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Abstract

EMBEDDED SYSTEMS are used in a wide spectrum of applica-
tions ranging from home appliances and mobile devices to med-
ical equipment and vehicle controllers. They are typically
characterized by their real-time behavior and many of them
must fulfill strict requirements on reliability and correctness.

In this thesis, we concentrate on aspects related to modeling
and formal verification of real-time embedded systems.

First, we define a formal model of computation for real-time
embedded systems based on Petri nets. Our model can capture
important features of such systems and allows their representa-
tions at different levels of granularity. Our modeling formalism
has a well-defined semantics so that it supports a precise repre-
sentation of the system, the use of formal methods to verify its
correctness, and the automation of different tasks along the
design process.

Second, we propose an approach to the problem of formal ver-
ification of real-time embedded systems represented in our mod-
eling formalism. We make use of model checking to prove
whether certain properties, expressed as temporal logic formu-
las, hold with respect to the system model. We introduce a sys-
tematic procedure to translate our model into timed automata so
that it is possible to use available model checking tools. Various
examples, including a realistic industrial case, demonstrate the
feasibility of our approach on practical applications.
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Chapter 1
Introduction

THIS THESIS CONCENTRATES on aspects related to the mode-
ling and formal verification of real-time embedded systems.

We propose a modeling formalism that can capture relevant
characteristics of real-time embedded systems at different levels
of granularity.

We also introduce an approach to the problem of formal verifi-
cation of real-time embedded systems represented in our mode-
ling formalism.

This introductory chapter presents the motivation behind our
research activities, followed by the formulation of the problem
we are dealing with. A summary of the main contributions of our
work as well as an overview of the structure of the thesis are
also presented.

1.1 Motivation
Embedded systems are becoming pervasive in our everyday life.
These systems have many applications including automotive
and aircraft controllers, cellular phones, network switches,
household appliances, medical devices, and consumer electron-
1



CHAPTER 1
ics. The microprocessor market, for instance, clearly shows the
situation: less than 1% of the microprocessors shipped all over
the world in 1999 were used in general purpose computers
[Tur99]. The rest of the share went to the embedded market.

Embedded systems are part of larger systems and typically
interact continuously with their environment. Embedded sys-
tems generally include both software and hardware elements,
that is, programmable processors and hardware components
like application specific integrated circuits (ASICs) and field
programmable gate arrays (FPGAs). Besides their heterogene-
ity, embedded systems are characterized by their dedicated func-
tion, real-time behavior, and high requirements on reliability
and correctness [Cam96].

Designing systems with such characteristics is a difficult task.
Moreover, the ever increasing complexity of embedded systems
combined with small time-to-market windows poses interesting
challenges for the designers.

An essential issue of any systematic methodology aiming at
designing embedded systems is the underlying model of compu-
tation. The design process must be based on a model with pre-
cise mathematical meaning so that the different tasks from
specification to implementation can be carried out systemati-
cally [Edw97]. A sound representation allows capturing unam-
biguously the functionality of the system, verifying its
correctness with respect to certain desired properties, reasoning
formally about the refinement and steps during the synthesis
process, and using CAD tools in order to assist the designer
[Sgr00]. Therefore, the use of a formal representation in embed-
ded systems design is a must.

Correctness plays a key role in many embedded applications.
As we become more dependent on computer systems, the cost of
a failure can be extremely high, in terms of loss of both human
lives and money. In safety-critical systems, for instance, reliabil-
ity and safety are the most important criteria. Traditional vali-
dation techniques, like simulation and testing, are neither
2



INTRODUCTION
sufficient nor viable to verify the correctness of such systems.
Formal verification is becoming a practical way to ensure the
correctness of designs by complementing simulation and testing.

Formal methods are analytical and mathematical techniques
intended to prove formally that the implementation of a system
conforms its specification. Formal methods have extensively
been used in software development [Gan94] as well as in hard-
ware verification [Ker99]. However, formal verification tech-
niques are not yet commonly used in embedded systems design.

1.2 Problem Formulation
The previous section has presented the motivation for our
research and pointed out the relevance of the topics addressed in
this thesis.

The model of computation is the backbone of a design flow.
One of our goals is to define a formal representation capable of
capturing important characteristics of real-time embedded sys-
tems, like timing and dedicated function. It must have a well-
defined semantics so that the advantages of a sound modeling
formalism can be exploited along the design process. It must be,
at the same time, intuitive enough so that the designer can
understand and handle it.

Since correctness is becoming increasingly important for
embedded systems, we also aim at developing a framework for
the verification of such systems by using formal methods. It
must allow reasoning about design properties including timing
requirements of systems.

1.3 Contributions
The main contributions of this thesis are as follows:

 • Definition of a model of computation for real-time embedded
systems design. PRES+, short for Petri Net based Represen-
3



CHAPTER 1
tation for Embedded Systems, is an extension to the classical
Petri nets model that captures explicitly timing information,
allows systems to be represented at different levels of granu-
larity, and improves expressiveness by allowing tokens to
carry information. Furthermore, PRES+ supports the con-
cept of hierarchy.

 • An approach to the formal verification of real-time embedded
systems. We present in this thesis an approach that allows
reasoning formally about embedded systems represented in
PRES+. Model checking is used to automatically determine
whether the system model satisfies its required properties
expressed in temporal logics. A systematic procedure to
translate PRES+ models into timed automata is proposed so
that it is possible to make use of existing model checking
tools.

 • Definition of notions of equivalence for systems represented
in PRES+. Such notions establish a formal framework to
compare PRES+ models, for instance, in a transformational
approach. The concept of hierarchy for PRES+ models intro-
duced in this thesis is closely related to these notions of
equivalence.

 • Strategies to improve the efficiency of verification. On one
hand, correctness-preserving transformations are applied to
the system model in order to obtain a simpler, yet semanti-
cally equivalent, one. Thus the verification effort can be
reduced. On the other hand, by exploiting the structure of
the system model and, in particular, extracting its sequential
behavior, the translation of PRES+ into timed automata can
be improved and, therefore, the complexity of the verification
process can considerably be reduced.

Part of the work reported in this thesis has been presented in
a number of publications [Cor99], [Cor00a], [Cor00b], [Cor00c],
[Cor01b].
4



INTRODUCTION
1.4 Thesis Overview
The rest of this thesis is structured as follows:

 • Chapter 2 depicts a generic design flow for embedded sys-
tems and indicates those design steps that are mainly con-
sidered in this thesis.

 • Chapter 3 addresses related work in the areas of modeling
and formal verification.

 • Chapter 4 presents the formal definition of the model of com-
putation that we use to represent real-time embedded sys-
tems and describes its main features.

 • Chapter 5 formally defines four notions of equivalence for
systems represented in PRES+ and introduces the concept of
hierarchical PRES+ model.

 • Chapter 6 describes our approach to formal verification of
embedded systems. It discusses how we make use of model
checking to prove design properties with respect to a PRES+
model. A translation procedure from PRES+ into timed
automata is also presented so that existing model checkers
can be used in our approach.

 • Chapter 7 introduces a transformational approach aimed at
reducing the complexity of the verification process. A number
of transformations to be used in order to simplify the system
model are also presented.

 • Chapter 8 discusses how further improvements of the verifi-
cation approach can be achieved by exploiting the structure
of the system model. An algorithm that extracts the sequen-
tial behavior of the system is proposed in this chapter.

 • Chapter 9 demonstrates the feasibility of our approach on
practical applications by studying different examples, includ-
5



CHAPTER 1
ing a real-life system.

 • Chapter 10 concludes this thesis and discusses possible
directions in our future work.
6



Chapter 2
Design Flow for

Embedded Systems

THIS CHAPTER PRESENTS a generic design flow for embedded
systems. We emphasize the parts of such a flow that are directly
addressed in this thesis in order to show how our work contrib-
utes to the design of embedded systems.

2.1 A Generic Design Flow
A generic design flow for embedded systems is shown in
Figure 2.1. The process starts with a system specification which
describes the functionality of the system as well as performance,
cost, power, and other constraints of the intended design. Such a
specification states the functionality without giving implemen-
tation details, that is, it specifies what the system must do with-
out making assumptions about how it must be implemented.

The designer must come up with a system model that captures
aspects from the functional part of the specification as well as
non-functional attributes. Such a system model is usually pre-
sented at process or task level. The importance of a sound model
7



CHAPTER 2
Figure 2.1: A generic design flow for embedded systems
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DESIGN FLOW FOR EMBEDDED SYSTEMS
of computation in the design flow becomes evident in the later
phases.

Then, the designer must decide the underlying architecture of
the system, that is, select the type and number of components as
well as the way to interconnect them. This stage is known as
architecture selection. The components may include processors,
memories, and custom modules.

After the architecture selection phase comes partitioning and
mapping, where the tasks or processes of the system model are
grouped and mapped onto the selected components. Once it has
been determined what parts are to be implemented on which
components, certain decisions concerning the execution order of
tasks or processes have to be taken. This design step is called
scheduling.

At this point, the model must include the information about
the decisions taken in the stages of architecture selection, parti-
tioning, and scheduling (mapped and scheduled model). A for-
mal representation allows systems to be refined incrementally
so that new design decisions are included in the system model.
This is possible because a model of computation with a well-
defined semantics permits to formally reason about each refine-
ment step during the design process.

The process further continues with SW synthesis, HW synthe-
sis, and communication synthesis, and later with prototyping.
The design flow includes iterations, where it is sometimes neces-
sary to go back to previous steps because some of the design
goals cannot be fulfilled.

Once the prototype has been produced, it must be thoroughly
checked during the testing phase in order to find out whether it
functions correctly.

Simulation can be used to validate the design at different
stages of the process and, therefore, can be done at different lev-
els of accuracy. Formal verification can also be performed at dif-
ferent points of the design flow, for example, on the initial
system model or on the mapped and scheduled model.
9



CHAPTER 2
2.2 Contributions to the Design Flow
Our work contributes to various steps of the flow presented
above. The main contributions of this thesis are highlighted in
Figure 2.1 as shaded boxes/ovals. The model of computation to
be used in the design process is an important contribution of our
research. As will be discussed in Chapter 4, PRES+ is a sound
modeling formalism and supports a flow like the one presented
above, in which the system model is refined to progressively
include design decisions. Though we do not deal in this thesis
with the problems of architecture selection, partitioning, and
scheduling, our model is capable of capturing the design infor-
mation resulted from these stages.

Formal verification requires a sound model. We propose an
approach to formal verification of embedded systems repre-
sented in PRES+. This is another major contribution of our work
to the design flow. In principle our verification approach can be
applied to any level of abstraction, but in practice it is limited by
the complexity of the system representation. Therefore, it is
mainly useful at higher levels of abstraction.

Though we concentrate on the formal verification part of the
validation/verification process, it is worth mentioning that we
have developed a simulator for PRES+ models. Simulation is
fundamental in the design flow and formal methods are not
meant to replace it. Rather, simulation and formal verification
must go hand in hand to successfully verify the correctness of
designs.

Much of the research presented in this thesis has been per-
formed within the frame of the SAVE project [SAV]. The SAVE
project aims at the development of a formal approach to specifi-
cation, implementation, and verification of heterogeneous elec-
tronic systems. The objective of the project is to devise improved
solutions and methods for high level electronic system specifica-
tion, verification, and refinement by use of formal methods. In
the frame of SAVE, the design flow starts with a functional spec-
10



DESIGN FLOW FOR EMBEDDED SYSTEMS
ification written in Haskell [Has]. The Haskell description
employs higher-order functions, called skeletons, used to model
elementary processes [San99]. Our research group has devel-
oped a tool which compiles Haskell descriptions based on skele-
tons into PRES+ models. The PRES+ model is then used as the
basis for formal verification and as a design representation for
the subsequent steps in the design process, as depicted in
Figure 2.1. Though the SAVE design flow is a particular case of
the flow described above, in which the functional specification is
given in Haskell, it does illustrate that our model can indeed be
used as a part of a realistic design flow for embedded systems.
11





Chapter 3
Related Work

MODELING IS AN IMPORTANT ISSUE of any design methodol-
ogy. Many models of computation have been proposed in the lit-
erature to represent digital systems. These models encompass a
broad range of styles, characteristics, and application domains.
Particularly in embedded systems design, a variety of models
have been developed and used as system representation.

In the field of formal verification, many approaches have also
been presented. There are a lot of theoretical results that have
been put into practice. However, approaches targeted especially
to embedded systems are not so common.

This chapter presents related work in the areas of modeling
and verification of embedded systems.

3.1 Modeling
Many models have been proposed to represent embedded sys-
tems [Lav99], [Edw97], including extensions to finite state
machines, data flow graphs, communicating processes, and
Petri nets, among others. Some of them give a rigorous mathe-
matical treatment to the formalism. This section presents vari-
13



CHAPTER 3
ous models of computation for embedded systems reported in
the literature.

3.1.1 FINITE STATE MACHINES

The classical Finite State Machine (FSM) representation is
probably the most well-known model used for describing control
systems. One of the disadvantages of FSMs is the exponential
growth of the number of states as the system complexity rises. A
number of extensions to the classical FSM model have been sug-
gested.

