes, for systems with 200 tasks, while
the heuristics have execution times of around 5 s.

 0

 5

 10

 15

 20

 25

 30

 0 25 50 75 100 125 150 175 200

A
v
e
ra

g
e
 D

e
v
ia

ti
o
n

 [
%

]

Number of Tasks

SU
TU

Figure 7.7: Evaluation of the multiprocessor heuristics (25% hard tasks, 25%
soft tasks, 5 processors)

In a second set of experiments, we fixed the number of soft, hard, and
total number of tasks and varied the number of processing elements. We
considered systems with 80 tasks, out of which 20 are soft and 20 are hard.
The results are shown in Figure 7.8. A slight decrease in the average devi-
ation can be observed as the number of processing elements increases. This
might be explained by the fact that for a larger number of processing ele-
ments, while keeping constant the number of tasks, the size of the solution
space (number of possible schedules) gets smaller.

 0

 5

 10

 15

 20

 25

 30

 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 D

e
v
ia

ti
o
n

 [
%

]

Number of Processors

SU
TU

Figure 7.8: Evaluation of the multiprocessor heuristics (80 tasks, 20 soft
tasks, 20 hard tasks)

116 7. Systems with Hard and Soft Real-Time Tasks

7.3 Quasi-Static Scheduling

It was mentioned in the introduction of this chapter that a single static
schedule is overly pessimistic and that a dynamic scheduling approach incurs
a high on-line overhead. We propose therefore a quasi-static solution where a
number of schedules are computed at design-time, leaving for run-time only
the selection of a particular schedule, based on the actual execution times.

This section addresses the problem of quasi-static scheduling for real-time
systems that have hard and soft tasks. We start by discussing in Subsec-
tion 7.3.1 an example that illustrates various aspects of the approach. We
propose a method for computing at design-time a set of schedules such that
an ideal on-line scheduler (Subsection 7.3.2) is matched by a quasi-static
scheduler operating on this set of schedules (Subsection 7.3.3). Since this
problem is intractable, we present heuristics that deal with the time and
memory complexity and produce suboptimal good-quality solutions (Sub-
section 7.3.4).

7.3.1 Motivational Example

Let us consider the system shown in Figure 7.9. Tasks T1, T3, T5 are mapped
onto processor PE 1 and tasks T2, T4, T6, T7 are mapped onto PE2. For the
sake of simplicity, we ignore inter-processor communication in this exam-
ple. We also assume that the execution time of every task Ti is uniformly
distributed over its interval [τbc

i , τwc
i]. Tasks T3 and T6 are hard and their

deadlines are d3 = 16 and d6 = 22 respectively. Tasks T5 and T7 are soft
and their utility functions are given in Figure 7.9.

T3 T5

T2[2,10]

[1,7]22

16 [2,4]

[1,4]

[2,4]

[2,6]

T6

[1,5] 4

T7

T

1PE Proc.Proc. PE

T1

2 u5(t5) =






2 if t5 ≤ 5,

3− t5

5
if 5 ≤ t5 ≤ 15,

0 if t5 ≥ 15.

u7(t7) =





3 if t7 ≤ 3,

18

5
− t7

5
if 3 ≤ t7 ≤ 18,

0 if t7 ≥ 18.

Figure 7.9: Motivational multiprocessor example

The optimal static schedule, according to the formulation given by Prob-
lem 7.1, corresponds to the task execution order which, among all the sched-
ules that satisfy the hard constraints in the worst case, maximizes the sum
of individual contributions by soft tasks when each utility function is eval-

7.3. Quasi-Static Scheduling 117

uated at the task’s expected completion time. For the system shown in
Figure 7.9, the optimal static schedule is Ω = {σ(1) = T1T3T5, σ

(2) =
T2T4T6T7} (in the rest of this section we will use the simplified notation
Ω = {T1T3T5, T2T4T6T7}).

Although Ω = {T1T3T5, T2T4T6T7} is optimal in the static sense, it is still
pessimistic because the actual execution times, which are unknown before-
hand, might be far off from the ones used to compute the static schedule.
This point is illustrated by the following situation. The system starts ex-
ecution according to Ω, that is T1 and T2 start at s1 = s2 = 0. Assume
that T2 completes at t2 = 4 and then T1 completes at t1 = 6. At this point,
taking advantage of the fact that we know the completion times t1 and t2,
we can compute the schedule that is consistent with the tasks already exe-
cuted, maximizes the total utility (considering the actual execution times of
T1 and T2—already executed—and expected duration for T3, T4, T5, T6, T7—
remaining tasks), and also guarantees all hard deadlines (even if all re-
maining tasks execute with their worst-case duration). Such a schedule
is Ω′ = {T1T5T3, T2T4T6T7}. In the case τ1 = 6, τ2 = 4, and τi = τ e

i for
3 ≤ i ≤ 7, Ω′ yields a total utility U ′ = u5(9) + u7(20) = 1.2 which is higher
than the one given by the static schedule Ω (U = u5(12) + u7(17) = 0.8).
Since the decision to follow Ω′ is taken after T1 completes and knowing its
completion time, meeting the hard deadlines is also guaranteed.

A purely on-line scheduler would compute, every time a task completes,
a new execution order for the tasks not yet started such that the total utility
is maximized for the new conditions (actual execution times of already com-
pleted tasks and expected duration for the remaining tasks) while guaran-
teeing that hard deadlines are met. However, the complexity of the problem
is so high that the on-line computation of one such schedule is prohibitively
expensive. Recall that such a problem is NP-hard, even in the monoproces-
sor case. In our quasi-static solution, we compute at design-time a number
of schedules and switching points, leaving for run-time only the decision to
choose a particular schedule based on the actual execution times. Thus the
on-line overhead incurred by the quasi-static scheduler is very low because
it only compares the actual completion time of a task with that of a prede-
fined switching point and selects accordingly the already computed execution
order for the remaining tasks.

We can define, for instance, a switching point Ω
T1;[2,6]−−−−→ Ω′ for the

example given in Figure 7.9, with Ω = {T1T3T5, T2T4T6T7} and Ω′ =
{T1T5T3, T2T4T6T7}, such that the system starts executing according to the
schedule Ω; when T1 completes, if 2 ≤ t1 ≤ 6 the tasks not yet started execute
in the order given by Ω′, else the execution order continues according to Ω.
While the solution {Ω,Ω′}, as explained above, guarantees meeting the hard

118 7. Systems with Hard and Soft Real-Time Tasks

deadlines and incurs a very low on-line overhead, it provides a total utility
which is greater than the one given by the static schedule Ω in 43% of the
cases (this figure can be obtained by profiling the system, that is, generating
a large number of execution times for tasks according to their probability
distributions and, for each particular set of execution times, computing the
total utility). Also, for each of the above two solutions, we found that the
static schedule Ω yields an average total utility 0.89 while the quasi-static
solution {Ω,Ω′} gives an average total utility of 1.04.

Another quasi-static solution, similar to the one discussed above, is

{Ω,Ω′} but with Ω
T1;[2,7]−−−−→ Ω′ which actually gives better results (it out-

performs the static schedule Ω in 56 % of the cases and yields an average
total utility of 1.1, yet guaranteeing no hard deadline miss). Thus the most
important question in the quasi-static approach discussed in this section is
how to compute, at design-time, the set of schedules and switching points
such that they deliver the highest quality (utility). The rest of this sec-
tion addresses this question and different issues that arise when solving the
problem.

7.3.2 Ideal On-Line Scheduler and Problem Formulation

7.3.2.1 Ideal On-Line Scheduler

We use a purely on-line scheduler as reference point in our quasi-static ap-
proach to scheduling for real-time systems with hard and soft tasks. This
means that, when computing a number of schedules and switching points,
our aim is to match an ideal on-line scheduler in terms of the yielded total
utility. Such an on-line scheduler solves, after the completion of every task,
a problem that is very much alike to Problem 7.1 (SMU), except that actual
execution times are considered and the order of completed tasks is taken
into account. We rewrite for completeness the problem to be solved by the
on-line scheduler.

On-Line Scheduler: Before the activation of the system and every time
a task completes, the on-line scheduler solves the following problem:
Problem 7.3 (On-Line SMU) Find a schedule Ω (set of p bijections

{σ(1) : T(1) → {1, 2, . . . , |T(1)|}, σ(2) : T(2) → {1, 2, . . . , |T(2)|}, . . . , σ(p) :
T(p) → {1, 2, . . . , |T(p)|}} with T(l) being the set of tasks mapped onto the
processing element PE l and p being the number of processing elements)
that maximizes U =

∑
Ti∈S

ui(t
e
i) where tei is the expected completion

time of task Ti, subject to: twc
i ≤ di for all Ti ∈ H, where twc

i is the
worst-case completion time of task Ti; no deadlock is introduced by Ω;

each σ(l) has a prefix σ
(l)
x , with σ

(l)
x being the order of the tasks already

executed or under execution on processing element PE l.

7.3. Quasi-Static Scheduling 119

§1. The expected completion time of Ti is given by

tei =

{
maxTj∈◦Ti

{tej}+ ei if σ(l)(Ti) = 1,

max(maxTj∈◦Ti
{tej}, tek) + ei if σ(l)(Ti) = σ(l)(Tk) + 1.

where: m(Ti) = pl; maxTj∈◦Ti
{tej} = 0 if ◦Ti = ∅; ei = τi if Ti has

completed, ei = τwc
i if Ti is executing, else ei = τe

i .
§2. The worst-case completion time of Ti is given by

twc
i =

{
maxTj∈◦Ti

{twc
j }+ wci if σ(l)(Ti) = 1,

max(maxTj∈◦Ti
{twc

j }, twc
k) + wci if σ(l)(Ti) = σ(l)(Tk) + 1.

where: m(Ti) = pl; maxTj∈◦Ti
{twc

j } = 0 if ◦Ti = ∅; wci = τi if Ti has
been completed, else wci = τwc

i .
§3. No deadlock introduced by Ω means that when considering a task graph

with its original edges together with additional edges defined by the partial
order corresponding to the schedule, the resulting task graph must be
acyclic.

It can be noted that the differences between SMU (Problem 7.1) and On-
Line SMU (Problem 7.3) lie in: a) actual execution times of tasks already
completed are used in the latter problem, as seen in §1 and §2; b) the schedule
Ω, in the latter problem, must consider the order of tasks already completed
or under execution.

Ideal On-Line Scheduler: In an ideal case, where the on-line scheduler
solves On-Line SMU in zero time, for any set of execution times τ1, τ2, . . . , τn

(each known only when the corresponding task completes), the total utility
yielded by the on-line scheduler is denoted U ideal

{τi}
.

The total utility delivered by the ideal on-line scheduler, as given above,
represents an upper bound on the utility that can practically be produced
without knowing in advance the actual execution times and without accept-
ing risks regarding hard deadline violations. This is due to the fact that the
defined scheduler optimally solves Problem 7.3 (On-Line SMU) in zero time,
it is aware of the actual execution times of all completed tasks, and opti-
mizes the total utility assuming that the remaining tasks will run for their
expected (which is the most likely) execution time. We note again that, al-
though the optimization goal is the total utility assuming expected duration
for the remaining tasks, this optimization is performed under the constraint
that hard deadlines are satisfied even in the situation of worst-case duration
for the remaining tasks.

7.3.2.2 Problem Formulation

Due to the NP-hardness of Problem 7.3, which the on-line scheduler must
solve every time a task completes, such an on-line scheduler causes an unac-
ceptable overhead. We propose instead to prepare at design-time schedules

120 7. Systems with Hard and Soft Real-Time Tasks

and switching points, where the selection of the actual schedule is done at
run-time, at a low cost, by the so-called quasi-static scheduler. The aim is
to match the utility delivered by an ideal on-line scheduler. This problem is
formulated as follows:

Problem 7.4 (Multiple Schedules—MS) Find a set of multiprocessor
schedules and switching points such that, for any set of execution times
τ1, τ2, . . . , τn, hard deadlines are guaranteed and the total utility U{τi}

yielded by the quasi-static scheduler is equal to U ideal
{τi}

.

7.3.3 Optimal Set of Schedules and Switching Points

We present in this subsection the systematic procedure for computing the
optimal set of schedules and switching points as required by the multiple-
schedules problem (Problem 7.4). By optimal, in this context, we mean
a solution which guarantees hard deadlines and produces a total utility of
U ideal
{τi}

. Note that the problem of obtaining such an optimal solution is in-
tractable. Nonetheless, despite its complexity, the optimal procedure de-
scribed here has also theoretical relevance: it shows that an infinite space of
execution times (the execution time of task Tj can be any value in the inter-
val [τbc

j , τwc
j]) might be covered optimally by a finite number of schedules,

albeit it may be a very large number.

The key idea is to express the total utility, for every feasible task execu-
tion order, as a function of the completion time tk of a particular task Tk.
Since different schedules yield different utilities, the objective of the analysis
is to pick out the schedule that gives the highest utility and also guarantees
no hard deadline miss, depending on the completion time tk.

We discuss first the case of a single processor and then we generalize the
method for multiprocessor systems.

7.3.3.1 Single Processor

We start by taking the monoprocessor schedule σ that is solution to Prob-
lem 7.2 (MSMU). Let us assume that σ(T1) = 1, that is, T1 is the first
task of σ. For each one of the schedules σi that start with T1 and satisfy the
precedence constraints, we express the total utility Ui(t1) as a function of the
completion time t1 of task T1, for the interval of possible completion times
of T1 (in this case τbc

1 ≤ t1 ≤ τwc
1). When computing Ui we consider τi = τ e

i

for all Ti ∈ T \ {T1} (expected duration for the remaining tasks). Then, for
each possible σi, we analyze the schedulability of the system, that is, which
values of the completion time t1 imply potential hard deadline misses when
σi is followed. For this analysis we consider τi = τwc

i for all Ti ∈ T \ {T1}

7.3. Quasi-Static Scheduling 121

(worst-case duration for the remaining tasks). We introduce the auxiliary
function Ûi such that Ûi(t1) = −∞ if following σi, after T1 has completed
at t1, does not guarantee the hard deadlines, else Ûi(t1) = Ui(t1).

Once we have computed all the functions Ûi(t1), we may determine which
σi yields the maximum total utility at which instants in the interval [τbc

1 , τwc
1].

We get thus the interval [τbc
1 , τwc

1] partitioned into subintervals and, for each
one of these, we obtain the execution order to follow after T1 depending
on the completion time t1. We refer to this as the interval-partitioning
step. Observe that such subintervals define the switching points we want to
compute.

For each one of the obtained schedules, we repeat the process, this time
computing Ûj ’s as a function of the completion time of the second task in the
schedule and for the interval in which this second task may finish. Then the
process is similarly repeated for the third element of the new schedules, and
so on. In this manner we obtain the optimal tree of schedules and switching
points as required by Problem 7.4 (MS).

The process described above is best illustrated by an example. Let us
consider the system shown in Figure 7.10. This system has one hard task T4

with deadline d4 = 30 and two soft tasks T2 and T3 whose utility functions
are also given in Figure 7.10. Assuming uniform execution time probability
distributions, the expected durations of tasks are τ e

1 = τ e
5 = 4 and τ e

2 = τ e
3 =

τ e
4 = 6.

T3[2,10]

[3,9]

[3,5]

30

[4,8]

[1,7]T1

T5

T4

T2

u2(t2) =






3 if t2 ≤ 9,

9

2
− t2

6
if 9 ≤ t2 ≤ 27,

0 if t2 ≥ 27.

u3(t3) =






2 if t3 ≤ 18,

8− t3

3
if 18 ≤ t3 ≤ 24,

0 if t3 ≥ 24.

Figure 7.10: Motivational monoprocessor example

The optimal static schedule for the system shown in Figure 7.10 is σ =
T1T3T4T2T5. Due to the given data dependencies, there are three possible
schedules that start with T1, namely σa = T1T2T3T4T5, σb = T1T3T2T4T5,
and σc = T1T3T4T2T5. We want to compute the corresponding functions
Ua(t1), Ub(t1), and Uc(t1), 1 ≤ t1 ≤ 7, considering the expected duration for
T2, T3, T4, and T5. For example, Ub(t1) = u2(t1 + τ e

3 + τ e
2) + u3(t1 + τ e

3) =

122 7. Systems with Hard and Soft Real-Time Tasks

u2(t1 + 12) + u3(t1 + 6). We get the following functions:

Ua(t1) =





5 if 1 ≤ t1 ≤ 3,

11/2 − t1/6 if 3 ≤ t1 ≤ 6,

15/2 − t1/2 if 6 ≤ t1 ≤ 7.

(7.1)

Ub(t1) = 9/2− t1/6 if 1 ≤ t1 ≤ 7. (7.2)

Uc(t1) = 7/2− t1/6 if 1 ≤ t1 ≤ 7. (7.3)

The functions Ua(t1), Ub(t1), and Uc(t1), as given by Equations (7.1)-
(7.3), are shown in Figure 7.11(a). Now, for each one of the schedules σa, σb,
and σc, we determine the latest completion time t1 that guarantees meeting
hard deadlines when that schedule is followed. For example, if the execution
order given by σa = T1T2T3T4T5 is followed and the remaining tasks take
their maximum duration, the hard deadline d4 = 30 is met only when t1 ≤ 3.
This is because t4 = t1 + τwc

2 + τwc
3 + τwc

4 = t1 + 27 in the worst case and
therefore t4 ≤ d4 if and only if t1 ≤ 3. A similar analysis shows that σb

guarantees meeting the hard deadline only when t1 ≤ 3 while σc guarantees
the hard deadline for any completion time t1 in the interval [1, 7]. Thus we
get the auxiliary functions as given by Equations (7.4)-(7.6), and depicted
in Figure 7.11(b).

Ûa(t1) =

{
5 if 1 ≤ t1 ≤ 3,

−∞ if 3 < t1 ≤ 7.
(7.4)

Ûb(t1) =

{
9/2− t1/6 if 1 ≤ t1 ≤ 3,

−∞ if 3 < t1 ≤ 7.
(7.5)

Ûc(t1) = 7/2 − t1/6 if 1 ≤ t1 ≤ 7. (7.6)

From the graphic shown in Figure 7.11(b) we conclude that σa =
T1T2T3T4T5 yields the highest total utility when T1 completes in the subin-
terval [1, 3] still guaranteeing the hard deadline, and that σc = T1T3T4T2T5

yields the highest total utility when T1 completes in the subinterval (3, 7]
also guaranteeing the hard deadline.

A similar procedure is followed, first for σa and then for σc, considering
the completion time of the second task in these schedules. Let us take
σa = T1T2T3T4T5. We must analyze the legal schedules having T1T2 as
prefix. However, since there is only one such schedule, there is no need to
continue along the branch originated from σa.

Let us take σc = T1T3T4T2T5. We make an analysis of the possible sched-
ules σj that have T1T3 as prefix (σd = T1T3T2T4T5 and σe = T1T3T4T2T5)
and for each of these we obtain Uj(t3), 5 < t3 ≤ 17 (recall that: σc is fol-
lowed after completing T1 at 3 < t1 ≤ 7; 2 ≤ τ3 ≤ 10). The corresponding
functions, when considering expected duration for T2, T4, and T5, are:

Ud(t3) = 7/2 − t3/6 if 5 < t3 ≤ 17. (7.7)

7.3. Quasi-Static Scheduling 123

21 3 4 5 6 7 8

1

2

3

5

4

t1

U

Ua

Ub

Uc

(a) Ui(t1), 1 ≤ t1 ≤ 7

21 3 4 5 6 7 8

1

2

3

5

4

t1

Ua

Ub

Uc

U

(b) Ûi(t1), 1 ≤ t1 ≤ 7

Figure 7.11: Ui(t1) and Ûi(t1) for the example in Figure 7.10

Ue(t3) =

{
5/2 − t3/6 if 5 < t3 ≤ 15,

0 if 15 ≤ t3 ≤ 17.
(7.8)

Ud(t3) and Ue(t3), as given by Equations (7.7) and (7.8), are shown in
Figure 7.12(a). Note that there is no need to include the contribution u3(t3)
by the soft task T3 in Ud(t3) and Ue(t3) because such a contribution is the
same for both σd and σe and therefore it is not relevant when differentiating
between Ûd(t3) and Ûe(t3). After the hard deadlines analysis, the auxiliary
utility functions under consideration become:

Ûd(t3) =

{
7/2 − t3/6 if 5 < t3 ≤ 13,

−∞ if 13 < t3 ≤ 17.
(7.9)

Ûe(t3) =

{
5/2 − t3/6 if 5 < t3 ≤ 15,

0 if 15 ≤ t3 ≤ 17.
(7.10)

From the graphic shown in Figure 7.12(b) we conclude: if task T3 com-
pletes in the interval (5, 13], σd = T1T3T2T4T5 is the schedule to be followed;
if T3 completes in the interval (13, 17], σe = T1T3T4T2T5 is the schedule to
be followed. The procedure terminates at this point since there is no other

124 7. Systems with Hard and Soft Real-Time Tasks

1

2

3

5 6 7 8 9 10 11 12 14 15 16 1713

U

t3

Ud

Ue

(a) Uj(t3), 5 < t3 ≤ 7

1

2

3

5 6 7 8 9 10 11 12 14 15 16 1713 t3

Ud

Ue

U

(b) Ûj(t3), 5 < t3 ≤ 7

Figure 7.12: Uj(t3) and Ûj(t3) for the example in Figure 7.10

scheduling alternative after completing the third task of either σd or σe.

At the end, renaming σa and σd, we get the set of schedules {σ =
T1T3T4T2T5, σ

′ = T1T2T3T4T5, σ
′′ = T1T3T2T4T5} that works as follows (see

Figure 7.13): once the system is activated, it starts following the schedule σ;
when T1 is finished, its completion time t1 is read, and if t1 ≤ 3 the schedule
is switched to σ′ for the remaining tasks, else the execution order continues
according to σ; when T3 finishes, while σ is the followed schedule, its com-
pletion time t3 is compared with the time point 13: if t3 ≤ 13 the remaining
tasks are executed according to σ′′, else the schedule σ is followed.

T T1 3T4T2T5

T T T52 43TT1

T 5T2 4T1T3T

1T ;[1,3] 1T ;(3,7]

3T ;(5,13] 3T ;(13,17]

T4T2T51 3T T

T3T4T2T51T

σ :

σ :

σ :

’σ :

’’σ :

Figure 7.13: Optimal tree of schedules for the example shown in Figure 7.10

It is not difficult to show that, as required by Problem 7.4, the proce-
dure we have described finds a set of schedules and switching points such
that the quasi-static scheduler delivers the same utility as the ideal on-line

7.3. Quasi-Static Scheduling 125

scheduler defined in Subsection 7.3.2. Both the on-line scheduler and the
quasi-static scheduler would start off the system following the same schedule
(the optimal static schedule). Upon completion of every task, the on-line
scheduler computes a new schedule that maximizes the total utility when
taking into account the actual execution times for the already completed
tasks and the expected durations for the tasks yet to be executed. Our pro-
cedure analyzes off-line, beginning with the first task in the static schedule,
the sum of utilities by soft tasks as a function of the completion time of
the first task, for each one of the possible schedules starting with that task.
For computing the utility as a function of the completion time, our proce-
dure considers expected durations for the remaining tasks. In this way, the
procedure determines the schedule that maximizes the total utility at every
possible completion time. The process is likewise repeated for the second
element of the new schedules, and then the third, and so forth. Thus our
procedure solves symbolically the optimization problem for a set of comple-
tion times, one of which corresponds to the particular instance solved by the
on-line scheduler. Thus, having the tree of schedules and switching points
computed in this way, the schedule selected at run-time by the quasi-static
scheduler produces a total utility that is equal to that of the ideal on-line
scheduler, for any set of execution times.

In the previous discussion regarding the method for finding the optimal
set of schedules and switching points (that is, solving Problem 7.4), for in-
stance when T1 is the first task in the static schedule, we mentioned that we
considered each one of the potentially |T\{T1}|! schedules σi that start with
T1 in order to obtain the utilities Ui as a function of the completion time
t1 (interval-partitioning step). This can actually be done more efficiently
by considering |H ∪ S \ {T1}|! schedules σi, that is, by considering the per-
mutations of hard and soft tasks instead of the permutations of all tasks.
In this way the interval-partitioning step, for monoprocessor systems, can
be carried out in O((|H| + |S|)!) time instead of O(|T|!). The rationale is
that the best schedule, for a given permutation HS of hard and soft tasks,
is obtained when we try to set the hard and soft tasks in the schedule as
early as possible respecting the order given by HS (this is in the same spirit
as setting soft tasks the earliest according to a permutation S in order to
obtain the highest total utility when solving Problem 7.2, as discussed in
Subsection 7.2.1). The proof of this fact is presented in Section B.4 of the
Appendix B.

Algorithms 7.8 and 7.9 present the pseudocode for finding the optimal
set of schedules and switching points as required by Problem 7.4 (MS) in
the particular case of a monoprocessor implementation. First of all, it must
be noted that if there is no static schedule that guarantees satisfaction of all

126 7. Systems with Hard and Soft Real-Time Tasks

hard deadlines, the system is not schedulable and therefore the problem MS
has no solution. According to the previous discussion, when partitioning an
interval I i of possible completion times ti, we consider only permutations of
hard and soft tasks, instead of permutations of all tasks (lines 5 through 9
in Algorithm 7.9). The procedure ConstrSch(HSj , σ,A) (line 6) constructs a
schedule σj that agrees with σ up to the |A|-th position by trying to set the
hard and soft tasks not in A as early as possible, obeying the order given
by HS (its code is very similar to Algorithm 7.2 except that a permutation
HS of hard and soft tasks is used instead of S and the resulting schedule is
constructed from the prefix corresponding to the first |A| tasks of σ instead of
ε). Once the interval I i is partitioned, for each one of the obtained schedules
σk, the process is repeated (lines 11 through 14).

input: A monoprocessor hard/soft system
output: The optimal tree Ψ of schedules and switching points

1: σ := OptStaticSchMonoproc

2: Ψ := OptTreeMonoproc(σ, ∅,−,−)

Algorithm 7.8: OptTreeMonoproc

input: A schedule σ, the set A of completed tasks, the last completed task
Tl, and the interval Il of completion times for Tl

output: The optimal tree Ψ of schedules to follow after completing Tl at
tl ∈ Il

1: set σ as root of Ψ
2: Ti := task after Tl as given by σ
3: Ii := interval of possible completion times ti
4: if |H ∪ S \A| > 1 then

5: for j ← 1, 2, . . . , |H ∪ S \A|! do

6: σj := ConstrSch(HSj , σ,A)

7: compute Ûj(ti)
8: end for

9: partition the interval Ii into subintervals Ii
1, Ii

2, . . . , Ii
K s.t. σk makes

Ûk(ti) maximal in Ii
k

10: Ai := A ∪ {Ti}
11: for k ← 1, 2, . . . , K do

12: Ψk := OptTreeMonoproc(σk,Ai, Ti, Ii
k)

13: add subtree Ψk s.t. σ
Ti;I

i
k−−−→ σk

14: end for

15: end if

Algorithm 7.9: OptTreeMonoproc(σ,A, Tl ,I l)

7.3. Quasi-Static Scheduling 127

7.3.3.2 Multiple Processors

The construction of the optimal tree of schedules and switching points in
the general case of multiprocessor systems is based on the same ideas of the
single processor case: express, for the feasible schedules, the total utility as
a function of the completion time tk of a certain task Tk and then select the
schedule that yields the highest utility and guarantees the hard deadlines,
depending on tk.

There are though additional considerations to take into account when
solving Problem 7.4 for multiple processors:

• Tasks mapped on different processors may be running in parallel at a cer-
tain moment. Therefore the “next task to complete” may not necessarily
be unique (as it is the case in monoprocessor systems). For example, if
n tasks execute concurrently and their completion time intervals over-
lap, any of them may complete first. In our analysis we must consider
separately each of these n cases. For each case the interval of possible
completion times can be computed and then it can be partitioned (getting
the schedule(s) to follow after completing the task in that particular in-
terval). In other words, the tree also includes the interleaving of possible
finishing orders for concurrent tasks.

• In order to partition an interval Ik of completion times tk (obtain the
schedules that deliver the highest utility, yet guaranteeing the hard dead-
lines, at different tk) in the multiprocessor case, it is needed to consider all
schedules that satisfy the precedence constraints (all permutations of all
tasks in the worst case) whereas in the monoprocessor case, as explained
previously, it is needed to consider only feasible schedules defined by the
permutations of hard and soft tasks. That is, the interval-partitioning
step takes O((|H|+ |S|)!) time for monoprocessor systems and O((|T|)!)
time for multiprocessor systems.

• When a task Tk completes, tasks running on other processors may still be
under execution. Therefore the functions Ûi(tk) must take into account
not only the expected and worst-case durations of tasks not yet started
but also the duration of tasks started but not yet completed.

We make use of the example shown in Figure 7.9 in order to illus-
trate the process of constructing the optimal tree of schedules in the case
of multiple processors. The optimal static schedule for this example is
Ω = {T1T3T5, T2T4T6T7}. Thus T1 and T2 start executing concurrently at
time zero and their completion time intervals are [2, 10] and [1, 4] respectively.
We initially consider two situations: T1 completes before T2 (2 ≤ t1 ≤ 4);
T2 completes before T1 (1 ≤ t2 ≤ 4). For the first one, we compute Ûi(t1),
2 ≤ t1 ≤ 4, for each one of the Ωi that satisfy the precedence constraints,

128 7. Systems with Hard and Soft Real-Time Tasks

and we find that Ω′′ = {T1T5T3, T2T4T7T6} is the schedule to follow after
T1 completes (before T2) at t1 ∈ [2, 4] (the details of how this schedule is
obtained are skipped at this point). For the second situation, in a similar
manner, we find that when T2 completes (before T1) in the interval [1, 4],
Ω = {T1T3T5, T2T4T6T7} is the schedule to follow (see Figure 7.15). Details
of the interval-partitioning step are illustrated next.

Let us continue with the branch corresponding to T2 completing
first in the interval [1, 4]. Under these conditions T1 is the only
running task and its interval of possible completion times is [2, 10].
Due to the data dependencies, there are four feasible schedules Ωa =
{T1T3T5, T2T4T6T7}, Ωb = {T1T3T5, T2T4T7T6}, Ωc = {T1T5T3, T2T4T6T7},
and Ωd = {T1T5T3, T2T4T7T6}, and for each of these we compute the cor-
responding functions Ua(t1), Ub(t1), Uc(t1), and Ud(t1), 2 ≤ t1 ≤ 10, con-
sidering the expected duration for T3, T4, T5, T6, T7. For example, Ud(t1) =
u5(t1 + τ e

5) + u7(t1 + max(τ e
4 , τ e

5) + τ e
7) = u5(t1 + 3) + u7(t1 + 7). We get the

functions shown in Figure 7.14(a).

21 3

U

4 5 6 7 8

1

2

3

4

9 10 11 t1

Ua

Uc

Ud

Ub

(a) Ui(t1), 2 ≤ t1 ≤ 10

1 2 3 4 5 6 7 8

1

2

3

4

9 10 11

U

t1

Ua

Uc

Ud

Ub

(b) Ûi(t1), 2 ≤ t1 ≤ 10

Figure 7.14: Ui(t1) and Ûi(t1) for the example in Figure 7.9

Now, for Ωa, Ωb, Ωc, and Ωd, we compute the latest completion time
t1 that guarantees satisfaction of the hard deadlines when that particu-
lar schedule is followed. For example, when the execution order is Ωc =
{T1T5T3, T2T4T6T7}, in the worst case t3 = t1 + τwc

5 + τwc
3 = t1 + 8 and

7.3. Quasi-Static Scheduling 129

t6 = max(t3, t1 + τwc
4) + τwc

6 = max(t1 + 8, t1 + 5) + 7 = t1 + 15. Since the
hard deadlines for this system are d3 = 16 and d6 = 22, when Ωc is followed,
t3 ≤ 16 and t6 ≤ 22 if and only if t1 ≤ 7. A similar analysis shows the follow-
ing: Ωa guarantees the hard deadlines for any completion time t1 ∈ [2, 10];
Ωb implies potential hard deadline misses for any t1 ∈ [2, 10]; Ωd guarantees
the hard deadlines if and only if t1 ≤ 4. Thus we get auxiliary functions as
shown in Figure 7.14(b).

From the graph in Figure 7.14(b) we conclude that upon completing T1,
in order to get the highest total utility while guaranteeing hard deadlines, the
tasks not started must execute according to: Ωd = {T1T5T3, T2T4T7T6} if 2 ≤
t1 ≤ 4; Ωc = {T1T5T3, T2T4T6T7} if 4 < t1 ≤ 7; Ωa = {T1T3T5, T2T4T6T7} if
7 < t1 ≤ 10.

The process is then repeated in a similar manner for the newly computed
schedules and the possible completion times as defined by the switching
points, until the full tree is constructed. The optimal tree of schedules for
the system shown in Figure 7.9 is presented in Figure 7.15.

4T ;(9,12] 5T ;(9,11]

4T ;(9,12]4T ;(8,9]

3T ;(8,12] 4T ;(6,9] 5 ;(6,9]T

5 ;(6,11]T 4T ;(5,11]

1T ;[2,4] 1T ;(4,7] 1T ;(7,10]

1T ;[2,4] 2T ;[1,4]

T T1 3T5

T T2 4T6T7

T5T3

T T2 4T7T6

T5T3

T4T7T6

T5T3

T4T6T7

T T1 3T5

T4T6T7

T3T5

T4T6T7

T3

T4T6T7

T5T3

T6T7

T3

T6T7

T3

T7T6

T3

T6T7

T3

T7T6T4T6T7

T6T7T7T6

1T

2T

2

1T
T 2

T1

T 2

1T
T

5T1T

2T

3T5T1T

2T
5

4T
T1T

T2

5TT1

T2T4

3T5T1T
T 4T24T2T

3TT51T

4T2T
1T

5T1T

4T2T
T51T

4T2T

Figure 7.15: Optimal tree of schedules for the example shown in Figure 7.9

When all the descendant schedules of a node (schedule) in the tree are
equal to that node, there is no need to store those descendants because the
execution order will not change. For example, this is the case of the schedule
{T1T5T3, T2T4T7T6} followed after completing T1 in [2, 4]. Also, note that
for certain nodes of the tree, there is no need to store the full schedule in

130 7. Systems with Hard and Soft Real-Time Tasks

the memory of the target system. For example, the execution order of tasks
already completed (which has been taken into account during the preparation
of the set of schedules) is clearly unnecessary for the remaining tasks during
run-time. Other regularities of the tree can be exploited in order to store it
in a more compact way.

It is worthwhile to mention that if two concurrent tasks complete at
the very same time (for instance, T1 and T2 completing at t1 = t2 = 3
for the system whose optimal tree is the one in Figure 7.15) the selection
by the quasi-static scheduler leads to the same result. In Figure 7.15, if
t1 = t2 = 3 there are two options: a) the branch T1; [2, 4] is taken and
thereafter no schedule change occurs; b) the branch T2; [1, 4] is taken first
followed immediately by the branch T1; [2, 4]. In both cases the selected
schedule is {T1T5T3, T2T4T7T6}.

The pseudocode for finding the optimal set of schedules and switching
points in the case of multiprocessor systems is given by Algorithms 7.10 and
7.11.

input: A multiprocessor hard/soft system (see Problem 7.4)
output: The optimal tree Ψ of schedules and switching points

1: Ω := OptStaticSchMultiproc

2: Ψ := OptTreeMultiproc(Ω, ∅,−,−)

Algorithm 7.10: OptTreeMultiproc

The set of schedules is stored in the dedicated shared memory of the
system as an ordered tree. Upon completing a task, the cost of selecting at
run-time, by the quasi-static scheduler, the execution order for the remaining
tasks is O(log n) where n is the maximum number of children that a node
has in the tree of schedules. Such cost can be included in our analysis by
augmenting accordingly the worst-case duration of tasks.

7.3.4 Heuristics and Experimental Evaluation

When computing the optimal tree of schedules and switching points, we par-
tition the interval of possible completion times t for a task T into subintervals
which define the switching points and schedules to follow after executing T .
As the interval-partitioning step requires in the worst case O((|H| + |S|)!)
time for monoprocessor systems and O(|T|!) time in general, the multiple-
schedules problem (Problem 7.4) is intractable. Moreover, the inherent na-
ture of the problem (finding a tree of schedules) makes it so that it requires
exponential time and memory, even when using a polynomial-time heuris-
tic in the interval-partitioning step. Additionally, even if we can afford to
compute the optimal tree of schedules (as this is done off-line), the size of

7.3. Quasi-Static Scheduling 131

input: A schedule Ω, the set A of already completed tasks, the last com-
pleted task Tl, and the interval Il of completion times for Tl

output: The optimal tree Ψ of schedules to follow after completing Tl at
tl ∈ Il

1: set Ω as root of Ψ
2: compute the set C of concurrent tasks
3: for i← 1, 2, . . . , |C| do

4: if Ti may complete before the other Tc ∈ C then

5: compute the interval Ii when Ti may complete first
6: for j ← 1, 2, . . . , |T \A \C|! do

7: if Ωj is valid then

8: compute Ûj(ti)
9: end if

10: end for

11: partition Ii into subintervals Ii
1, Ii

2, . . . , Ii
K s.t. Ωk makes Ûk(ti)

maximal in Ii
k

12: Ai := A ∪ {Ti}
13: for k ← 1, 2, . . . , K do

14: Ψk := OptTreeMultiproc(Ωk,Ai, Ti, Ii
k)

15: add subtree Ψk s.t. Ω
Ti;I

i
k−−−→ Ωk

16: end for

17: end if

18: end for

Algorithm 7.11: OptTreeMultiproc(Ω,A, Tl,I l)

the tree might still be too large to fit in the available memory resources of
the target system. Therefore a suboptimal set of schedules and switching
points must be chosen such that the memory constraints imposed by the
target system are satisfied. Solutions aiming at tackling different complex-
ity dimensions of the problem, namely the interval-partitioning step and the
exponential growth of the tree size, are addressed in this subsection. We
discuss the general case of multiprocessor systems, nonetheless the results
of the experimental evaluation are shown separately for the single-processor
and multiple-processors cases.

7.3.4.1 Interval Partitioning

When partitioning an interval I i of possible completion times ti, the opti-
mal algorithm explores all the permutations of tasks not yet started that
define feasible schedules Ωj and accordingly computes Ûj(ti). In order to
avoid computing Ûj(ti) for all such permutations, we propose a heuristic,
called Lim, as given by Algorithm 7.12. This heuristic considers only two
schedules ΩL and ΩU (line 7 in Algorithm 7.12), computes ÛL(ti) and ÛU(ti)

132 7. Systems with Hard and Soft Real-Time Tasks

(line 8), and partitions I i based on these two functions ÛL(ti) and ÛU(ti)
(line 9). The schedules ΩL and ΩU correspond, respectively, to the solutions
to Problem 7.3 for the lower and upper limits tL and tU of the interval I i.
For other completion times ti ∈ I i different from tL, ΩL is rather optimistic
but it might happen that it does not guarantee hard deadlines. On the other
hand, ΩU can be pessimistic but does guarantee hard deadlines for all ti ∈ I i.
Thus, by combining the optimism of ΩL with the guarantees provided by ΩU,
good quality solutions can be obtained.

input: A schedule Ω, the set A of already completed tasks, the last com-
pleted task Tl, and the interval Il of completion times for Tl

output: The tree Ψ of schedules to follow after completing Tl at tl ∈ Il

1: set Ω as root of Ψ
2: compute the set C of concurrent tasks
3: for i← 1, 2, . . . , |C| do

4: if Ti may complete before the other Tc ∈ C then

5: compute the interval Ii when Ti may complete first
6: tL := lower limit of Ii; tU := upper limit of Ii

7: ΩL := solution Prob. 7.3 for tL; ΩU := solution Prob. 7.3 for tU
8: compute ÛL(ti) and ÛU(ti)
9: partition Ii into subintervals Ii

1, Ii
2, . . . , Ii

K s.t. Ωk makes Ûk(ti)
maximal in Ii

k

10: Ai := A ∪ {Ti}
11: for k ← 1, 2, . . . , K do

12: Ψk := Lim(Ωk,Ai, Ti, Ii
k)

13: add subtree Ψk s.t. Ω
Ti;I

i
k−−−→ Ωk

14: end for

15: end if

16: end for

Algorithm 7.12: Lim(Ω,A, Tl,I l)

For the example shown in Figure 7.9 (discussed in Subsections 7.3.1
and 7.3.3.2), when partitioning the interval I1 = [2, 10] of possible com-
pletion times of T1 (case when T1 completes after T2), the heuristic solves
Problem 7.3 for tL = 2 and tU = 10. The respective solutions are
ΩL = {T1T5T3, T2T4T7T6} and ΩU = {T1T3T5, T2T4T6T7}. Then Lim com-
putes ÛL(t1) and ÛU(t1) (which correspond, respectively, to Ûa(t1) and Ûd(t1)
in Figure 7.14(b)) and partitions I1 using only these two functions. In this
step, the solution given by Lim is, after T1: follow ΩL if 2 ≤ t1 ≤ 4; follow ΩU

if 4 < t1 ≤ 10. The reader can note that in this case Lim gives a suboptimal
solution (see Figure 7.14(b) and the optimal tree shown in Figure 7.15).

Along with the proposed heuristic we must solve Problem 7.3 (line 7
in Algorithm 7.12), which itself is intractable. We have proposed in Sec-

7.3. Quasi-Static Scheduling 133

tion 7.2 an exact algorithm and a couple of heuristics for Problem 7.1 that
can straightforwardly be applied to Problem 7.3. For the experimental eval-
uation of Lim we have used the exact algorithm (Subsection 7.2.1.1 for single
processor and Subsection 7.2.2.1 for multiple processors) and two heuristics
(MTU and MSU in Subsection 7.2.1.2 for single processor, and TU and SU in
Subsection 7.2.2.2 for multiple processors) when solving Problem 7.3. Hence
we have three heuristics LimA, LimB , and LimC for the multiple-schedules
problem. The first uses an optimal algorithm for solving Problem 7.3, the
second uses TU (MTU), and the third uses SU (MSU).

Observe that the heuristics presented in this Subsection 7.3.4.1 address
only the interval-partitioning step and, in isolation, cannot handle the large
complexity of the multiple-schedules problem. These heuristics are to be
used in conjunction with the methods discussed in Subsection 7.3.4.2.

In order to evaluate the quality of the heuristics discussed above, we
have generated a large number of synthetic examples. In the case of a single
processor we considered systems with 50 tasks among which from 3 up to
25 hard and soft tasks. We generated 100 graphs for each graph dimension.
The results are shown in Figure 7.16. In the case of multiple processors
we considered that, out of the n tasks of the system, (n−2)/2 are soft and
(n−2)/2 are hard. The tasks are mapped on architectures consisting of
between 2 and 4 processors. We also generated 100 synthetic systems for
each graph dimension. The results are shown in Figure 7.17. Observe that
for a single processor the plots are a function of the number of hard and
soft tasks (the total number of tasks is constantly 50) whereas for multiple
processors the plots are a function of the total number of tasks. In the
former case we can evaluate larger systems because the algorithms tailored
for monoprocessor systems are more efficient (for example, the optimal static
schedule can be obtained in O(|S|!) time for the monoprocessor case and in
O(|T|!) time for the multiprocessor case).

Figures 7.16(a) and 7.17(a) show the average size of the tree of schedules,
for the optimal algorithm as well as for the heuristics. Note the exponen-
tial growth even in the heuristic cases which is inherent to the problem of
computing a tree of schedules.

The average execution time of the algorithms is shown in Figures 7.16(b)
and 7.17(b). The rapid growth rate of execution time for the optimal algo-
rithm makes it feasible to obtain the optimal tree only in the case of small
systems. Observe also that LimA takes much longer time than LimB and
LimC , even though they all yield trees with a similar number of nodes. This
is due to the fact that, along the construction of the tree, LimA solves Prob-
lem 7.3 (which is itself intractable) using an exact algorithm while LimB and
LimC make use of polynomial-time heuristics for solving Problem 7.3 during

134 7. Systems with Hard and Soft Real-Time Tasks

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

T
re

e
 N

o
d

e
s

Number of Hard and Soft Tasks

Optimal
LimA
LimB
LimC

(a) Tree size

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25

A
v
e
ra

g
e
 E

x
e
cu

ti
o
n

 T
im

e
 [

s]

Number of Hard and Soft Tasks

Optimal
LimA
LimB
LimC

(b) Execution time

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 2 4 6 8 10 12

A
v
e
ra

g
e
 T

o
ta

l
U

ti
li

ty
 (

N
o
rm

a
li

z
e
d

)

Number of Hard and Soft Tasks

Optimal
LimA
LimB
LimC
StaticSch

(c) Normalized total utility

Figure 7.16: Evaluation of algorithms for computing a tree of schedules
(single processor)

the interval-partitioning step. However, due to the exponential growth of
the tree size, even LimB and LimC require exponential time. It is interest-
ing to note that, for multiprocessor systems (Figure 7.17(b)), the execution
times of LimA are only slightly smaller than the ones for the optimal al-
gorithm, which is not the case for monoprocessor systems (Figure 7.16(b))

7.3. Quasi-Static Scheduling 135

 1

 10

 100

 1000

 10000

 100000

 1e+06

 4 6 8 10 12 14 16 18 20 22

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

T
re

e
 N

o
d

e
s

Number of Tasks

Optimal
LimA
LimB
LimC

(a) Tree size

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 4 6 8 10 12 14 16 18 20 22

A
v
e
ra

g
e
 E

x
e
cu

ti
o
n

 T
im

e
 [

s]

Number of Tasks

Optimal
LimA
LimB
LimC

(b) Execution time

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 4 6 8 10 12 14

A
v
e
ra

g
e
 T

o
ta

l
U

ti
li

ty
 (

N
o
rm

a
li

z
e
d

)

Number of Tasks

Optimal
LimA
LimB
LimC
StaticSch

(c) Normalized total utility

Figure 7.17: Evaluation of algorithms for computing a tree of schedules
(multiple processors)

where a significant difference in execution time between LimA and the op-
timal algorithm is noted. This is explained by the fact that, for multipro-
cessor systems, the interval-partitioning step in the optimal algorithm takes
O(|T|!) time and the heuristic LimA, in the interval-partitioning step, solves
exactly a problem that requires also O(|T|!) time. On the other hand, for

136 7. Systems with Hard and Soft Real-Time Tasks

monoprocessor systems, the interval-partitioning step in the optimal algo-
rithm requires O((|H|+ |S|)!) time while the problem solved exactly by the
heuristic LimA, during the interval-partitioning step takes O(|S|!) time.