Codesign Finite State Machines. A Codesign Finite State
Machine (CFSM) is an extended FSM including a control part
and a data computation part [Chi93]. Each CFSM behaves syn-
chronously from its own perspective. A system is composed of a
number of CFSMs that communicate among themselves asyn-
chronously through signals, which carry information in the form
of events. Such a semantics provides a GALS model: Globally
Asynchronous (at the system level) and Locally Synchronous (at
the CFSM level). CFSMs are intended for control-oriented sys-
tems and are the underlying model of the POLIS design environ-
ment [Bal97].

Finite State Machine with Datapath. In order to make it
more suitable for data-oriented systems, the FSM model has
been extended by introducing a set of internal variables, thus
leading to the concept of FSM with Datapath (FSMD) [Gaj94].
The transition relation depends not only on the present state
and input signals but also on a set of internal variables. Though
the introduction of variables in the FSMD model helps to reduce
the number of states, the lack of explicit support for concurrency
and hierarchy is a drawback because the state explosion prob-
lem is still present.

FunState. The FunState model consists of a network and a
finite state machine [Str01]. The so-called network corresponds
14



RELATED WORK
to the data intensive part of the system. The network is com-
posed of storage units, functions, and arcs that relate storage
units and functions. Data is represented by valued tokens in the
storage units. The activation of functions in the network is con-
trolled by the state machine. In the FunState model, an arbi-
trary number of components (network and FSM) can be
arranged in a hierarchical structure.

Statecharts. Statecharts extends FSMs by allowing hierarchi-
cal composition and concurrency [Har87]. A particular state can
be composed of substates which means that being in the higher-
level state is interpreted as being in one of the substates. In this
way, Statecharts avoids the potential for state explosion by per-
mitting condensed representations. Furthermore, timing is
specified by using linear inequalities in the form of time-outs.
The problem with Statecharts is that the model falls short when
representing data-oriented systems.

3.1.2 DATAFLOW GRAPHS

Dataflow graphs are quite popular in modeling data-dominated
systems. Computationally intensive systems might be conve-
niently represented by a directed graph where the nodes
describe computations and the arcs represent the order in which
the computations are performed. The computations are executed
only when the required operands are available and the opera-
tions behave as functions without side effects. However, the con-
ventional dataflow graph model is inadequate for representing
the control unit of systems.

Dataflow Process Networks. This model is mainly used in
signal processing systems [Lee95]. Programs are specified by
directed graphs where nodes (actors) represent computations
and arcs (streams) represent sequences of data. Processing is
done in series of iterated firings in which an actor transforms
input data into output ones. Dataflow actors have firing rules to
determine when they must be enabled and then execute a spe-
15



CHAPTER 3
cific operation. The model also allows hierarchical representa-
tions of the graphs. A special case of dataflow process networks
is Synchronous Data Flow (SDF) where the actors consume and
produce a fixed number of data tokens in each firing because of
their static rules.

Conditional Process Graph. A Conditional Process Graph
(CPG) is a directed, acyclic, and polar graph, consisting of nodes,
and simple and conditional edges [Ele98]. Each node represents
a process which can be assigned to one of the processing ele-
ments. The graph has two special nodes (source and sink) used
to represent the first and last tasks. The model allows each pro-
cess to be characterized by an execution time and a guard which
is the condition necessary to activate the tasks of that process.
In this way, it is possible to capture control information in a
dataflow graph.

3.1.3 COMMUNICATING PROCESSES

Several models have been derived from Hoare’s Communicating
Sequential Processes (CSP) [Hoa85]. In CSP, systems are com-
posed of processes that communicate with each other through
unidirectional channels using a synchronizing protocol.

SOLAR. SOLAR is based on CSP, where each process corre-
sponds to an extended FSM, similar to Statecharts, and commu-
nication is performed by dedicated units [Jer95]. Thus
communication is separated from the rest of the design so that it
can be optimized and reused. By focusing on efficient implemen-
tation and refinement of the communication units, SOLAR is
best suited for communication-driven design processes. SOLAR
is the underlying model of the COSMOS design environment
[Ism94].

Interacting Processes. This model consists of independent
interacting sequential processes derived from CSP [Tho93]. The
communication is performed through channels but, unlike CSP,
16



RELATED WORK
there exist additional primitives that permit unbuffered trans-
fer and synchronization without data.

3.1.4 DISCRETE-EVENT

A Discrete-Event (DE) system can be defined as a discrete-state
event-driven system. In other words, its state evolution depends
entirely on the occurrence of asynchronous discrete events over
time [Cas93]. An event is an instantaneous action that causes
transitions from one discrete state to another. The interaction
between computational tasks is accomplished by signals. In the
discrete-event model, a signal is a set of atomic events that occur
in some instant of physical time. Thus, each event has a value
and is marked with a time stamp. The events are sorted by time
label and they are analyzed in chronological order. Since time is
an essential part of a discrete-event model, it could be used to
represent real-time embedded systems. However, the principal
disadvantage of discrete-event modeling is its cost: it is compu-
tationally expensive because it is necessary to globally sort all
the events according to their time of occurrence.

3.1.5 PETRI NETS

Modeling of systems using Petri Nets (PN) has been applied
widely in many fields of science [Pet81], [Mur89]. The mathe-
matical formalism developed over the years, which defines its
structure and firing rules, has made Petri nets a well-under-
stood and powerful model. A large body of theoretical results
and practical tools have been developed around Petri nets. Sev-
eral drawbacks, however, have been pointed out, especially
when it comes to modeling embedded systems: a) Petri nets tend
to become large even for relatively small systems. The lack of
hierarchical composition makes it difficult to specify and under-
stand complex systems using the conventional model; b) The
classical PN model lacks the notion of time. However in many
embedded applications time is a critical factor; c) Uninterpreted
17
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Petri nets lack expressiveness for formulating computations as
long as tokens are considered as “black dots”. Several formal-
isms have been proposed in different contexts in order to over-
come the problems cited above [Dit95], [Mer76], [Jen91].

Colored Petri Nets. In Colored Petri Nets (CPN), tokens may
have “colors”, that is, data attached to them [Jen92]. The arcs
between transitions/places have expressions that describe the
behavior of the net. Thus transitions describe actions and tokens
carry values. The CPN model permits hierarchical constructions
and a strong mathematical theory has been built up around it.
The problem of CPN is that timing is not explicitly defined in the
model. It is possible to treat time as any other value attached to
tokens but, since there is no semantics given for the order of fir-
ing along the time horizon, timing inconsistencies can happen.

PURE. Petri net based Unified REpresentation (PURE) is a
model with data and control notation [Sto95]. It consists of two
different, but closely related, parts: a control unit and a compu-
tational/data part. Timed Petri nets with restricted transition
rules are used to represent the control flow. Hardware and soft-
ware operations are represented by datapaths and instruction
dependence graphs respectively. Hierarchy is not supported by
this model.

DTPN. Dual Transitions Petri Nets (DTPN) is a model where
control and data flow are tightly linked [Var01a]. There are two
types of transitions (control and data transitions) as well as two
types of arcs (control and data flow arcs). Tokens may have val-
ues which are affected by the firing of data transitions. Control
transitions may have guards that depend on token values so
that guards constitute the link between the control and data
domains. The disadvantage of DTPN is that it lacks an explicit
notion of time. Nor does it support hierarchical constructions.

Several other models extending Petri nets have been used in
the design of embedded systems [Mac99], [Sgr99], [Ess98],
18
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[Ben92].

3.2 Formal Verification
Though formal methods are not commonplace in embedded sys-
tems design, several verification approaches have been proposed
recently. Some of them are presented in this section. We focus on
the more automatic approaches like model checking since these
are closely related to our work. However, it is worth mentioning
that theorem proving [Fit96], [Gal87] is a well-established
approach in the area of formal methods, though not extensively
used for the particular case of embedded systems.

Language Containment based on CFSMs. In this approach,
CFSMs are translated into traditional state automata in order
to make use of automata theory techniques [Bal96]. The verifi-
cation task is to check whether all possible sequences of inputs
and outputs of the system satisfy the desired properties (specifi-
cation). The sequences that meet the requirements constitute
the language of another automaton. The problem is then
reduced to checking language containment between two autom-
ata. Verification requires showing that the language of the sys-
tem automaton is contained in the language of the specification
automaton. The drawback of the approach is that it is not possi-
ble to check explicit timing properties, only order of events.

Model Checking based on Timed Automata. Most of the
research on continuous-time model checking is based on the
timed automata model [Alu99]. Different algorithms have been
proposed to verify systems represented as timed automata and
tools, e.g. [Upp], [Kro], have successfully been developed and
tested on realistic examples. However, timed automata is a
fairly low-level representation.

Model Checking based on Hybrid Automata. This approach
models the system as a collection of linear hybrid automata
19
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[Hsi99]. Arguing different times scales for the hardware and
software parts of the system, clocks with different rates are used
to keep track of the time. While the linear hybrid automata
model is more expressive than timed automata, the problem of
model checking of hybrid automata is harder than the one based
on timed automata. The approach deals with timing properties
although the method is only feasible for low complexity systems.

Model Checking based on FunState. Properties of a Fun-
State model can be formally verified by using model checking
[Str01]. The proposed verification strategy is based on an auxil-
iary representation, very much alike a FSM, into which the Fun-
State model is transformed. The set of required properties are
expressed as Computation Tree Logic (CTL) formulas. However,
no quantitative timing behavior can be reasoned based on CTL.

Model Checking based on DTPN. This approach uses DTPN
as underlying model of computation [Var01b]. The DTPN model
is transformed in a Kripke structure and then BDD-based sym-
bolic model checking is used to determine the truth of Linear
Temporal Logic (LTL) and CTL formulas. Since there is no
explicit notion of time in DTPN, timing requirements can not be
verified.

3.3 Our Approach
In this section we highlight several points that make our
approach different in relation to work reported in the literature.

3.3.1 MODELING

The following are aspects of our work that differ from other mod-
eling formalisms in the area:
 • Our model includes an explicit notion of time.
 • Our model supports hierarchical composition.
 • We can capture both data and control aspects of the system.
20
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Several models address separately the points mentioned
above. They key difference is that our modeling formalism com-
bines such aspects.

3.3.2 FORMAL VERIFICATION

Aspects of our approach that differ from the related work pre-
sented in Section 3.2 are:
 • We deal with quantitative timing properties in our verifica-

tion approach.
 • The underlying model of computation allows representations

at different levels of granularity so that formal verification is
possible at several abstraction levels.
21





Chapter 4
The Design Representation

IN ORDER TO DEVISE EMBEDDED SYSTEMS the design pro-
cess must be based upon a sound model of computation that cap-
tures important features of such systems. The notation we use
to model real-time embedded systems is an extension to Petri
nets, called PRES+ (Petri Net based Representation for Embed-
ded Systems). This chapter presents the formal definition of
PRES+.

4.1 Basic Definitions
Definition 4.1. A PRES+ model is a five-tuple

 where
 is a finite non-empty set of places;

 is a finite non-empty set of transitions;
is a finite non-empty set of input arcs which define

the flow relation between places and transitions;
is a finite non-empty set of output arcs which define

the flow relation between transitions and places;
 is the initial marking of the net (see Definition 4.4).

N=(P T I O,, , ,
M 0)

P= p1 p2 … pm, , ,{ }
T= t1 t2 … tn, , ,{ }
I P T×⊆

O T P×⊆

M 0
23



CHAPTER 4
We use the example of Figure 4.1 in order to illustrate the def-
initions of the model presented in this chapter. Like in classical
Petri nets, places are graphically represented by circles, transi-
tions by boxes, and arcs by arrows. For this example,

 and .

Figure 4.1: A PRES+ model

Definition 4.2. A token is a pair  where
is the token value. The type of this value is referred to as

token type;
is the token time, a non-negative real number representing

the time stamp of the token.
The set denotes the set of all possible token types for a given
system.

A token value may be of any type, e.g. boolean, integer, etc., or
user-defined type of any complexity (for instance a structure, a
set, or a record). A token type is defined by the set of possible
values that the token may take. Thus  is a set of sets.

For the initial marking of the net shown in Figure 4.1, for
instance, in place there is a token with token value
and token time .

Definition 4.3. The type function associates every
place with a token type. denotes the set of possible
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THE DESIGN REPRESENTATION
values that tokens may bear in . The set of possible tokens in a
place is given by .
denotes the set of all tokens.

It is worth pointing out that the token type related to a certain
place is fixed, that is, it is an intrinsic property of that place and
will not change during the dynamic behavior of the net. For the
example given in Figure 4.1, for all , i.e. all places
have token type integer. Thus the set of all possible tokens in the
system is .

Definition 4.4. A marking is an assignment of tokens to
places of the net. The marking of a place , denoted ,
can be represented as a multi-set1 over . For a particular
marking , a place  is said to be marked iff .

The initial marking in the net of Figure 4.1 shows and
as the only places initially marked: and

, whereas .

Definition 4.5. The pre-set of a transition
is the set of input places of . Similarly, the post-set

of a transition is the set of output
places of . The pre-set and the post-set of a place
are given by and
respectively.

Definition 4.6. All output places of a given transition have the
same token type, that is,

This definition is motivated by the fact that there is one tran-
sition function associated to a transition (as formally stated in
Definition 4.7), so that when it fires all its output places get
tokens with the same value and therefore such places must have
the very same token type.

1. A multi-set or bag is a collection of elements over some domain in
which, unlike a set, multiple occurrences of the same element are
allowed. For example,  is a multi-set over .

p
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4.2 Description of Functionality
Definition 4.7. For every transition , there exists a transi-
tion function associated to . Formally, for all there
exists where

 and .