We evaluated the quality of the trees generated by the different algo-
rithms with respect to the optimal tree. For each one of the randomly
generated examples, we profiled the system for a large number of cases. For
each case, we obtained the total utility yielded by a given tree of schedules
and normalized it with respect to the one produced by the optimal tree:
‖Ualg‖ = Ualg/Uopt. The average normalized utility, as given by trees com-
puted using different algorithms, is shown in Figures 7.16(c) and 7.17(c).
We have also plotted the case of a static solution where only one schedule
is used regardless of the actual execution times (StaticSch), which is the
optimal solution for the static scheduling problem. The plots show LimA

as the best of the heuristics discussed above, in terms of the total utility
yielded by the trees it produces. LimB produces still good results, not very
far from the optimum, at a significantly lower computational cost. Observe
that having one single static schedule leads to a considerable quality loss,
even if the static solution is optimal (in the sense as being the best static
solution) while the quasi-static is suboptimal (produced by a heuristic).

7.3.4.2 Tree Size Restriction

Even if we could afford to fully compute the optimal tree of schedules (which
is not the case for large examples due to the time and memory constraints
at design-time), the tree might be too large to fit in the available memory
of the target system. Hence we must drop some nodes of the tree at the ex-
pense of the solution quality. The heuristics presented in Subsection 7.3.4.1
reduce considerably both the time and memory needed to construct a tree
as compared to the optimal algorithm, but still require exponential time and
memory. In this subsection, on top of the above heuristics, we propose meth-
ods that construct a tree considering its size limit (imposed by the designer)
in such a way that we can handle both the time and memory complexity.

Given a limit for the tree size, only a certain number of schedules can be
generated. Thus the question is how to generate a tree of at most M nodes
which still delivers a good quality. We explore several strategies which fall
under the umbrella of the generic algorithm Restr (Algorithm 7.13). The
schedules Ω1,Ω2, . . . ,ΩK to follow after Ω correspond to those obtained in
the interval-partitioning step as described in Subsections 7.3.3 and 7.3.4.1.
The difference among the approaches discussed in this subsection lies in the
order in which the available memory budget is assigned to trees derived from
the nodes Ωk (line 7 in Algorithm 7.13): Sort(Ω1,Ω2, . . . ,ΩK) gives this order
according to different criteria.

7.3. Quasi-Static Scheduling 137

input: A schedule Ω and a positive integer M
output: A tree Ψ limited to M nodes whose root is Ω

1: set Ω as root of Ψ
2: m := M − 1
3: find the schedules Ω1, Ω2, . . . , ΩK to follow after Ω (interval-partitioning

step)
4: if 1 < K ≤ m then

5: add Ω1, Ω2, . . . , ΩK as children of Ω
6: m := m−K
7: Sort(Ω1, Ω2, . . . , ΩK)
8: for k ← 1, 2, . . . , K do

9: Ψk :=Restr(Ωk, m + 1)
10: nk := size of Ψk

11: m := m− nk + 1
12: end for

13: end if

Algorithm 7.13: Restr(Ω,M)

Initially we have studied two simple heuristics for constructing a tree,
given a maximum size M . The first one, called Diff, gives priority to subtrees
derived from nodes whose schedules differ from their parents. We use a
similarity metric, based on the concept of Hamming distance [Lee58], in order
to determine how similar two schedules are. For instance, while constructing
a tree with a size limit M = 8 for the system whose optimal tree is the
one given in Figure 7.18(a), we find out that, after the initial schedule Ωa

(the root of the tree), either Ωb must be followed or the same schedule Ωa

continues as the execution order for the remaining tasks, depending on the
completion time of a certain task. Therefore we add Ωb and Ωa to the
tree. Then, when using Diff, the size budget is assigned first to the subtrees
derived from Ωb (which, as opposed to Ωa, differs from its parent) and the
process continues until we obtain the tree shown in Figure 7.18(b). The
second approach, Eq, gives priority to nodes that are equal or more similar
to their parents. The tree obtained when using Eq and having a size limit
M = 8 is shown in Figure 7.18(c). Experimental data (see Figures 7.19(a)
and 7.20(a)) shows that in average Eq outperforms Diff. The rationale of
the superiority of Eq is that, since no change has yet been operated on the
previous schedule, it is likely that several possible alternatives are potentially
detected in the future. Hence, it pays to explore the possible changes of
schedules derived from such branches. On the contrary, if a different schedule
has been detected, it can be assumed that this one is relatively well adapted
to the new situation and possible future changes are not leading to dramatic
improvements.

138 7. Systems with Hard and Soft Real-Time Tasks

Ωf Ωd

Ωa

b

ΩaΩeΩd

Ωa

ΩbΩc

Ω

(a) Complete tree

Ωb

Ωa

c ΩaΩeΩd

Ωa

ΩbΩ

(b) Using Diff (max. size M = 8)

Ωd

Ωa

f

ΩaΩeΩd

ΩaΩb

Ω

(c) Using Eq (max. size M = 8)

Figure 7.18: Trees of schedules

A third, more elaborate, approach brings into the the picture the prob-
ability that a certain branch of the tree of schedules is selected during run-
time. Knowing the execution time probability distribution of each individual
task, we may determine, for a particular execution order, the probability that
a certain task completes in a given interval, in particular the intervals de-
fined by the switching points. In this way we can compute the probability for
each branch of the tree and exploit this information when constructing the
tree of schedules. The procedure Prob gives higher precedence (in terms of
size budget) to those subtrees derived from nodes that actually have higher
probability of being followed at run-time.

We evaluated the proposed approaches, both for single and multiple pro-
cessors, by randomly generating 100 systems with a fixed number of tasks
and computing for each one of them the complete tree of schedules. Then we
constructed the trees for the same systems using the algorithms presented in
this subsection, for different size limits. For the experimental evaluation in
this section we considered small graphs in order to cope with complete trees:
note, for example, that the complete trees for multiprocessor systems with
16 tasks have, in average, around 10.000 nodes when using LimB. For each of
the examples we profiled the system for a large number of execution times,

7.3. Quasi-Static Scheduling 139

and for each of these we obtained the total utility yielded by a restricted
tree and normalized it with respect to the utility given by the complete tree
(non-restricted): ‖Urestr‖ = Urestr/Unon−restr . Figures 7.19(a) and 7.20(a)
show that Prob is the algorithm that gives the best results in average.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1000 2000 3000 4000 5000 6000 7000 8000

A
v
e
ra

g
e
 T

o
ta

l
U

ti
li

ty
 (

N
o
rm

a
li

z
e
d

)

Max. Tree Size [nodes]

Prob
Eq
Diff

(a) Diff, Eq, and Prob

 0.8

 0.85

 0.9

 0.95

 1

 1000 2000 3000 4000

A
v
e
ra

g
e
 T

o
ta

l
U

ti
li

ty
 (

N
o
rm

a
li

z
e
d

)

Max. Tree Size [nodes]

w=0 (Eq)

w=0.5

w=0.7

w=0.9

w=1 (Prob)

(b) Weighted approach Prob/Eq

Figure 7.19: Evaluation of the tree size restriction algorithms (single proces-
sor)

We investigated further the combination of Prob and Eq through a
weighted function that assigns values to the tree nodes. Such values cor-
respond to the priority given to nodes while constructing the tree. Each
child of a certain node in the tree is assigned a value given by wp + (1−w)s,
where p is the probability of that node (schedule) being selected among its
siblings and s is a factor that captures how similar that node and its parent
are. The particular cases w = 0 and w = 1 correspond to Eq and Prob

respectively. The results of the weighted approach for different values of w
are illustrated in Figures 7.19(b) and 7.20(b). It is interesting to note that
we can get even better results than Prob for certain weights, with w = 0.9
being the one that performs the best. For example, in the case of multiple
processors (Figure 7.20(b)), trees limited to 200 nodes (2% of the average

140 7. Systems with Hard and Soft Real-Time Tasks

size of the complete tree) yield a total utility that is just 3% off from the
one produced by the complete tree. Thus, good quality results and short
execution times show that the proposed techniques can be applied to larger
systems.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1 200 400 600 800 1000

A
v
e
ra

g
e
 T

o
ta

l
U

ti
li

ty
 (

N
o
rm

a
li

z
e
d

)

Max. Tree Size [nodes]

Prob
Eq
Diff

(a) Diff, Eq, and Prob

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 T

o
ta

l
U

ti
li

ty
 (

N
o
rm

a
li

z
e
d

)

Max. Tree Size [nodes]

w=0 (Eq)

w=0.5

w=0.7

w=0.9

w=1 (Prob)

(b) Weighted approach Prob/Eq

Figure 7.20: Evaluation of the tree size restriction algorithms (multiple pro-
cessors)

7.3.5 Realistic Application: Cruise
Control with Collision Avoidance

Modern vehicles can be equipped with sophisticated electronic aids aiming at
assisting the driver, increasing efficiency, and enhancing on-board comfort.
One such system is the Cruise Control with Collision Avoidance (CCCA)
[GBdSMH01] which assists the driver in maintaining the speed and keeping
safe distances to other vehicles. The CCCA allows the driver to set a par-
ticular speed. The system maintains that speed until the driver changes the
reference speed, presses the break pedal, switches the system off, or the ve-
hicle gets too close to another vehicle or an obstacle. The vehicle may travel

7.3. Quasi-Static Scheduling 141

faster than the set speed by overriding the control using the accelerator, but
once it is released the cruise control will stabilize the speed to the set level.
When another vehicle is detected in the same lane in front of the car, the
CCCA will adjust the speed by applying limited braking to maintain a given
distance to the vehicle ahead.

The CCCA is composed of four main subsystems, namely Braking Con-
trol (BC), Engine Control (EC), Collision Avoidance (CA), and Display
Control (DC), each one of them having its own period: TBC = 100 ms,
TEC = 250 ms, TCA = 125 ms, and TDC = 500 ms. We have modeled
each subsystem as a task graph. Each subsystem has one hard deadline that
equals its period. We identified a number of soft tasks in the EC and DC
subsystems. The soft tasks in the engine control part are related to the ad-
justment of the throttle valve for improving the fuel consumption efficiency.
Thus their utility functions capture how this efficiency varies as a function
of the completion time of the activities that calculate the best fuel injection
rate for the actual conditions and, accordingly, control the throttle. For the
display control part, the utility of soft tasks is a measure of the time-accuracy
of the displayed data, that is, how soon the information on the dashboard is
updated.

We have considered an architecture with two processors that communi-
cate through a bus, and assumed that the dedicated memory for storing the
schedules has a capacity of 16 kB. We generated several instances of the task
graphs of the four subsystems mentioned above in order to construct a graph
with a hyperperiod T = 500 ms. The resulting graph, including processing
as well as communication activities, contains 126 tasks, out of which 6 are
soft and 12 are hard.

Assuming that we need 25 Bytes for storing one schedule, we have an
upper limit of 640 nodes in the tree. We have constructed the tree of sched-
ules using the approaches discussed in Subsection 7.3.4.2 combined with one
of the heuristics presented in Subsection 7.3.4.1 (LimB).

Due to the size of the system, it is infeasible to fully construct the com-
plete tree of schedules. Therefore, we have instead compared the tree limited
to 640 nodes with the static, off-line solution of a single schedule. The re-
sults are presented in Table 7.2. For the CCCA example, we can achieve
with our quasi-static approach a gain of above 40% as compared to a single
static schedule. For this example, the weighted approach does not produce
further improvements, which is explained by the fact that Eq and Prob give
very similar results.

The construction of the tree of schedules, as explained above, for the
example discussed in this subsection takes around 70 minutes. Although
this time is considerable, the tree is computed only once and this is done

142 7. Systems with Hard and Soft Real-Time Tasks

Average Gain with respect
Total Utility to SingleSch

SingleSch 6.51 —
Diff 7.51 11.42%
Eq 9.54 41.54%

Prob 9.6 42.43%

Table 7.2: Quality of different approaches for the CCCA

off-line.
The CCCA example is a realistic system that illustrates the advantages of

exploiting the variations in actual execution times. Our quasi-static solution
is able to exploit, with very on-line overhead, this dynamic slack to improve
the quality of results (the total utility). By using the heuristics proposed in
this chapter, in order to prepare a number of schedules and switching points,
important improvements in the quality of results can be achieved.

Chapter 8

Imprecise-Computation
Systems with Energy

Considerations

In Chapter 7 we studied real-time systems that include both hard and soft
tasks and for which the quality of results, expressed in terms of utilities,
depends on the completion time of soft tasks.

In this chapter we address real-time systems for which the soft component
comes from the fact that tasks have optional parts. In this case, the quality
of results, in the form of rewards, depends on the amount of computation
alloted to tasks. Also, in contrast to Chapter 7, the dimension of energy
consumption is taken into account in this chapter.

There exist some application areas, such as image processing and multi-
media, in which approximate but timely results are acceptable. For example,
fuzzy images in time are often preferable to perfect images too late. In these
cases it is thus possible to trade off precision for timeliness.

Also, power and energy consumption have become very important design
considerations for embedded computer systems, in particular for battery-
powered devices with stringent energy constraints. The availability of vast
computational capabilities at low cost has promoted the use of embedded
systems in a wide variety of application areas where power and energy con-
sumption play an important role.

An effective way to reduce the energy consumption in CMOS circuits is
to decrease the supply voltage, which however implies a lower operational
frequency. The trade-off between energy consumption and performance has
extensively been studied under the framework of Dynamic Voltage Scaling
(DVS), as pointed out in Section 6.2.

In this chapter we focus on real-time systems for which it is possible to

144 8. Imprecise-Computation Systems with Energy Considerations

trade off precision for timeliness and with energy consumption considera-
tions. We study such systems under the Imprecise Computation (IC) model
[SLC89], [LSL+94], where tasks are composed of mandatory and optional
parts and there are functions that assign reward to tasks depending on the
amount of computation allotted to their optional parts.

We discuss in this chapter two different approaches in which energy, re-
ward, and deadlines are considered under a unified framework: the first is
maximizing rewards subject to energy constraints (Section 8.2) and the sec-
ond one is minimizing the energy consumption subject to reward constraints
(Section 8.3). In both cases time constraints in the form of deadlines are
considered. The goal is to find the voltages at which each task runs and the
number of optional cycles, such that the objective function is optimized and
the constraints are satisfied. The two approaches introduced in this chapter
exploit the dynamic slack, which is caused by tasks executing less number
of cycles than their worst case.

In this chapter, Static V/O assignment refers to finding at design-time
one Voltage/Optional-cycles (V/O) assignment. Dynamic V/O assignment
refers to finding at run-time, every time a task completes, a new assignment
of voltages and optional cycles for those tasks not yet started, but considering
the actual execution times by tasks already completed. In a reasoning similar
to the one discussed in the introduction of Chapter 7 but applied to the
approaches addressed in this chapter, static V/O assignment causes no on-
line overhead but is rather pessimistic because actual execution times are
typically far off from worst-case values. Dynamic V/O assignment exploits
information known only after tasks complete and accordingly computes new
assignments, but the energy and time overhead for on-line computations
is high, even if polynomial-time algorithms can be used. We propose a
quasi-static approach that is able to exploit, with low on-line overhead, the
dynamic slack: first, at design-time a set of V/O assignments are computed
and stored (off-line phase); second, the selection among the precomputed
assignments is left for run-time (on-line phase).

8.1 Preliminaries

8.1.1 Task and Architectural Models

In this chapter we consider that the functionality of the system is captured by
a directed acyclic graph G = (T,E) where the nodes T = {T1, T2, . . . , Tn}
correspond to the computational tasks and the edges E indicate the data
dependencies between tasks. For the sake of convenience in the notation,
we assume that tasks are named according to a particular execution order

8.1. Preliminaries 145

(as explained later in this subsection) that respects the data dependencies.
That is, task Ti+1 executes immediately after Ti, 1 ≤ i < n.

Each task Ti consists of a mandatory part and an optional part, charac-
terized in terms of the number of CPU cycles Mi and Oi respectively. The
actual number of mandatory cycles Mi of Ti at a certain activation of the
system is unknown beforehand but lies in the interval bounded by the best-
case number of cycles Mbc

i and the worst-case number of cycles Mwc
i , that

is, Mbc
i ≤ Mi ≤ Mwc

i . The expected number of mandatory cycles of a task
Ti is denoted M e

i . The optional part of a task executes immediately after its
corresponding mandatory part completes. For each Ti, there is a deadline di

by which both mandatory and optional parts of Ti must be completed.
For each task Ti, there is a reward function Ri(Oi) that takes as ar-

gument the number of optional cycles Oi assigned to Ti; we assume that
Ri(0) = 0. We consider non-decreasing concave1 reward functions as they
capture the particularities of most real-life applications [RMM03]. Also, as
detailed in Subsection 8.2.2, the concavity of reward functions is exploited
for obtaining solutions to particular optimization problems in polynomial
time. We assume also there is a value Omax

i , for each Ti, after which no
extra reward is achieved, that is, Ri(Oi) = Rmax

i if Oi ≥ Omax
i . The total

reward is denoted R =
∑

Ti∈T
Ri(Oi) (sum of individual reward contribu-

tions). The reward produced up to the completion of task Ti is denoted
RP i (RP i =

∑i
j=1 Rj(Oj)). In Section 8.3 we consider a reward constraint,

denoted Rmin, that gives the lower bound of the total reward that must be
produced by the system.

We consider that tasks are non-preemptable and have equal release time
(ri = 0, 1 ≤ i ≤ n). All tasks are mapped onto a single processor and
executed in a fixed order, determined off-line according to an EDF (Earliest
Deadline First) policy. For non-preemptable tasks with equal release time
and running on a single processor, EDF gives the optimal execution order
(see Section B.5). Ti denotes the i-th task in this sequence.

The target processor supports voltage scaling and we assume that the
voltage levels can be varied in a continuous way in the interval [V min, V max].
If only a discrete set of voltages are supported by the processor, our approach
can easily be adapted by using well-known techniques for determining the
discrete voltage levels that replace the calculated continuous one [OYI01].

In our quasi-static approach we compute a number of V/O (Voltage/Op-
tional-cycles) assignments. The set of precomputed V/O assignments is
stored in a dedicated memory in the form of lookup tables, one table LUTi

for each task Ti. The maximum number of V/O assignments that can be
stored in memory is a parameter fixed by the designer and is denoted Nmax.

1A function f(x) is concave iff f ′′(x) ≤ 0, that is, the second derivative is negative.

146 8. Imprecise-Computation Systems with Energy Considerations

8.1.2 Energy and Delay Models

The power consumption in CMOS circuits is the sum of dynamic, static
(leakage), and short-circuit power. The short-circuit component is negligi-
ble. The dynamic power is at the moment the dominating component but
the leakage power is becoming an important factor in the overall power dissi-
pation. For the sake of simplicity and clarity in the presentation of our ideas,
we consider only the dynamic energy consumption. Nonetheless, the leakage
energy and Adaptive Body Biasing (ABB) techniques [ASE+04], [MFMB02]
can easily be incorporated into the formulation without changing our general
approach. The amount of dynamic energy consumed by task Ti is given by
the following expression [MFMB02]:

Ei = CiV
2
i (Mi + Oi) (8.1)

where Ci is the effective switched capacitance, Vi is the supply voltage, and
Mi + Oi is the total number of cycles executed by the task. The energy
overhead caused by switching from Vi to Vj is as follows [MFMB02]:

E∆V
i,j = Cr(Vi − Vj)

2 (8.2)
where Cr is the capacitance of the power rail. We also consider, for the
quasi-static solution, the energy overhead Esel

i originated by looking up and
selecting one of the precomputed V/O assignments. The way we store the
precomputed assignments makes the lookup and selection process take O(1)
time. Therefore Esel

i is a constant value. Also, this value is the same for all
tasks (Esel

i = Esel , for 1 ≤ i ≤ n). For consistency reasons we keep the index
i in the notation of the selection overhead Esel

i . The energy overhead caused

by on-line operations is denoted Edyn
i . In a quasi-static solution the on-line

overhead is just the selection overhead (Edyn
i = Esel

i).

The total energy consumed up to the completion of task Ti (including
the energy by the tasks themselves as well as overheads) is denoted EC i. In
Section 8.2 we consider a given energy budget, denoted Emax, that imposes
a constraint on the total amount of energy that can be consumed by the
system.

The execution time of a task Ti executing Mi+Oi cycles at supply voltage
Vi is [MFMB02]:

τi = k
Vi

(Vi − Vth)α
(Mi + Oi) (8.3)

where k is a constant dependent on the process technology, α is the satura-
tion velocity index (also technology dependent, typically 1.4 ≤ α ≤ 2), and
Vth is the threshold voltage. The time overhead, when switching from Vi to
Vj, is given by the following expression [ASE+04]:

δ∆V
i,j = p|Vi − Vj | (8.4)

where p is a constant. The time overhead for looking up and selecting

8.2. Maximizing Rewards subject to Energy Constraints 147

one V/O assignment in the quasi-static approach is denoted δsel
i and, as

explained above, is constant and is the same value for all tasks.

The starting and completion times of a task Ti are denoted si and ti
respectively, with si + δi + τi = ti where δi captures the different time over-
heads. δi = δ∆V

i−1,i + δdyn
i where δdyn

i is the on-line overhead. Note that in
a quasi-static solution this on-line overhead is just the lookup and selection
time, that is, δdyn

i = δsel
i .

8.1.3 Mathematical Programming

Mathematical programming is the generic term used to describe methods
for solving problems in which an optimal value is sought subject to spec-
ified constraints [Vav91]. The general form of a mathematical program-
ming problem is “find the values x1, . . . , xn that minimize the objective
function f(x1, . . . , xn) subject to the constraints gi(x1, . . . , xn) ≤ bi and
lj ≤ xj ≤ uj”. An optimization problem with linear objective function f as
well as linear constraint functions gi is called linear programming (LP) prob-
lem. If at least one gi or f is non-linear, it is called non-linear programming
(NLP) problem.

A function f(x1, . . . , xn) is convex if its Hessian (second derivative ma-
trix) is positive, that is, ∇2f ≥ 0. When f and gi are convex functions, the
problem is said to be convex. It should be mentioned that LP and convex
NLP problems can be solved using polynomial-time methods [NN94] and
tools for solving these types of problems are available (for instance, MOSEK
[MOS]).

8.2 Maximizing Rewards

subject to Energy Constraints

In this section we address the problem of maximizing rewards for real-time
systems with energy constraints, in the frame of the Imprecise Computation
model.

We present first an example that illustrates the advantages of exploiting
the dynamic slack caused by variations in the actual number of execution
cycles.

8.2.1 Motivational Example

Let us consider the motivational example shown in Figure 8.1. The non-
decreasing reward functions are of the form Ri(Oi) = KiOi, Oi ≤ Omax

i .
The energy constraint is Emax = 1 mJ and the tasks run, according to a

148 8. Imprecise-Computation Systems with Energy Considerations

schedule fixed off-line in conformity to an EDF policy, on a processor that
permits continuous voltage scaling in the range 0.6-1.8 V. For clarity reasons,
in this example we assume that transition overheads are zero.

1 T2T

T3
i
max

O

i
max

R

Ki

Ri

Oi

︷ ︸︸ ︷
Task Mbc

i Mwc
i Ci [nF] di [µs] Ki Rmax

i

T1 20000 100000 0.7 250 0.00014 7
T2 70000 160000 1.2 600 0.0002 16
T3 100000 180000 0.9 1000 0.0001 6

Figure 8.1: Motivational example

The optimal static V/O assignment for this example is given by Table 8.1.
It produces a total reward Rst = 3.99. The assignment gives, for each task
Ti, the voltage Vi at which Ti must run and the number of optional cycles
Oi that it must execute in order to obtain the maximum total reward, while
guaranteeing that deadlines are met and the energy constraint is satisfied.

Task Vi [V] Oi

T1 1.654 35
T2 1.450 19925
T3 1.480 11

Table 8.1: Optimal static V/O assignment

The V/O assignment given by Table 8.1 is optimal in the static sense.
It is the best possible that can be obtained off-line without knowing the
actual number of cycles executed by each task. However, the actual number
of cycles, which are not known in advance, are typically far off from the
worst-case values used to compute such a static assignment. This point is
illustrated by the following situation. The first task starts executing at V1 =
1.654 V, as required by the static assignment. Assume that T1 executes M1 =
60000 (instead of Mwc

1 = 100000) mandatory cycles and then its assigned
O1 = 35 optional cycles. At this point, knowing that T1 has completed
at t1 = τ1 = 111.73 µs and that the consumed energy is EC 1 = E1 =
114.97 µJ, a new V/O assignment can accordingly be computed for the
remaining tasks aiming at obtaining the maximum total reward for the new
conditions. We consider, for the moment, the ideal case in which such an on-
line computation takes zero time and energy. Observe that, for computing

8.2. Maximizing Rewards subject to Energy Constraints 149

the new assignments, the worst case for tasks not yet completed has to be
assumed as their actual number of executed cycles is not known in advance.
The new assignment gives V2 = 1.446 V and O2 = 51396. Then T2 runs at
V2 = 1.446 V and let us assume that it executes M2 = 100000 (instead of
Mwc

2 = 160000) mandatory cycles and then its newly assigned O2 = 51396
optional cycles. At this point, the completion time is t2 = τ1 + τ2 = 461.35
µs and the energy so far consumed is EC 2 = E1 + E2 = 494.83 µJ. Again,
a new assignment can be computed taking into account the information
about completion time and consumed energy. This new assignment gives
V3 = 1.472 V and O3 = 60000.

For such a situation, in which M1 = 60000, M2 = 100000, M3 = 150000,
the V/O assignment computed dynamically (considering δdyn = 0 and
Edyn = 0) is summarized in Table 8.2(a). This assignment delivers a to-

tal reward Rdynideal

= 16.28. In reality, however, the on-line overhead caused
by computing new assignments is not negligible. When considering time
and energy overheads, using for example δdyn = 65 µs and Edyn = 55 µJ,
the V/O assignment computed dynamically is evidently different, as given

by Table 8.2(b). This assignment delivers a total reward Rdynreal

= 6.26.
The values of δdyn and Edyn are in practice several orders of magnitude
higher than the ones used in this hypothetical example. For instance, for
a system with 50 tasks, computing one such V/O assignment using a com-
mercial solver takes a few seconds. Even on-line heuristics, which produce
approximate results, have long execution times [RMM03]. This means that
a dynamic V/O scheduler might produce solutions that are actually inferior
to the static one (in terms of total reward delivered) or, even worse, a dy-
namic V/O scheduler might not be able to fulfill the given time and energy
constraints.

Task Vi [V] Oi

T1 1.654 35
T2 1.446 51396
T3 1.472 60000

(a) δdyn = 0, Edyn = 0

Task Vi [V] Oi

T1 1.654 35
T2 1.429 1303
T3 1.533 60000

(b) δdyn = 65 µs, Edyn = 55 µJ

Table 8.2: Dynamic V/O assignments (for M1 = 60000, M2 = 100000,
M3 = 150000)

In our quasi-static solution we compute at design-time a number of V/O
assignments, which are selected at run-time by the so-called quasi-static V/O
scheduler (at very low overhead) based on the information about completion
time and consumed energy after each task completes.

150 8. Imprecise-Computation Systems with Energy Considerations

We can define, for instance, a quasi-static set of assignments for the ex-
ample discussed in this subsection, as given by Table 8.3. Upon completion
of each task, Vi and Oi are selected from the precomputed set of V/O assign-
ments, according to the given condition. The assignments were computed
considering the selection overheads δsel = 0.3 µs and Esel = 0.3 µJ.

Task Condition Vi [V] Oi

T1 — 1.654 35

T2 if t1 ≤ 75 µs ∧ EC 1 ≤ 77 µJ 1.444 66924
else if t1 ≤ 130 µs ∧ EC 1 ≤ 135 µJ 1.446 43446

else 1.450 19925

T3 if t2 ≤ 400 µs ∧ EC 2 ≤ 430 µJ 1.380 60000
else if t2 ≤ 500 µs ∧ EC 2 ≤ 550 µJ 1.486 46473

else 1.480 11

Table 8.3: Precomputed set of V/O assignments

For the situation M1 = 60000, M2 = 100000, M3 = 150000 and the set
given by Table 8.3, the quasi-static V/O scheduler would do as follows. Task
T1 is run at V1 = 1.654 V and is allotted O1 = 35 optional cycles. Since, when
completing T1, t1 = τ1 = 111.73 ≤ 130 µs and EC 1 = E1 = 114.97 ≤ 135 µJ,
V2 = 1.446/O2 = 43446 is selected by the quasi-static V/O scheduler. Task
T2 runs under this assignment so that, when it finishes, t2 = τ1 + δsel

2 + τ2 =
442.99 µs and EC 2 = E1 + Esel

2 + E2 = 474.89 µJ. Then V3 = 1.486/O3 =
46473 is selected and task T3 is executed accordingly. Table 8.4 summarizes
the selected assignment. The total reward delivered by this V/O assignment

is Rqs = 13.34 (compare to Rdynideal

= 16.28, Rdynreal

= 6.26, and Rst = 3.99).
It can be noted that the quasi-static solution qs outperforms the dynamic
one dynreal because of the large overheads of the latter.

Task Vi [V] Oi

T1 1.654 35
T2 1.446 43446
T3 1.486 46473

Table 8.4: Quasi-static V/O assignment (for M1 = 60000, M2 = 100000,
M3 = 150000) selected from the precomputed set of Table 8.3

8.2.2 Problem Formulation

We tackle the problem of maximizing the total reward subject to a limited
energy budget, in the framework of DVS. In what follows we present the pre-

8.2. Maximizing Rewards subject to Energy Constraints 151

cise formulation of certain related problems and of the particular problem
addressed in this section. Recall that the task execution order is predeter-
mined, with Ti being the i-th task in this sequence.

Problem 8.1 (Static V/O Assignment for Maximizing Reward—Static
AMR) Find, for each task Ti, 1 ≤ i ≤ n, the voltage Vi and the number
of optional cycles Oi that

maximize
n∑

i=1

Ri(Oi) (8.5)

subject to V min ≤ Vi ≤ V max (8.6)

si+1 = ti = si +p|Vi−1−Vi|︸ ︷︷ ︸
δ∆V
i−1,i

+ k
Vi

(Vi−Vth)α
(Mwc

i +Oi)

︸ ︷︷ ︸
τi

≤di (8.7)

n∑

i=1

(
Cr(Vi−1 − Vi)

2

︸ ︷︷ ︸
E∆V

i−1,i

+ CiV
2
i (Mwc

i + Oi)︸ ︷︷ ︸
Ei

)
≤ Emax (8.8)

The above formulation can be explained as follows. The total reward,
as given by Equation (8.5), is to be maximized. For each task the volt-
age Vi must be in the range [V min, V max] (Equation (8.6)). The completion
time ti is the sum of the start time si, the voltage-switching time δ∆V

i−1,i,
and the execution time τi, and tasks must complete before their deadlines
(Equation (8.7)). The total energy is the sum of the voltage-switching en-
ergies E∆V

i−1,i and the energy Ei consumed by each task, and cannot exceed
the available energy budget Emax (Equation (8.8)). Note that a static as-
signment must consider the worst-case number of mandatory cycles Mwc

i for
every task (Equations (8.7) and (8.8)).

For tractability reasons, when solving the above problem, we consider Oi

as a continuous variable and then we round the result down. By this, without
generating the optimal solution, we obtain a solution that is very near to
the optimal one because one clock cycle is a very fine-grained unit (tasks
execute typically hundreds of thousands of clock cycles). We can rewrite the
above problem as “minimize

∑
R′

i(Oi)”, where R′
i(Oi) = −Ri(Oi). It can

thus be noted that: R′
i(Oi) is convex since Ri(Oi) is a concave function; the

constraint functions are also convex2. Therefore it corresponds to a convex
NLP formulation (see Subsection 8.1.3) and hence the problem can be solved
in polynomial time.

2Observe that the function abs cannot be used directly in mathematical programming
because it is not differentiable in 0. However, there exist techniques for obtaining equivalent
formulations [ASE+04].

152 8. Imprecise-Computation Systems with Energy Considerations

Dynamic V/O Scheduler (AMR): The following is the problem that a
dynamic V/O scheduler must solve every time a task Tc completes. It is
considered that tasks T1, . . . , Tc have already completed (the total energy
consumed up to the completion of Tc is EC c and the completion time of Tc

is tc).
Problem 8.2 (Dynamic AMR) Find Vi and Oi, for c + 1 ≤ i ≤ n, that

maximize
n∑

i=c+1

Ri(Oi) (8.9)

subject to V min ≤ Vi ≤ V max (8.10)

si+1 = ti = si + δdyn
i + δ∆V

i−1,i + τi ≤ di (8.11)
n∑

i=c+1

(
Edyn

i + E∆V
i−1,i + Ei

)
≤ Emax − EC c (8.12)

where δdyn
i and Edyn

i are, respectively, the time and energy overhead of
computing dynamically Vi and Oi for task Ti.

Observe that the problem solved by the dynamic V/O scheduler corre-
sponds to an instance of the static V/O assignment problem (Problem 8.1 for

c+1 ≤ i ≤ n and taking into account tc and EC c), but considering δdyn
i and

Edyn
i . It is worthwhile to note that even the dynamic V/O scheduler must

assume worst-case number of cycles Mwc
i for tasks Ti yet to be executed.

The corresponding explanation is deferred until Subsection 8.3.1.

The total reward Rideal delivered by a dynamic V/O scheduler in the

ideal case δdyn
i = 0 and Edyn

i = 0 represents an upper bound on the reward
that can practically be achieved without knowing in advance how many
mandatory cycles tasks will execute and without accepting risks regarding
deadline or energy violations.

Although the dynamic V/O assignment problem can be solved in
polynomial-time, the time and energy for solving it are in practice very
large and therefore unacceptable at run-time for practical applications. In
our approach we prepare off-line a number of V/O assignments, one of which
is to be selected (at very low on-line cost) by the quasi-static V/O scheduler.

Every time a task Tc completes, the quasi-static V/O scheduler checks the
completion time tc and the total energy EC c, and looks up an assignment in
the table for Tc. From the lookup table LUTc it obtains the point (t′c,EC ′

c),
which is the closest to (tc,EC c) such that tc ≤ t′c and EC c ≤ EC ′

c, and
selects V ′/O′ corresponding to (t′c,EC ′

c), which are the voltage and number
of optional cycles for the next task Tc+1. Our aim is to obtain a reward, as
delivered by the quasi-static V/O scheduler, that is maximal. The problem
we discuss in the rest of the section is the following:

8.2. Maximizing Rewards subject to Energy Constraints 153

Problem 8.3 (Set of V/O Assignments for Maximizing Reward—Set
AMR) Find a set of N assignments such that: N ≤ Nmax; the V/O
assignment selected by the quasi-static V/O scheduler guarantees the
deadlines (si + δsel

i + δ∆V
i−1,i + τi = ti ≤ di) and the energy constraint

(
∑n

i=1 Esel
i + E∆V

i−1,i + Ei ≤ Emax), and yields a total reward Rqs that is
maximal.

As will be discussed in Subsection 8.2.3, for a task Ti, potentially there
exist infinitely many values for ti and EC i. Therefore, in order to approach
the theoretical limit Rideal , it would be needed to compute an infinite number
of V/O assignments, one for each (ti,EC i). The problem is thus how to
select at most Nmax points in this infinite space such that the respective
V/O assignments produce a reward as close as possible to Rideal .

8.2.3 Computing the Set of V/O Assignments

For each task Ti, there exists a space time-energy of possible values of com-
pletion time ti and energy EC i consumed up to the completion of Ti (see
Figure 8.2). Every point in this space defines a V/O assignment for the
next task Ti+1, that is, if Ti completed at ta and the energy consumed was
EC a, the assignment for the next task would be Vi+1 = V a/Oi+1 = Oa. The
values V a and Oa are those that an ideal dynamic V/O scheduler would
give for the case ti = ta, EC i = EC a (recall that we aim at matching the
reward Rideal). Observe that different points (ti,EC i) define different V/O
assignments. Note also that for a given value ti there might be different
valid values of EC i, and this is due to the fact that different previous V/O
assignments can lead to the same ti but still different EC i.

bt(,)

+1iV V a=

+1iO Oa=
EC

at aEC(,)

it

iEC

+1iV V b=

+1iO Ob=

b

Figure 8.2: Space time-energy

We need first to determine the boundaries of the space time-energy for
each task Ti, in order to select Ni points in this space and accordingly
compute the set of Ni assignments. Ni is the number of assignments to be

154 8. Imprecise-Computation Systems with Energy Considerations

stored in the lookup table LUTi, after distributing the maximum number
Nmax of assignments among tasks. A straightforward way to determine these
boundaries is to compute the earliest and latest completion times as well
as the minimum and maximum consumed energy for task Ti, based on the
values V min, V max, Mbc

j , Mwc
j , and Omax

j , 1 ≤ j ≤ i. The earliest completion

time tmin
i occurs when each of the previous tasks Tj (inclusive Ti) execute

their minimum number of cycles Mbc
j and zero optional cycles at maximum

voltage V max, while tmax
i occurs when each task Tj executes Mwc

j + Omax
j

cycles at V min. Similarly, ECmin
i happens when each task Tj executes Mbc

j

cycles at V min, while ECmax
i happens when each task Tj executes Mwc

j +Omax
j

cycles at V max. The intervals [tmin
i , tmax

i] and [ECmin
i ,ECmax

i] bound the
space time-energy as shown in Figure 8.3. However, there are points in
this space that cannot happen. For instance, (tmin

i ,ECmin
i) is not feasible

because tmin
i requires all tasks running at V max whereas ECmin

i requires all
tasks running at V min.

EC
min

i

t
min

i

ECi

EC
max

i

t
max

i

ti

Figure 8.3: Pessimistic boundaries of the space time-energy

8.2.3.1 Characterization of the Space Time-Energy

We take now a closer look at the relation between the energy Ei consumed
by a task and its execution time τi as given, respectively, by Equations (8.1)
and (8.3). In this subsection we consider that the execution time is inversely
proportional to the supply voltage (Vth = 0, α = 2), an assumption com-
monly made in the literature [OYI01]. Observe, however, that we make such
an assumption only in order to make the illustration of our point simpler,
yet the drawn conclusions are valid in general and do not rely on this as-
sumption. After some simple algebraic manipulations on Equations (8.1)
and (8.3) we get the following expression:

Ei =
CiV

3
i

k
τi (8.13)

8.2. Maximizing Rewards subject to Energy Constraints 155

which, in the space τi-Ei, gives a family of straight lines, each for a particular
Vi. Thus Ei = Ci(V

min)3τi/k and Ei = Ci(V
max)3τi/k define two boundaries

in the space τi-Ei. We can also write the following equation:

Ei = Cik
2(Mi + Oi)

3 1

τ2
i

(8.14)

which gives a family of curves, each for a particular Mi + Oi. Thus
Ei = Cik

2(Mbc
i)3/τ2

i and Ei = Cik
2(Mwc

i + Omax
i)3/τ2

i define other two
boundaries, as shown in Figure 8.4. Note that Figure 8.4 represents the en-
ergy consumed by one task (energy Ei if Ti executes for τi time), as opposed
to Figure 8.3 that represents the energy by all tasks up to Ti (total energy
EC i consumed up to the moment ti when task Ti finishes).

bc
i V

minM

τmin

i

V
m

a
x

τmax

i

i
min

E

i
max

E

iE

iτ

M
w

c
i

O
m

a
x

i
+

Figure 8.4: Space τi-Ei for task Ti

In order to obtain a realistic view of the diagram in Figure 8.3, we must
“sum” the spaces τj-Ej introduced above. The result of this summation, as
illustrated in Figure 8.5, gives the space time-energy ti-EC i we are interested
in. In Figure 8.5 the space t2-EC 2 is obtained by sliding the space τ2-E2

with its coordinate origin along the boundaries of τ1-E1. The “south-east”
(SE) and “north-west” (NW) boundaries of the space ti-EC i are piecewise
linear because the SE and NW boundaries of the individual spaces τj-Ej ,
1 ≤ j ≤ i, are straight lines (see Figure 8.4). Similarly, the NE and SW
boundaries of the space ti-EC i are piecewise parabolic because the NE and
SW of the individual spaces τj-Ej are parabolic.

The shape of the space ti-EC i is depicted by the solid lines in Figure 8.6.
There are, in addition, deadlines di to consider as well as energy constraints
Emax

i . Note that, for each task, the deadline di is explicitly given as part
of the system model whereas Emax

i is an implicit constraint induced by the
overall energy constraint Emax. The energy constraint Emax

i imposed upon
the completion of task Ti comes from the fact that future tasks will consume
at least a certain amount of energy Fi+1→n so that Emax

i = Emax − Fi+1→n.

156 8. Imprecise-Computation Systems with Energy Considerations

1τ

1E

=+
2E

2τ

EC2

t2

Figure 8.5: Illustration of the “sum” of spaces τ1-E1 and τ2-E2

The deadline di and the induced energy constraint Emax
i further restrict the

space time-energy, as depicted by the dashed lines in Figure 8.6.

max
EC

iEC

i

min
EC

id

E
max
i

i
min

t i
max

t it

i

Figure 8.6: Realistic boundaries of the space time-energy

The space time-energy can be narrowed down even further if we take into
consideration that we are only interested in points as calculated by the ideal
dynamic V/O scheduler. This is explained in the following. Let us consider
two different activations of the system. In the first one, after finishing task
Ti−1 at t′i−1 with a total consumed energy EC ′

i−1, task Ti runs under a cer-
tain assignment V ′

i /O′
i. In the second activation, after Ti−1 completes at t′′i−1

with total energy EC ′′
i−1, Ti runs under the assignment V ′′

i /O′′
i . Since the

points (t′i−1,EC ′
i−1) and (t′′i−1,EC ′′

i−1) are in general different, the assign-
ments V ′

i /O
′
i and V ′′

i /O′′
i are also different. The assignment V ′

i /O
′
i defines

in the space ti-EC i a segment of straight line L′
i that has slope Ci(V

′
i)3/k,

with one end point corresponding to the execution of Mbc
i + O′

i cycles at
V ′

i and the other end corresponding to the execution of Mwc
i + O′

i cycles at
V ′

i . V ′′
i /O′′

i defines analogously a different segment of straight line L′′
i . Solu-

tions to the dynamic V/O assignment problem, though, tend towards letting
tasks consume as much as possible of the available energy and finish as late
as possible without risking energy or deadline violations: there is no gain by

8.2. Maximizing Rewards subject to Energy Constraints 157

consuming less energy or finishing earlier than needed as the goal is to maxi-
mize the reward. Both solutions V ′

i /O
′
i and V ′′

i /O′′
i (that is, the straight lines

L′
i and L′′

i) will thus converge in the space ti-EC i when M ′
i = M ′′

i = Mwc
i

(which is the value that has to be assumed when computing the solutions).
Therefore, if Ti under the assignment V ′

i /O
′
i completes at the same time as

under the second assignment V ′′
i /O′′

i (t′i = t′′i), the respective energy values
EC ′

i and EC ′′
i will actually be very close (see Figure 8.7). This means that

in practice the space ti-EC i is a narrow area, as depicted by the dash-dot
lines and the gray area enclosed by them in Figure 8.6.

l l/

l
Vi i

l
O/

i

iEC

it

i
EC

l

i
EC

l l

= i
l l

ti
l

t

i

l l
OV

Figure 8.7: V ′
i /O′

i and V ′′
i /O′′

i converge

We have conducted a number of experiments in order to determine how
narrow the area of points in the space time-energy actually is. For each
task Ti, we consider a segment of straight line, called in the sequel the
diagonal Di, defined by the points (ts-bc

i ,EC s-bc

i) and (ts-wc

i ,EC s-wc

i). The
point (ts-bc

i ,EC s-bc

i) corresponds to the solution given by the ideal dynamic
V/O scheduler in the particular case when every task Tj , 1 ≤ j ≤ i, executes
its best-case number of mandatory cycles Mbc

j . Analogously, (ts-wc

i ,EC s-wc

i)
corresponds to the solution in the particular case when every task Tj executes
its worst-case number of mandatory cycles Mwc

j . We have generated 50
synthetic examples, consisting of between 10 and 100 tasks, and simulated
for each of them the ideal dynamic V/O scheduler for 1000 cases, each case
S being a combination of executed mandatory cycles MS

1 ,MS
2 , . . . ,MS

n . For
each task Ti of the different benchmarks and for each set S of mandatory
cycles we obtained the actual point (tSi ,EC S

i) in the space ti-EC i, as given by
the ideal dynamic V/O scheduler. Each point (tSi ,EC S

i) was compared with
the point (tSi ,EC Di

i) (a point with the same abscissa tSi , but on the diagonal

Di so that its ordinate is ECDi

i) and the relative deviation e = |EC S
i −

ECDi

i |/EC S
i was computed. We found through our experiments average

deviations of around 1% and a maximum deviation of 4.5%. These results

158 8. Imprecise-Computation Systems with Energy Considerations

show that the space ti-EC i is indeed a narrow area. For example, Figure 8.8
shows the actual points (tSi ,EC S

i), corresponding to the simulation of the
1000 sets S of executed mandatory cycles, in the space time-energy of a
particular task Ti as well as the diagonal Di.