Transition functions are very important when describing the
functionality of the system to be modeled. They allow systems to
be modeled at different levels of granularity with transitions
representing simple arithmetic operations or complex algo-
rithms. In Figure 4.1 we inscribe transition functions inside
transition boxes: the transition function associated to , for
example, is given by . We use inscriptions on the
input arcs of a transition in order to denote the arguments of its
transition function.

Definition 4.8. For every transition , there exist a mini-
mum transition delay and a maximum transition delay ,
which are non-negative real numbers and represent, respec-
tively, the lower and upper limits for the execution time (delay)
of the function associated to the transition. Formally, for all

 there exist  such that .

Referring again to Figure 4.1, the minimum transition delay
of is , and its maximum transition delay is time
units. Note that when , we just inscribe the value
close to the respective transition, like in the case of the transi-
tion delay .

Definition 4.9. A transition may have a guard associ-
ated to it. The guard of a transition is a predicate

where .

Note that the guard of a transition is a function of the token
values in places of its pre-set . For instance, in Figure 4.1,

 represents the guard .
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THE DESIGN REPRESENTATION
4.3 Dynamic Behavior
Definition 4.10. A transition is bound, for a given mark-
ing , iff all its input places are marked. A binding of a bound
transition , with pre-set , is an ordered tuple
of tokens  where  for all .

Observe that, for a particular marking , a transition may
have different bindings. This is the case when there are several
tokens in at least one of the input places of the transition. The
existence of a binding is a necessary condition for the enabling of
a transition. For the initial marking of the net shown in
Figure 4.1, has a binding . Since has no
guard, it is enabled for the initial marking (as formally stated in
Definition 4.11).

We introduce the following notation which will be useful for
the coming definitions. Given the binding , the
token value of the token is denoted , and the token time of

 is denoted .

Definition 4.11. A bound transition with guard is
enabled, for a binding , iff . A
transition  with no guard is enabled if  is bound.

Definition 4.12. The enabling time of an enabled transition
, for a binding , is the time instant at

which becomes enabled. is given by the maximum token
time of the tokens in the binding , that is, .

Definition 4.13. The earliest trigger time and the lat-
est trigger time of an enabled transition , for a
binding , are the lower and upper time limits for
the firing of . An enabled transition may not fire before
its earliest trigger time and must fire before or at its latest
trigger time , unless becomes disabled by the firing of
another transition.
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CHAPTER 4
Definition 4.14. The firing of an enabled transition , for a
binding , changes a marking into a new
marking . As a result of firing the transition , the following
occurs:
(i) Tokens from its pre-set are removed, that is,

 for all ;
(ii) One new token is added to each place of its post-set

, that is, 2 for all . The token value of
is calculated by evaluating the transition function with

token values of tokens in the binding as arguments, that is,
. The token time of is the instant at which the

transition  fires, that is,  where ;
(iii) The marking of places different from input and output

places of remain unchanged, that is, for all
.

The execution time of the function associated to a transition is
considered in the time stamp of the new tokens. Note that, when
a transition fires, all the tokens in its output places get the same
token value and token time. The token time of a token repre-
sents the instant at which it was “created”. If there is a situation
in which there are several tokens with the same time stamp in
an input place of a transition, the token to be removed when the
transition fires is selected arbitrarily.

In Figure 4.1, transition is the only one initially enabled
(binding ) so that its enabling time is 0. Therefore,

may not fire before 1 time units and must fire before or at 2
time units. Let us assume that fires at 1 time units: tokens

and are removed from and respectively, and
a new token is added to both and . At this moment,
only and are enabled ( is bound but not enabled because
its guard is not satisfied for the binding ). Note that tran-

2. Observe that the multi-set sum is different from the multi-set union
. For instance, given and , while

. An example of multi-set difference  is .
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THE DESIGN REPRESENTATION
sition has to fire strictly before : according to the firing
rules, must fire no earlier than 2 and no later than 2.7 time
units, while is restricted to fire in the interval .
Figure 4.2 illustrates a possible behavior of the PRES+ model.

4.4 Summary
To sum up, when used to model embedded systems, PRES+ has
several interesting features to be highlighted, some of them
inherited from the classical Petri net model:
 • PRES+ allows representations at different levels of granu-

larity.
 • Since tokens carry information in our model, PRES+ over-

comes the lack of expressiveness of classical Petri nets,
where tokens are considered as “black dots”.

 • Time is a critical factor in many embedded applications. Our
model captures timing aspects by associating lower and
upper limits to the duration of activities related to transi-
tions and keeping time information in token stamps.

 • Non-determinism may be naturally represented by PRES+.
Non-determinism can be used as a powerful mechanism to
express succinctly the behavior of certain systems and thus
reduce the complexity of the model.

 • Sequential as well as concurrent activities may be easily
expressed in terms of Petri nets. Recall that concurrency is
present in most embedded systems.

 • Both control and data information might be captured by a
unified design representation.

 • PRES+ has been also extended by introducing the concept of
hierarchy (see Chapter 5).

 • Furthermore, the model is simple, intuitive, and can be eas-
ily handled by the designer.

We have developed a software tool, called SimPRES, that
allows PRES+ models to be simulated. It has a graphical inter-

t2 t3
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Figure 4.2: Illustration of the dynamic
behavior of a PRES+ model
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THE DESIGN REPRESENTATION
face that lets the designer construct, modify, and simulate sys-
tems represented in PRES+. A screen shot of the SimPRES tool
is shown in Figure 4.3. Such a tool is of great help for the
designer because it allows visualizing the model of the system
under design and running it, so that an animation of the
dynamic behavior of the net is possible. SimPRES supports full
graphical editing of the system model and provides methods to
store/recover the net in/from a file.

Figure 4.3: SimPRES: a simulator for PRES+ models
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Chapter 5
Notions of Equivalence and

Hierarchy for PRES+

SEVERAL NOTIONS OF EQUIVALENCE for embedded systems
represented in PRES+ are defined in this chapter. Such notions
constitute the foundations of a framework to compare PRES+
models.

In this chapter we also extend PRES+ by introducing the con-
cept of hierarchy. Hierarchy is a convenient way to structure the
system so modeling can be done in a comprehensible form. With-
out hierarchical composition it is difficult to specify and under-
stand large systems.

5.1 Notions of Equivalence
The synthesis process requires a number of refinement steps
starting from the initial system model until a more detailed rep-
resentation is achieved. Such steps correspond to transforma-
tions in the system model so that design decisions are included
in the representation.

The validity of a transformation depends on the concept of
33



CHAPTER 5
equivalence in which it is contrived. When we claim that two
systems are equivalent, it is very important to understand the
meaning of equivalence. Two equivalent systems are not neces-
sarily the same but have properties that are common to both of
them. Thus a clear notion of equivalence allows comparing sys-
tems and pointing out the properties in terms of which the sys-
tems are equivalent.

The following three definitions introduce basic concepts to be
used when defining the four notions of equivalence for systems
modeled in PRES+.

Definition 5.1. A marking is immediately reachable from
if there exists a transition whose firing changes into
.

Definition 5.2. The reachability set of a net is the set of
all markings reachable from  and is defined by:
(i) ;
(ii) If and is immediately reachable from ,

then .

Definition 5.3. A place is said to be an in-port iff
for all , that is, there is no transition for which

is output place. Similarly, a place is said to be an out-
port iff for all , that is, there is no transition for
which  is input place.

The set of in-ports is denoted while the set of out-ports is
denoted .

Before formally presenting the notions of equivalence, we first
give an intuitive idea of them. Such notions rely on the concepts
of in-ports and out-ports: the initial condition to establish an
equivalence relation between two nets and is that both
have the same number of in-ports as well as out-ports. In this
way, it is possible to define a one-to-one correspondence between
in-ports and out-ports of the nets. Thus we can assume the same
initial marking in corresponding in-ports and then check the
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NOTIONS OF EQUIVALENCE AND HIERARCHY FOR PRES+
tokens obtained in the out-ports after some transition firings in
the nets. It is like an external observer putting in the same data
in both nets and obtaining output information. If such an exter-
nal observer can not distinguish between and , based on
the output data he gets, then and are “equivalent”. As
defined later, such a concept is called total-equivalence. We also
define weaker concepts of equivalence in which the external
observer may actually distinguish between and , but still
there is some commonality in the data obtained in correspond-
ing out-ports, namely number of tokens, token values, or token
times.

We introduce the following notation to be used in the coming
definitions: for a given marking , denotes the number of
tokens in place , i.e. .

Definition 5.4. Two nets and are cardinality-equivalent
or N-equivalent iff:
(i) There exist such bijections and

that define one-to-one correspondences
between in(out)-ports of  and ;
(ii) The initial markings  and  satisfy

 for all ,
 for all ;

(iii) For every  such that
 for all ,

 for all
there exists  such that

 for all ,
 for all ,

 for all
and vice versa.

The above definition expresses that if the same tokens are put
in corresponding places of two N-equivalent nets, then the same
number of tokens will be obtained in corresponding out-ports.
Let us consider the nets and shown in Figures 5.1(a) and
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5.1(b) respectively, in which we have abstracted away informa-
tion not relevant for the current discussion like transition delays
and token values. For such nets ,

, , , and and are
defined by , , , ,
and . Let us assume that and satisfy con-
dition (ii) in Definition 5.4. A simple reachability analysis shows
that there exist two cases and in which the first part of
condition (iii) in Definition 5.4. is satisfied: a) if

, and for all other places; b) if
, and for all other places. For each of these

cases there exist a marking satisfying the second part of condi-
tion (iii) in Definition 5.4, respectively: a) if

, and for all other places; b) if
, and for all other places. Hence and

are N-equivalent.

Figure 5.1: N-equivalent nets

Before defining the concepts of function-equivalence and time-
equivalence, let us study the simple nets and shown in
Figures 5.2(a) and 5.2(b) respectively. It is straightforward to see
that and fulfill the conditions established in Definition

inP1= pa pb,{ } outP1={ pe p f ,,
pg} inP2= paa pbb,{ } outP2= pee pff pgg, ,{ } f in f out

f in pa( )= paa f in pb( )= pbb f out pe( )= pee f out p f( )= pff
f out pg( )= pgg M 1,0 M 2,0

m1

i m1

ii

m1

i p( )=1

p p f{ }∈ m1

i p( )=0 m1

ii p( )=1

p pe p, g{ }∈ m1

ii p( )=0

m2

i p( )=1 p { pff,∈
pxx} m2

i p( )=0 m2

ii p( )=1 p { pee,∈
pgg pxx}, m2

ii p( )=0 N 1 N 2

(a)
(b)

paa pbb

pxx

ggp pffeep

d

pa pb

pc

p fe pgp

p

N 1 N 2

N 1 N 2
36
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5.4 and therefore are N-equivalent. However, note that may
produce tokens with different values in its output: when fires,
the token in will be with , but when
fires the token in will be with . The rea-
son for this behavior is the non-determinism of . On the other
hand, when the only out-port of is marked, the correspond-
ing token value will always be .

Figure 5.2: N-equivalent nets with different behavior

As shown in the example of Figure 5.2, even if two nets are N-
equivalent the tokens in their outputs may be different,
although their initial marking is identical. For instance, there is
no marking in which the out-port has a token with
value , whereas it does exist a marking in
which the out-port is marked and . Thus the external
observer could distinguish between and because of differ-
ent token values—moreover different token times—in their out-
ports when marked.

Definition 5.5. Two nets and are function-equivalent or
F-equivalent iff:
(i)  and  are N-equivalent;
(ii) Let and be markings satisfying condition (iii) in

Definition 5.4. For every , where , there
exists  such that , and vice versa.

Definition 5.6. Two nets and are time-equivalent or T-
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equivalent iff:
(i)  and  are N-equivalent;
(ii) Let and be markings satisfying condition (iii) in

Definition 5.4. For every , where , there
exists  such that , and vice versa.

Two nets are F-equivalent if, besides being N-equivalent, the
tokens obtained in corresponding out-ports have the same token
value. Similarly, if tokens obtained in corresponding out-ports
have the same token time, the nets are T-equivalent.

Definition 5.7. Two nets and are total-equivalent or §-
equivalent iff:
(i)  and  are F-equivalent;
(ii)  and  are T-equivalent.

Figure 5.3 shows the relation between the different concepts
of equivalence introduced above. The graph captures the depen-
dence between the notions of equivalence. Thus, for instance, N-
equivalence is necessary for T-equivalence and also for F-equiv-
alence. Similarly, §-equivalence implies all other equivalences.
§-equivalence is the strongest notion of equivalence defined in
this work. Note that two §-equivalent nets must not necessarily
be identical (see Figure 5.4).

Figure 5.3: Relation between the notions of equivalence
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Figure 5.4: §-equivalent nets

5.2 Hierarchical PRES+ Model
Embedded systems require sound models along their design
cycle. PRES+ supports systems modeled at different levels of
granularity with transitions representing simple arithmetic
operations or complex algorithms. However, in order to handle
efficiently the modeling of large systems, a mechanism of hierar-
chical composition is needed so that the model may be con-
structed in a structured manner, composing simple units fully
understandable by the designer. Hierarchy can conveniently be
used as a form to handle complexity and also to analyze systems
at different abstraction levels.