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76

E
C

i
[m

J
]

ti [ms]

(ti
s-bc

,ECi
s-bc

)

(ti
s-wc

,ECi
s-wc

)

Figure 8.8: Actual points in the space time-energy

8.2.3.2 Selection of Points and Computation of Assignments

From the discussion in Subsection 8.2.3.1 we can draw the conclusion that
the points in the space ti-EC i are concentrated in a relatively narrow area
along a diagonal Di. This observation is crucial for selecting the points for
which we compute at design-time the V/O assignments.

We take points (tji ,EC j
i) along the diagonal Di in the space ti-EC i of

task Ti, and then we compute and store the respective assignments V j
i+1/O

j
i+1

that maximize the total reward when Ti completes at tji and the total en-

ergy is EC j
i . It must be noted that for the computation of the assignment

V j
i+1/O

j
i+1, the time and energy overheads δsel

i+1 and Esel
i+1 (needed for selecting

assignments at run-time) are taken into account.

Each one of the points, together with its corresponding V/O assignment,
covers a region as indicated in Figure 8.9. The quasi-static V/O scheduler
selects one of the stored assignments based on the actual completion time and
consumed energy. Referring to Figure 8.9, for example, if task Ti completes
at t′ and the consumed energy is EC ′, the quasi-static V/O scheduler will
select the precomputed V/O assignment corresponding to (tc,EC c).

The pseudocode of the procedure we use for computing the set of V/O
assignments is given by Algorithm 8.1. First, the maximum number Nmax

of assignments that are to be stored is distributed among tasks (line 1). A
straightforward approach is to distribute them uniformly among the different
tasks, so that each lookup table contains the same number of assignments.

8.2. Maximizing Rewards subject to Energy Constraints 159

Condition Vi+1 Oi+1

if ti ≤ ta ∧ EC i ≤ EC a V a Oa

else if ti ≤ tb ∧ EC i ≤ EC b V b Ob

else if ti ≤ tc ∧ EC i ≤ EC c V c Oc

else V d Od

iEC
s-bc

i
s-wc

EC

i
s-bc

t i
s-wc it

iEC

t

a)
(t b,EC b)

(t c,EC c)
t(,EC d)d

EC’,t’(
(t a,EC

)

Figure 8.9: Regions

However, as shown by the experimental evaluation of Subsection 8.2.4, it is
more efficient to distribute the assignments according to the size of the space
time-energy of tasks (we use the length of the diagonal D as a measure of
this size), in such a way that lookup tables of tasks with larger spaces get
more points.

After distributing Nmax among tasks, the solutions V/Os-bc and V/Os-wc

are computed (lines 2-3). V/Os-bc (V/Os-wc) is a structure that contains
the pairs V s-bc

i /Os-bc

i (V s-wc

i /Os-wc

i), 1 ≤ i ≤ n, as computed by the dynamic
V/O scheduler when every task executes its best-case (worst-case) number
of cycles. Since the assignment V1/O1 is invariably the same, this is the
only one stored for the first task (line 5). For every task Ti, 1 ≤ i ≤ n − 1,
we compute: a) ts-bc

i (ts-wc

i) as the sum of execution times τ s-bc

k (τ s-wc

k)—given
by Equation (8.3) with V s-bc

k , Mbc
k , and Os-bc

k (V s-wc

k , Mwc
k , and Os-wc

k)—and
time overheads δk (line 7); b) EC s-bc

i (EC s-wc

i) as the sum of energies Es-bc

k

(Es-wc

k)—given by Equation (8.1) with V s-bc

k , Mbc
k , and Os-bc

k (V s-wc

k , Mwc
k ,

and Os-wc

k)—and energy overheads Ek (line 8). For every task Ti, we take Ni

equally-spaced points (tji ,EC j
i) along the diagonal Di (straight line segment

from (ts-bc

i ,EC s-bc

i) to (ts-wc

i ,EC s-wc

i)) and, for each such point, we compute

the respective assignment V j
i+1/O

j
i+1 and store it accordingly in the j-th

position in the particular lookup table LUTi (lines 10-12).

The set of V/O assignments, prepared off-line, is used on-line by the
quasi-static V/O scheduler as outlined by Algorithm 8.2. Upon completing
task Ti (ti = t, EC i = EC), the lookup table LUTi is consulted. If the point
(t,EC) lies above the diagonal Di (line 1) the index j of the table entry is

160 8. Imprecise-Computation Systems with Energy Considerations

input: The maximum number Nmax of assignments
output: The set of V/O assignments

1: distribute Nmax among tasks (Ti gets Ni points)
2: V/O

s-bc
:= sol. by dyn. scheduler when Mk = Mbc

k , 1 ≤ k ≤ n
3: V/O

s-wc
:= sol. by dyn. scheduler when Mk = Mwc

k , 1 ≤ k ≤ n
4: V1 := V s-bc

1 = V s-wc
1 ; O1 := Os-bc

1 = Os-wc
1

5: store V1/O1 in LUT1[1]
6: for i← 1, 2, . . . , n− 1 do

7: ts-bc
i :=

∑i

k=1

(
τ s-bc

k + δk

)
; ts-wc

i :=
∑i

k=1

(
τ s-wc

k + δk

)

8: EC s-bc

i :=
∑i

k=1

(
Es-bc

k + Ek
)
; EC s-wc

i :=
∑i

k=1

(
Es-wc

k + Ek
)

9: for j ← 1, 2, . . . , Ni do

10: tji := [(Ni − j)ts-bc
i + j ts-wc

i]/Ni

11: EC j
i := [(Ni − j)EC s-bc

i + j EC s-wc

i]/Ni

12: compute V j
i+1/Oj

i+1 for (tji ,EC j
i) and store it in LUTi[j]

13: end for

14: end for

Algorithm 8.1: OffLinePhase

simply calculated as in line 2, else as in line 4. Computing directly the index
j, instead of searching through the table LUTi, is possible because the points
(tji ,EC j

i) stored in LUTi are equally-spaced. Finally the V/O assignment
stored in LUTi[j] is retrieved (line 6). Observe that Algorithm 8.2 has a
time complexity O(1) and therefore the on-line operation performed by the
quasi-static V/O scheduler takes constant time and energy. Also, this lookup
and selection process is several orders of magnitude cheaper than the on-line
computation by the dynamic V/O scheduler.

input: Actual t and EC upon completing Ti, and lookup table LUTi

(contains Ni assignments and the diagonal Di—defined as EC i = Aiti+Bi)
output: The assignment Vi+1/Oi+1 for the next task Ti+1

1: if EC > Ait + Bi then

2: j := dNi(EC − EC s-bc

i)/(EC s-wc

i − EC s-bc

i)e
3: else

4: j := dNi(t− ts-bc
i)/(ts-wc

i − ts-bc
i)e

5: end if

6: return V/O assignment stored in LUTi[j]

Algorithm 8.2: OnLinePhase

8.2.4 Experimental Evaluation

In order to evaluate the presented approach, we generated numerous syn-
thetic benchmarks. We considered task graphs containing between 10 and

8.2. Maximizing Rewards subject to Energy Constraints 161

100 tasks. Each point in the plots of the experimental results (Figures 8.10,
8.11, and 8.12) corresponds to 50 automatically-generated task graphs, re-
sulting overall in more than 4000 performed evaluations. The technology-
dependent parameters were adopted from [MFMB02] and correspond to a
processor in a 0.18 µm CMOS fabrication process. The reward functions we
used along the experiments are of the form Ri(Oi) = αiOi +βi

√
Oi +γi

3
√

Oi,
with coefficients αi, βi, and γi randomly chosen.

The first set of experiments was performed with the goal of investigat-
ing the reward gain achieved by our quasi-static approach compared to the
optimal static solution (the approach proposed in [RMM03]). In these exper-
iments we consider that the time and energy overheads needed for selecting
the assignments by the quasi-static V/O scheduler are δsel = 450 ns and
Esel = 400 nJ. These are realistic values as selecting a precomputed assign-
ment takes only tens of cycles and the access time and energy consumption
(per access) of, for example, a low-power Static RAM are around 70 ns and
20 nJ respectively [NEC]. Figure 8.10(a) shows the reward (normalized with
respect to the reward given by the static solution) as a function of the dead-
line slack (the relative difference between the deadline and the completion
time when worst-case number of mandatory cycles are executed at the max-
imum voltage that guarantees the energy constraint). Three cases for the
quasi-static approach (2, 5, and 50 points per task) are considered in this
figure. Very significant gains in terms of total reward, up to four times, can
be obtained with the quasi-static solution, even with few points per task.
The highest reward gains are achieved when the system has very tight dead-
lines (small deadline slack). This is so because, when large amounts of slack
are available, the static solution can accommodate most of the optional cy-
cles (recall there is a value Omax

i after which no extra reward is achieved)
and therefore the difference in reward between the static and quasi-static
solutions is not big in these cases.

The influence of the ratio between the worst-case number of cycles Mwc

and the best-case number of cycles Mbc has also been studied and the results
are presented in Figure 8.10(b). In this case we have considered systems with
a deadline slack of 10% and 20 points per task in the quasi-static solution.
The larger the ratio Mwc/Mbc is, the more the actual number of execution
cycles deviate from the worst-case value Mwc (which is the value that has to
be considered by a static solution). Thus the dynamic slack becomes larger
and therefore there are more chances to exploit such a slack and consequently
improve the reward.

The second set of experiments was aimed at evaluating the quality of
our quasi-static approach with respect to the theoretical limit that could
be achieved without knowing in advance the exact number of execution cy-

162 8. Imprecise-Computation Systems with Energy Considerations

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60

A
v
e
ra

g
e
 R

e
w

a
rd

 (
N

o
rm

a
li

z
e
d

)

Deadline Slack [%]

QS (50 points/task)

QS (5 points/task)

QS (2 points/task)

Static

(a) Influence of the deadline slack

 0

 1

 2

 3

 0 2 4 6 8 10 12 14 16

A
v
e
ra

g
e
 R

e
w

a
rd

 (
N

o
rm

a
li

z
e
d

)

Ratio Mwc
/Mbc

Quasi-Static

Static

(b) Influence of the ratio Mwc/Mbc

Figure 8.10: Comparison of the quasi-static and static solutions

cles (the reward delivered by the ideal dynamic V/O scheduler). For the
sake of comparison fairness, we have considered zero time and energy over-
heads δsel and Esel (as opposed to the previous experiments). Figure 8.11(a)
shows the deviation dev = (Rideal − Rqs)/Rideal as a function of the num-
ber of precomputed assignments (points per task) and for various degrees
of deadline tightness. More points per task produce higher reward, closer
to the theoretical limit (smaller deviation). Nonetheless, with relatively few
points per task we can get very close to the theoretical limit, for instance,
in systems with deadline slack of 20% and for 30 points per task the average
deviation is around 1.3%. As mentioned previously, when the deadline slack
is large even a static solution (which corresponds to a quasi-static solution
with just one point per task) can accommodate most of the optional cycles.
Hence, the deviation gets smaller as the deadline slack increases, as shown
in Figure 8.11(a).

In the previous experiments it has been considered that, for a given sys-
tem, the lookup tables have the same size, that is, contain the same number

8.2. Maximizing Rewards subject to Energy Constraints 163

of assignments. When the number Nmax of assignments is distributed among
tasks according to the size of their spaces time-energy (more assignments in
the lookup tables of tasks that have larger spaces), better results are ob-
tained as shown in Figure 8.11(b). This figure plots the case of equal-size
lookup tables (QS-uniform) and the case of assignments distributed non-
uniformly among tables (QS-non-uniform), as described above, for systems
with a deadline slack of 20%. The abscissa is the average number of points
per task.

 0 10 20 30 40 50 60 70
Number of Points per Task

 0
 10

 20
 30

 40

Deadlin
e Slack

 [%
]

 1

 2

 3

 4

A
v
e
ra

g
e
 D

e
v
ia

ti
o
n

 [
%

]

(a) Influence of the deadline slack and number of points

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

A
v
e
ra

g
e
 D

e
v
ia

ti
o
n

 [
%

]

Average Number of Points per Task

QS-uniform

QS-non-uniform

(b) Influence of the distribution of points among
lookup tables

Figure 8.11: Comparison of the quasi-static and ideal dynamic solutions

In a third set of experiments we took into account the on-line overheads
of the dynamic V/O scheduler (as well as the quasi-static one) and com-
pared the static, quasi-static, and dynamic approaches in the same graph.
Figure 8.12 shows the reward normalized with respect to the one by the
static solution. It shows that, in a realistic setting, the dynamic approach
performs poorly, even worse than the static one. Moreover, for systems
with tight deadlines (small deadline slack), the dynamic approach cannot

164 8. Imprecise-Computation Systems with Energy Considerations

guarantee the time and energy constraints because of its large overheads
(this is why no data is plotted for benchmarks with deadline slack less than
20%). The overhead values that have been considered for the dynamic case
correspond actually to overheads by heuristics [RMM03] and not by exact
methods, although in the experiments the values produced by the exact so-
lutions were considered. This means that, even in the optimistic case of an
on-line algorithm that delivers exact solutions in a time frame similar to the
one of existing heuristic methods, the quasi-static approach outperforms the
dynamic one.

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60

A
v
e
ra

g
e
 R

e
w

a
rd

 (
N

o
rm

a
li

z
e
d

)

Deadline Slack [%]

QS (5 points/task)

Static

Dynamic

Figure 8.12: Comparison considering realistic overheads

We have also measured the execution time of Algorithm 8.1, used for
computing at design-time the set of V/O assignments. Figure 8.13 shows
the average execution time as a function of the number of tasks in the sys-
tem, for different values of Nmax (total number of assignments). It can be
observed that the execution time is linear in the number of tasks and in
the total number of assignments. The time needed for computing the set of
assignments, though considerable, is affordable since Algorithm 8.1 is run
off-line.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 E

x
e
cu

ti
o
n

 T
im

e
 [

m
in

]

Number of Tasks

Nmax
=5000

Nmax
=2500

Nmax
=1000

Figure 8.13: Execution time of OffLinePhase

8.2. Maximizing Rewards subject to Energy Constraints 165

In addition to the synthetic benchmarks discussed above, we have also
evaluated our approach by means of a real-life application, namely the
navigation controller of an autonomous rover for exploring a remote place
[Hul00]. The rover is equipped, among others, with two cameras and a to-
pographic map of the terrain. Based on the images captured by the cameras
and the map, the rover must travel towards its destination avoiding nearby
obstacles. This application includes a number of tasks described briefly as
follows. A frame acquisition task captures images from the cameras. A
position estimation task correlates the data from the captured images with
the one from the topographic map in order to estimate the rover’s current
position. Using the estimated position and the topographic map, a global
path planning task computes the path to the desired destination. Since there
might be impassable obstacles along the global path, there is an object de-
tection task for finding obstacles in the path of the rover and a local path
planning task for adjusting accordingly the course in order to avoid those
obstacles. A collision avoidance task checks the produced path to prevent
the rover from damaging itself. Finally, a steering control task commands
the motors the direction and speed of the rover.

For this application the total reward is measured in terms of how fast
the rover reaches its destination [Hul00]. Rewards produced by the different
tasks (all but the steering control task which has no optional part) contribute
to the overall reward. For example, higher-resolution images by the frame
acquisition task translates into a clearer characterization of the surroundings
of the rover, which in turn implies a more accurate estimation of the location
and consequently makes the rover get faster to its destination (that is, higher
total reward). Similarly, running longer the global path planning task results
in a better path which, again, implies reaching the desired destination faster.
The other tasks make in a similar manner their individual contribution to
the global reward, in such a way that the amount of computation allotted
to each of them has a direct impact on how fast the destination is reached.

The navigation controller is activated periodically every 360 ms and tasks
have a deadline equal to the period3. The energy budget per activation of
the controller is 360 mJ (average power consumption 1 W) during the night
and 540 mJ (average power 1.5 W) during daytime [Hib01].

Considering that one assignment requires 8 Bytes of memory, one 4-kB
memory can store Nmax = 512 assignments in total. We use two 4-kB
memories, one for the assignments used during daytime and the other for
the set used during the night (these two sets are different because the energy
budget differs). We computed, for both cases, Emax = 360 mJ and Emax =

3At its maximum speed of 10 km/h the rover travels in 360 ms a distance of 1 m, which
is the maximum allowed without recomputing the path.

166 8. Imprecise-Computation Systems with Energy Considerations

540 mJ, the sets of assignments using Algorithm 8.1. When compared to the
respective static solutions, our quasi-static solution delivers rewards that are
in average 3.8 times larger for the night case and 1.6 times larger for the day
case. This means that a rover using the precomputed assignments can reach
its destination faster than in the case of a static solution and thus explore a
larger region under the same energy budget.

The significant difference between the night and day modes can be ex-
plained by the fact that, for more stringent energy constraints, fewer optional
cycles can be accommodated by a static solution and therefore its reward
is smaller. Thus the relative difference between a quasi-static solution and
the corresponding static one is significantly larger for systems with more
stringent energy constraints.

8.3 Minimizing Energy Consumption
subject to Reward Constraints

We have addressed in Section 8.2 the maximization of rewards subject to en-
ergy constraints. In this section—also under the framework of the Imprecise
Computation model as well as considering energy, reward, and deadlines—
we discuss a different problem, namely minimizing the energy consumption
considering that there is a minimum total reward that must be delivered by
the system.

8.3.1 Problem Formulation

The static version of the problem addressed in this section has the following
formulation.

Problem 8.4 (Static V/O Assignment for Minimizing Energy—Static
AME) Find, for each task Ti, 1 ≤ i ≤ n, the voltage Vi and the number
of optional cycles Oi that

minimize

n∑

i=1

(
Cr(Vi−1 − Vi)

2

︸ ︷︷ ︸
E∆V

i−1,i

+ CiV
2
i (M e

i + Oi)︸ ︷︷ ︸
Ee

i

)
(8.15)

subject to V min ≤ Vi ≤ V max (8.16)

si+1 = ti =si +p|Vi−1−Vi|︸ ︷︷ ︸
δ∆V
i−1,i

+ k
Vi

(Vi−Vth)α
(Mwc

i +Oi)

︸ ︷︷ ︸
τwc
i

≤di (8.17)

n∑

i=1

Ri(Oi) ≥ Rmin (8.18)

8.3. Minimizing Energy subject to Reward Constraints 167

In this case the objective function is the total energy, which has to be
minimized (Equation (8.15)). The voltage Vi for each task Ti must be in the
range [V min, V max] (Equation (8.16)). The completion time ti (sum of si,
δ∆V
i−1,i, and τi) must be less than or equal to the deadline di (Equation (8.17)).

The total reward has to be at least Rmin (Equation (8.18)). Note that
the worst-case number of mandatory cycles has to be assumed in order to
guarantee the deadlines (Equation (8.17)).

A dynamic version of the problem addressed in this section is formulated
as follows.

Dynamic V/O Scheduler (AME): The following is the problem that a
dynamic V/O scheduler must solve every time a task Tc completes. It is con-
sidered that tasks T1, . . . , Tc have already completed (the reward produced
up to the completion of Tc is RP c and the completion time of Tc is tc).
Problem 8.5 (Dynamic AME) Find Vi and Oi, for c + 1 ≤ i ≤ n, that

minimize
n∑

i=c+1

(
Edyn

i + E∆V
i−1,i + CiV

2
i (M e

i + Oi)︸ ︷︷ ︸
Ee

i

)
(8.19)

subject to V min ≤ Vi ≤ V max (8.20)

si+1 = ti =si+δdyn
i +δ∆V

i−1,i+k
Vi

(Vi−Vth)α
(Mwc

i +Oi)

︸ ︷︷ ︸
τwc
i

≤di (8.21)

n∑

i=c+1

Ri(Oi) ≥
(
Rmin − RP c

)
(8.22)

where δdyn
i and Edyn

i are, respectively, the time and energy overhead of
computing dynamically Vi and Oi for task Ti.

Analogous to Section 8.2, the problem solved by the above dynamic V/O
scheduler corresponds to an instance of Problem 8.4, but taking into account
δdyn
i and Edyn

i and for c + 1 ≤ i ≤ n. However, for the case discussed in
this section (minimizing energy subject to reward constraints), a specula-
tive version of the dynamic V/O scheduler can be formulated as follows.
Such a dynamic speculative V/O scheduler produces better results than its
non-speculative counterpart, as demonstrated by the experimental results of
Subsection 8.3.3.

Dynamic Speculative V/O Scheduler (AME): The following is the
problem that a dynamic speculative V/O scheduler must solve every time
a task Tc completes. It is considered that tasks T1, . . . , Tc have already
completed (the reward produced up to the completion of Tc is RP c and the
completion time of Tc is tc).

168 8. Imprecise-Computation Systems with Energy Considerations

Problem 8.6 (Dynamic Speculative AME) Find Vi and Oi, for c +1 ≤
i ≤ n, that

minimize
n∑

i=c+1

(
Edyn

i + E∆V
i−1,i + CiV

2
i (M e

i + Oi)︸ ︷︷ ︸
Ee

i

)
(8.23)

subject to V min ≤ Vi ≤ V max (8.24)

si+1 = ti = si+δdyn
i +δ∆V

i−1,i+k
Vi

(Vi−Vth)α
(M e

i +Oi)

︸ ︷︷ ︸
τe
i

≤di (8.25)

n∑

i=c+1

Ri(Oi) ≥
(
Rmin − RP c

)
(8.26)

s′i+1 = t′i = s′i + δdyn
i + δ∆V

i−1,i + τ ′
i ≤ di (8.27)

τ ′
i =





k
Vi

(Vi − Vth)α
(Mwc

i + Oi) if i = c + 1

k
V max

(V max − Vth)α
(Mwc

i + Oi) if i > c + 1

(8.28)

where δdyn
i and Edyn

i are, respectively, the time and energy overhead of
computing dynamically Vi and Oi for task Ti.

Equations (8.23)-(8.26) are basically the same as Equations (8.19)-(8.22)
except that the expected number of mandatory cycles M e

i is used instead
of the worst-case number of mandatory cycles Mwc

i in the constraint corre-
sponding to the deadlines. The constraint given by Equation (8.25) does not
guarantee by itself the satisfaction of deadlines because if the actual num-
ber of mandatory cycles is larger than M e

i deadline violations might arise.
Therefore an additional constraint, as given by Equations (8.27) and (8.28),
is introduced. It expresses that: the next task Tc+1, running at Vc+1, must
meet its deadline (Tc+1 will run at the computed Vc+1); the other tasks Ti,
c+1 < i ≤ n, running at V max, must also meet the deadlines (the other tasks
Ti might run at a voltage different from the value Vi computed in the current
iteration, because solutions obtained upon completion of future tasks might
produce different values). Guaranteeing the deadlines in this way is possible
because new assignments are similarly recomputed every time a task finishes.

The dynamic speculative V/O scheduler presented above solves the V/O
assignment problem speculating that tasks will execute their expected num-
ber of mandatory cycles but leaving enough room for increasing the voltage
so that future tasks, if needed, run faster and thus meet the deadlines. We
consider that the energy Eideal consumed by a system, when the V/O as-
signments are computed by such a dynamic speculative V/O scheduler in

8.3. Minimizing Energy subject to Reward Constraints 169

the ideal case δdyn
i = 0 and Edyn

i = 0, is the lower bound on the total energy
that can practically be achieved without knowing beforehand the number of
mandatory cycles executed by tasks.

It is worthwhile to mention at this point that Problem 8.2 (Dynamic
AMR) formulated in Section 8.2 does not admit a speculative formulation,
as opposed to Problem 8.5 formulated in this section, which does have a
speculative version as presented above (Problem 8.6). This is so because,
when speculating that tasks execute the expected number of mandatory
cycles, there must be enough room for either increasing or decreasing the
voltage levels of future tasks. However, if the voltage is increased in order
to make tasks run faster and thus meet the deadlines, the energy consump-
tion becomes larger and therefore the constraint on the maximum energy
might be violated (Equation (8.12)). If the voltage is decreased in order to
make tasks consume less energy and thus satisfy the total energy constraint,
the execution times become longer and therefore deadlines might be missed
(Equation (8.11)).

In a similar line of thought as in Section 8.2, we prepare at design-time a
number of V/O assignments, one of which is selected at run-time (with very
low overhead) by the quasi-static V/O scheduler.

Upon finishing a task Tc, the quasi-static V/O scheduler checks the com-
pletion time tc and the reward RP c produced up to completion of Tc, and
looks up an assignment in LUTc. From the lookup table LUTc the quasi-
static V/O scheduler gets the point (t′c,RP ′

c), which is the closest to (tc,RP c)
such that tc ≤ t′c and RP c ≥ RP ′

c, and selects V ′/O′ corresponding to
(t′c,RP ′

c). The goal in this section is to make the system consume as little
energy as possible, when using the assignments selected by the quasi-static
V/O scheduler.

Problem 8.7 (Set of V/O Assignments for Minimizing Energy—Set
AME) Find a set of N assignments such that: N ≤ Nmax; the V/O
assignment selected by the quasi-static V/O scheduler guarantees the
deadlines (si + δsel

i + δ∆V
i−1,i + τi = ti ≤ di) and the reward constraint

(
∑n

i=1 Ri(Oi) ≥ Rmin), and so that the total energy Eqs is minimal.

8.3.2 Computing the Set of V/O Assignments

Analogous to what was discussed in Subsection 8.2.3, there is a space time-
reward of possible values of completion time ti and reward RP i produced
up to completion of Ti, as depicted in Figure 8.14. Each point in this space
defines an assignment for the next task Ti+1: if Ti finished at ta and the
produced reward is RPa, Ti+1 would run at V a and execute Oa optional
cycles.

170 8. Imprecise-Computation Systems with Energy Considerations

bt(,)

+1iV V b=

+1iO Ob=

RP
at aRP(,)

it

+1iV V a=

+1iO Oa=

iRP

b

Figure 8.14: Space time-reward

The boundaries of the space ti-RP i can be obtained by computing the
extreme values of ti and RP i considering V min, V max, Mbc

j , Mwc
j , and Omax

j ,

1 ≤ j ≤ i. The maximum produced reward is RPmax
i =

∑i
j=1 Rj(O

max
j) and

the minimum reward is simply RPmin
i =

∑i
j=1 Rj(0) = 0. The maximum

completion time tmax
i occurs when each task Tj executes Mwc

j +Omax
j cycles at

V min, while tmin
i happens when each task Tj executes Mbc

j cycles at V max.

The intervals [tmin
i , tmax

i] and [0,RPmax
i] bound the space time-reward as

shown in Figure 8.15.

RP
max

RP

i

i

t
min

i t
max

i

ti

Figure 8.15: Boundaries of the space time-reward

A generic characterization of the space time-reward is not possible be-
cause reward functions vary from task to task as well as from system to
system. That is, we cannot derive a general expression that relates the re-
ward Ri with the execution time τi (as we did in Subsection 8.2.3.1 for Ei

and τi, resulting in Equations (8.13) and (8.14)).

One alternative for selecting points in the space time-reward would be to
consider a mesh-like configuration, in which the space is divided in rectangu-
lar areas and each area is covered by one point (the lower-right corner covers
the rectangle) as depicted in Figure 8.16. The drawback of this approach is
twofold: first, the boundaries in Figure 8.15 define a space time-reward that

8.3. Minimizing Energy subject to Reward Constraints 171

include points that cannot happen, for example, the point (tmin
i ,RPmax

i)
is not feasible because tmin

i occurs when no optional cycles are executed
whereas RPmax

i requires all tasks Tj executing Omax
j optional cycles; second,

the number of required points for covering the space is a quadratic function
of the granularity of the mesh, which means that too many points might be
necessary for achieving an acceptable granularity.

i

max
RPi

max
t

iRP

t
min

i

t
i

Figure 8.16: Selection of points in a mesh configuration

We have opted for a solution where we “freeze” the assigned optional cy-
cles, that is, for each task Ti we fix Oi to a value Oi computed off-line. Thus,
for any activation of the system, Ti will invariably execute Oi optional cycles.
In this way, we transform the original problem into a classical voltage-scaling
problem with deadlines since the only variables now are Vi. This means that
we reduce the bidimensional space time-reward into a one-dimension space
(time is now the only dimension). This approach gives very good results as
shown by the experimental evaluation presented in Subsection 8.3.3.

The way we obtain the fixed values Oi is the following. We consider the
instance of Problem 8.6 that the dynamic speculative V/O scheduler solves
at the very beginning, before any task is executed (c = 0). The solution
gives particular values of Vi and Oi, 1 ≤ i ≤ n. For each task, the number
of optional cycles given by this solution is taken as the fixed value Oi in our
approach.

Once the number of optional cycles has been fixed to Oi, the only vari-
ables are Vi and the problem becomes that of voltage scaling for energy
minimization with time constraints. For the sake of completeness, we in-
clude below its formulation. The reward constraint disappears from the
formulation because, by fixing the optional cycles as explained above, it is
guaranteed that the total reward will be at least Rmin.

Dynamic Voltage Scheduler: The following is the problem that a dy-
namic voltage scheduler must solve every time a task Tc completes. It is con-
sidered that tasks T1, . . . , Tc have already completed (the completion time
of Tc is tc).

172 8. Imprecise-Computation Systems with Energy Considerations

Problem 8.8 (Dynamic Voltage Scaling—VS) Find Vi, for c + 1 ≤ i ≤
n, that

minimize
n∑

i=c+1

(
Edyn

i + E∆V
i−1,i + CiV

2
i (M e

i + Oi)︸ ︷︷ ︸
Ee

i

)

subject to V min ≤ Vi ≤ V max

si+1 = ti = si+δdyn
i +δ∆V

i−1,i+k
Vi

(Vi−Vth)α
(M e

i +Oi)

︸ ︷︷ ︸
τe
i

≤di

s′i+1 = t′i = s′i + δdyn
i + δ∆V

i−1,i + τ ′
i ≤ di

τ ′
i =





k
Vi

(Vi − Vth)α
(Mwc

i + Oi) if i = c + 1

k
V max

(V max − Vth)α
(Mwc

i + Oi) if i > c + 1

where δdyn
i and Edyn

i are, respectively, the time and energy overhead of
computing dynamically Vi for task Ti.

The voltage-scaling problem in a quasi-static framework has been ad-
dressed and solved by Andrei et al. [ASE+05]. In this case a simple static
analysis gives, for each task Ti, the earliest and latest completion times tmin

i

and tmax
i . Thus the question in the quasi-static approach for this problem

is to select points along the interval [tmin
i , tmax

i] and compute accordingly
the voltage settings that will be stored in memory. The reader is referred to
[ASE+05] for a complete presentation of the quasi-static approach to voltage
scaling.

In summary, in our quasi-static solution to the problem of minimizing
energy subject to time and reward constraints, we first fix off-line the number
of optional cycles assigned to each task, by taking the values Oi as given by
the solution to Problem 8.6 (instance c = 0). Thus the original problem is
reduced to quasi-static voltage scaling for energy minimization. Then, in
the one-dimension space of possible completion times, we select points and
compute the corresponding voltage assignments as discussed in [ASE+05].
For each task, a number of voltage settings are stored in its respective lookup
table. Note that these tables contain only voltage values as the number of
optional cycles has already been fixed off-line.

8.3.3 Experimental Evaluation

The approach proposed in this section has been evaluated through a large
number of synthetic examples. We have considered task graphs that contain

8.3. Minimizing Energy subject to Reward Constraints 173

between 10 and 100 tasks.
The first set of experiments validates the claim that the dynamic spec-

ulative V/O scheduler outperforms the non-speculative one. Figure 8.17
shows the average energy savings (relative to a static V/O assignment) as a
function of the deadline slack (the relative difference between the deadline
and the completion time when worst-case number of mandatory cycles are
executed at the maximum voltage such that the reward constraint is guaran-
teed). The highest savings can be obtained for systems with small deadline
slack: the larger the deadline slack is, the lower the voltages given by a
static assignment can be (tasks can run slower), and therefore the difference
in energy consumed as by a static and a dynamic solution is smaller. The
experiments whose results are presented in Figure 8.17 were performed con-
sidering the ideal case of zero time and energy on-line overheads (δdyn

i = 0

and Edyn
i = 0).

 16

 20

 24

 28

 0 10 20 30 40 50 60

A
v
e
ra

g
e
 E

n
e
rg

y
 S

a
v
in

g
s

[%
]

Deadline Slack [%]

Speculative

Non-speculative

Figure 8.17: Comparison of the speculative and non-speculative dynamic
V/O schedulers

In a second set of experiments we evaluated the quasi-static approach
proposed in this section, in terms of the energy savings achieved by it with
respect to the optimal static solution. In this set of experiments we did
take into consideration the time and energy overheads needed for selecting
the voltage settings among the precomputed ones. Figure 8.18(a) shows the
energy savings by our quasi-static approach for various numbers of points
per task. The plot shows that, even with few points per task, very significant
energy savings can be achieved.

Figure 8.18(b) also shows the energy savings achieved by the quasi-static
approach, but this time as a function of the ratio between the worst-case
number of cycles Mwc and the best-case number of cycles Mbc. In these
experiments we considered systems with a deadline slack of 10%. As the
ratio Mwc/Mbc increases, the dynamic slack becomes larger and therefore
there is more room for exploiting it in order to reduce the total energy

174 8. Imprecise-Computation Systems with Energy Considerations

consumed by the system.

 12

 16

 20

 24

 28

 0 10 20 30 40 50 60

A
v
e
ra

g
e
 E

n
e
rg

y
 S

a
v
in

g
s

[%
]

Deadline Slack [%]

QS (50 points/task)

QS (5 points/task)

QS (2 points/task)

(a) Influence of the deadline slack

 12

 16

 20

 24

 28

 32

 36

 40

 0 2 4 6 8 10 12 14 16

A
v
e
ra

g
e
 E

n
e
rg

y
 S

a
v
in

g
s

[%
]

Ratio Mwc
/Mbc

QS (50 points/task)

QS (5 points/task)

QS (2 points/task)

(b) Influence of the ratio Mwc/Mbc

Figure 8.18: Comparison of the quasi-static and static solutions

In a third set of experiments we evaluated the quality of the solution
given by the quasi-static approach presented in this section with respect to
the theoretical limit that could be achieved without knowing in advance the
actual number of execution cycles (the energy consumed when a dynamic
speculative V/O scheduler is used, in the ideal case of zero overheads—

δdyn
i = 0 and Edyn

i = 0). In order to make a fair comparison we considered
also zero overheads for the quasi-static approach (δsel

i = 0 and Esel
i = 0).

Figure 8.19 shows the deviation dev = (Eqs −Eideal)/Eideal as a function of
the number of precomputed voltages (points per task), where Eideal is the
total energy consumed for the case of an ideal dynamic V/O scheduler and
Eqs is the total energy consumed for the case of a quasi-static scheduler that
selects voltages from lookup tables prepared as explained in Subsection 8.3.2.
In this set of experiments we have considered systems with deadline slack
of 20%. It must be noted that Eqs corresponds to the proposed quasi-static
approach in which we fix the number of optional cycles and the precomputed

8.3. Minimizing Energy subject to Reward Constraints 175

assignments are only voltage settings, whereas Eideal corresponds to the dy-
namic V/O scheduler that recomputes both voltage and number of optional
cycles every time a task completes. Even so, with relatively few points per
task it is possible to get very close to the theoretical limit, for instance, for
20 points per task the average deviation is around 0.4%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

A
v
e
ra

g
e
 D

e
v
ia

ti
o
n

 [
%

]

Number of Points per Task

Figure 8.19: Comparison of the quasi-static and ideal dynamic solutions

Finally, in a fourth set of experiments we took into consideration realistic
values for the on-line overheads δdyn

i and Edyn
i of the dynamic V/O scheduler

as well as the on-line overheads δsel
i and Esel

i of the quasi-static scheduler.
Figure 8.20 shows the average energy savings by the dynamic and quasi-static
approaches (taking as baseline the energy consumed when using a static
approach). It shows that in practice the dynamic approach makes the energy
consumption higher than in the static solution (negative savings), a fact that
is due to the high overheads incurred by computing on-line assignments by
the dynamic V/O scheduler. Also because of the high overheads, when the
system has tight deadlines, the dynamic approach cannot even guarantee
the time constraints.

-40

-30

-20

-10

 0

 10

 20

 30

 0 10 20 30 40 50 60

A
v
e
ra

g
e
 E

n
e
rg

y
 S

a
v
in

g
s

[%
]

Deadline Slack [%]

QS (5 points/task)

Static

Dynamic

Figure 8.20: Comparison considering realistic overheads

Part IV

Conclusions and
Future Work

Chapter 9

Conclusions

This chapter summarizes the principal contributions of the dissertation and
presents conclusions drawn from the approaches introduced in the thesis.
We first state general remarks on the dissertation as a whole and then we
present conclusions organized according to the structure of the thesis, that
is, conclusions particular to the approaches addressed in Parts II and III.

Embedded computer systems have become extremely common in our ev-
eryday life. They have numerous and diverse applications in a large spectrum
of areas. The number of embedded systems as well as their application areas
will certainly continue to grow. A very important factor in the widespread
use of embedded systems is the vast computation capabilities available at
low cost. In order to fully take advantage of this fact, it is needed to devise
design methodologies that permit us to use this large amount of computa-
tion power in an efficient manner while satisfying the different constraints
imposed by the particular types of application.

An essential point in the design of embedded systems is the intended
application of the system under design. Design methodologies must thus be
tailored to fit the distinctive characteristics of the specific type of system. It
is needed to devise design techniques that take into account the particular-
ities of the application domain in order to manage the system complexity,
to improve the efficiency of the design process, and to produce high-quality
solutions.

In this thesis we have proposed modeling, verification, and scheduling
techniques for the class of embedded systems that have real-time require-
ments. Within this class of systems, two categories have been distinguished:
hard real-time systems and soft real-time systems. We have introduced var-
ious approaches for hard real-time systems, placing special emphasis on the
issue of correctness (Part II). In the case of mixed hard/soft real-time sys-
tems, we have focused on exploiting the flexibility provided by the soft com-

180 9. Conclusions

ponent which allows the designer to trade off quality of results and different
design goals (Part III).

A distinguishing feature common to the different approaches introduced
in this dissertation is the consideration of varying execution times for tasks.
Instead of assuming always worst-case values, we have considered task exe-
cution times varying within a given interval. This model is more realistic and
permits exploiting variations in actual execution times in order to, for ex-
ample, improve the quality of results or reduce the energy consumption. At
the same time, constraints dependent on execution times, such as deadlines,
can be guaranteed.

The presented techniques have been studied and evaluated through a
large number of experiments, including synthetic examples as well as realistic
applications. The relevance of these techniques has been demonstrated by
the corresponding experimental results.

In the rest of this chapter we summarize contributions and present con-
clusions that are particular to Parts II and III.

Modeling and Verification

In the second part of the thesis, we have dealt with modeling and verification
of hard real-time systems.

A model of computation with precise mathematical semantics is essen-
tial in any systematic design methodology. A sound model of computation
supports an unambiguous representation of the system, the use of formal
methods to verify its correctness, and the automation of different tasks along
the design process.

We have formally defined a model of computation that extends Petri nets.
PRES+ allows the representation of systems at different levels of granularity
and supports hierarchical constructs. It may easily capture both sequential
and concurrent activities as well as non-determinism. In our model of com-
putation tokens carry information and transitions perform transformation
of data when fired, characteristics that are quite important in terms of ex-
pressiveness. Overall, PRES+ is simple, intuitive, and can easily be handled
by the designer. It is also possible to translate textual-based specifications,
such as Haskell descriptions, into the PRES+ model.

Several examples, including an industrial application, have been stud-
ied in order to demonstrate the applicability of our modeling technique to
different systems.

Correctness is an aspect of prime importance for safety-critical, hard
real-time systems. The cost of an error can be extremely high, in terms of
loss of both human lives and money. Solutions that attempt to prove the

181

system correct are therefore essential when dealing with this type of systems.

We have proposed an approach to the formal verification of systems rep-
resented in PRES+. Our approach makes use of model checking in order
to prove whether certain properties, expressed as CTL and TCTL formulas,
hold with respect to the system model. We have introduced a systematic
procedure to translate PRES+ models into timed automata so that it is
possible to use available model checking tools.

Additionally, two strategies have been proposed in this thesis in order to
improve the efficiency of the verification process.

First, we apply transformations to the initial system model, aiming at
simplifying it, while still preserving the properties under consideration. This
is a transformational approach that tries to reduce the model, and therefore
improve the efficiency of verification, by using correctness-preserving trans-
formations. Thus if the simpler model is proved correct, the initial one is
guaranteed to be correct.

Second, we exploit the structure of the system and extract information
regarding its degree of concurrency. We improve accordingly the translation
procedure from PRES+ into timed automata by obtaining a reduced collec-
tion of automata and clocks. Since the time complexity of model checking
of timed automata is exponential in the number of clocks, this technique
improves considerably the verification efficiency.

Moreover, experimental results have shown that, by combining the trans-
formational approach with the one for reducing the number of automata and
clocks, the verification efficiency can be improved even further.

Scheduling Techniques

In the third part of the dissertation, we have dealt with scheduling techniques
for mixed hard/soft real-time systems.

Approaches for hard/soft real-time systems permit dealing with tasks
with different levels of criticality and therefore tackling a broad range of
applications.

We have studied real-time systems composed of both hard and soft tasks.
We make use of utility functions in order to capture the relative importance
of soft tasks as well as how the quality of results is influenced upon missing a
soft deadline. Differentiating among soft tasks gives an additional degree of
flexibility as it allows the processing resources to be allocated more efficiently.

We have also studied real-time systems for which approximate but timely
results are acceptable. We have considered the Imprecise Computation
framework in which there exist functions that assign reward to tasks de-
pending on how much they execute. Having different reward functions for

182 9. Conclusions

different tasks permits also distinguishing tasks and thus denoting their com-
parative significance.

Both for systems in which the quality of results (in the form of utilities)
depends on task completion times and for systems in which the quality of
results (in the form of rewards) depends on the amount of computation
alloted to tasks, we have proposed quasi-static approaches.

The chief merit of the quasi-static techniques introduced in this thesis is
their ability to exploit the dynamic slack, caused by tasks completing earlier
than in the worst case, at a very low on-line overhead.

Real-time applications exhibit large variations in execution times and
considering only worst-case values is typically too pessimistic, hence the
importance of exploiting the dynamic slack for improving different design
metrics (such as higher quality of results or lower energy consumption).
However, dynamic approaches that recompute solutions at run-time in order
to take advantage of such a slack incur a large overhead as these on-line
computations are very complex in many cases. Even when the problems to
be solved on-line admit polynomial-time solutions, or even when heuristics
that produce approximate solutions are employed, the overhead is so high
that it actually has a counterproductive effect.

Therefore, in order to efficiently exploit the dynamic slack, we need meth-
ods with low on-line overhead. The quasi-static approaches proposed in this
dissertation succeed in exploiting the dynamic slack, yet having small on-
line overhead, because the complex time- and energy-consuming parts of the
computations are performed off-line, at design-time, leaving for run-time
only simple lookup and selection operations.

In a quasi-static solution a number of schedules/assignments are com-
puted and stored at design-time. This number of schedules/assignments
that can be stored is limited by the resources of the target system. There-
fore, a careful selection of schedules/assignments is crucial because it has a
large impact on the quality of the solution.

Numerous experiments considering realistic settings have demonstrated
the advantages of our quasi-static techniques over their static and dynamic
counterparts.

Chapter 10

Future Work

There are certainly many possible extensions that can be pursued on the
basis of the techniques proposed in this dissertation. This chapter discusses
future directions of our research by pointing out some of the possible ways
to improve and extend the work presented in this thesis.

• The verification approach introduced in this thesis is applicable to safe
PRES+ models, that is, nets in which, for every reachable marking, each
place holds at most one token. It would be desirable to extend the ap-
proach in such a way that it can also handle non-safe PRES+ models. A
more general approach comes at the expense of verification complexity
though.

• Along our verification approach we have proposed two strategies for im-
proving verification efficiency. Future work in this line includes finding
more efficient techniques that further improve the verification process,
in terms of both time and memory. This can be achieved, for example,
by identifying the parts of the system that are irrelevant for a particu-
lar property; in this way, when verifying that property, it is needed to
consider only a fraction of the original model and thus the verification
process is simplified.

• Our verification approach has concentrated on the presence/absence of
tokens in the places of a PRES+ model and their time stamps. An inter-
esting direction is to extend the techniques in such a way that reasoning
about token values is also possible.

• The problem of mapping tasks onto processing resources is of particular
interest. We have considered that the mapping is fixed and given as input
to the scheduling problems addressed in the thesis. By considering the
mapping of tasks as part of the problem, the designer can explore a larger
portion of the design space and therefore search for better solutions.
For instance, in relation to the problem of maximizing utility for real-

184 10. Future Work

time systems with hard and soft tasks, not only does the task execution
order affect the total utility but also the way tasks are mapped onto
the available processing elements. Tools supporting both mapping and
scheduling activities assist the designer in taking decisions that may lead
to better results. There are also other steps of the design flow well worth
considering, such as architecture selection.