Hierarchical modeling can be applied along the design process
of embedded systems. Sometimes the specification or require-
ments may not be complete or thoroughly understood. In a top-
down approach, a designer may define the interface to each com-
ponent and then gradually refine those components. On the
other hand, a system may be constructed reusing existing ele-
ments such as IP blocks in a bottom-up approach. A hierarchical
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PRES+ model can be devised bottom-up, top-down, or by mixing
both approaches.

A flat representation of a real-life embedded system can be too
big and complex to handle and understand. The concept of hier-
archy allows systems to be modeled in a structured way. Thus
the system may be broken down into a set of comprehensible
nets structured in a hierarchy. Each one of these nets may rep-
resent a sub-block of the current design. Such a sub-block can be
a pre-designed IP component as well as a design alternative cor-
responding to a subsystem of the system under design.

In this section we formalize the concept of hierarchy for
PRES+ models. Some trivial examples are used in order to illus-
trate the definitions.

Definition 5.8. A transition is an in-transition of
iff . In a similar manner, a tran-

sition  is an out-transition of  iff .

Note that the existence of non-empty sets and is a
necessary condition for the existence of in- and out-transitions.
For the net shown in Figure 5.5, , ,
and and are in-transition and out-transition respectively.

Figure 5.5: A simple subnet
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NOTIONS OF EQUIVALENCE AND HIERARCHY FOR PRES+
Definition 5.9. An abstract PRES+ model is a six-tuple
 where

 is a finite non-empty set of places;
 is a finite set of transitions;

 is a finite set of super-transitions;
 is a finite set of input arcs;
 is a finite set of output arcs;

 is the initial marking.

Observe that a (non-abstract) PRES+ net is a particular case
of an abstract PRES+ net with . Figure 5.6 illustrates an
abstract PRES+ net. Super-transitions are represented by thick-
line boxes.

Definition 5.10. The pre-set and post-set of a super-tran-
sition are given by and

 respectively.

Similar to transitions, the pre(post)-set of a super-transition
 is the set of input(output) places of .

Figure 5.6: An abstract PRES+ model
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Definition 5.11. For every super-transition there exists a
high-level function associ-
ated to , where  and .

Recall that denotes the type associated with the place
, i.e. the type of value that a token may bear in that place.

Observe the usefulness of high-level functions associated to
super-transitions in, for instance, a top-down approach: for a
certain component of the system, the designer may define its
interface and a high-level description of its functionality
through a super-transition, and in a later design phase refine
the component. In current design methodologies it is also very
common to reuse predefined elements such as IP blocks. In such
cases, the internal structure of the component is unknown to the
designer and therefore the block is best modeled by a super-
transition and its high-level function.

Definition 5.12. For every super-transition there exist a
minimum estimated delay and a maximum estimated delay

, where are non-negative real numbers that represent
the estimated lower and upper limits for the execution time of
the high-level function associated to .

Definition 5.13. A super-transition may not be in conflict with
other transitions or super-transitions, that is:
(i) and for all such that

;
(ii)  and  for all , .

In other words, a super-transition may not “share” input
places with other transitions/super-transitions, nor output
places. In what follows, the input and output places of a super-
transition will be called surrounding places.

Definition 5.14. A super-transition together with its
surrounding places in the net is a semi-
abstraction of the subnet (or con-
versely, is a semi-refinement of and its surrounding
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places) iff:
(i) There exists a unique in-transition ;
(ii) There exists a unique out-transition ;
(iii) There exists a bijection that maps the input

places of  onto the in-ports of ;
(iv) There exists a bijection that maps the out-

put places of  onto the out-ports of ;
(v)  and  for all ;
(vi)  and  for all ;
(vii) is disabled in the initial marking for all .

A subnet may, in turn, contain super-transitions. It is
straightforward to prove that the net of Figure 5.5 is indeed
a semi-refinement of  in the net of Figure 5.6.

If a net is the semi-refinement of some super-transition ,
it is possible to characterize in terms of both function and
time by putting tokens in its in-ports and then observing the
value and time stamp of tokens in its out-ports after a certain
firing sequence. If the time stamp of all tokens deposited in the
in-ports of is zero, the token time of tokens obtained in the
out-ports is called the execution time of . For example, the net

shown in Figure 5.5 can be characterized by putting tokens
and in its in-ports and observing the token
after firing and . Thus the execution time of

is equal to the token time , bounded in this case by
. Note the token value is given by

, where and are the transition func-
tions of  and  respectively.

The definition of semi-abstraction/refinement is just “syntac-
tic sugar” that allows a complex design to be constructed in a
structured way by composing simpler entities. We have not
defined, so far, a semantic relation between the functionality of
super-transitions and their refinements. Below we define the
concepts of strong and weak refinement of a super-transition.

Definition 5.15. A subnet is a strong
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refinement of the super-transition together with its sur-
rounding places in the net (or and its
surrounding places is a strong abstraction of ) iff:
(i)  is a semi-refinement of ;
(ii) “implements” , that is, is function-equivalent to

and its surrounding places;
(iii) The minimum estimated delay of is equal to the lower

bound of the execution time of ;
(iv) The maximum estimated delay of is equal to the

upper bound of the execution time of .

The subnet shown in Figure 5.5 is a semi-refinement of
in the net of Figure 5.6. is a strong refinement of the super-
transition if, in addition: (a) ; (b) ; (c)

(Definitions 5.15(ii), 5.15(iii), and 5.15(iv) respec-
tively).

Observe that the concept of strong refinement requires the
super-transition and its strong refinement to have the very same
time limits. Such a concept could have limited practical use,
from the point of view of a design environment, since the high-
level description and the implementation perform the same
function but typically have different timings and therefore their
bounds for the execution time do not coincide. Nonetheless, the
notion of strong refinement can be very useful for abstraction
purposes. We relax the requirement of exact correspondence of
lower and upper bounds on time; this yields to a weaker notion
of refinement.

Definition 5.16. A subnet is a weak
refinement of the super-transition together with its sur-
rounding places in the net (or and its
surrounding places is a weak abstraction of ) iff:
(i)  is a semi-refinement of ;
(ii) “implements” , that is, is function-equivalent to

and its surrounding places;
(iii) The minimum estimated delay of is less than or equal
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NOTIONS OF EQUIVALENCE AND HIERARCHY FOR PRES+
to the lower bound of the execution time of ;
(iv) The maximum estimated delay of is greater than or

equal to the upper bound of the execution time of .

In the sequel whenever we refer to refinement it will mean
weak refinement.

Given a hierarchical PRES+ net and
refinements of its super-transitions, it is possible to construct an
equivalent non-hierarchical net. For the sake of clarity, in the
following discussion we will consider nets with a single super-
transition, nonetheless these concepts can be easily extended to
the general case.

Definition 5.17. Let us consider the net
where , and let the subnet
be a refinement of and its surrounding places. Let

be unique in-transition and out-transition respectively.
Let and be respectively the sets of in-ports and out-
ports of . The equivalent net , one
level lower, is defined as follows:
(i) ;
(ii) ;
(iii) ;
(iv)  if ;

 if , or  and ;
 if ;

(v)  if ;
 if , or  and ;

 if ;
(vi)  for all ;

 for all .

We can make use of Definition 5.17 in order to flatten a hier-
archical PRES+ model. Given the net of Figure 5.6 and being
(Figure 5.5) a refinement of , we can construct the equivalent
non-hierarchical net as illustrated in Figure 5.7.
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Figure 5.7: A non-hierarchical PRES+ model

5.2.1 HIERARCHICAL MODELING OF A GMDFα

In this section we model a GMDFα (Generalized Multi-Delay
frequency-domain Filter) [Fre97] using PRES+. GMDFα has
been used in acoustic echo cancellation for improving the quality
of hand-free phone and teleconference applications. The
GMDFα algorithm is a frequency-domain block adaptive algo-
rithm: a block of input data is processed at one time, producing a
block of output data. The impulse response of length is seg-
mented into smaller blocks of size ( ), thus leading to
better performance. new samples are processed at each itera-
tion and the filter is adapted  times per block ( ).

The filter inputs are the signal and its echo , and the out-
put is the reduced or cancelled echo . In Figure 5.8 we show
the hierarchical PRES+ model of a GMDFα. The transition
transforms the input signal into the frequency domain by a
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FFT (Fast Fourier Transform). corresponds to the normaliza-
tion block. In each one of the basic cells the filter coefficients
are updated. Transitions serve as delay blocks. computes
the estimated echo in the frequency domain by a convolution
product and then it is converted into the time domain by . The
difference between the estimated echo and the actual one (signal

) is calculated by and output as . Such a cancelled echo is
also transformed into the frequency domain by to be used in
the next iteration when updating the filter coefficients. In
Figure 5.8 we also model the environment with which the
GMDFα interacts: models the echoing of signal , and
represent, respectively, the sending of the signal and the recep-
tion of the cancelled echo, and  is the entity that emits .

The refinement of the basic cells is shown in Figure 5.8(b)
where the filter coefficients are computed and thus the filter is
adapted by using FFT-1 and FFT operations. Transition delays
in Figure 5.8 are given in milliseconds.

This example shows how hierarchy allows systems be struc-
tured in an understandable way. It is worth noticing that
instances of the same subnet (Figure 5.8(b)) are used as refine-
ments of the different cells . Thus, in cases like this one, the
regularity of the system can be exploited in order to obtain a
more succinct model.

Later, in Section 7.2, we show how the verification of this filter
is performed and the advantages of modeling it in this way.
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Chapter 6
Formal Verification of

Embedded Systems

AS THE COMPLEXITY of electronic systems increases, the like-
lihood of subtle errors becomes much greater. A way to cope, to a
certain extent, with the issue of correctness is the use of mathe-
matically-based techniques, known as formal methods.

Correctness plays a key role in embedded systems. For the lev-
els of complexity typical to modern electronic systems, tradi-
tional validation techniques like simulation and testing are not
enough to verify the correctness of such systems. First, these
methods may cover just a small fraction of the system behavior.
Second, bugs found late in prototyping phases have a negative
impact on time-to-market. Third, as more applications become
dependent on computer systems, a failure may lead to cata-
strophic situations, e.g. in safety-critical systems like transpor-
tation, defense, and medical applications.

In this chapter we introduce our approach to formal verifica-
tion of real-time embedded systems represented in PRES+.
First, we present some preliminaries in order to make clearer
the presentation of our ideas. Then, we explain our technique
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and propose a translation procedure from PRES+ into the input
formalism of existing verification tools. Finally, we illustrate our
approach through the verification of a realistic system.

6.1 Preliminaries
The purpose of this section is to present preliminary concepts
that will be needed for the later discussion.

6.1.1 FORMAL METHODS

The weaknesses of traditional validation techniques have stim-
ulated research towards solutions that attempt to prove a sys-
tem correct. Formal methods are analytical and mathematical
techniques intended to prove formally that the implementation
of a system conforms its specification. The two well-established
approaches to formal verification are theorem proving and model
checking [Cla96].

In theorem proving [Fit96], the idea is to prove a system cor-
rect by using axioms and inference rules, in the same sense that
a mathematical theorem is proved correct. Both the system and
its desired properties are typically expressed as formulas in
some mathematical logic. Then, a proof of a given property must
be found from axioms and rules of the system. Since theorem
proving requires interaction with the user, it is a relatively slow
and error-prone process.

On the other hand, model checking [Cla99] is an automatic
approach to formal verification used to determine whether the
model of a system satisfies a set of required properties. In prin-
ciple, a model checker exhaustively searches the state space,
which must be finite. Model checking is fully automatic and can
produce counterexamples for diagnostic purposes. The main dis-
advantage of model checking is the state explosion problem.
Thus key challenges are the algorithms and data structures that
allow handling large search spaces.
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FORMAL VERIFICATION OF EMBEDDED SYSTEMS
Formal methods are becoming a practical alternative to
ensure the correctness of designs. They might overcome some of
the limitations of traditional validation methods. At the same
time, formal verification can give a better understanding of the
system behavior, help to uncover ambiguities, and reveal new
insights of the system. However, formal methods do have limita-
tions and are not the universal solution to achieve correct sys-
tems. Formal verification is to complement, rather than replace,
simulation and testing methods.

6.1.2 TEMPORAL LOGICS

A temporal logic is a logic augmented with temporal modal oper-
ators which allow reasoning about how the truth of assertions
changes over time [Ker99]. Temporal logics are usually
employed to specify desired properties of systems. There are dif-
ferent forms of temporal logics depending on the underlying
model of time. In this section, we focus on CTL (Computation
Tree Logic) because it is a representative example of temporal
logics and it is one that we use in our verification technique.

Several model checking algorithms have been presented in
the literature [Cla99]. Many of them use temporal logics to
express the properties of the system. One of the well known
algorithms is CTL model checking introduced by Clarke et. al
[Cla86]. CTL is based on propositional logic of branching time,
that is, a logic where time may split into more than one possible
future using a discrete model of time. Formulas in CTL are com-
posed of atomic propositions, boolean connectors, and temporal
operators. Temporal operators consist of forward-time operators
(G globally, F in the future, X next time, and U until) preceded
by a path quantifier (A all computation paths, and E some com-
putation path). Figure 6.1 illustrates some of the CTL temporal
operators. The computation tree represents an unfolded state
graph where the nodes are the possible states that the system
may reach. The shaded nodes are those states in which property
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holds. Thus it is possible to express properties that refer to the
root node (initial state) using CTL temporal operators. For
instance, holds in the initial state if for every possible
path, starting from the initial state, there exists at least one
state in which is satisfied, that is, will eventually happen.
The other temporal operators might be interpreted in a similar
way.

Figure 6.1: CTL temporal operators

In CTL, time is not mentioned explicitly. Temporal operators
only allow describing properties in terms of “next time”, “eventu-
ally”, or “always”.

TCTL is a real-time extension of CTL that allows inscribing
subscripts on the temporal operators to limit their scope in time.
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FORMAL VERIFICATION OF EMBEDDED SYSTEMS
For instance, expresses that, along all computation
paths, the property  becomes true within n time units.

6.1.3 TIMED AUTOMATA

A timed automaton is a finite automaton augmented with a
finite set of real-valued clocks [Alu99]. Timed automata can be
thought as a collection of automata which operate and coordi-
nate with each other through shared variables and synchroniza-
tion labels. There is a set of real-valued variables, named clocks,
all of which change along the time with the same constant rate.
There might be conditions over clocks that express timing con-
straints.

An extended Timed Automata model (TA) can be expressed as
a tuple , where

 is a finite set of locations;
 is a set of initial locations;

 is a set of edges;
 is a finite set of labels;

is a mapping that labels each edge in with some
label in ;

 is a finite set of real-valued clocks;
 is a finite set of variables;
is a mapping that assigns to each edge a clock condi-

tion over that must be satisfied in order to allow the
automaton to change its location from  to ;

is a mapping that assigns to each edge a variable
condition over that must be satisfied in order to allow
the automaton to change its location from  to ;

is a reset function that gives the clocks to be reset on
each edge;

is the activity mapping that assigns to each edge a set of
activities ;

is a mapping that assigns to each location an invariant
which allows the automaton to stay at location as long as its
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invariant is satisfied.

For a given TA, an automaton may stay in its current location
if its invariant is satisfied, otherwise it is forced to make a tran-
sition and change its location. In order to make a change of loca-
tion through a particular edge, both its clock condition and its
variable condition must be satisfied. When a change of location
takes place, the set of activities assigned to the edge occur (for
instance, assign to a variable the result of evaluating certain
expression).

Figure 6.2: A simple timed automata model

Consider the automata given in Figure 6.2. We will use this
simple example in order to illustrate the notation presented
above. The model consists of two automata where the set of loca-
tions and initial locations are and

respectively. There are seven edges as drawn in
Figure 6.2. For the sake of clarity, only labels shared by different
edges are shown. Such labels are called synchronization labels.
In our example, is the only synchronization label, so that a
transition from location to location must be accompanied
by a transition from to . The set of clocks and variables are

and respectively. Examples of clock and vari-
able conditions are, respectively, and . Thus, for
instance, a transition from location to location is allowed
only if the clock is greater than 4. In Figure 6.2, repre-
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sents the reset of clock , thus . The invariant
of location is , that is, the automaton may stay in
only as long as the clock  is less than or equal 3.

6.2 Verification of PRES+ Models
There are several types of analysis that can be performed on sys-
tems represented in PRES+. The absence or presence of tokens
in places of the net may represent the state of the system at a
certain moment in the dynamic behavior of the net. Based on
this, different properties can be studied. For instance, two
places marked simultaneously could represent a dangerous sit-
uation that must be avoided. This sort of safety requirement
might be formally proved by checking that such dangerous state
is never reached. Also, the designer could be interested in prov-
ing that the system eventually reaches a certain state, in which
the presence of tokens in a particular place represents the com-
pletion of a task. This kind of analysis, absence/presence of
tokens in places of the net, is termed reachability analysis.

The type of analysis described above is useful but says nothing
about timing aspects nor does it deal with token values. In many
embedded applications, however, time is an essential factor.
Moreover, in hard real-time systems, where deadlines should
not be missed, it is crucial to reason quantitatively about tempo-
ral properties in order to ensure the correctness of the design.
Therefore, it is needed not only to check that a certain state will
eventually be reached but also to ensure that this will occur
within some bound on time. In PRES+, time information is
attached to tokens so that we can analyze quantitative timing
properties. We may prove that a given place will eventually be
marked and that its time stamp will be less than a certain time
value that represents a temporal constraint. Such a study is
called time analysis.

A third type of analysis for systems modeled in PRES+

ca R a2 a3,( )( )= ca{ }
a3 ca 3≤ a3

ca
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involves reasoning about values of tokens in marked places.
Such kind of study is called functionality analysis. In this thesis
we restrict ourselves to reachability and time analyses. In other
words, we concentrate on the absence/presence of tokens in the
places of the net and their time stamps. Note, however, that in
some cases reachability and time analyses are influenced by
token values. The way we handle such cases for the sake of ver-
ification is discussed later in this chapter.

6.2.1 OUR APPROACH TO FORMAL VERIFICATION

Model checking is one of the well-established approaches to for-
mal verification: a number of desired properties (called in this
context specification) are checked against a given model of the
system. The two inputs to the model checking problem are the
system model and the properties that such a system must sat-
isfy, usually expressed as temporal logic formulas.

The purpose of our verification approach is to formally reason
about real-time embedded systems represented in PRES+. For
verification purposes, we restrict ourselves to safe PRES+ nets,
that is, every place holds at most one token for every
marking reachable from . Otherwise, the formal analysis
would become more cumbersome. This is a trade-off between
expressiveness and analysis power.

Our approach allows determining the truth of formulas
expressed in CTL [Cla86] and TCTL (Timed CTL) [Alu90] with
respect to a (safe) PRES+ model. In our approach the atomic
propositions of CTL/TCTL correspond to the absence/presence of
tokens in places in the net. Thus the atomic proposition holds
iff  is marked.

In order to verify the correctness of a real-time embedded sys-
tem, we propose a systematic procedure to translate PRES+ into
timed automata so that it is possible to make use of available
model checking tools, such as HyTech [HyT], KRONOS [Kro], and
UPPAAL [Upp]. Figure 6.3 illustrates our general approach to
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formal verification of embedded systems using model checking.
The system is described by a PRES+ model and the properties it
must satisfy are expressed by CTL/TCTL formulas. The model
checker automatically verifies whether the required properties
hold in the model of the system. In case the CTL/TCTL formulas
are not satisfied, diagnostic information is generated. Given
enough resources, the procedure will terminate with a yes/no
answer. However, due to the huge state space of practical sys-
tems, it might be the case that it is not feasible to obtain an
answer at all, even though in theory the procedure will always
terminate (probably after many years and with enough mem-
ory). That case corresponds to the output labeled “ ” in
Figure 6.3.

Figure 6.3: Model checking

The verification of hierarchical PRES+ models is done by con-
structing the equivalent non-hierarchical net as stated in Defi-
nition 5.17, and then using the translation procedure discussed
in the next section. Note that obtaining the non-hierarchical
PRES+ model can be done automatically so that the designer is
not concerned with flattening the net: he just inputs a hierarchi-
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cal PRES+ model as well as the properties he is interested in.

6.2.2 TRANSLATING PRES+ INTO TIMED AUTOMATA

In order to use existing model checking tools, we first translate
the PRES+ model into timed automata. In the procedure pre-
sented in this chapter, the resulting model will consist of one
automaton and one clock for each transition in the Petri net. We
use the PRES+ model shown in Figure 6.4 in order to illustrate
the translation procedure. Figure 6.5 shows the resulting timed
automata.

Figure 6.4: PRES+ model to be translated into automata

The translation procedure consists of the following steps.

Step 6.1. Define one clock in for each transition of the
Petri net. Define one variable in for each place of the Petri
net, corresponding to the token value  when  is marked.
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FORMAL VERIFICATION OF EMBEDDED SYSTEMS
The clock is used to ensure the firing of the transition
within its earliest-latest trigger time interval. For the example
in Figure 6.4, using the short notation to denote ,

, .

Step 6.2. Define the set of labels as the set of transitions in
the Petri net.

Step 6.3. For every transition in the Petri net, define an
automaton with locations , where is the
number of transitions that, when fired, will deposit a token in
some place of the pre-set . The set of such transitions is
defined by . In the case , define an autom-
aton with only two locations  and .

The resulting model consists of five automata. The automaton
, for instance, has three locations.

Step 6.4. Given the automaton , corresponding to transition
:

a) Transition is not in conflict with any transition: Let
. Define edges , edges , , and

edges . Then assign, to each group of edges, synchroni-
zation labels corresponding to the transitions in . Define
then one edge  with synchronization label ;
b) Transition is in conflict with another transition : Let

, , , , and .
Split each one of the locations into and

. Then define edges , edges ,
, edges , edges , , and edges

, each group with synchronization labels correspond-
ing to transitions in . Define then edges , edges

, , and edges , each group with synchroni-
zation labels corresponding to transitions in . Define one edge

, one edge , , and one edge , each
with synchronization label . Finally, define one edge
with synchronization label .
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For example, transition in the model of Figure 6.4 is not in
conflict with any transition and, therefore, case a) applies. Since

, for the automaton there are two edges ,
and two edges , with labels and as shown in
Figure 6.5. The edge  has label .

On the other hand, is in conflict with and case b) applies.
Since the automaton still has two locations
as shown in Figure 6.5. If transition did not exist, the autom-
aton would not have the edge with synchronization
label .

In the following, let be the transition function associated to
, the pre-set of , and and the minimum and maxi-

mum transition delays associated to .
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Figure 6.5: Timed Automata equivalent to the
PRES+ model of Figure 6.4
60



FORMAL VERIFICATION OF EMBEDDED SYSTEMS
Step 6.5. Given the automaton , for every edge
define . For any other edge in define .
Define the invariant of location as in order to enforce
the firing of  before or at its latest trigger time.

This means that in all edges the clock will be reset.
In Figure 6.5, the assignment represents the reset of .
The two edges of automaton , for example, have
inscribed on them. is used to take into account the time since

 becomes enabled and ensure the firing semantics of PRES+.

Step 6.6. Given and its edge with synchronization
label , assign to the clock condition . For every

 assign to such an edge  the activity .

For example, in the case of the automaton the condition
gives the lower and upper limits for the firing of ,

while the activity expresses that whenever the automa-
ton changes from to , i.e. fires, the value is
assigned to the variable .

Step 6.7. Given the automaton , if the transition has guard
, assign the variable condition to the edge with

synchronization label . Then add an edge with no
synchronization label, condition (the complement of ), and

.

Note the condition assigned to the edge in the
automaton , where represents the guard of . Observe
also the edge  with condition  and .

Step 6.8. If the transition is enabled in the initial marking,
make the location the initial location of . Otherwise, if there
are places initially marked in the pre-set of the transition

( so that is not enabled), make the initial
location of .

In our example, is the initial location of because the
transition is enabled in the initial marking of the net. Since
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no place in is initially marked, the automaton has as
initial location.

Once we have the equivalent timed automata, we can verify
properties against the model of the system. For instance, in the
simple system of Figure 6.4 we could check whether, for given
values of and , there exists a reachable state in which is
marked. This property can be expressed as a CTL formula

. If we want to check temporal properties we can express
them as TCTL formulas. Thus, we could check whether will
possibly be marked and the time stamp of its token be less than
5 time units, expressing this property as .

Some of the model checking tools, namely HyTech [HyT], are
capable of performing parametric analyses. Then, for the exam-
ple shown in Figure 6.4, we can ask the model checker which
values of and make a certain property hold in the system
model. For instance, we obtain that  holds if .

Due to the nature of the model checking tools that we use, the
translation procedure introduced above is applicable for PRES+
models in which transition functions are expressed using arith-
metic operations and token types of all places are rational. In
this case, we could even reason about token values. Recall, how-
ever, that we want to focus on reachability and time analyses.
From this perspective we can ignore transition functions if they
affect neither the absence/presence of tokens nor time stamps.
This is the case of PRES+ models that bear no guards and,
therefore, they can straightforwardly be verified even if their
transition functions are very complex operations, because we
simply ignore such functions. Those systems that include guards
in their PRES+ model may also be studied if guard dependencies
can be stated by linear expressions. This is the case of the sys-
tem shown in Figure 6.4. There are many systems in which the
transition functions are not linear, but their guard dependencies
are, and then we can inscribe such dependencies as linear
expressions and use our method for system verification.
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FORMAL VERIFICATION OF EMBEDDED SYSTEMS
6.3 Verification of an ATM Server
We illustrate the verification of a practical system modeled
using PRES+. The net shown in Figure 6.6 represents an ATM-
based Virtual Private Network (A-VPN) server [Fil98]. The
behavior of the system can be briefly described as follows.
Incoming cells are examined by Check to determine whether
they are faulty. Fault-free cells arrive through the UTOPIA_Rx
interface and are eventually stored in the Shared Buffer. If the
incoming cell is faulty, it goes through the module Faulty and
then is sent out using the UTOPIA_Tx interface without pro-
cessing. The module Address Lookup checks the Lookup Memory
and, for each non-defective input cell, a compressed form of the
Virtual Channel (VC) identifier in the cell header is computed.
With this compressed form of the VC identifier, the module Traf-
fic checks its internal tables and decides whether to accept the
incoming cell or discard it in order to avoid congestion. If the cell
is accepted, Traffic gives instructions to Queue Manager indicat-
ing where to store the incoming cell in the buffer. Traffic also
indicates to Queue Manager the cell (stored in Shared Buffer) to
be output. Supervisor is the module in charge of updating inter-
nal tables of Traffic and the Lookup Memory. The selected out-
going cell is emitted through the module UTOPIA_Tx. The
specification of the system includes a time constraint given by
the rate (155 Mbit/s) of the application: one input cell and one
output cell must be processed every 2.7 µs.

To verify the correctness of the A-VPN server, we must prove
that the system will eventually complete its functionality and
that such a functionality will eventually fit within a cell time-
slot. The completion of the task of the A-VPN server, modeled by
the net in Figure 6.6, is represented by the state (marking) in
which the place is marked. Then we must prove that for all
computation paths, will eventually get a token and its time
stamp will be less than 2.7 µs. These conditions might be
straightforwardly specified using CTL and TCTL formulas,

p1

p1
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namely and . Notice that the first formula is a
necessary condition for the second one. Using the translation
procedure described above and, in this case, the HyTech tool, we
found out that the CTL formula holds while the TCTL
formula does not. Moreover, we have checked the for-
mula that turns out to be true, which means that it is
possible to get a token in with a time stamp less than 2.7 µs.
However, recall that does not hold and therefore this
implementation does not fulfill the system specification because
it is not guaranteed that the time constraint will be satisfied.

Figure 6.6: PRES+ model of an A-VPN server
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FORMAL VERIFICATION OF EMBEDDED SYSTEMS
We can consider an alternative solution. To do so, suppose we
want to modify Traffic, keeping its functional behavior but seek-
ing superior performance: we want to explore the allowed inter-
val of delays for Traffic in order to fulfill the system constraints.
We can define the minimum and maximum transition delays of
Traffic as parameters and , and then use HyTech in order
to perform a parametric analysis and find out the values for
which is satisfied. We get that if and, by def-
inition, then the property holds. This indicates
that the worst case execution time of the function associated to
Traffic must be less than 0.57 µs to fulfill the system specifica-
tion.

Running the HyTech tool on a Sun Ultra 10 workstation3,
both the verification of the TCTL formula for the
model given in Figure 6.6, and the parametric analysis
described in the paragraph above take roughly 1 second.

3. All the experiments that we present in this thesis were run on a Sun
Ultra 10 workstation.
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AF<2.7 p1 d+
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Chapter 7
Reduction of Verification

Complexity by using
Transformations

THE APPLICATION OF TRANSFORMATIONS in the verification
of embedded systems is addressed in this chapter. We have
introduced an approach to the formal verification of systems
modeled in PRES+. The verification efficiency can be improved
considerably by using a transformational approach. The model
that we use to represent embedded systems supports a transfor-
mation process which is of great benefit in the formal verifica-
tion process.

For the sake of reducing the verification effort, we first trans-
form the system model into a simpler one, still semantically
equivalent, and then verify the simplified model. If a given
model is modified using correctness-preserving transformations
and then the resulting one is proved correct with respect to its
specification, the initial model is guaranteed to be correct as well
and no intermediate steps need to be verified. This simple obser-
vation allows us to reduce significantly the complexity of verifi-
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cation.

7.1 Transformations
As it was argued in Chapter 5, the concept of hierarchy makes it
possible to model systems in a structured way. Thus, using the
notion of abstraction/refinement, the system may be broken
down into a set of comprehensible nets.

Transformations performed on large and flat systems are, in
general, difficult to handle. Hierarchical modeling permits a
structural representation of the system in such a way that the
composing (sub)nets are simple enough to be transformed effi-
ciently.

We can define a set of transformation rules that make it possi-
ble to transform only a part of the system model. A simple but
useful transformation is shown in Figure 7.1. It is not difficult to
formally prove that and are total-equivalent, provided
that the conditions given in Figure 7.1 are satisfied. It is inter-
esting to observe that if the net is a refinement of a certain
super-transition in the hierarchical net

and is transformed into (so that and are total-
equivalent), then is also a refinement of and may be used
instead of . Such a transformation does not change the overall
system at all. First, having tokens with the same token value
and time in corresponding in-ports of and will lead to a
marking with the very same token value and time in corre-
sponding out-ports, so that the external observer (i.e. the rest of
the net ) can not distinguish between and . Second, once
tokens are put in the in-ports of the subnets, there is nothing
that externally “disturbs” the behavior of the subnets and
(for example a transition in conflict with the in-transition that
could take away tokens from the in-ports) because, by definition,
super-transitions may not be in conflict. Thus the overall behav-
ior is the same using either or . Such a transformation
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REDUCTION OF VERIFICATION COMPLEXITY BY USING TRANSFORMATIONS
rule could be used, therefore, to simplify PRES+ models and
accordingly reduce the complexity of the verification process.

Figure 7.1: Transformation rule TR1

It is worth clarifying the concept of transformation in the con-
text of verification. Along the design flow, the system model is
refined to include different design decisions, like architecture
selection, partitioning, and scheduling (see Figure 2.1). Such
refinements are what we call vertical transformations. On the
other hand, at certain stage of the design flow, the system model
can be transformed into another one that preserves certain
properties under consideration and, at the same time, makes the
verification process easier. These are called horizontal transfor-
mations.
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Horizontal transformations are a mathematical tool to deal
with the verification complexity. By simplifying the representa-
tion to be model-checked, the verification cost is reduced in a sig-
nificant manner. In this thesis, we concentrate on horizontal
transformations.

Figure 7.2: Using transformations in
order to reduce verification cost

Figure 7.2(a) depicts how the system model, at a given phase
of the design flow, is verified. The model together with the
required properties are input to the model checking tool to
find out whether the model conforms to the desired properties. It
is possible to do better by trying to apply horizontal transforma-
tions in order to get a simpler model, yet semantically equiva-
lent with respect to the properties . Our transformational
approach to verification is illustrated in Figure 7.2(b). If the
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REDUCTION OF VERIFICATION COMPLEXITY BY USING TRANSFORMATIONS
transformations are P-preserving, only the simplest model is to
be verified and there is no need to model-check intermediate
steps, thus saving time in the verification process.

In what follows we present a few transformations. We assume
that the nets involved in the transformations are a refinement of
a certain super-transition (in the case of total-equivalence trans-
formations) or, at least, a semi-refinement (in the case of time-
equivalence transformations).

Figure 7.3: Transformation rule TR2

Figure 7.4: Transformation rule TR3
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Figure 7.5: Transformation rule TR4

Figure 7.6: Transformation rule TR5
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Figure 7.7: Transformation rule TR6

We may take advantage of transformations to reduce the com-
plexity of verification. The idea is to simplify the system model
using transformations from a library. In the case of total-equiv-
alence transformations, since an external observer could not dis-
tinguish between two total-equivalent nets (for the same tokens
in corresponding in-ports, the observer would get in both cases
the very same tokens in corresponding out-ports), the global sys-
tem properties are preserved in terms of reachability, time, and
functionality. Therefore such transformations are correctness-
preserving: if a property holds in a net that contains a subnet

(into which a total-equivalent subnet has been trans-
formed), it does in another that contains ; if does not hold
in the first net, it does not in the second either.
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focus of our verification approach) will not be affected by token
values. In such a case, we can use time-equivalence transforma-
tions to obtain a simpler model, as they preserve properties
related to absence/presence of tokens in the net as well as time
stamps of tokens.

7.2 Verification of the GMDFα
In this section we verify the GMDFα (Generalized Multi-Delay
frequency-domain Filter) modeled using PRES+ in Section 5.2.1.
We illustrate the benefits of using transformations in the verifi-
cation of the filter.

We consider two cases of a GMDFα of length 1024: a) with an
overlapping factor of 4, we have the following parameters:

, , , , and ; b) with an overlapping
factor of 2, we have the following parameters: , ,

, , and . Having a sampling rate of 8 kHz, the
maximum execution time for one iteration is in both cases 8 ms
(64 new samples must be processed at each iteration). The com-
pletion of one iteration is determined by the marking of the
place .

We want to prove that the system will eventually complete its
functionality. According to the time constraint of the system, it
is not sufficient to finish the filtering iteration but also to do so
with a bound on time (8 ms). This aspect of the specification is
captured by the TCTL formula . At this point, our task is
to verify that the model of the GMDFα shown in Figure 5.8 sat-
isfies the formula .

A straightforward way could be flattening the system model
and applying directly the verification technique discussed in
Chapter 6. However, a wiser approach would be trying to first
simplify the system model by transforming it into an equivalent
one, through transformations from a library. Such transforma-
tions are a mathematical tool that allows a significant improve-
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ment in the verification efficiency. The improvement is possible
because of the following observation: the smaller the model is,
the lower the verification cost becomes, in terms of both time
and memory. Therefore we try to reduce the model aiming at
obtaining a simpler one, still semantically equivalent from the
point of view of reachability and time analyses, so that correct-
ness is preserved.

Figure 7.8: Transformations of the GMDFα basic cell

We start by using the transformation rule illustrated in
Figure 7.1 on the refinement of the basic cell, so that we obtain
the subnet of Figure 7.8(b). Note that in this transformation
step, no time is spent on-line in proving the transformation itself
because transformations are proved off-line (only once) and
stored in a library. Since the subnets of Figures 7.8(a) and 7.8(b)
are total-equivalent, the functionality of the entire GMDFα, so
far, remains unchanged. We may also use time-equivalence
transformations because the PRES+ model of the GMDFα has
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no guards. Using simple time-equivalence transformations, it is
possible to obtain a simpler representation of the basic cell as
shown in Figure 7.8(c). We continue until the basic cell refine-
ment is further simplified into the single-transition net of
Figure 7.8(d). Finally we check the specification against the sim-
plest model of the system, that is, the one in which the refine-
ment of the basic cells is the net shown in Figure 7.8(d). We
have verified the formula and the model of the GMDFα
indeed satisfies its specification for both and . The ver-
ification times using UPPAAL [Upp] are shown in the last row of
Table 7.1.

Since the transformations used along the simplification of the
GMDFα model are correctness-preserving, the initial model of
Figure 5.8 is correct, i.e. satisfies the system specification, and
therefore need not be verified. However, in order to illustrate the
verification cost (time) at different stages, we have verified the
models obtained in the intermediate steps (models in which the
refinements of the basic cells are given by the nets shown in
Figures 7.8(b) and 7.8(c)) as well as the initial model. The
results are shown in Table 7.1. Recall, however, that this is not
needed as long as the transformation rules preserve the correct-
ness in terms of reachability and time analyses. Observe how

Table 7.1: Verification times of the GMDFα

Refinement of
the basic cell

Verification time [s]

α=4, K=4 α=2, K=8

Fig. 7.8(a) 108 NA*

*  Not available: out of time

Fig. 7.8(b) 61 8177

Fig. 7.8(c) 9 1368

Fig. 7.8(d) 1 9

S3.i

AF<8 E'
K=4 K=8

S3.i
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REDUCTION OF VERIFICATION COMPLEXITY BY USING TRANSFORMATIONS
much effort is saved when the basic cells are refined by the
simplest net compared to the original model.

Thus verification is carried out at low cost (short time) by first
using correctness-preserving transformations aiming at simpli-
fying the system representation. If the simpler model is correct
(its specification holds), the initial one is guaranteed to be cor-
rect and intermediate steps need not be verified.

S3.i
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Chapter 8
Reduction of Verification

Time by Clustering
Transitions

OUR APPROACH TO VERIFICATION allows reasoning formally
about real-time embedded systems represented in PRES+. We
have proposed in Chapter 6 a systematic procedure to translate
PRES+ into timed automata in order to make use of existing
model checking tools. Such a procedure can be improved by
exploiting the structure of the net and, in particular, by extract-
ing the sequential behavior of the system.

In this chapter we present a clustering algorithm that
extracts the sequential behavior of the Petri net. Then we pro-
pose a translation procedure where we obtain one automaton for
each cluster (sequential part of the net). In this manner we
improve significantly the procedure to translate PRES+ models
into timed automata presented in Chapter 6 and consequently
the efficiency of the verification process. The example of the
GMDFα is revisited in this chapter in order to illustrate the
reduction in verification time when the structure of the net is
79



CHAPTER 8
considered.

8.1 Clustering
The approach proposed in Chapter 6 translates PRES+ models
into a collection of timed automata which operate and coordi-
nate with each other through shared variables and synchroniza-
tion labels. One automaton with one clock variable is obtained
for each transition. The main problem of such an approach is
that the complexity of model checking of timed automata is
exponential in the number of clocks.

In order to reduce the number of automata/clocks resulted
from the translation of PRES+ models into timed automata, we
propose an algorithm that extracts the sequential behavior of
the Petri net by clustering transitions. Intuitively, each cluster
consists of a sequence of transitions where the firing of one of
them enables the next one. The input of the algorithm is a safe
Petri net and its output is a set of clusters, each representing a
sequential part of the net. Then we obtain the timed automata,
with one automaton and one clock per cluster (instead of one
automaton and one clock per transition).

Definition 8.1. A cluster is an ordered tuple of distinct transi-
tions denoted , such that becomes enabled iff
fires, for . We say that and are, respectively, the
head and the tail of .

In Figure 8.1, a possible cluster is with head
and tail .

Definition 8.2. The cluster set of a cluster is
the set of transitions that are components of , that is

.

We explicitly make a distinction between cluster and cluster
set because in the former case the order of the components is rel-
evant whereas the order of elements in a set is immaterial. The

C= t1 … tn, ,( ) ti+1 ti
1 i n<≤ t1 tn

C

C= t1 t3 t5, ,( ) t1
t5

SC C= t1 … tn, ,( )
C

SC= t1 … tn, ,{ }
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REDUCTION OF VERIFICATION TIME BY CLUSTERING TRANSITIONS
objective of our clustering algorithm is to find a set of clusters
such that their cluster sets form a partition of (the set of tran-
sitions of the Petri net). In other words, we aim at finding a
number of clusters such that each transition is in one and
only one cluster.

Figure 8.1: PRES+ model to be clustered

Definition 8.3. The anterior set of a transition , denoted
, is the set of those transitions that when fired will deposit

a token in some place in the pre-set , that is, .
The posterior set of a transition , denoted , is the set
of transitions that will get a token in some place of their pre-set
when  is fired, that is, .

Definition 8.4. The anterior set of a cluster
is the anterior set of its head , that is, . The pos-
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terior set of a cluster is the posterior set of
its tail , that is, .

Consider, for example, the cluster in the net
shown in Figure 8.1. Its anterior and posterior sets are, respec-
tively,  and .

The clustering algorithm we propose tries to add a new head
or tail to an existing cluster . We keep a list of “free” transi-
tions , i.e. transitions not allocated yet to any cluster. Let

be a cluster with head and tail and let be
the set of free transitions. We may add a new tail to the clus-
ter if and . We may add a new
head to if and . Consider the
example given in Figure 8.1. Assume this time and

. Since and also
, both and fulfill the requirements for

new tail stated above, but only one of them can be added as new
tail to the cluster. In our algorithm this choice is made arbi-
trarily. If, for instance, is added to the cluster we obtain

and . Note that was
removed from . It is not hard to see that there is no transi-
tion to be added as new head of the cluster.

Our clustering algorithm starts by selecting arbitrarily a tran-
sition from the free list. A new cluster is formed so that is
initially both head and tail of , and is removed from .
The next step is to examine only those transitions in
that are also in and check whether they may be a new tail
of . If so, the cluster is enhanced by adding a new tail. We
repeat the process until no new tail may be added to the cluster.
Then, in a similar fashion, we try to enhance the cluster by add-
ing a new head and repeat until there is no new head candidate
in the free list. When the cluster can no longer be enhanced, we
select another transition from , form a new cluster, and
repeat the process until all transitions have been allocated to a
cluster. The clustering algorithm is shown in Figure 8.2.
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REDUCTION OF VERIFICATION TIME BY CLUSTERING TRANSITIONS
By applying our clustering algorithm on the system shown in
Figure 8.1, we obtain the following clusters: ,

, , . Note that the output of the algo-
rithm is not unique since there might be new-tail transitions
chosen arbitrarily. We could also have got, for instance,

, , , . However,
in either case, the number of clusters is the same.

Figure 8.2: Clustering algorithm

A simple analysis shows that the proposed algorithm has a
(worst-case) time complexity O(n2), where n is the number of
transitions in the net. We have applied the clustering algorithm

C1= t9 t10 t1 t2 t4, , , ,( )
C2= t3 t5 t7, ,( ) C3= t6( ) C4= t8( )

C1'= t9 t10 t1 t,
3
t6, , ,( ) C2'= t2 t4,( ) C3'= t5 t7,( ) C4'= t8( )

clustering(safePN N)
set
while do

with an arbitrary do
new cluster
set
set true
set true
// try to add a new tail
while do

set false
with an arbitrary
 such that do

add  to
set
set true

endwith
endwhile
// try to add a new head
while do

set false
with  such
 that do

add  to
set
set true

endwith
endwhile

endwith
endwhile

endclustering
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CHAPTER 8
to three different examples that can be scaled up. It is not our
intention to discuss them here but rather use these examples in
order to illustrate the performance of the algorithm in terms of
execution time. Figure 8.3 shows the execution times of the clus-
tering algorithm for the three cases studied.

Figure 8.3: Performance of the clustering algorithm

8.2 Improved Translation Procedure
As discussed previously, in order to verify the correctness of a
real-time embedded system represented in PRES+, we translate
the system model into timed automata so that model checking
tools can be used. In what follows we describe the systematic
procedure to translate PRES+ models into timed automata after
clustering has been performed. The resulting model will consist
of one automaton and one clock per cluster. The reader is
referred to Section 6.1.3 for the notation related to timed autom-
ata. The translation procedure that we propose here is correct as
long as the untimed Petri net is safe. We use the example of
Figure 8.1 in order to illustrate the translation procedure, which
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REDUCTION OF VERIFICATION TIME BY CLUSTERING TRANSITIONS
consists of the following steps.

Step 8.1. Define one clock in for each cluster. Define one vari-
able in for each place of the Petri net, corresponding to the
token value  when  is marked.

Step 8.2. Define the set of synchronization labels as the set of
transitions in the Petri net.

Steps 8.3 through 8.9 must be performed for each one of the
clusters obtained by using the clustering algorithm. Consider a
cluster with head and tail . For (
denotes the i-th transition in cluster ), let be the transition
function associated to , and let and be the minimum and
maximum transition delays associated to . Let be the guard
associated to the transition . Let be the value of the token in
the place when marked. The timed automaton corresponding
to the cluster will be denoted . The clock corresponding to

is denoted . For the sake of clarity, we first present the
translation steps for the simplest case: we initially assume that

and that is not in conflict with any
other transition, for all . Recall that a transition is in con-
flict with another transition if it can be disabled by the firing of
such a transition. Later we will discuss the general case where
these assumptions do not hold.

Step 8.3. Define locations , where
and . These are the locations of .

Define edges , for , with synchronization
labels corresponding to the transitions in . Define
also edges with synchronization labels corresponding
to the transitions in . Then define one edge ,
for , with synchronization label . Define one edge

 with synchronization label .

Consider the cluster for the model given in
Figure 8.1. We have for this cluster. Since
we have . Therefore, the automaton corresponding to

X
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the cluster has 7 locations and its
edges are as shown in Figure 8.4. Note that corresponds to
the location in which transition is bound (or enabled if has
no guard). The change of location, for example, from to
corresponds to the firing of transition .

Step 8.4. For every edge and every edge ,
, define . For any other edge in ,

define .

This means that on all edges but , , and
the clock will be reset. In Figure 8.4, the assignment

 represents the reset of clock .

Step 8.5. For every location , , define its location
invariant as .

This enforces the firing of before or at its latest trigger time.

Step 8.6. To every edge with synchronization label , where
, assign the clock condition .

In Figure 8.4, for example, the edge (with synchroni-
zation label ) of the automaton has a clock condition

where 2 and 5 are the minimum and maximum transi-
tion delays of .

Step 8.7. For every edge with synchronization label , where
, and for every assign to such an edge the activi-

ties .

For instance, the activities assigned to the edge with
synchronization label in the automaton are and

, where  is the transition function of .

Step 8.8. If the transition has a guard , assign the
variable condition to the edge with synchronization label .
Then add an edge with no synchronization label, vari-
able condition  (the complement of ), and .

Note the variable condition on and the edge
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REDUCTION OF VERIFICATION TIME BY CLUSTERING TRANSITIONS
in the automaton . This is due to the guard of
transition .

Step 8.9. If the transition is enabled in the initial mark-
ing, make the location the initial location of . Otherwise, if
there are places initially marked in the pre-set of the head
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Figure 8.4: Automata equivalent to the model of Figure 8.1
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( so that is not enabled), make the initial
location of .

In our example, is the initial location of because the
transition is enabled in the initial marking of the net.
The automaton has as initial location because none of the
transitions of the cluster  is initially enabled.

Observe that one and only one of the transitions of a given
cluster will be enabled at a time. If two transitions in a cluster
were enabled simultaneously, that would imply that the (under-
lying untimed) Petri net is not safe.

We have assumed, so far, that is not in conflict with any
transition, for all , and . Now we
discuss the cases in which these assumptions do not hold:
a) In case that (the posterior set of the clus-

ter tail is the singleton containing the cluster head) the automa-
ton will have n locations , where , but no
locations. There will be additionally one edge with syn-
chronization label and clock condition, variable condition,
clock reset, and activities similar to the other edges ;
b) If one of the transitions is in conflict with another

transition , just add to the automaton one edge with
synchronization label .

8.3 Revisiting the GMDFα
In Section 5.2.1 we have modeled a Generalized Multi-Delay fre-
quency-domain Filter (GMDFα). In Section 7.2 such an applica-
tion has been verified by transforming the system model and
using the “naive” translation procedure described in Section
6.2.2.

In this section we revisit the verification of the GMDFα and
compare it with the results shown previously in Section 7.2. We
also consider here the two cases of a GMDFα of length 1024: a)
with an overlapping factor , ; b) with an overlapping
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REDUCTION OF VERIFICATION TIME BY CLUSTERING TRANSITIONS
factor , . Recall that having a sampling rate of 8 kHz,
the maximum execution time for one iteration is in both cases 8
ms. What we want to prove is that the filter eventually com-
pletes its functionality and does so within a bound on time (8
ms). This is captured by the TCTL formula . As seen in
Figure 5.8, affects directly the dimension of the model and,
therefore, the complexity of verification.

We have used UPPAAL in order to model-check the formula
against the model of the filter. For both cases ( and

), indeed holds (this fact was known beforehand
from Section 7.2). The results are shown in Table 8.1. The sec-
ond column corresponds to the verification time using the
approach described in Chapter 6 (naive translation of PRES+
into timed automata). The third column in Table 8.1 shows the
results of verification when using the approach discussed in
Chapter 7 (transformation of the model into a semantically
equivalent and simpler one in order to reduce complexity, fol-
lowed by naive translation into timed automata). The verifica-
tion time for the GMDFα using the clustering method presented
in this chapter is shown in the fourth column of Table 8.1. These
results include the execution time of the clustering algorithm.
By combining the transformational approach with the cluster-
ing one, it is possible to further improve the efficiency of the ver-
ification process as shown in the last column of Table 8.1.

Table 8.1: Verification of the GMDFα

GMDFα
L=1024

Verification time [s]

Naive Transfor-
mations

Clustering Transf. +
Clustering

α=4, K=4 108 1 2 <1

α=2, K=8 NA*

*  Not available: out of time

9 540 1

α=2 K=8

AF<8 E'
K

AF<8 E' K=4

K=8 AF<8 E'
89



CHAPTER 8
Note that, for this particular case, the transformational
approach of Chapter 7 outperforms the one presented in this
chapter. However, by combining the approach proposed here and
the one presented in Chapter 7 the efficiency of verification is
improved considerably.
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Chapter 9
Experimental Results

THIS CHAPTER PRESENTS three different examples, including
a practical application, which we use in order to illustrate our
modeling and verification technique.

9.1 Ring-Configuration Processes
In this section we illustrate our verification approach on a scal-
able example, comparing the technique based on a naive trans-
lation from PRES+ into automata discussed in Chapter 6, the
transformational approach presented in Chapter 7, and the one
formulated in Chapter 8 where the structure of the net is
exploited to achieve higher efficiency.

The example that we use represents a number n of processes
arranged in a ring configuration. The model for one such process
is illustrated in Figure 9.1. Each one of the n processes in the
system has a bounded response requirement, namely whenever
the process starts it must strictly finish within a time limit, in
this case 25 time units. Referring to Figure 9.1, the start of one
such process is denoted by the marking of while the mark-
ing of denotes the end of the process. This requirement is

pstart
pend
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expressed by the TCTL formula .

Figure 9.1: PRES+ model for one ring-process

We have used UPPAAL in order to model-check the timing
requirements of the processes in the ring-configuration example.
The results are summarized in Table 9.1.

Table 9.1: Verification of the ring-configuration example

Number
of

Processes
(n)

Verification time [s]

Naive Transfor-
mations

Clustering Transf. +
Clustering

2 1 <1 <1 <1

3 29 5 2 1

4 704 85 31 17

5 8700 1275 453 205

6 NA*

*  Not available: out of time

13260 5771 2295
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†  Specification does not hold

NA* NA* NA* 16200

AG pstart AF<25 pend⇒( )

t 0

t 1

t 5

pstart

pend

t 2

t 3

t 4

qi+1

pi+1pi

qi

[1,2]

1
[1,2]

[0,1]

. . .

. . . . . .

. . .

1

1

92



EXPERIMENTAL RESULTS
The second column of Table 9.1 shows the verification time
using the naive translation procedure of Chapter 6. The third
column corresponds to the transformational approach discussed
in Chapter 7. The fourth column of Table 9.1 shows the verifica-
tion time of the method based on transition clustering (Chapter
8). The results of combining the transformation-based technique
with clustering are shown in the last column. We have plotted
all these experimental results in Figure 9.2.

Figure 9.2: Verification of ring-configuration processes

Observe that for n=7 the bounded response requirement
expressed by is not satisfied, a fact
which, at first glance, is not obvious at all. An informal explana-
tion is that since transition delays are given in terms of inter-
vals, one process may take longer to execute than another; thus
different processes can execute “out of phase” and this phase dif-
ference may be accumulated depending on the number of pro-
cesses, causing one such process to take eventually longer than
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25 time units (for ). It is also worth mentioning that,
although the model has relatively few transitions and places,
this example is very complex because of its large (untimed) state
space which is due to the high degree of parallelism.

9.2 Fischer’s Mutual Exclusion Protocol
In this section we model and verify the mutual exclusion proto-
col suggested by Fischer [Lam87]. The system consists of n pro-
cesses, each performing read and write operations on a shared
memory variable . Each process , for , executes the
following algorithm:

repeat
repeat

await

delay
until
Critical section

forever

One such process can be modeled using PRES+ as shown in
Figure 9.3, where place corresponds to the shared variable.
The process may start if . When fires, the value is
assigned to the shared variable . Note that is constant for
each process. reads and writes its value in the token put in
place . The process is allowed to enter its critical section iff

. The presence of a token in place indicates that is in
its critical section. After leaving the critical section (firing of
transition ) the value is written in . We have included in
the model only the information that is relevant for the current
discussion. For instance, we do not define explicitly the transi-
tion functions of those transitions that do not write the shared
variable. Observe that we have expressed the maximum transi-
tion delay of and the minimum transition delay of as
parameters  and  respectively.

The main property of interest for Fischer’s protocol is the
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EXPERIMENTAL RESULTS
mutual exclusion, that is, no two processes should be simulta-
neously in their critical sections. We have initially studied the
case of only two processes and . By using the capabilities
of parametric analysis supported by the HyTech tool, we found
out that in case of the mutual exclusion property given by
the formula  is fulfilled iff .

Figure 9.3: Process  of Fischer’s protocol
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will use in the remaining experiments. Now, we want to verify
the correctness of the protocol in cases where there are more
than two processes, given and . We turn to UPPAAL

because, for such verification, it is the most efficient. Note that
the length of the formula that states mutual exclusion grows
exponentially in the number of processes, for instance, for ,
it is given by

The results of verifying mutual exclusion, using UPPAAL, for n
processes as modeled in Figure 9.3, with and , are
shown in Table 9.2.

9.3 Radar Jammer
The example that we describe in this section corresponds to a
real-life application used in the military industry [Lin01]. The
function of such a system is to deceive a radar apparatus by jam-
ming signals.

The jammer is a subsystem placed on an object (target), typi-
cally an aircraft, moving in the area observed by a radar. The
radar sends out pulses and some of them are reflected back to
the radar by the objects in the area. When a radar receives
pulses, it might determine the distance and direction of the
object, and even its velocity and the type of object. The distance
is calculated by measuring the time the pulse has travelled from

Table 9.2: Verification of the mutual exclusion protocol

Number of
Processes (n)

Verification
time [s]

2 1

3 7

4 541

5 21500

a=2 b=3

n=3

AG P1.cs P2.cs∧( ) P1.cs P3.cs∧( ) P2.cs P3.cs∧( )∨ ∨( )¬

a=2 b=3
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its emission until it returns to the radar. By rotating the radar
antenna lobe, it is possible to find the direction returning maxi-
mum energy, that is, the direction of the object. The velocity of
the object is found out based on the doppler shift of the returning
pulse. The type of object can be determined by comparing the
shape of the returning pulse with a library of radar signatures
for different objects.

The basic function of the jammer is to deceive a radar scan-
ning the area in which the object is moving. The jammer receives
a radar pulse, modifies it, and then sends it back to the radar
after a certain delay. Based on input parameters, the jammer
can create pulses that contain specific doppler and signature
information as well as the desired space and time data. Thus the
radar will see a false target. A view of the jammer and its envi-
ronment is shown in Figure 9.4.

Figure 9.4: Radar jammer and its environment

The jammer example has been used as a test case for the
SAVE design methodology (see Section 2.2). In the frame of
SAVE, the system is described using Haskell as specification
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language. The Haskell description is based on skeletons, which
are higher-order functions used to model elementary processes.

The radar jammer has been specified in Haskell using a num-
ber of skeletons. Based on a basic procedure to translate Haskell
descriptions (using skeletons) into PRES+ [Cor01a] and assisted
by a software tool developed by our research group, we may get
the PRES+ model of the jammer from its Haskell description.
The obtained model contains no timing information which can
later be annotated as transition delays. The PRES+ model of the
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radar jammer, obtained from its Haskell description, is shown in
Figure 9.5.

We briefly discuss the structure of the PRES+ model of the
jammer. We do not intend to provide here a detailed description
of each one of the transitions of the model of the radar jammer
given in Figure 9.5 but rather present an intuitive idea about it.
When a pulse arrives, it is initially detected and some of its char-
acteristics are calculated by processing the samples taken from
the pulse. Such processing is performed by the initial transi-
tions, e.g. , , , , , and based on
internal parameters like and . Different sce-
narios are handled by the middle transitions, e.g. ,

, and . The final transitions and
are the ones that actually alter the pulse to be returned

to the radar.

Figure 9.6: Higher-level abstraction of the radar jammer

Using the concept of hierarchy, it is possible to obtain a
higher-level view of the radar jammer represented in PRES+ as
depicted in Figure 9.6. The super-transitions abstract parts of
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the model given in Figure 9.5. For example, super-transition
corresponds to the abstraction of the subnet shown in
Figure 9.7. Such a subnet (Figure 9.7) can easily be identified as
a portion of the model depicted in Figure 9.5.

Figure 9.7: Refinement of  in the model of Figure 9.6

Also, many of the transitions presented in the model of
Figure 9.5 could be refined (for example, during the design pro-
cess). To illustrate this, we show how transition , for
instance, can be refined according to our concept of hierarchy. Its
refinement is presented in Figure 9.8. In this form, hierarchy
can conveniently be used to structure the design in a compre-
hensible manner.

Figure 9.8: Refinement corresponding to transition
 in the model of Figure 9.5

We aim at verifying a pipe-lined version of the jammer where
the stages correspond precisely to the super-transitions of the
model shown in Figure 9.6. In order to represent a pipe-lined
structure it is necessary to add a number of places and arcs to
the model as follows. For every place such that ,

, and : a) add a place initially marked; b) add
an input arc ; c) add an output arc . In this way, all
places but and will hold at most one token, and still sev-
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eral of them might be marked simultaneously, representing the
progress of activities along the pipeline.

The model of the pipe-lined jammer is shown in Figure 9.9.
The minimum and maximum transition delays are given in ns.
The timing information is discussed later in this section. We
have included in this model a few more places and transitions
that represent the environment. The input to the jammer is a
radar pulse (actually, a number of samples taken from it). Tran-
sition will fire times (where is the number of sam-
ples), every (where is the pulse width), depositing the
samples in the place which are later buffered in the place

. In this form, we model the input of the incoming radar pulse.
A token in  means that the input is being sampled.

Figure 9.9: Pipe-lined model of the jammer
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Regarding the emission of the pulse produced by the jammer,
the data obtained is buffered in place before being transmit-
ted. After some delay, it is sent out by transition so that the
marking of place represents a part of the outgoing pulse
being transmitted back to the radar.

We have applied our verification technique to the PRES+
model of the jammer shown in Figure 9.9. We have performed
what we call “time budget verification”. At this point, we have no
accurate estimates of the execution time of the function associ-
ated to each one of the transitions of the model. However, we do
know the constraints of the system. The idea is to assign values
to the minimum and maximum transition delays based on the
designer’s experience. Having such values, we perform verifica-
tion of the required properties. If such properties are satisfied,
the transition intervals constitute the time budget for the differ-
ent functions to be implemented.

The time budget information can be used by the designer to
guide the design process. It is possible that some of the intended
implementations of a certain function do not fit in the time bud-
get obtained previously. Then, it is necessary to modify the tim-
ing information of the model based on more accurate data and
verify again the desired properties. Thus the process is repeated
so that the designer gets valuable information from the very
early stages of the design flow.

There are two properties that are important for the jammer.
The first is that there cannot be output while sampling the
input. The second requirement is that the whole outgoing pulse
must be transmitted before another pulse arrives. The minimum
Pulse Repetition Interval (PRI), i.e. the separation in time of two
consecutive incoming pulses, for our system is 10 µs, so this is
the value we will use for verifying the second property. For a PRI
of 10 µs, the Pulse Width (PW) can vary from 100 ns up to 3 µs.
Therefore, we will consider the most critical case, that is, when
the pulse width is 3 µs. We assume that the number of samples
is (so that the delay of transition in Figure 9.9 is

out
emit

outSig

n=30 sample
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100 ns).
The properties described above can be expressed, respectively,

by the formulas and . The
first formula states that the places and are never
marked at the same time, while the second says that there is no
computation path for which  is marked after 10000 ns.

In order to verify the model of the jammer shown in
Figure 9.9, we have translated it into timed automata. We have
used the systematic translation procedure proposed in this the-
sis for the part of the net that is safe. The rest of the model (for
example, transitions and ) has been translated in an
ad hoc manner. We have verified that the required properties
are indeed satisfied in the model of Figure 9.9. Using UPPAAL,
the verification of takes 115 s while the ver-
ification of the formula  takes 384 s.

The radar jammer is a realistic example that has illustrated
how our modeling and verification approach can be used for
practical applications. The concept of hierarchy has proved to be
very convenient to handle this example in an understandable
way. The verified requirements are very interesting as not only
they impose an upper bound for the completion of the activities
but also a lower one, since the emission and sampling of pulses
cannot overlap. Though there are few transitions in the model,
the state space is very large because of the pipeline. Despite the
large space, the verification of the two studied properties takes
relatively short time.

AG inSig outSig∧( )¬ EF>10000 outSig¬
inSig outSig

outSig

sample emit

AG inSig outSig∧( )¬
EF>10000 outSig¬
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Chapter 10
Conclusions and

Future Work

THIS THESIS HAS INTRODUCED an approach to modeling and
formal verification of real-time embedded systems. This chapter
is intended to summarize the work presented in this thesis and
point out possible directions of our future research.

10.1 Conclusions
Embedded systems are becoming increasingly common in our
everyday life. We just need to look around and start counting the
number of computer-controlled devices that we own and use.
Embedded systems are typically characterized by their dedi-
cated function and real-time behavior. Many of them must fulfill
strict requirements in terms of reliability and correctness.
Designing systems with such features, combined with high lev-
els of complexity and tight time-to-market constraints, is a chal-
lenging task.

The design flow must be based upon an unambiguous formal-
ism that can represent relevant characteristics of the system
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and capture design decisions. A sound model of computation
supports a precise representation of the system, the use of for-
mal methods to verify its correctness, and the automation of dif-
ferent tasks along the design process.

In this thesis we have presented a formal model of computa-
tion for real-time embedded systems. PRES+ is a model based on
Petri nets with a well-defined semantics. It has been extended in
order to capture essential characteristics of real-time embedded
systems: tokens carry information and transitions perform
transformation of data when fired; timing is explicitly included
by associating lower and upper limits to the duration of activi-
ties related to transitions; both sequential and concurrent activ-
ities may be easily expressed; PRES+ supports the concept of
hierarchy.

Several examples, including an industrial application, have
been studied in order to demonstrate the applicability of our
modeling technique to different systems.

We have proposed an approach to the formal verification of
real-time embedded systems represented in PRES+. We make
use of model checking to prove whether certain properties,
expressed as CTL and TCTL formulas, hold with respect to the
system model. We have introduced a systematic procedure to
translate PRES+ models into timed automata so that it is possi-
ble to use existing model checking tools.

Two strategies have been addressed in this thesis in order to
reduce the complexity of the verification process.

First, we apply transformations to the initial system model,
aiming at simplifying it, still preserving the properties under
consideration. This is a transformational approach that tries to
reduce the model, and therefore improve the efficiency of verifi-
cation, by using correctness-preserving transformations. Thus if
the simpler model is proved correct, the initial one is guaranteed
to be correct.

Second, we have shown that verification complexity can fur-
ther be reduced by improving the translation procedure from
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PRES+ into automata. We have proposed an algorithm that
extracts the sequential behavior of the net by clustering transi-
tions. Thus we obtain one automaton with one clock per cluster,
instead of one automaton with one clock per transition. More-
over, experimental results have shown that by combining the
clustering strategy and the transformational approach the effi-
ciency of verification is improved considerably.

10.2 Future Work
This section discusses future directions of our research by point-
ing out some of the possible forms to improve and extend the
work presented in this thesis.

 • We have concentrated on the modeling and verification parts
of the design flow for embedded systems. There are other
issues well worth considering. We intend to develop an
approach to partitioning and scheduling based on our mode-
ling formalism. The system model can incrementally be
transformed to reflect the design decisions taken during such
phases. For instance, we could add a place for each process-
ing engine in the system in order to represent the mapping of
tasks onto selected components. In that case, one such place
would be both input and output of all transitions which cap-
ture processes mapped onto that engine.

 • The problem of verification of the mapped and scheduled
model is very interesting. On the one hand, the model grows
larger since more information must be included in the repre-
sentation. On the other hand, the amount of parallelism is
reduced and, therefore, the state space becomes smaller. The
study of these trade-offs with respect to the verification com-
plexity is a direction to follow in the near future.

 • We have presented a verification approach and proposed two
strategies to reduce its complexity. However, in order to han-
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dle larger and more detailed models, the efficiency of verifi-
cation must further be improved. Our intention is to explore
new ways to alleviate the complexity of verification by, for
instance, taking advantage of certain regularities in the
structure of the net. By achieving a more efficient verifica-
tion, our approach will be practical also at lower levels of
abstraction.
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