• For the techniques discussed in this thesis in the frame of the Imprecise
Computation model, we concentrated on the monoprocessor case. A nat-
ural extension is to explore similar approaches, in which energy, reward,
and deadlines are considered under a unified framework, for the general
case of multiprocessor systems.

Bibliography

[AB98] L. Abeni and G. Buttazzo. Integrating Multimedia Applica-
tions in Hard Real-Time Systems. In Proc. Real-Time Systems
Symposium, pages 4–13, 1998.

[ACD90] R. Alur, C. Courcoubetis, and D. L. Dill. Model Checking for
Real-Time Systems. In Proc. Symposium on Logic in Com-
puter Science, pages 414–425, 1990.

[ACHH93] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho.
Hybrid automata: An algorithmic approach to the specifi-
cation and verification of hybrid systems. In R. L. Gross-
man, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid
Systems, LNCS 736, pages 209–229, Berlin, 1993. Springer-
Verlag.

[AHH96] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic Symbolic
Verification of Embedded Systems. IEEE Trans. on Software
Engineering, 22(3):181–201, March 1996.

[Alu99] R. Alur. Timed Automata. In D. A. Peled and N. Halbwachs,
editors, Computer-Aided Verification, LNCS 1633, pages 8–
22, Berlin, 1999. Springer-Verlag.

[AMMMA01] H. Aydin, R. Melhem, D. Mossé, and P. Mej́ıa-Alvarez. Dy-
namic and Aggressive Scheduling Techniques for Power-Aware
Real-Time Systems. In Proc. Real-Time Systems Symposium,
pages 95–105, 2001.

[ASE+04] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. Al-Hashimi.
Overhead-Conscious Voltage Selection for Dynamic and Leak-
age Energy Reduction of Time-Constrained Systems. In Proc.
DATE Conference, pages 518–523, 2004.

186 Bibliography

[ASE+05] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. Al-Hashimi.
Quasi-Static Voltage Scaling for Energy Minimization with
Time Constraints. 2005. Submitted for publication.

[Bai71] D. E. Bailey. Probability and Statistics. John Wiley & Sons,
New York, NY, 1971.

[BCG+97] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska,
L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, E. Sen-
tovich, K. Suzuki, and B. Tabbara. Hardware-Software Co-
Design of Embedded Systems: The POLIS Approach. Kluwer,
Norwell, MA, 1997.

[Ben99] L. P. M. Benders. Specification and Performance Analysis of
Embedded Systems with Coloured Petri Nets. Computers and
Mathematics with Applications, 37(11):177–190, June 1999.

[BHJ+96] F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli. Formal Verification of Embed-
ded Systems based on CFSM Networks. In Proc. DAC, pages
568–571, 1996.

[BPB+00] A. Burns, D. Prasad, A. Bondavalli, F. Di Giandomenico,
K. Ramamritham, J. A. Stankovic, and L. Strigini. The Mean-
ing and Role of Value in Scheduling Flexible Real-Time Sys-
tems. Journal of Systems Architecture, 46(4):305–325, Jan-
uary 2000.

[Bré79] D. Brélaz. New Methods to Color the Vertices of a Graph.
Communications of the ACM, 22(4):251–256, April 1979.

[BS99] G. Buttazzo and F. Sensini. Optimal Deadline Assignment
for Scheduling Soft Aperiodic Tasks in Hard Real-Time En-
vironments. IEEE. Trans. on Computers, 48(10):1035–1052,
October 1999.

[But97] G. Buttazzo. Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications. Kluwer,
Dordrecht, 1997.

[CEP99] L. A. Cortés, P. Eles, and Z. Peng. A Petri Net based Model
for Heterogeneous Embedded Systems. In Proc. NORCHIP
Conference, pages 248–255, 1999.

Bibliography 187

[CEP00a] L. A. Cortés, P. Eles, and Z. Peng. Definitions of Equiva-
lence for Transformational Synthesis of Embedded Systems.
In Proc. Intl. Conference on Engineering of Complex Com-
puter Systems, pages 134–142, 2000.

[CEP00b] L. A. Cortés, P. Eles, and Z. Peng. Formal Coverification
of Embedded Systems using Model Checking. In Proc. Eu-
romicro Conference (Digital Systems Design), volume 1, pages
106–113, 2000.

[CEP00c] L. A. Cortés, P. Eles, and Z. Peng. Verification of Embedded
Systems using a Petri Net based Representation. In Proc. Intl.
Symposium on System Synthesis, pages 149–155, 2000.

[CEP01] L. A. Cortés, P. Eles, and Z. Peng. Hierarchical Modeling
and Verification of Embedded Systems. In Proc. Euromicro
Symposium on Digital System Design, pages 63–70, 2001.

[CEP02a] L. A. Cortés, P. Eles, and Z. Peng. An Approach to Reducing
Verification Complexity of Real-Time Embedded Systems. In
Proc. Euromicro Conference on Real-Time Systems (Work-
in-progress Session), pages 45–48, 2002.

[CEP02b] L. A. Cortés, P. Eles, and Z. Peng. Verification of Real-Time
Embedded Systems using Petri Net Models and Timed Au-
tomata. In Proc. Intl. Conference on Real-Time Computing
Systems and Applications, pages 191–199, 2002.

[CEP03] L. A. Cortés, P. Eles, and Z. Peng. Modeling and Formal
Verification of Embedded Systems based on a Petri Net Rep-
resentation. Journal of Systems Architecture, 49(12-15):571–
598, December 2003.

[CEP04a] L. A. Cortés, P. Eles, and Z. Peng. Combining Static and
Dynamic Scheduling for Real-Time Systems. In Proc. Intl.
Workshop on Software Analysis and Development for Perva-
sive Systems, pages 32–40, 2004. Invited paper.

[CEP04b] L. A. Cortés, P. Eles, and Z. Peng. Quasi-Static Scheduling
for Real-Time Systems with Hard and Soft Tasks. In Proc.
DATE Conference, pages 1176–1181, 2004.

[CEP04c] L. A. Cortés, P. Eles, and Z. Peng. Static Scheduling of
Monoprocessor Real-Time Systems composed of Hard and

188 Bibliography

Soft Tasks. In Proc. Intl. Workshop on Electronic Design,
Test and Applications, pages 115–120, 2004.

[CEP05a] L. A. Cortés, P. Eles, and Z. Peng. Quasi-Static Assignment
of Voltages and Optional Cycles for Maximizing Rewards in
Real-Time Systems with Energy Constraints. 2005. Submit-
ted for publication.

[CEP05b] L. A. Cortés, P. Eles, and Z. Peng. Quasi-Static Scheduling for
Multiprocessor Real-Time Systems with Hard and Soft Tasks.
2005. Submitted for publication.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Ver-
ification of Finite-State Concurrent Systems Using Temporal
Logic Specifications. ACM Trans. on Programming Languages
and Systems, 8(2):244–263, April 1986.

[CGH+93] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli. A Formal Specification Model for
Hardware/Software Codesign. Technical Report UCB/ERL
M93/48, Dept. EECS, University of California, Berkeley, June
1993.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking.
MIT Press, Cambridge, MA, 1999.

[CKLW03] J. Cortadella, A. Kondratyev, L. Lavagno, and Y. Watan-
abe. Quasi-Static Scheduling for Concurrent Architectures.
In Proc. Intl. Conference on Application of Concurrency to
System Design, pages 29–40, 2003.

[CM96] K. Chen and P. Muhlethaler. A Scheduling Algorithm for
Tasks described by Time Value Function. Real-Time Systems,
10(3):293–312, May 1996.

[CPE01] L. A. Cortés, Z. Peng, and P. Eles. From Haskell to
PRES+: Basic Translation Procedures. SAVE Project
Report, Dept. of Computer and Information Science,
Linköping University, Linköping, April 2001. Available from
http://www.ida.liu.se/∼eslab/save.

[CW96] E. M. Clarke and J. M. Wing. Formal Methods: State of
the Art and Future Directions. ACM Computing Surveys,
28(4):626–643, December 1996.

Bibliography 189

[DeM97] G. De Micheli. Hardware/Software Co-Design. Proc. IEEE,
85(3):349–365, March 1997.

[DFL72] J. B. Dennis, J. B. Fosseen, and J. P. Linderman. Data flow
schemas. In Proc. Intl. Symposium on Theoretical Program-
ming, pages 187–216, 1972.

[Dil98] D. L. Dill. What’s Between Simulation and Formal Verifica-
tion? In Proc. DAC, pages 328–329, 1998.

[Dit95] G. Dittrich. Modeling of Complex Systems Using Hierarchical
Petri Nets. In J. Rozenblit and K. Buchenrieder, editors,
Codesign: Computer-Aided Software/Hardware Engineering,
pages 128–144, Piscataway, NJ, 1995. IEEE Press.

[DTB93] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling Slack
Time in Fixed Priority Pre-emptive Systems. In Proc. Real-
Time Systems Symposium, pages 222–231, 1993.

[EKP+98] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop.
Scheduling of Conditional Process Graphs for the Synthesis
of Embedded Systems. In Proc. DATE Conference, pages
132–138, 1998.

[ELLSV97] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-
Vicentelli. Design of Embedded Systems: Formal Models,
Validation, and Synthesis. Proc. IEEE, 85(3):366–390, March
1997.

[Esp94] J. Esparza. Model Checking using Net Unfoldings. Science of
Computer Programming, 23(2-3):151–195, December 1994.

[Esp98] J. Esparza. Decidability and complexity of Petri net
problems—an introduction. In P. Wolper and G. Rozenberg,
editors, Lectures on Petri Nets: Basic Models, LNCS 1491,
pages 374–428, Berlin, 1998. Springer-Verlag.

[ETT98] R. Esser, J. Teich, and L. Thiele. CodeSign: An Embedded
System Design Environment. IEE Proc. Computers and Dig-
ital Techniques, 145(3):171–180, May 1998.

[FFP04] L. Formaggio, F. Fummi, and G. Pravadelli. A Timing-
Accurate HW/SW Co-simulation of an ISS with SystemC.
In Proc. CODES+ISSS, pages 152–157, 2004.

190 Bibliography

[FIR+97] L. Freund, M. Israel, F. Rousseau, J. M. Bergé, M. Auguin,
C. Belleudy, and G. Gogniat. A Codesign Experiment in
Acoustic Echo Cancellation: GMDFα. ACM Trans. on De-
sign Automation of Electronic Systems, 2(4):365–383, October
1997.

[Fit96] M. Fitting. First-Order Logic and Automated Theorem Prov-
ing. Springer-Verlag, New York, NY, 1996.

[FLL+98] E. Filippi, L. Lavagno, L. Licciardi, A. Montanaro, M. Paolini,
R. Passerone, M. Sgroi, and A. Sangiovanni-Vincentelli. Intel-
lectual Property Re-use in Embedded System Co-design: an
Industrial Case Study. In Proc. ISSS, pages 37–42, 1998.

[FPF+03] F. Fummi, G. Pravadelli, A. Fedeli, U. Rossi, and F. Toto.
On the Use of a High-Level Fault Model to Check Properties
Incompleteness. In Proc. Intl. Conference on Formal Methods
and Models for Co-Design, pages 145–152, 2003.

[Gal87] J. H. Gallier. Foundations of Automatic Theorem Proving.
John Wiley & Sons, New York, NY, 1987.

[GBdSMH01] A. R. Girard, J. Borges de Sousa, J. A. Misener, and J. K.
Hedrick. A Control Architecture for Integrated Cooperative
Cruise Control with Collision Warning Systems. In Proc. Con-
ference on Decision and Control, volume 2, pages 1491–1496,
2001.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman,
San Francisco, CA, 1979.

[GK01] F. Gruian and K. Kuchcinski. LEneS: Task Scheduling for
Low-Energy Systems Using Variable Supply Voltage Proces-
sors. In Proc. ASP-DAC, pages 449–455, 2001.

[GR94] D. D. Gajski and L. Ramachandran. Introduction to High-
Level Synthesis. IEEE Design & Test of Computers, 11(4):44–
54, 1994.

[GVNG94] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification
and Design of Embedded Systems. Prentice-Hall, Englewood
Cliffs, NJ, 1994.

Bibliography 191

[Har87] D. Harel. Statecharts: A Visual Formalism for Complex Sys-
tems. Science of Computer Programming, 8(3):231–274, June
1987.

[Has] Haskell. http://www.haskell.org.

[HG02] P.-A. Hsiung and C.-H. Gau. Formal Synthesis of Real-Time
Embedded Software by Time-Memory Scheduling of Colored
Time Petri Nets. Electronic Notes in Theoretical Computer
Science, 65(6), June 2002.

[Hib01] B. D. Hibbs. Mars Solar Rover Feasibility Study. Technical
Report NASA/CR 2001-210802, NASA/AeroVironment, Inc.,
Washington, DC, March 2001.

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Addison-
Wesley, Boston, MA, 2001.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, Englewood Cliffs, NJ, 1985.

[HR94] N. Homayoun and P. Ramanathan. Dynamic Priority
Scheduling of Periodic and Aperiodic Tasks in Hard Real-
Time Systems. Real-Time Systems, 6(2):207–232, March
1994.

[Hsi99] P.-A. Hsiung. Hardware-Software Coverification of Concur-
rent Embedded Real-Time Systems. In Proc. Euromicro Con-
ference on Real-Time Systems, pages 216–223, 1999.

[Hul00] D. L. Hull. An Environment for Imprecise Computations.
PhD thesis, Department of Computer Science, University of
Illinois, Urbana-Champaign, January 2000.

[HyT] HyTech. http://www-cad.eecs.berkeley.edu/∼tah/HyTech.

[IAJ94] T. B. Ismail, M. Abid, and A. A. Jerraya. COSMOS: A
CoDesign Approach for Communicating Systems. In Proc.
CODES/CASHE, pages 17–24, 1994.

[Jan03] A. Jantsch. Modeling Embedded Systems and SoC’s: Concur-
rency and Time in Models of Computation. Morgan Kauf-
mann, San Francisco, CA, 2003.

[Jen92] K. Jensen. Coloured Petri Nets. Springer-Verlag, Berlin, 1992.

192 Bibliography

[JO95] A. A. Jerraya and K. O’Brien. SOLAR: An Intermediate For-
mat for System-Level Modeling and Synthesis. In J. Rozen-
blit and K. Buchenrieder, editors, Codesign: Computer-Aided
Software/Hardware Engineering, pages 145–175, Piscataway,
NJ, 1995. IEEE Press.

[Joh98] H. Johnson. Keeping Up with Moore. EDN Magazine, May
1998.

[JR91] K. Jensen and G. Rozenberg, editors. High-level Petri Nets.
Springer-Verlag, Berlin, 1991.

[Kah01] A. B. Kahng. Design Technology Productivity in the DSM
Era. In Proc. ASP-DAC, pages 443–448, 2001.

[KE96] A. Kovalyov and J. Esparza. A Polynomial Algorithm to Com-
pute the Concurrency Relation of Free-choice Signal Transi-
tion Graphs. In Proc. Intl. Workshop on Discrete Event Sys-
tems, pages 1–6, 1996.

[KG99] C. Kern and M. R. Greenstreet. Formal Verification in Hard-
ware Design: A Survey. ACM Trans. on Design Automation
of Electronic Systems, 4(2):123–193, April 1999.

[KL03] C. M. Krishna and Y.-H. Lee. Voltage-Clock-Scaling Adap-
tive Scheduling Techniques for Low Power in Hard Real-Time
Systems. IEEE Trans. on Computers, 52(12):1586–1593, De-
cember 2003.

[Kop97] H. Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer, Dordrecht, 1997.

[Kov92] A. Kovalyov. Concurrency Relations and the Safety Problem
for Petri Nets. In K. Jensen, editor, Application and Theory of
Petri Nets, LNCS 616, pages 299–309, Berlin, 1992. Springer-
Verlag.

[Kov00] A. Kovalyov. A Polynomial Algorithm to Compute the
Concurrency Relation of a Regular STG. In A. Yakovlev,
L. Gomes, and L. Lavagno, editors, Hardware Design and
Petri Nets, pages 107–126, Dordrecht, 2000. Kluwer.

[Koz97] D. C. Kozen. Automata and Computability. Springer-Verlag,
New York, NY, 1997.

Bibliography 193

[KP97] D. Kirovski and M. Potkonjak. System-Level Synthesis of
Low-Power Hard Real-Time Systems. In Proc. DAC, pages
697–702, 1997.

[Kro] Kronos. http://www-verimag.imag.fr/TEMPORISE/kronos.

[KSSR96] H. Kaneko, J. A. Stankovic, S. Sen, and K. Ramamritham.
Integrated Scheduling of Multimedia and Hard Real-Time
Tasks. In Proc. Real-Time Systems Symposium, pages 206–
217, 1996.

[Lap04] P. A. Laplante. Real-Time Systems Design and Analysis. John
Wiley & Sons, Hoboken, NY, 2004.

[Law73] E. L. Lawler. Optimal Sequencing of a Single Machine subject
to Precedence Constraints. Management Science, 19:544–546,
1973.

[Lee58] C. Y. Lee. Some Properties of Nonbinary Error-Correcting
Codes. IEEE Trans. on Information Theory, 2(4):77–82, June
1958.

[LJ03] J. Luo and N. K. Jha. Power-profile Driven Variable Voltage
Scaling for Heterogeneous Distributed Real-Time Embedded
Systems. In Proc. Intl. Conference on VLSI Design, pages
369–375, 2003.

[LK01] P. Lind and S. Kvist. Jammer Model Description. Technical
Report, Saab Bofors Dynamics AB, Linköping, April 2001.

[LM87] E. A. Lee and D. G. Messerschmitt. Synchronous Data Flow.
Proc. IEEE, 75(9):1235–1245, September 1987.

[Loc86] C. D. Locke. Best-Effort Decision Making for Real-Time
Scheduling. PhD thesis, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, May 1986.

[LP95] E. A. Lee and T. M. Parks. Dataflow Process Networks. Proc.
IEEE, 83(5):773–799, May 1995.

[LPY95] K. G. Larsen, P. Pettersson, and W. Yi. Model-Checking for
Real-Time Systems. In H. Reichel, editor, Fundamentals of
Computation Theory, LNCS 965, pages 62–88, Berlin, 1995.
Springer-Verlag.

194 Bibliography

[LRT92] J. P. Lehoczky and S. Ramos-Thuel. An Optimal Algorithm
for Scheduling Soft-Aperiodic Tasks in Fixed-Priority Pre-
emptive Systems. In Proc. Real-Time Systems Symposium,
pages 110–123, 1992.

[LSL+94] J. W. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung.
Imprecise Computations. Proc. IEEE, 82(1):83–94, January
1994.

[LSVS99] L. Lavagno, A. Sangiovanni-Vincentelli, and E. Sentovich.
Models of Computation for Embedded System Design. In
A. A. Jerraya and J. Mermet, editors, System-Level Synthe-
sis, pages 45–102, Dordrecht, 1999. Kluwer.

[MBR99] P. Maciel, E. Barros, and W. Rosenstiel. A Petri Net Model
for Hardware/Software Codesign. Design Automation for Em-
bedded Systems, 4(4):243–310, October 1999.

[McC99] S. McCartney. ENIAC: The Triumphs and Tragedies of the
World’s First Computer. Walker Publishing, New York, NY,
1999.

[MF76] P. M. Merlin and D. J. Farber. Recoverability of Communi-
cation Protocols–Implications of a Theoretical Study. IEEE
Trans. on Communications, COM-24(9):1036–1042, Septem-
ber 1976.

[MFMB02] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Com-
bined Dynamic Voltage Scaling and Adaptive Body Biasing
for Low Power Microprocessors under Dynamic Workloads. In
Proc. ICCAD, pages 721–725, 2002.

[Moo65] G. E. Moore. Cramming more components onto integrated
circuits. Electronics, 38(8):114–117, April 1965.

[MOS] MOSEK. http://www.mosek.com.

[Mur89] T. Murata. Petri Nets: Analysis and Applications. Proc.
IEEE, 77(4):541–580, April 1989.

[NEC] NEC Memories. http://www.necel.com/memory/index e.html.

[NN94] Y. Nesterov and A. Nemirovski. Interior-Point Polynomial
Algorithms in Convex Programming. SIAM, Philadelphia,
1994.

Bibliography 195

[OYI01] T. Okuma, H. Yasuura, and T. Ishihara. Software Energy
Reduction Techniques for Variable-Voltage Processors. IEEE
Design & Test of Computers, 18(2):31–41, March 2001.

[PBA03] D. Prasad, A. Burns, and M. Atkins. The Valid Use of Utility
in Adaptive Real-Time Systems. Real-Time Systems, 25(2-
3):277–296, September 2003.

[Pet81] J. L. Peterson. Petri Net Theory and the Modeling of Systems.
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[RCGF97] I. Ripoll, A. Crespo, and A. Garćıa-Fornes. An Optimal
Algorithm for Scheduling Soft Aperiodic Tasks in Dynamic-
Priority Preemptive Systems. IEEE. Trans. on Software En-
gineering, 23(6):388–400, October 1997.

[RLLS97] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A Re-
source Allocation Model for QoS Management. In Proc. Real-
Time Systems Symposium, pages 298–307, 1997.

[RMM03] C. Rusu, R. Melhem, and D. Mossé. Maximizing Re-
wards for Real-Time Applications with Energy Constraints.
ACM Trans. on Embedded Computing Systems, 2(4):537–559,
November 2003.

[Row94] J. A. Rowson. Hardware/Software Co-Simulation. In Proc.
DAC, pages 439–440, 1994.

[SC99] Y. Shin and K. Choi. Power Conscious Fixed Priority Schedul-
ing for Hard Real-Time Systems. In Proc. DAC, pages 134–
139, 1999.

[SGG+03] C.-S. Shih, S. Gopalakrishnan, P. Ganti, M. Caccamo, and
L. Sha. Template-Based Real-Time Dwell Scheduling with
Energy Constraints. In Proc. Real-Time and Embedded Tech-
nology and Applications Symposium, pages 19–27, 2003.

[SH02] F.-S. Su and P.-A. Hsiung. Extended Quasi-Static Schedul-
ing for Formal Synthesis and Code Generation of Embedded
Software. In Proc. CODES, pages 211–216, 2002.

[SJ04] I. Sander and A. Jantsch. System modeling and transforma-
tional design refinement in forsyde. IEEE Trans. on CAD of
Integrated Circuits and Systems, 23(1):17–32, January 2004.

196 Bibliography

[SLC89] W.-K. Shih, J. W. S. Liu, and J.-Y. Chung. Fast Algorithms
for Scheduling Imprecise Computations. In Proc. Real-Time
Systems Symposium, pages 12–19, 1989.

[SLK01] D. Shin, S. Lee, and J. Kim. Intra-Task Voltage Scheduling
for Low-Energy Hard Real-Time Applications. IEEE Design
& Test of Computers, 18(2):20–30, March 2001.

[SLS95] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The Deferrable
Server Algorithm for Enhanced Aperiodic Responsiveness in
Hard Real-Time Environments. IEEE Trans. on Computers,
44(1):73–91, January 1995.

[SLSV00] M. Sgroi, L. Lavagno, and A. Sangiovanni-Vincentelli. Formal
Models for Embedded System Design. IEEE Design & Test
of Computers, 17(2):14–27, April 2000.

[SLWSV99] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-
Vincentelli. Synthesis of Embedded Software Using Free-
Choice Petri Nets. In Proc. DAC, pages 805–810, 1999.

[STG+01] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and
J. Teich. FunState–An Internal Design Representation for
Codesign. IEEE Trans. on VLSI Systems, 9(4):524–544, Au-
gust 2001.

[Sto95] E. Stoy. A Petri Net Based Unified Representation for
Hardware/Software Co-Design. Licentiate Thesis, Dept. of
Computer and Information Science, Linköping University,
Linköping, 1995.

[TAS93] D. E. Thomas, J. K. Adams, and H. Schmit. A Model and
Methodology for Hardware-Software Codesign. IEEE Design
& Test of Computers, 10(3):6–15, 1993.

[Tur02] J. Turley. The Two Percent Solution. Embedded Systems
Programming, 15(12), December 2002.

[Upp] Uppaal. http://www.uppaal.com.

[VAH01] M. Varea and B. Al-Hashimi. Dual Transitions Petri Net
based Modelling Technique for Embedded Systems Specifi-
cation. In Proc. DATE Conference, pages 566–571, 2001.

Bibliography 197

[VAHC+02] M. Varea, B. Al-Hashimi, L. A. Cortés, P. Eles, and Z. Peng.
Symbolic Model Checking of Dual Transition Petri Nets. In
Proc. Intl. Symposium on Hardware/Software Codesign, pages
43–48, 2002.

[Vav91] S. A. Vavasis. Nonlinear Optimization: Complexity Issues.
Oxford University Press, New York, NY, 1991.

[VG02] F. Vahid and T. Givargis. Embedded Systems Design: A Uni-
fied Hardware/Software Introduction. John Wiley & Sons,
New York, NY, 2002.

[vLA87] P. J. M. van Laarhoven and E. H. L. Aarts. Simulated An-
nealing: Theory and Applications. Kluwer, Dordrecht, 1987.

[WRJB04] H. Wu, B. Ravindran, E. D. Jensen, and U. Balli. Utility Ac-
crual Scheduling under Arbitrary Time/Utility Functions and
Multi-unit Resource Constraints. In Proc. Intl. Conference on
Real-Time Computing Systems and Applications, pages 80–98,
2004.

[YC03] P. Yang and F. Catthoor. Pareto-Optimization-Based Run-
Time Task Scheduling for Embedded Systems. In Proc.
CODES+ISSS, pages 120–125, 2003.

[YDS95] F. Yao, A. Demers, and S. Shenker. A Scheduling Model for
Reduced CPU Energy. In Proc. Symposium on Foundations
of Computer Science, pages 374–382, 1995.

[Yen91] H.-C. Yen. A Polynomial Time Algorithm to Decide Pairwise
Concurrency of Transitions for 1-bounded Conflict-Free Petri
Nets. Information Processing Letters, 38:71–76, April 1991.

[YK04] H.-S. Yun and J. Kim. Reward-Based Voltage Scheduling
for Fixed-Priority Hard Real-Time Systems. In Proc. Intl.
Workshop on Power-Aware Real-Time Computing, pages 1–
4, 2004.

[ZHC03] Y. Zhang, X. S. Hu, and D. Z. Chen. Energy Minimization of
Real-Time Tasks on Variable Voltage Processors with Transi-
tion Overheads. In Proc. ASP-DAC, pages 65–70, 2003.

Appendices

Appendix A

Notation

Petri Nets and PRES+

Notation Description

‖ concurrency relation
‖T concurrency relation on T

‖S structural concurrency relation
‖S
T

structural concurrency relation on T

Bi binding of transition Ti

et i enabling time of transition Ti

fi transition function of transition Ti

high-level function of super-transition ST i

gi guard of transition Ti

H abstract PRES+ net
inP set of in-ports
I input (place-transition) arc
I set of input arcs
K token
K set of all possible tokens in a net
KP set of possible tokens in place P
mi(P) number of tokens in place P , for marking Mi

M marking
M0 initial marking
M(P) marking of place P
M0(P) initial marking of place P
N Petri net

PRES+ net

202 A. Notation

Notation Description

outP set of out-ports
O output (transition-place) arc
O set of output arcs
P place
◦P set of input transitions of place P
P ◦ set of output transitions of place P
P set of places
R(N) reachability set of net N
ST super-transition
◦ST set of input places of super-transition ST
ST ◦ set of output places of super-transition ST
ST set of super-transitions
ti token time of token Ki

ttbc
i earliest trigger time of transition Ti

ttwc
i latest trigger time of transition Ti

τbc
i best-case transition delay of transition Ti

best-case delay of super-transition ST i

τwc
i worst-case transition delay of transition Ti

worst-case delay of super-transition ST i

T transition
◦T set of input places of transition T
T ◦ set of output places of transition T
T set of transitions
vi token value of token Ki

ζ(P) token type associated to place P
ζ set of all token types in a net

Timed Automata

Notation Description

a(e) activities assigned to edge e
c clock
c(e) clock condition over edge e
C set of clocks
e edge
E set of edges
i(l) invariant of location l
l location

203

Notation Description

L set of locations
L0 set of initial locations
r(e) set of clocks to reset on edge e
~T timed automaton
v(e) variable condition over edge e
V set of variables
x(e) label of edge e
X set of labels

Systems with Real-Time Hard and Soft Tasks

Notation Description

di deadline of task Ti

E edge
E set of edges
G dataflow graph
H set of hard tasks
I i interval of possible completions times ti
m(T) mapping of task T
PE processing element
PE set of processing elements
si starting time of task Ti

S set of soft tasks

σ(i) task execution order on processing element PE i

Ω schedule (set of task execution orders σ(i))
ti completion time of task Ti

τi actual execution time of task Ti

τbc
i best-case duration of task Ti

τ e
i expected duration of task Ti

τwc
i worst-case duration of task Ti

T task
◦T set of direct predecessors of task T
T ◦ set of direct successors of task T
T set of tasks

T(i) set of tasks mapped onto processing element PEi

ui(ti) utility function of soft task Ti

204 A. Notation

Notation Description

U total utility

Imprecise-Computation Systems

Notation Description

Ci effective switched capacitance corresponding to task Ti

di deadline of task Ti

δ∆V
i,j time overhead by switching from Vi to Vj

δsel
i time overhead by selecting assignments for task Ti

δdyn
i time overhead by on-line operations (upon completing Ti)

E set of edges
Emax upper limit in the energy consumed by the system
Ei dynamic energy consumed by task Ti

EC i total energy consumed up to the completion of task Ti

E∆V
i,j energy overhead by switching from Vi to Vj

Esel
i energy overhead by selecting assignments for task Ti

Edyn
i energy overhead by on-line operations (upon completing Ti)

G dataflow graph
LUTi lookup table corresponding to task Ti

Mi actual number of mandatory cycles of task Ti

Mbc
i best-case number of mandatory cycles of task Ti

M e
i expected number of mandatory cycles of task Ti

Mwc
i worst-case number of mandatory cycles of task Ti

Nmax maximum number of V/O assignments that can be stored
Oi number of optional cycles of task Ti

Omax
i num. of opt. cycles of Ti after which no extra reward is gained

Ri(Oi) reward function of task Ti

R total reward
Rmin lower limit in the reward produced by the system
Rmax

i maximum reward for task Ti

RP i reward produced up to the completion of task Ti

si starting time of task Ti

ti completion time of task Ti

τi execution time of task Ti

T task
T set of tasks

205

Notation Description

V min minimum voltage of the target processor
V max maximum voltage of the target processor
Vi voltage at which task Ti runs

Appendix B

Proofs

B.1 Validity of Transformation Rule TR1

The validity of the transformation rule TR1 introduced in Subsection 5.1.1
(see Figure 5.1) is proved by showing that the nets N ′ and N ′′ in Figure B.1
are total-equivalent, provided that f = f2 ◦ f1, l = l1 + l2, u = u1 + u2, and
M0(P) = ∅.

[]

Q’’1 Q’’m

1P’’ P’’n

. . .

. . .

N’’

T1f1

T2f2

l1[], 1u

P’n1P’

Q’1 Q’m

l2 u2,[]

v1(,0) vn(,0)

v1(,0) vn(,0). . .

. . .

N’

P
f T

l,u

Figure B.1: Proving the validity of TR1

As defined in Subsection 3.5.1, the idea behind total-equivalence is as
follows: a) there exist bijections that define one-to-one correspondences be-
tween the in(out)-ports of N ′ and N ′′; b) having initially identical tokens
in corresponding in-ports, there exists a firing sequence which leads to the
same marking (same token values and same token times) in corresponding
out-ports.

The sets of in-ports and out-ports of N ′ are inP′ = {P ′
1, . . . , P

′
n} and

208 B. Proofs

outP′ = {Q′
1, . . . , Q

′
m} respectively. Similarly, the sets of in-ports and out-

ports of N ′′ are inP′′ = {P ′′
1 , . . . , P ′′

n} and outP′′ = {Q′′
1 , . . . , Q

′′
m} respec-

tively. Let hin : inP′ → inP′′ and hout : outP′ → outP′′ be, respectively,
bijections defining one-to-one correspondences between in(out)-ports of N ′

and N ′′, such that hin(P ′
i) = P ′′

i for all 1 ≤ i ≤ n, and hout (Q
′
j) = Q′′

j for all
1 ≤ j ≤ m.

By firing the transition T in N ′′, we get a marking M ′′ where M ′′(Q′′
j) =

{(v′′j , t′′j)} for all Q′′
j ∈ outP′′. In such a marking the token K ′′

j = (v′′j , t′′j) in
Q′′

j has token value v′′j = f(v1, . . . , vn) and token time t′′j , where l ≤ t′′j ≤ u.

Since M0(P) = ∅, by firing T1 in N ′, we obtain a marking M where P is
the only place marked in N ′ (M(P) = {(v, t)}) with a token that has token
value v = f1(v1, . . . , vn) and token time t, where l1 ≤ t ≤ u1. Then, by
firing T2 in N ′′, we obtain a marking M ′ where M ′(Q′

j) = {(v′j , t′j)} for all
Q′

j ∈ outP′. In this marking the token K ′
j = (v′j , t

′
j) in Q′

j has token value
v′j = f2(v) = f2(f1(v1, . . . , vn)) and token time t′j, where l2 + t ≤ t′j ≤ u2 + t,
that is, l1 + l2 ≤ t′j ≤ u1 + u2. Since f = f2 ◦ f1, l = l1 + l2, and u = u1 + u2,
we have v′j = f(v1, . . . , vn) and l ≤ t′j ≤ u.

Therefore, for all K ′
j = (v′j , t

′
j) in Q′

j ∈ outP′ and all K ′′
j = (v′′j , t′′j) in

Q′′
j ∈ outP′′: a) v′j = v′′j ; b) for every t′j there exists t′′j such that t′j = t′′j ,

and vice versa. Hence the nets N ′ and N ′′ shown in Figure B.1 are total-
equivalent. �

B.2 NP-hardness of MSMU (Monoprocessor

Scheduling to Maximize Utility)

In order to prove that the problem of static scheduling for monoprocessor
real-time systems with hard and soft tasks (Problem 7.2 as formulated in
Section 7.2) is NP-hard, we first turn such an optimization problem into a
decision problem as follows.

Problem B.1 (Monoprocessor Scheduling to Maximize Utility—MSMU)
Given a set T of tasks, a directed acyclic graph G = (T,E) defining
precedence constraints for tasks, expected and worst-case durations τ e

i

and τwc
i for each task Ti ∈ T, subsets H ⊆ T and S ⊆ T of hard and

soft tasks respectively (H ∩ S = ∅), a hard deadline di for each task
Ti ∈ H, a non-increasing utility function ui(ti) for each task Ti ∈ S

(ti is the completion time of Ti), and a constant K; does there exist a
monoprocessor schedule σ (a bijection σ : T→ {1, 2, . . . , |T|}) such that∑

Ti∈S
ui(t

e
i) ≥ K, twc

i ≤ di for all Ti ∈ H, and σ(T) < σ(T ′) for all
(T, T ′) ∈ E?

B.2. NP-hardness of MSMU 209

In order to prove the NP-hardness of MSMU, we transform a known
NP-hard problem into an instance of MSMU. We have selected the problem
Scheduling to Minimize Weighted Completion Time (SMWCT) [GJ79] for
this purpose. The formulation of SMWCT is shown below.

Problem B.2 (Scheduling to Minimize Weighted Completion Time—
SMWCT) Given a set T of tasks, a partial order l on T, a duration τi

and a weight wi for each task Ti ∈ T, and a constant K; does there exist a
monoprocessor schedule σ (a bijection σ : T→ {1, 2, . . . , |T|}) respecting
the precedence constraints imposed by l such that

∑
Ti∈T

witi ≤ K (ti
is the completion time of Ti)?

We prove that MSMU is NP-hard by transforming SMWCT (known
to be NP-hard [GJ79]) into MSMU. Let Π = {T, l, {τ1, . . . , τ|T|}, {w1, . . . ,
w|T|},K} be an arbitrary instance of SMWCT. We construct an instance
Π′ = {T′, G(T′,E′), {τ ′

1
e, . . . , τ ′e

|T′|}, {τ ′
1
wc, . . . , τ ′wc

|T′|},H′,S′, {d′1, . . . , d′|H′|},
{u′

1(t
′
1), . . . , u

′
|S′|(t

′
|S′|)},K ′} of MSMU as follows:

• H′ = ∅
• S′ = T′ = T

• (T ′
i , T

′
j) ∈ E′ iff Ti l Tj

• τ ′
i
e = τ ′

i
wc = τi for each T ′

i ∈ T′

• the utility function u′
i(t

′
i) for each T ′

i ∈ T′ is defined as u′
i(t

′
i) = wi(C−t′i),

where C =
∑

Ti∈T
τi

• K ′ = (C
∑

Ti∈T
wi)−K

To see that this transformation can be performed in polynomial time, it
suffices to observe that T′, {τ ′

1
e, . . . , τ ′e

|T′|}, {τ ′
1
wc, . . . , τ ′wc

|T′|}, and K ′ can be
obtained in O(|T|) time, G(T′,E′) can be constructed in O(|T|+ |l|) time,
and all the utility functions u′

i(t
′
i) can be obtained in O(|T|) time. What

remains to be shown is that Π has a schedule for which
∑

Ti∈T
witi ≤ K if

and only if Π′ has a schedule for which
∑

T ′
i∈T′ u′

i(t
′
i) ≥ K ′.

We show next that the schedule that minimizes
∑

Ti∈T
witi for Π is

exactly the one that maximizes
∑

T ′
i∈T′ u′

i(t
′
i) for Π′. Note that, due to the

transformation we described above, the set of tasks is the same for Π and Π′,
and the precedence constraints for tasks is precisely the same in both cases.
We assume that σ is the schedule respecting the precedence constraints in
Π that minimizes

∑
Ti∈T

witi and that K is such a minimum. Observe that
σ also respects the precedence constraints in Π′. Moreover, since τ ′

i
e = τi

for each T ′
i ∈ T′, the completion time t′i of every task T ′

i , when we use σ as
schedule in Π′, is the very same as ti and thus:∑

T ′
i∈T′

u′
i(t

′
i) =

∑

Ti∈T

u′
i(ti)

210 B. Proofs

=
∑

Ti∈T

wi(C − ti)

= C
∑

Ti∈T

wi −
∑

Ti∈T

witi

= C
∑

Ti∈T

wi −K

= K ′

Since C
∑

Ti∈T
wi is a constant value that does not depend on σ and∑

Ti∈T
witi = K is the minimum for Π, we conclude that (C

∑
Ti∈T

wi) −
K = K ′ is the maximum for Π′, in other words, σ maximizes

∑
T ′

i∈T′ u′
i(t

′
i).

Hence MSMU is NP-hard. �

B.3 MSMU (Monoprocessor Scheduling to

Maximize Utility) Solvable in O(|S|!) Time

The optimal solution to Problem 7.2 can be obtained in O(|S|!) time by
considering only permutations of soft tasks (recall S is the set of soft tasks).
This is so because a schedule that sets soft tasks as early as possible according
to the order given by a particular permutation S of soft tasks is the one that
produces the maximal utility among all schedules that respect the order
given by S.

The proof of the fact that by setting soft tasks as early as possible ac-
cording to the order given by S (provided that there exists at least one
schedule that respects the order in S and guarantees hard deadlines) we get
the maximum total utility for S is as follows.

Let σ be the schedule that respects the order of soft tasks given by S

(that is, 1 ≤ i < j ≤ |S| ⇒ σ(S[i]) < σ(S[j])) and such that soft tasks are
set as early as possible (that is, for every schedule σ′, different from σ, that
obeys the order of soft tasks given by S and respects all hard deadlines in the
worst case, σ′(S[i]) > σ(S[i]) for some 1 ≤ i ≤ |S|). Take one such σ′. For at
least one soft task Tj ∈ S it holds σ′(Tj) > σ(Tj), therefore t′ej > tej (t′ej is the
completion time of Tj when we use σ′ as schedule while tej is the completion
time of Tj when σ is used as schedule, considering in both cases expected
duration for all tasks). Thus uj(t

′e
j) ≤ uj(t

e
j) because utility functions for

soft tasks are non-increasing. Consequently U ′ ≤ U , where U ′ and U are
the total utility when using, respectively, σ′ and σ as schedules. Hence we
conclude that no schedule σ′, which respects the order for soft tasks given
by S, will yield a total utility greater than the one by σ.

Since the schedule that sets soft tasks as early as possible according to the
order given by S gives the highest utility for S, it is needed to consider only

B.4. Interval-Partitioning Step Solvable in O((|H| + |S|)!) Time 211

permutations of soft tasks in order to solve optimally MSMU (Problem 7.2).
Hence MSMU is solvable in O(|S|!) time. �

B.4 Interval-Partitioning Step Solvable in

O((|H|+|S|)!) Time for Monoprocessor Systems

The interval-partitioning step is an important phase in the process of finding
the optimal set of schedules and switching points, as formulated by Prob-
lem 7.4 and discussed in Subsection 7.3.3.

For monoprocessor systems, the interval-partitioning step can be carried
out in O((|H|+ |S|)!) time, with H and S denoting, respectively, the set of
hard tasks and the set of soft tasks. The rationale is that the best schedule,
for a given permutation HS of hard and soft tasks, is obtained when we try
to set the hard and soft tasks in the schedule as early as possible respecting
the order given by HS.

The proof of the fact that by setting hard and soft tasks as early as pos-
sible according to the order given by HS (provided that there exists at least
one schedule that respects the order in HS and guarantees hard deadlines)
we get the best schedule for HS is as follows

Let σ be the schedule that respects the order of hard and soft tasks
given by HS (that is, 1 ≤ i < j ≤ |HS| ⇒ σ(HS[i]) < σ(HS[j])) and such that
hard and soft tasks are set as early as possible (that is, for every schedule
σ′, different from σ, that obeys the order of hard and soft tasks given by
HS and guarantees meeting all hard deadlines, σ′(HS[i]) > σ(HS[i]) for some
1 ≤ i ≤ |HS|). Take one such σ′. For at least one task Tj ∈ H ∪ S it holds
σ′(Tj) > σ(Tj). We study two situations:

(a) Tj ∈ S: in this case t′ej > tej (t′ej is the completion time of Tj when
we use σ′ as schedule while tej is the completion time of Tj when σ is
used as schedule, considering in both cases expected duration for the
remaining tasks). Thus uj(t

′e
j) ≤ uj(t

e
j) because utility functions for

soft tasks are non-increasing. Consequently Û ′(t) ≤ Û(t) for every pos-
sible completion time t, where Û ′(t) and Û(t) correspond, respectively,
to σ′ and σ.

(b) Tj ∈ H: in this case t′wc
j > twc

j (t′wc
j is the completion time of Tj when

we use σ′ as schedule while twc
j is the completion time of Tj when σ

is used as schedule, considering in both cases worst-case duration for
the remaining tasks). Thus there exists some t× for which σ guarantees
meeting hard deadlines whereas σ′ does not. Recall that we include the
information about potential hard deadline misses in the form Û ′(t) =
−∞ if following σ′, after completing the current task at t, implies

212 B. Proofs

potential hard deadline violations. Accordingly Û ′(t) ≤ Û(t) for every
possible completion time t.

We conclude from the preceding facts that every schedule σ′, which re-
spects the order for hard and soft tasks given by HS, yields a function Û ′(t)
such that Û ′(t) ≤ Û(t) for every t, and therefore σ is the best schedule for
the given permutation HS. This means therefore it is needed to consider only
permutations of hard and soft tasks during the interval-partitioning step (for
monoprocessor systems) and the problem is hence solvable in O((|H|+ |S|)!)
time. �

B.5 Optimality of EDF for Non-Preemptable

Tasks with Equal Release Time
on a Single Processor

With regard to the problems addressed in Chapter 8, an EDF policy gives
the optimal execution order for non-preemptable tasks with equal release
time and running on a single processor. In order to prove this statement, we
show that an EDF execution order is the one that least constrains the space
of solutions.

The task execution order affects only the time constraints (see Equa-
tions (8.7) and (8.17) in Problems 8.1 and 8.4 respectively), that is, the
constraints ti ≤ di, where ti is the completion time of task Ti and di is its
deadline.

Let us assume that di ≤ dj if i < j. The execution order according
to an EDF policy is thus T1T2 . . . Ti . . . Tj . . . Tn and the corresponding time
constraints for tasks Ti and Tj are ti ≤ di and tj ≤ dj respectively.

We consider now a non-EDF execution order T1T2 . . . Tj . . . Ti . . . Tn with
similar time constraints tj ≤ dj and ti ≤ di. It must be noted, however, that
according to this non-EDF order Tj executes before Ti and hence it follows
that tj ≤ di. Since di ≤ dj, the constraint tj ≤ dj is redundant with respect
to the constraint tj ≤ di. Therefore the time constraints for tasks Tj and Ti

are actually tj ≤ di and ti ≤ di.

Thus a non-EDF execution order (tj ≤ di, ti ≤ di) imposes more strin-
gent constraints than the EDF order (ti ≤ di, tj ≤ dj) because di ≤ dj .
This is illustrated in Figure B.2. Note that Figure B.2 refers to the space of
possible Voltage/Optional-cycles assignments (given a fixed task execution
order) and not to the space of possible execution orders.

The space of possible solutions for any non-EDF execution order is con-
tained in the space of solutions corresponding to the EDF order, which
means that EDF is the least restrictive task execution order. Since the so-

B.5. Optimality of EDF 213

non-EDF

EDF

Figure B.2: Space of solutions (V/O assignments)

lution space generated by the EDF order is the largest, we conclude that an
execution order fixed according the EDF policy is optimal. �

