
i

Acknowledgements

I would like to thank my supervisor Zebo Peng for all support in the
work towards this thesis. Zebo has always been enthusiastic and spent a
lot of time helping me to move forward in my research. A special thank
should also go to Krzystof Kuchcinski, my assistant supervisor. I would
also like to thank all past and present colleagues of the ESLAB and
CADLAB groups for providing a very pleasant social atmosphere.

Outside the university I would like to thank Gunnar Carlsson at
Ericsson Telecom for his contributions to and criticism of my work.

Jan Håkegård
Linköping
February 1998

ii

iii

Contents

1 Introduction 5

1.1 Motivation . 6

1.2 Problem Formulation . 7

1.3 Contributions . 8

1.4 Thesis Overview . 10

2 Background and Related Work 11

2.1 Introduction . 11

2.2 BIST . 12

2.3 Board-Level Test and Boundary Scan . 13

2.4 Test Controller . 16

2.5 Related Work . 18

2.6 Discussion . 24

3 A Hierarchical Test Architecture 27

3.1 The Hierarchical Structure . 27

3.2 Principles of operation . 30

4 Board-Level Test Controller and Its Design 35

4.1 The Main Function of the BTC . 35

4.2 Design of the BTC . 35

4.3 The Tool . 44

5 Test Controller Representation and Synthesis 45

5.1 TDG Representation . 45

5.2 TDG Transformations . 54

5.3 Test Controller Parameters . 57

6 A Board Example 63

6.1 Board Example . 63

iv

6.2 Test Requirements . 64

6.3 An Initial Test Design Graph . 65

6.4 Lego Piece Alternatives . 69

6.5 Test Flow Optimization . 71

7 Conclusions 73

7.1 Summary . 73

7.2 Future Work . 74

Appendix A: The LFSRx Lego Piece VHDL Code 75

References 79

5

1 Introduction

This thesis deals with the hierarchical test of hardware and specially
focuses on testing aspects at the board level.

Hardware testing is the technique used to ensure the correct and
fault free operation of electronic chips, circuit boards and complete sys-
tems. Hardware testing is performed several times through out the life-
time of a hardware product. The first time a product is subject to being
tested is when it is manufactured, and the test that is performed then is
called production test. Later, when the unit is in operation, operation
and maintenance tests are performed. This latter kind of test is pre-
formed to ensure that no faults have occurred in the circuit after the
manufacturing, and may be applied more or less regularly.

It should be noted that there is an important conceptual difference
between hardware testing and hardware verification which in contrary to
hardware testing is used to verify/prove that a design is correct. Thus
hardware verification does not require access to any physical units, and
once made it holds for all units manufactured. The purpose of hardware
testing is thus not, as for hardware verification, to prove the functional
correctness of a circuit, although a side-effect when initially developing
the hardware test methods is actually sometimes the discovery of design
faults.

This thesis has its focus on hierarchical testing, which is the tech-
nique used to access, utilize and abstract embedded hardware testing
capabilities in a large system. For a complete system consisting of a
number of circuit boards each consisting of a number of chips, a strat-
egy has to be developed to access test capabilities of the boards and
chips in the system. In a hierarchical self-test architecture the system
itself should know how it should be tested. This means basically that it
should know how to order its underlying boards to perform testing. Each
board in turn should handle the testing of itself and order its underlying
chips to perform their self-tests. This makes the system hierarchically
self-testable, and has several advantages. One of the advantages is that
at the highest level in the system no information about how the chips

6 Introduction

should be tested need to be stored, and the same holds for the internal
properties of each board since this can be abstracted by simple self-test
commands. Another advantage is that the built in self-tests at the differ-
ent levels can be utilized without dismounting the system and that no
complicated external test equipment is necessary (external test equip-
ment is equipment used to test e.g. a board or a chip and may be used
either to probe into a system or it may be necessary to remove the device
from the system and put it physically in the tester).

1.1 Motivation

With the increasing complexity and miniaturization of today’s Printed
Circuit Boards (PCBs) it is becoming more and more difficult to apply
traditional test techniques such as In Circuit Testing (ICT) where exter-
nal test fixtures have to be connected to the board. The introduction of
Surface Mount Technology (SMT), Multi Chip Modules (MCMs) and
double-sided circuit boards makes the situation even worse. Therefore
an increasing interest is taken in Design For Testability (DFT) tech-
niques, where test functions are integrated into the products, thus reliev-
ing the need for external test equipment.

A major contribution to DFT at the board level has been the stan-
dardization of Boundary Scan (BScan) by IEEE [IEEE 90], which is a
standard that among other things describes how to access the pads on
the integrated circuits by putting shift registers at the boundary of each
integrated circuit. Boundary scan can also be used to initiate Built-In
Self-Test (BIST) actions within the circuit, i.e. test engines that autono-
mously perform internal integrity tests within the circuit. The BScan
technique, as it reduces the need for ICT tests, is often supplemented
with a Test Controller (TC). The idea of such a device is to enable con-
trol of the test functions without using special Automatic Test Equip-
ment (ATE). In this way, self test as well as operation and maintenance
test at the board level can be achieved. Several test controllers have been
developed, ranging from simple BScan interfaces such as the Boundary
Scan Master described in [Jar 91b] to complete controllers running test
programs on their own [Mat 92].

Hierarchical test is often associated with test controllers. In a hierar-
chical test environment test can be performed at different levels. As the
lowest hierarchical level the individual chip is usually considered.
Today more complex chips often have built in autonomous test facilities,

7

such as the BIST scheme. The built in self-test capability of a chip
relives the environment of the chip (i.e. the board) of knowing any
details about how it should be tested. The only information needed is
how to initiate the testing and how to judge if the testing was successful
or not. Regarding hierarchy, the next higher hierarchical level of a chip
will be the board on which it is mounted (but it could also be e.g. a
Multi Chip Module, where several chips are mounted and intercon-
nected within a single package). By providing the board with the logic
to control the BIST function of the chips even the knowledge of how to
initialize BIST in the circuit does not have to be known to the outside of
the board, and for most, the chips do not have to be dismounted from the
board to be tested. Thus it is now only necessary to know how to initiate
testing of the board, and this will automatically perform the test func-
tions both implemented inside the different chips as well as the test
functions implemented at the board level (e.g. boundary scan, P-BIST
etc.).

Test cost will be reduced while test quality may be improved. Today
testing is a very expensive part of the manufacturing of a system. In sys-
tems design, test costs have been estimated to be as much as one third of
the production cost of the complete product. If a hierarchical test con-
cept is built in, testing will be much simpler and thus reduce the cost of
the whole system. A further advantage of the built in self-test technique
is its availability in the system through the whole lifetime of the system.
Thus self-test (and if implemented, also diagnosis) routines can easily
be run at the site where the system resides, requiring neither expensive
test equipment nor disassembly of the system.

1.2 Problem Formulation

Most test controllers that have been proposed or implemented are rela-
tively fixed designs, where sometimes only a few design parameters are
supposed to be tuned [Jar 92]. Usually the proposed test controllers are
not targeted to any particular application, but there are also examples of
test controllers that are targeted for e.g. telecom applications [Jag 95]. A
possible strength of these controllers is that they should be so general
that they can be applied in a very wide spectrum of applications without
having to be modified. The idea they are based on is that they should run
a microprogram to control the test and that it is the microprogram that
integrates them into the system and adjusts them to the requirements.

8 Introduction

The problem we put forward in this thesis is how to synthesize the
whole controller to the specifics of the system and the board to support a
particular hierarchical test architecture. This means that we can be much
more flexible than what is possible with the traditional approach. Fur-
ther we are not limited to using e.g. a specific test bus since the test bus
used in the system can be synthesized into the test controller. With a
fixed design the test bus in the system must coincide with the one imple-
mented in the system, or an additional external bridge circuit has to be
used.

We are aware of some work that has been done in synthesis of test
controllers [Hab 95]. Their approach differs from ours though, since
they specify a complete hierarchical system in their approach and they
incorporate test facilities at all levels. This means that even at the chip
level their approach specifies what test facilities should be implemented
in the chip. In our approach we do not want to make such a strong
assumption about what the system should look like. Our approach is to
semi automatically synthesize a test contoller given an existing hierar-
chical test system, and the board on which the test controller should
reside can contain any type of components with differing test support. A
further benefit of this approach is that the test controller can be opti-
mized in terms of price/performance for each specific board, and trade
offs can thus be made weather we want a cheap test controller for mass
production of a simple system or a very complex one for larger low vol-
ume systems that are not as cost sensitive.

1.3 Contributions

This thesis describes our approach to the design of a Board-level Test
Controller (BTC), which is used to support hierarchical test based on
boundary scan techniques. Previous research on Board-level Test Con-
trollers that have been presented has focused either on design proposals
for how a test controller chip should be implemented, or proposed hier-
archical concepts going from the system level down to the chip level
[Hab 95]. The formulation of our problem is how to develop a frame-
work in which test controllers can be synthesized to adhere both to the
requirements the designer puts on the test controller in a particular
design and also to the environment in which the controller will operate.
Further, our controller is designed to support efficient self-test during
the whole life cycle of the product, and this is supported by our hierar-

9

chical architecture in which a test controller at a board embedded deeply
in a large system can be easily accessed from outside. Thus the control-
ler proposed will not be limited to testing with the board removed from
the system which would be the case without our hierarchical architec-
ture.

The test controller is built from what we refer to as lego pieces
[Håk 96b], i.e. small building blocks found in a library that can be put
together to make up a complete controller. Examples of lego pieces can
be a test pattern generator or interface logic for a protocol. These lego
pieces can be pre-written code, but may still be parameterized where
e.g. a linear feedback shift register lego piece can be parameterized
regarding both its length and its polynomial. The lego pieces may con-
tain control logic such as internal finite state machines (typically a lego
piece implementing a complicated communications protocol may
require quite complex finite state machines), but the overall control of
the test controller is controlled by a finite state machine external to the
lego pieces. The external finite state machine is to be generated concur-
rently with the lego piece construction.

We have developed a design representation for the test controller
that supports the lego piece concept. We call it a Test Design Graph
(TDG) [Håk 97], and it is based on the same ideas as the Extended
Timed Petri Nets (ETPN) [Pen 94] which was developed as a general
hardware design representation. In our case we need a more specialized
design representation that does not only capture a hardware design, but
also describes the test actions that we want to take. This is important for
both the synthesis and optimization since it enables them to do more
intelligent reasoning, as well as redesigning the controller in ways that
would not be possible with the semantics preserving transformations
defined for ETPN. This difference comes from the fact that since our
design representation captures what is to be done functionally, it can
choose to implement it in totally different ways, far beyond what is pos-
sible with the general purpose ETPN representation.

As with ETPN our TDG will be optimized through transformations.
That means that initially the tool will construct a first version working
test controller implementation, which will then be optimized in different
respects (such as hardware cost, testing speed etc.) until it is accepted
by the designer as a final design ready for implementation. We plan to
use tabu search for the optimization process since this optimization
technique is well known and has generally performed well in the area of

10 Introduction

hardware synthesis. It is also based on the neighborhood search tech-
nique which suits our transformational approach well.

1.4 Thesis Overview

In the next chapter we describe some background to the work presented
in this thesis. We also describe some work related to this thesis that has
been done elsewhere. Some of the differences between previous work
and ours is also highlighted. In chapter 3 we describe the hierarchical
test architecture that has been developed. This architecture is important
for motivating the other work presented in this thesis. Chapter 3 is based
on a paper [Håk 96] co-authored with Gunnar Carlsson, and much of the
contributions for the framework is done by him. In chapter 4 the concept
of the Board-Level test controller is presented along with some informa-
tion about how it is to be synthesized to a hardware description. Chapter
5 shows some more concrete work by describing our representation of
the test controller and how it can be synthesized. Finally a quite realistic
but simplified board example is given in chapter 6 and it is shown how
our test controller design representation can be used to design and opti-
mize a board-level test controller for the board. The thesis is rounded up
in chapter 7 where conclusions are drawn and some future work is
pointed out.

11

2 Background and Related
Work

2.1 Introduction

The methods usually used for board level tests are built-in self-test
where the circuit is able to test itself when a test request is made. BIST
is usually implemented inside integrated circuits, but the concept
extends to several circuits controlled by a BIST engine located on the
board. Processor based BIST (P-BIST) is a (usually functional) tech-
nique where the BIST test is preformed by a microprocessor. Boundary
scan is a standardized technique that links together the circuits in a scan
chain. This chain can be used in conjunction with BIST for controlling
when to perform BIST and also analyzing the results of the BIST test.
Its main, and original purpose, however is to perform interconnection
test between the circuits, something that is not covered by traditional
BIST schemes that only work inside the circuits. Some discussion will
be devoted to In Circuit Tests (ICT). This is the traditional technique
that uses bed-of-nails to physically access the circuit under test. This is
a technique that is becoming obsolete for several reasons. Examples of
these reasons are that it requires external test equipment and can thus
not be built into the board and that it is increasingly difficult to use it as
miniaturization of the electronics makes physical access at best hard if
not impossible.

Solutions to this problem are the use of built-in self-test, boundary
scan and board-level test controllers which will be discussed in this
chapter.

12 Background and Related Work

2.2 BIST

Built-in self-test is a test technique where a circuit tests itself. Origi-
nally BIST was used to test an integrated circuit, but has since been gen-
eralized to MCMs, boards and whole systems.

2.2.1 General Concept

The BIST concept can be divided into two sub-groups, on-line BIST and
off-line BIST. With on-line BIST is meant tests which are run during
normal operation. Thus the circuit does not have to be put into a special
test mode. This method can be used without disrupting operation.
Implementation of on-line BIST are done in different ways, such as cod-
ing that can be checked for correctness during normal operation or by
duplication where the response of the duplicate parts are compared.
With off-line BIST on the other hand, the system will not function prop-
erly while test operations are performed.

The BIST implementation can be done for either functional or struc-
tural testing. In functional testing the tests are designed to test that the
intended functions work regardless of the way the implementation is
done. If an adder is tested functionally a set of numbers are picked and
provided to the adder to see that the sums coming out are correct. One
problem with this technique, however, is that it does not guarantee that
the circuit will pass the test if another set of numbers are picked, and the
time needed for testing all combinations grows exponentially with the
number of bits used for the adder.

For structural testing a fault-model is introduced [Abr 90]. A fault
model is a model of the kind of faults that are expected. The most com-
mon and most widely used fault model is the single stuck-at-fault model
[Abr 90]. This fault model assumes that an interconnection in the design
is either intact or permanently stuck-at zero or one. It is further assumed
that there is no more than one fault in each design, an assumption that
allows the test pattern generation algorithm to find a way of detecting
each fault independently. Driven by such a fault model, test patterns can
be chosen. And it is straightforward to calculate a measure of the fault
coverage achieved, since with structural testing we can calculate how
many of the faults in the fault model that are actually detected by the
structural test, which is not the case with functional testing. Since the
choice of test patterns can be made smarter for structural testing, a

13

structural test usually gives higher fault coverage than a functional one
with the same number of test vectors.

In BIST test patterns are often generated by special BIST logic in
the circuit. For simplicity often Linear Feedback Shift (LFSR) Registers
are used for the dominating test philosophy, structural testing. Some-
times this is expanded to weighted random patterns, in which the proba-
bility of ones and zeroes are differentiated. This is useful in cases where
a random pattern performs poor structural testing such as for a multiple
input AND gate where structural testing will want to test the all one and
the only one zero sequences.

2.2.2 P-BIST

Processor based BIST is the BIST technique where a system is tested by
a microprocessor running a test program. By P-BIST the microprocessor
can test either itself or peripheral devices such as ASICs and memories.
The testing of the microprocessor itself can only be performed function-
ally since the only thing that can be done is to functionally check that all
instructions, registers etc. work. To enable structural tests of micropro-
cessor hardware, BIST is required, but that does not sort under P-BIST.
External devices may be tested either functionally or structurally
depending on what is supported by the particular device. Typical areas
where functional P-BIST is performed are memories, where functional
test methods, such as the March test [Goo 91], have been developed to
cover faults in a functional model of the memory. Structural tests are
possible if the structure is known and the processor is able to feed test
patterns to the device. Thus structural tests can e.g. be performed on
glue logic built from discrete components, while the more complex
devices have to go with functional testing.

On-line BIST can be achieved in P-BIST by alternating the execu-
tion of the task load and test routines. When the processor is idle, test
execution can be performed and thus does not necessarily intrude on the
task load at all.

2.3 Board-Level Test and Boundary Scan

Board level tests involve the testing of a complete circuit board with the
integrated circuits mounted on it. This test is initially performed during
the production test phase to ensure that the circuit board itself is correct

14 Background and Related Work

and that the components are mounted properly on it. These two aspects
can be tested by interconnection tests between the circuits. Further the
components mounted on the circuit board may be tested in place, i.e.
BIST techniques may be activated when the circuit is in position on the
board.

In circuit testing is the traditional test method where a fixture with
test probes (often called bed-of-nails) is attached to the Circuit Under
Test (CUT). This test method requires (usually expensive) external test
equipment and the CUT has to be physically mounted in the tester. Thus
ICT testing is mainly used for production testing or to perform off-line
fault diagnosis of boards that have been physically removed from the
system. Besides being expensive and limited requiring special test
equipment, equipment that must include high precision mechanics to
access the board, ICT is becoming less viable (or even impossible) for
the new circuit board generation. It is less viable because the dimen-
sions constantly shrink with new packaging and manufacturing technol-
ogies. It is impossible to access when multi layer circuit boards are used
and packaging techniques such as BGA (Ball Grid Array) are used1.

To solve the problems with ICT testing the boundary scan technique
was developed. Boundary scan is a technique to enable direct observa-
tion and control of the logical values on the inputs and outputs of differ-
ent integrated circuits. This control is gained through the insertion of
latches at the pads of the ICs. Information can be obtained by serially
shifting data out from these latches and at the same time control is
gained as new data is shifted in. This feature has been standardized by
IEEE and is described in [IEEE 90]. In order to comply to the standard
four additional boundary scan control pads are required on each IC. Two
of these are the input (TDI) and output (TDO) from the scan chain.
There is also a control signal (TMS) through which the operation of the
boundary scan chain is controlled. The fourth mandatory pad is the test
clock (TCK) used to synchronize the operations. A schematic over a
boundary scan compliant IC is given in figure 2.1. The scan cells are
drawn as dashed squares while the Test Access Port (TAP), which is
controlling the operations, is found to the left.

1. On a Ball Grid Array chip the pads are located in a matrix underneath the chip and
thus the chip itself covers the soldering points and out rules probing techniques.

15

Figure 2.1: Schematic of an IEEE 1149.1 boundary scan IC.

The TAP controller is implemented as a finite state machine, whose
state transitions are controlled by the TMS signal. The different states
can be seen in figure 2.2 along with the TMS values used to select the
transitions. It can further be seen in the figure that there exist two main
branches starting with Select-DR-Scan and Select-IR-Scan respectively.
The purpose of these branches is to shift data through the boundary scan
cells and the instruction register respectively. The instruction register is
used to store an instruction that in combination with the current state in
the diagram will affect the behaviour of the boundary scan. Shifts are
performed in the states marked Shift-DR and Shift-IR, but shifting can
be temporarily interrupted by entering the pause states. The Capture
states capture the values on the inputs of the boundary scan cells into
the latches of these cells, while the Update states feed the new state of
the internal latches to the outputs of the circuit.

If there exist non BScan ICs on the board, there will be logic on the
board that is not directly accessed through BS. These parts are referred
to as non BScan clusters, and if no external test equipment is used to
test them, testing must be carried out by use of the BScan chain in the
surrounding ICs. In terms of design for testability efforts it is important
to consider how these non BScan clusters are interconnected. Attempts

TAP Core Logic

TDI TMS

TDO TCK

16 Background and Related Work

should be made to reduce the logical depth of the clusters, which will
decrease the number of test patterns that have to be applied.

Figure 2.2: State diagram of the Test Access Port.

2.4 Test Controller

The concept of a test controller (or subsets of it) has been proposed by
many researchers although varying names have been used such as the
Boundary Scan Master (BSM) [Jar 91][Jar 91b], System Test Access
Port Master (STAPM) [Jag 95], Module test and Maintenance Controller
(MMC) [Bre 88], Test Controller/Test Processor [Mat 92] etc.

The purpose of a full featured test controller is to control test activi-
ties at a certain level of a system. In this thesis we deal with board level

Test-Logic-Reset

Run-Test/Idle Select-DR-Scan Select-IR-Scan

Capture-IRCapture-DR

Shift-DR

Exit1-DR

Exit2-DR

Pause-DR

Update-DR Update-IR

Exit2-IR

Exit1-IR

Pause-IR

Shift-IR

1

1

1

1
1

1

1

1

1

1 1

0

00

00

0 0

00

0 0

0

0

00

1 1

11

1

0

17

test controllers, which means that the purpose of our test controller is to
control the individual board’s test. The rest of this description will con-
cern board test controllers. In a hierarchical test environment there can
be test controllers both at a lower level, i.e. inside a chip or MCM-mod-
ule or at higher levels such as in a sub-rack or even a test controller for
the entire system.

A test controller is used to coordinate and control test facilities built
into the circuit board. By doing so it will abstract the access to all test
facilities built into the board, such as boundary scan, BIST and P-BIST.
Testing of the board will then require only simple commands that are
independent both of the boards function and its implementation. By an
external request the test controller should thus be able to automatically
control and sequentialize a complete test of the board. This test will uti-
lize test facilities present on the board, such as BScan chains on the
board, BIST schemes built in to the ICs and also it may utilize an on
board processor if such a device is present for performing P-BIST. Fur-
ther the TC may contain special board test capabilities in itself, such as
a memory exerciser to perform the March [Goo 91] test on a memory, if
it for some reason is preferred not to use a microprocessor, or if a micro-
processor is not present.

Test controller designs published in the literature vary from basi-
cally interface circuits which are totally controlled by a microprocessor
[Jar 91][Jar 91b] (in such cases the combination of the interface circuit
and the microprocessor makes up the test controller) to autonomously
running devices which provide their own control [Mat 92][Jag 95]. Our
concept of a test controller is very flexible, but for us to call it a test
controller it should behave as a complete controller with its own inter-
face to the external device requesting the test, while the actual imple-
mentation (hidden on the board) may rely on e.g. a microprocessor not
only for specific tests but also for the overall control.

The above description has only described the board abstraction
aspects of the test controller as its advantage. The major benefit of using
a test controller comes, however, from the fact that when a test control-
ler is incorporated on a board that resides in a hierarchical test system it
can be accessed from within the system without removing the board and
putting it into special external test equipment. Thus test controllers at
the board level make implementations of complete system built-in self-
tests possible. It also enables testing that does not require any (or at
least minimal) external test equipment. Further since the test controller

18 Background and Related Work

is built in to the board it can be utilized during the whole life time of the
product.

2.5 Related Work

Several research groups have made contributions in the areas of hierar-
chical self-test, board-level test and techniques to utilize the boundary
scan standard. A brief description of some of the important work in this
area is presented below. We feel that our approach is unique though,
since it is the only work that we know of that deals with the synthesis of
a complete and unique test controller for the board without requiring
hierarchical insertion of specific test features in the integrated circuits
on the board.

2.5.1 AT&T Bell Laboratories

At AT&T several research papers have been published on the use of
boundary scan testing [Jar 92], and a boundary scan control device
called the Boundary Scan Master (BSM) has been developed
[Jar 91][Jar 91b]. The purpose of the BSM is to act as a protocol con-
verter between a generic microprocessor and the boundary scan chain.
In [Jar 92] it is shown how the BSM can be utilized in a hierarchical test
environment. The proposed hierarchical approach is motivated by its
ability to abstract board test information as well as offering revision
independence as seen from higher hierarchical levels.

The BSM has two important limitations compared with other test
controllers. The first limitation is that it does not contain a test bus
interface. Rather it only contains registers that can be read and written
to control it (through a generic microprocessor interface), and external
interface logic have to be used to interface the controller with the test
bus (or system bus) which is necessary if the controller is to be used in a
hierarchical test environment. The second limitation is that the BSM is
not in itself what we would call a complete test controller. To construct,
roughly, the equivalent of a test controller in our terminology it should
be used in their so called Boundary Scan Virtual Machine (BVM) con-
figuration which means that the BSM is supplemented by a BSM inter-
preter (BIN). A BIN is a test controller command interpreter which
usually resides on a higher hierarchical level. A microprocessor will
have to execute a program that interprets BVM programs. This inter-

19

preter will have to have specific knowledge of the interface logic used to
interface the BSM to the test bus (or system bus) in order to access it.
Although test programs will have to be run at this higher hierarchical
level, it can be selected if the BIN will fetch its program from a data
base at the system level or if it should be fetched from a ROM residing
on the specific board. By the latter approach the board will be better
abstracted and revision handling will be greatly simplified.

The approach taken supports a hierarchical test architecture, and it
also moves testing details to the board level to make board implementa-
tion details transparent to the system. However, the BSM proposed is
quite a complex, hardware design. Although it is stated that the architec-
ture is generic [Jar 92], a quite fixed BSM design has been presented. In
[Jar 91] where a more detailed description of the BSM is given, the
generic parts are restricted to the processor interface. Very limited atten-
tion is payed to the reliability aspect, where the only aspect mentioned
is that nearly 96.4% of the BSM itself is covered by a BIST scheme.

2.5.2 Bell-Nothern Research, Canada

At Bell-Nothern Research (BNR) they have developed what they call a
System Test Access Port Master (STAPM) [Jag 95]. The STAPM is what
we would refer to as a test controller, and was designed to operate at the
board level to handle BIST and boundary scan operations on a board
with several ASICs and one microprocessor. An implementation of the
controller was actually made and the system was tested. The STAPM is
presented as having basically two purposes, one being to act as a test
coordinator and abstractor on the board level (which is also the purpose
of our test controller work) but also to perform fault insertion which
they think is important in the telecom application that it was used in.

Fault insertion is the process in which a fault is simulated to see the
results of it. For BNRs’ telecommunication applications it is desired to
insert stuck-at faults to verify that the design is robust enough to con-
tinue operation with a single stuck-at fault present. The STAPM itself is
not able to introduce these faults on the board, instead the fault insertion
is achieved by a proprietary, modified, implementation of the boundary
scan chain.

The STAPM has two interfaces, one interface to the backplane or
test bus which they refer to as the parallel port and one interface to
external test equipment which they call the serial test interface. The
serial test interface is basically intended to be connected to a PC that

20 Background and Related Work

will request test through a character based interface, An interesting
property of the design is that they have embedded an EEPROM (Electri-
cally Erasable Programmable Read Only Memory) into the design that
logs all errors that are detected in its non-volatile memory. Thus faults
can be analyzed later when the system is off-line.

Although it is stressed in the end of the article that the STAPM could
be adopted for different products their current work focuses very much
on their own telecommunication applications.

2.5.3 University of Porto / INESC

Matoset al. at the University of Porto / INESC have proposed a test
controller design [Mat 92]. They have even manufactured an ASIC cir-
cuit that implements their design. The design is a fixed one that is
designed only for handling boundary scan compliant ICs. It has two
boundary scan chains built in, and it is argued that it can be used in a
hierarchical test framework by using one of the scan chains as a test bus.
There is no specific support for interaction or cooperation with an on-
board microprocessor and there are no possibilities to adopt to any test
bus other than the IEEE 1149.1.

Related to their test controller design they have carried out work on
an ATPG tool that will generate test vectors for the circuit board. The
tool will however not only generate the test vectors themselves but
instead a complete test program for the test controller. To summarize,
their test controller is only for boundary scan and is too limited to be
considered as a general purpose test controller with our concept of a test
controller. It does however support a hierarchical test environment for
boundary scan, but not for general purpose test techniques. Since many
test techniques such as BIST often can be initiated from boundary scan
some expansion from the pure boundary scan tests can be done.

2.5.4 University of Karlsruhe

Haberlet al. at the University of Karlsruhe [Hab 95] describe a hierar-
chical test architecture. This architecture relies on a uniform hierarchi-
cal insertion of self-test hardware at all levels. Actual self-test
implementations are done at each block inside the integrated circuits.
Each BIST block has a standard test interface (STI). The STIs are con-
nected at the next hierarchical level (still inside a chip) by a test man-
agement unit (TMU). The chip is finally equipped with an IEEE1149.1

21

[IEEE 90] TAP controller for a uniform communication with the rest of
the board. Finally at the board level a hierarchical boundary-scan con-
troller chip (HBSC) or programmable module self test controller chip
(PMSC) [Hab 94] is found. These two chips (HBSC and PMSC) can be
compared with the board test controller in our work.

Two major areas of difference between this work and our work can
be identified. The first difference is that although this is a hierarchical
approach it focuses more on the lower levels, i.e. how to make the board
hierarchical itself rather than presenting a hierarchical test concept for a
complex system such as a telephone switch, while in our work we pro-
pose such a concept. Second, in our work we allow the board to be built
from standardized integrated circuits. Thus our approach does not
require that the board is built solely from specially designed in house
self testable integrated circuits in order to work with the PMSC/HBSC
chip. Our test controller will work not only with boundary scan but also
with e.g. P-BIST, something that the work by Haberl.et al. do not
address in their hierarchical approach. If the hierarchical approach is
disregarded, however the PMSC chip can be used as a more general pur-
pose [Hab 94] test controller, although it is still very tied to a particular
framework which incorporates the use of an IEEE 1149.5 [IEEE 95] test
bus.

2.5.5 British Telecom Laboratories

At British Telecom (BT) the need for a well developed, hierarchical, test
framework is argued [Mau 93]. The systems the article deals with
ranges from circuit boards to interconnected computer systems, and the
term system is thus very broad. One of the main argumentation the arti-
cle puts forward for such systems is the need to abstract the implemen-
tation details for a smaller part of the system. No matter weather you
view the system at the board level or at the interconnected computer
systems level it would be beneficial to be able to use a set of standard-
ized test commands to test all the underlying components. In [Mau 93]
the solution to such a problem is proposed to be the inclusion of test
management units at different hierarchical levels. These units should
have a command repertoire including commands such as “test yourself”,
“abort testing yourself” etc. In contrary to the HIST approach described
above [Hab 95], it is not required that all chips contain a test manage-
ment unit. It could e.g. be that the last test management unit found is at
the board level, and in such a case this test management unit must act as

22 Background and Related Work

a test controller to control testing of the board and utilize the non test
management unit compliant test facilities found, such as BIST and
Boundary-Scan.

As with our hierarchical proposal the range of standards considered
ranges from the low level boundary scan standard [IEEE 90] to test bus
standards such as [IEEE 95]. Maunder introduces a new level in the sys-
tem and handles also the interconnection between completely different
systems, such as a number of networked computers, and refers to the
ISO10164 standard [ISO 10164] which describes test management
regarding interconnected systems.

2.5.6 Bell Northern Research Department

A proposal for an improved boundary scan implementation is argued for
in [Has 92]. It is to be used in a test controller environment (called TDC
for Test and Diagnosis Controller in [Has 92]) to improve test effi-
ciency. The motivation for the work is to improve test efficiency by
allowing a walking zero/walking one interconnect test to be performed
without having to shift the whole scan chain as required with traditional
boundary scan.

Although the idea is novel, the main drawback of the approach is not
only that a modification to boundary scan is required but mainly that all
ICs in the boundary scan chain must comply with the new ideas. There-
fore this approach is only feasible for boards manufactured by a com-
pany with in-house production of boundary scan ICs. In our approach of
designing a test controller no modifications of the boundary scan cells
are required, although if modifications are made it can easily be utilized
by our test controller since lego pieces that take advantage of the new
features can be designed and incorporated in our database.

2.5.7 University of Southern California

Lien et al. at the University of Southern California present a hierarchi-
cal test controller concept in [Lie 89]. The component in this framework
that corresponds to our test controller is the Module test and Mainte-
nance Controller (MMC) [Bre 88]. Just as with our BTC the MMC is
supposed to reside on each board, controlling mainly the boundary scan
bus but also other test methods such as P-BIST. The idea here is that the
MMC should be targeted towards the board on which it is to reside. It is
constructed from quite a big core that contains a processor, RAM, ROM,

23

L1-slave (what we would call test bus interface), Test Channel (usually
an IEEE 1149.1 interface) and a Bus Driver/Receiver. The processor is
used to control the operation of the MMC, but could be any 16-bit pro-
cessor either general purpose of special purpose. The Bus Driver/
Receiver is used to drive an internal bus that connects to expansions to
the proposed MMC core. Expansion units proposed are functional bus
interface, testability registers (for inserting test points at the board),
additional test channels (e.g. additional BScan interfaces) etc.

The main drawbacks of this work in respect to ours is that it contains
quite a fixed and relatively big core that is not necessary in our much
more dynamic test controller design. Secondly, although the MMC can
be targeted towards the requirements on a specific board there is no
automatic MMC generator presented.

2.5.8 Dassault Electronique

At Dassault work has been done both in formulating a hierarchical test
concept [Rig 89] and in the testability analysis of boards (and MCMs)
[Per 97]. The hierarchical test framework is specified (similarly to our
model) as a number of hierarchical levels each containing self-test capa-
bilities. In [Rig 89] a system test processor is found at the highest hier-
archical level. At intermediate levels (subassemblies) a test controller is
found followed by local test controllers at the board level. The lowest
level considered is the ASIC level where a BIST function controlled by
an elementary test controller is assumed. The whole design relies
heavily on ASIC BIST as well as implementation of the elementary test
controller within the ASIC instead of accepting diverse BIST implemen-
tations, although it has later been homogenized with boundary scan
[Per 97]. No mention about functional test or microprocessor based tests
are made, and the example presented in the paper contains some 240
ASICs but no microprocessor.

In [Per 97] a qualitative testability is described. It is based on the
controllability/observability concept augmented with so called testabil-
ity rules to incorporate some expert system ideas. The idea of the algo-
rithm is to quickly pinpoint testability improvements that can be applied
to the board. Initially a netlist is read and the components are classified
as PALs, FPGAs, JTAG, Combinational etc. For the simpler components
such as combinational controllability/observability propagation can be
made directly while e.g. a JTAG equipped ASIC will be seen as a black
box with internal tests performed by an integral BIST engine.

24 Background and Related Work

2.5.9 Ericsson Telecom

At Ericsson Telecom processor based BIST is used for functional testing
to supplement the structural testing performed by boundary scan and
ATE equipment. The basic method is briefly described in [Ang 97]. Cur-
rently Ericssons implementation of P-BIST can not be controlled hierar-
chically in the system. Instead a special pad is used at power up to set
the board into test mode, i.e. to boot the processor with the P-BIST pro-
gram. Communication with the P-BIST program is further carried out
by direct connection of a text terminal through a serial interface. It is
pointed out in [Ang 97], however, that future work will target towards
the ability of initiating P-BIST from the system software which will
make it more similar to our way of using P-BIST, i.e. to initiate it during
operation.

2.6 Discussion

There are several techniques developed to support the testing of a circuit
board. These ranges from the by now outdated ICT test to more modern
techniques such as the BIST for testing integrated circuits and P-BIST
for performing tests coordinated by a microprocessor. An important
addition to the board level test methods was the standardization of
boundary scan by IEEE. This test method is capable of replacing the
ICT test for digital interconnections, and can also be used in areas for
which ICT was never be intended, such as internally within MCMs. The
future for boundary scan in a growing number of products is expected
since being completely built into the circuits it is neither dependent on
the chip packaging nor their size. Further as boundary scan is imple-
mented with the same implementation technique as the rest of the chip
its speed and abilities will be able to improve along with the rest of the
development in the integrated circuit area.

To support board testing in a hierarchical system several researchers
have proposed test controllers. The most common implementation of a
test controller is a chip which is capable of coordinating the testing of a
board and report the results of the tests to a higher hierarchical level.
Most research this far has, however, concerned the design of a more or
less fixed test controller. Our approach differs from these in that we pro-
pose a synthesis tool which will, semi automatically, design test control-
lers for us. These test controllers will be targeted to the particular

25

system for which they are being synthesized. This means that we, in
contrary to other proposals, can adopt arbitrary test techniques and pro-
tocols. We believe that our approach is more flexible and also that it will
yield a much better price/performance ratio since the test controller is
integrated with the board.

26 Background and Related Work

27

3 A Hierarchical Test
Architecture

This chapter describes the hierarchical test framework that our test con-
troller will work within. Much of the framework has been contributed by
Gunnar Carlsson at Ericsson Cadlab Research Center. This chapter is
actually based on an elaborated version of a paper written in coopera-
tion with him [Håk 96].

In the chapter a description of our test architecture and what require-
ments it puts on the test controller will be given. The hierarchical sys-
tem is based on several levels of busses using different protocols when
propagating test related information throughout the system from the
highest system level down to the board level. The idea is that at any
higher hierarchical level it should always be possible to invoke test
actions at lower levels in a coherent way. The methodology is developed
to support not only production testing but also operation and mainte-
nance testing, and the whole hierarchical test support mechanism will be
fully integrated within the system, which means that minimal or no
external hardware is required to support it. The framework will support
structural testing by invoking the structural test facilities incorporated,
but it can also be used for functional (or ad hoc) testing purposes such
as processor based BIST.

3.1 The Hierarchical Structure

A sketch over the hierarchical framework can be seen in figure 3.1. Our
main focus is put here on the light grey rack which constitutes of three
darker colored subracks. The idea is that at the system level (e.g. a com-
plete AXE1 telephone switch) there should be test facilities that can
request tests at each subrack. At the top level in the hierarchical system
there is the Operations and Maintenance Processor (O&M Processor),
which can be seen as a small grey box in figure 3.1.

28 A Hierarchical Test Architecture

Figure 3.1: Basic structure of a system with a hierarchical test frame-
work.

The operations and maintenance processor is executing the mainte-
nance software for the whole system, and it is also this processor that
directs test requests to the subracks. Its communication traffic with the
subracks does not have to be limited to pure test information, it may
very well include additional features such as board revision requests and
the ability to take a subrack or circuit board off-line.

As mentioned above several levels of test busses are incorporated in
the system. The highest level bus is the internal system communication
bus running between the operations and maintenance processor and the
racks. This bus is terminated in the rack by a gateway function residing
in one of the subracks (as indicated in figure 3.1 there may be more than
one gateway, in the example two gateway chips are shown). From the

1. AXE is a digital telephone switch developed and marketed by Ericsson Telecom.
Throughout this work it has been used for exemplification as well as a case study of a
possible target system for our hierarchical framework.

A

UT V

ZYX HW UNIT A

O&M

GATEWAY

O&M

 INTERFACE

SUBRACK TEST CONTROLLER

INTERNAL SYSTEM

SUBRACK T

 Q3

PROCESSOR

DATA

BASE

(MIB)

COMMUNICATION

SUBRACK U SUBRACK V

29

gateway there is an internal bus that runs between the subrack test con-
trollers. Both the gateway and the subrack test controllers can be seen in
figure 3.2, and it is also shown how they are interconnected. After the
subrack test controller comes a test and maintenance bus that runs
between the board test controllers that coordinate the board testing. On
Board Z in figure 3.2 it is shown how even a component test controller
has been introduced in one of the chips. This is fully feasible, and the
board test controller could then have a bus to interact with that level of
test controller as well (for example through the boundary scan chain).

Figure 3.2: The test bus and controller hierarchy in a subrack.

The darker colored part of the middle circuit board in figure 3.2 is an
MCM module, and as can be seen it is fully feasible to test it internally
by using a boundary scan chain. Thus from the test controller’s point of
view (and when generating test patterns) the dies in the MCM can be
seen as any ordinary chips and they are as accessible as a set of normal
chips. In figure 3.2 it can also be seen how the test controllers can han-

INTERNAL SYSTEM

COMMUNICATION

GATEWAY

SUBRACK TEST

CONTROLLER

TEST & MAINTENANCE BUS

BOUNDARY SCAN COMPONENT

BOARD X BOARD Y BOARD Z

BOARD TEST

CONTROLLERS

TEST

CONTROLLER

MULTI CHIP MODULE

30 A Hierarchical Test Architecture

dle varying numbers of boundary scan chains, where the two right most
boards have two boundary scan chains while the left most one only has a
single chain. Control busses within the circuit board do not have to con-
form to any specific system wide design specification.

In the above picture it is shown how all of the integrated circuits are
equipped with boundary scan, but this is not a requirement, although it
will improve the ability for the board test controller to perform testing.
Further as can be seen the built in test controller in one of the chips on
the right most circuit board is assumed to be controlled by the boundary
scan chain (i.e. the TAP controller), but this is not a requirement either,
since the specific board test controller on that board can very well be
equipped with a special interface for direct connection to the on board
test controller. Since all these things are abstracted by the board test
controller they do not complicate testing of the complete system.

3.2 Principles of operation

The idea of the hierarchical structure is that each level should be able to
handle testing without information from higher hierarchical levels. This
means that when coming down to the board level the board test control-
ler can autonomously control the testing. Usually the test program for
the board test controller would be stored on the board itself in e.g. a
ROM memory. Sometimes this may not be a feasible solution however,
since one concern may be that stored test patterns grow to big to be
stored in ROM. In such situations it may be better to keep them on a
disk connected to the operations and maintenance processor at the high-
est hierarchical level. This is supported by the model and has been indi-
cated in figure 3.1 as the database to the right. This database should
contain test programs/test data that can be requested for access by a
board test controller. The board level test controller should of course
know which file to access to relieve this information from the operations
and maintenance processor, but there is still an administrative need to
keep all necessary files in the database. If two versions of a particular
board are to be used in a system they may very well request different
files, and for the system to support both realizations of the board both
files have to be in the database. This problem is a cost trade-off that has
to be made, since attaching mass storage directly to the circuit board
would be both expensive as well as make the whole system much more
complex.

31

In our framework no specific choice of busses are required, i.e. it is
up to the designer of the system to choose what test bus and system bus
are to be used. We believe it is important to leave this to the designer as
the cost of implementing different busses will vary. In our approach of
synthesizing specific board test controllers to fit into a board and even-
tually a system we make trade-offs between cost and performance. Since
we have not selected any mandatory busses to be used in the system, we
will be able to make similar cost/performance trade-offs for these as
well. The requirements on a bus should differ vastly between e.g. an
AXE telephone switch and busses used in cheaper consumer electronics
(such as personal computers etc.), but with this freedom we are able to
use the same framework for both. Without this approach we believe that
our test controller synthesis ideas would be too limited.

To summarize the discussion some important key features of our
approach are as follows:

 • The interface to maintenance software is abstract and simple.
Maintenance software developers do not have to know any specifics
about the hardware implementation.

 • There is little sensitivity to revision status of lower level units at
higher levels. This means that similar boards with different imple-
mentation can freely be interchanged without any reconfiguration
of the test facilities (unless central software has to be loaded as dis-
cussed above).

 • The test data to be communicated between different levels is usu-
ally very limited (unless it has to be loaded from the database) and
consists mainly of instructions and simple response data. This puts
minimal requirements on the test bus capacity, speed and complex-
ity, and therefore allows simple, inexpensive and robust solutions.

To make the interface to the test controller as generic as possible
between the test controllers used in a system the set of operations and
their behavior should be standardized as far as possible. This means that
we should have mandatory instructions for the most common operations
that can be performed on all boards, while leaving options for imple-
menting more board specific instructions. We propose the following
three subtypes of operations:mandatory operations with standardized
behavior regarding both the instructions and the response given from
them;optional operations which are standardized if they are present,
but do not need to be implemented; andprivate operations which imple-
ment properties that are not covered by the mandatory or optional oper-

32 A Hierarchical Test Architecture

ations, but the format of them can still follow some guidelines about
how to behave.

A further division of operations can be made between the ones that
have impacts on the normal operation of the circuit board and those that
can be done transparently with the operation. This is sometimes referred
to as intrusive operations and non-intrusive operations respectively.
Non-intrusive operations are operations which can be performed in par-
allel with normal system operation. This means that the operation of the
system does not have to be disturbed at all when the test is performed.
Intrusive operations refer to the operations which disallow normal sys-
tem operation while executed. Intrusive operations have different recov-
ery times, which means that given that an intrusive test operation is
running, the recovery time specifies the time required to come back to
normal operation.

The recovery time is important in e.g a telephone switch where dur-
ing low traffic self tests are performed on parts of the system that are
idle due to over-capacity of the switch. When eventually more calls
arrive recovery time for additional switching capacity must not be too
long. Sometimes intrusive operations are classified according to their
recovery time and this classification can be used to decide when the
operation is allowed to be performed, in order to guarantee fast enough
response from the system.

Test data is propagated between the different parts in the system by a
dedicated test bus. The use of a separate test bus makes it possible to
perform fault detection and isolation even in situations where ordinary
signal paths (i.e. the system bus) are failing. It also allows testing before
the subsystem is taken into operation. The protocol for backplane test
communication is as for most more complex communication protocols
(for example TCP/IP1) divided into several layers. An instruction layer
is found at the top, and it is this layer that specifies the instructions that
can be used within the system. The instruction layer is implemented on
top of the link layer which is the actual underlying communication pro-
tocol that the instruction layer is implemented on. Finally at the lowest
level is the physical layer, which deals with the electrical properties of

1. TCP/IP stands for Transmission Control Protocol/Internet Protocol and is a communi-
cation protocol frequently used for communication between computers. It is in itself
implemented in several layers. Further it must be implemented on top of a hardware
protocol to be realized, since it does not specify or require any particular transport
medium. Usually it is implemented on top of the ethernet protocol, but it can also be
used over e.g. serial connections such as a telephone line with a modem.

33

the protocol. The instruction layer is standardized for all products, and
is thus independent of the bus chosen. This means that we will not see
any difference in the way we handle our test requests, regardless of the
actual bus used. The other two layers vary depending on requirements of
the products as discussed above. However, existing standards can be
used and the choice of such will be guided by recommendations for
product categories, i.e. different kinds of busses will be used for differ-
ent target systems. Examples of standard busses [Håk 95] worth men-
tioning are IEEE 1149.1 [IEEE 90] and IEEE 1149.5 [IEEE 95].

The IEEE 1149.1 and 1149.5 busses are both serial test busses,
where the former is intended for the interconnection of chips on a board
while the 1149.5 bus was developed for interconnecting different circuit
boards. There is nothing in the IEEE 1149.1 standard that prevents it
from being used for communication between different circuit boards.
The 1149.5 uses a master slave concept just as the 1149.1 which means
that there is a master on each bus which controls the slaves. The intelli-
gence of the slaves may vary. The simplest slaves will be totally con-
trolled from the master including being fed with test patterns. More
sophisticated slaves (such as our test controller) will operate autono-
mously after having been requested to perform a test operation by the
overlying hierarchical level (which contains the bus master).

34 A Hierarchical Test Architecture

35

4 Board-Level Test Controller
and Its Design

4.1 The Main Function of the BTC

The board test controller is a chip (or other implementation such as part
of a chip or a mixed hardware/software implementation) that imple-
ments the overall self-test functionality on a circuit board. It works in an
autonomous way accepting commands either from the system as
described in chapter 3 or from an external tester if the board is to be
tested off-line.

Coordinating and controlling test functions on the board is the main
task of the test controller, but it may be employed for other functions as
well. These functions include identification of the board in which the
test controller is used to (upon request) indicate to the system what kind
of circuit board it resides on, as well as further data of the board such as
version or configuration etc. Another possible use of a test controller is
to take the board on- or off-line. This means that a board that is not used
at the moment may be taken off-line by the test controller. This is useful
for situations such as when intrusive tests are to be run on the board or
when it is going to be removed from the system.

4.2 Design of the BTC

The main work in this thesis is in the definition of and work towards a
semi-automatic design tool to build efficient targeted test controllers for
any circuit board located in a hierarchical system.

36 Board-Level Test Controller and Its Design

4.2.1 Synthesis Approach

Our vision in the work towards board test controller synthesis is to even-
tually automate the whole BTC design process by use of the tool that
has been sketched in figure 4.1.

Figure 4.1: Proposed synthesis tool.

The idea of the tool is to take as input a description of the circuit
board for which the test controller is to be designed. Along with this
input some guidance information will be provided by the designer. The
guidance that has to be given to the tool includes bounds on the desired
test speed and hardware cost. Additional guidance may also be desirable
such as choosing between implementation alternatives etc. The intended
purpose of the tool is not to make the designer unnecessary, but rather to
relief him by automating what is feasible and does not intrude on the
designer’s preferences about the design.

The tool is structured into three main parts, where the first one is the
board analyzer. The intended purpose of the board analyzer is to provide
a recipe of a test controller to the next stage. This recipe is produced by
analyzing the board to see what components are on the board and how
the complete board as well as the individual components can be tested.
A further responsibility of the board analyzer is to obtain information
from the designer regarding test requirements including guidance from
the test engineer about how the tests should be performed if there are
any specific requirements.

To be able to analyze the board the board analyzer will need to
access a data base containing information about all the allowed compo-
nents on the boards in the system. For each component, information

TEST PROGRAM
GENERATOR

BOARD TEST
CONTROLLER GEN.

BOARD
ANALYZER

BOARD
MODEL

DESIGN/TEST
CONSTRAINTS

TEST
PROGRAM

TEST
CONTROLLER

CONTROLLER
ARCH.

DATA
BASE

37

about such properties as if boundary scan or BIST is available is stored.
If boundary scan is implemented on the chip information about how to
access it should be stored. This includes information such as on what
pads of the circuit we can find the boundary scan interface, what the
scan chain length is, which boundary scan commands are available and
so on. If BIST is implemented on the circuit, information about how to
operate it will be provided. This information includes indication of if
the BIST facility is invoked from boundary scan (and if so by what
boundary scan command) or if the circuit has other means of doing it,
such as raising the value on a separate control pad dedicated for BIST. It
will also be included in the data base how to interpret the response from
the BIST engine and how much time the BIST test requires. In practice
if the BIST is operated from boundary scan we must know what the cor-
rect pattern to expect is from the boundary scan chain and after how
many clock cycles it will be available.

The second part of the tool is the test controller generator. The pur-
pose of this part is to generate a VHDL model of the test controller that
is ready for simulation and/or synthesis. The test controller will then be
synthesized based on the information obtained from the board analyzer
and will therefore be specific to the requirements of each board. The
generated VHDL model will be a structural interconnection of prede-
fined VHDL blocks which are found in the “Controller Architecture”
database seen in figure 4.1. This database contains predefined lego
pieces that implements all necessary parts of the test controllers. This
includes both the test controller core for handling overall control and
lego pieces for performing specific test functions such as boundary scan
interfaces, pseudo-random test pattern generators, test response com-
pactors and different types of microprocessor interfaces etc.

All lego pieces need not be defined in a fixed way but can either be
parameterized by VHDLs built-in ability to handle generic constructs or
they can be modified with the UNIX m41 tool, which is intended to be
used as a preprocessor step between our tool and the actual compilation
of the model by a standard VHDL compiler. Experiments with such a
backend have successfully been carried out for very simple test control-
ler designs (i.e. a limited data base) and the resulting output was simu-
lated in a standard Mentor Graphics environment. Attempts for

1. m4 is a macro processor supplied as part of the UNIX operating system, and is also
available for many other operating systems. It is intended as a general purpose front-
end for computer languages, and thus fits very well for our VHDL preprocessing
step.

38 Board-Level Test Controller and Its Design

synthesis were not made since the blocks were written in behavioral
VHDL which could not be synthesized by the Mentor Graphics tool. For
synthesis purposes the blocks have to be written to support the specific
synthesis tool that is to be used, since different VHDL restrictions are
defined by different vendors’ synthesis tools. As we use Mentor Graph-
ics we will target our block library implementation towards their tools,
but from a research point of view there should be no limitation in that.

After the tool has created an initial implementation of a test control-
ler, optimization is performed. Optimization is carried out with a trans-
formational approach. This means that transformations are made from
one correct (working) solution to another. Through these transforma-
tions the solution can be optimized for the specific trade-offs set up by
the designer regarding the amount of required hardware and test speed
(and eventually even other parameters). The optimization strategy also
has the freedom of moving functionality between hardware and soft-
ware, thus if the hardware cost is too high for the specific application
the actual test controller implementation can degenerate to a very sim-
ple circuit where most of the functionality is provided by an on-board
microprocessor.

The optimization has to be guided by an optimization strategy, and
for this we have chosen the tabu search algorithm [Glo 93]. Tabu search
is a heuristic optimization technique which means that we can get trac-
table computation times for optimizations that with exhaustive search
would be exponential with the number of possible solutions. Tabu
search is also based on neighborhood search which fits very well with
our transformational approach since a neighbor can be defined as a solu-
tion with a single simple transformation applied to it. To escape getting
trapped in cyclic loops when performing the transformations tabu search
has the concept of tabus. A tabu is a dynamically inserted restriction
that says that a certain neighbor (reached by a transformation) can not
be chosen since the algorithm has recently performed that transforma-
tion.

The third and final part of the tool is the test program generator. This
generator generates the external data that should be provided with the
test controller, if the test controller is constructed in such a way that it
will read a machine code program from external memory. Usually how-
ever, our test controller will use a finite state machine for control, which
means that no external test program is required for the test controller
chip itself. If the test controller chip relies on a microprocessor for con-
trol this means that the control program for the microprocessor still has

39

to be put in external memory by the test program generator. This also
includes P-BIST test programs for the microprocessor. When the control
programs for the test controller have been allocated space it still
remains to place stored test data in external memory. This data includes
stored test patterns, expected correct test vectors, topological informa-
tion about the board such as what pads are bidirectional or three-state
etc.

4.2.2 Lego Piece Approach

With the Lego piece model of the board test controller we mean the
approach of assembling the test controller from a set of predefined lego
pieces found in a data base. These lego pieces may be implemented in
very different ways without affecting our general approach. The envi-
ronment we are developing will however implement the lego pieces in
VHDL. The description may be either structural and direct synthesi-
sable by a synthesis tool or behavioral for simulation. This decision is
fully up to the designer of the database. Actually prototyping of the test
controller can be done with behavioral lego pieces. When the test con-
troller is ready for synthesis the required lego pieces may be rewritten to
structural VHDL (maybe with assistance from CAMAD [Pen 94]) to
support synthesis by the desired tool.

With the Lego piece model of the BTC, we can synthesize a large
spectrum of controllers emphasizing different aspects such as the rela-
tive degree of completeness and adaptability. In terms of completeness
BTCs may range from simple BScan interfaces [Jar 91b] that are there
only to support the on-board microprocessor which actually performs
the overall control, to complete, autonomously running controllers
[Mat 92] running test programs of their own. With different levels of
adaptability a BTC can be targeted completely to a specific design,
without any options to alter scan chain lengths etc., while at the other
extreme the generality of the lego piece design can be utilized to pro-
duce fully programmable controllers, and can therefore be optimized to
handle more than one board design.

We do not expect any major overhead with our lego piece model
since implementing the BTC model with a lego approach is expected to
result in the same kind of model description as a very structural
approach would have. A sketch of our lego approach is drawn in figure
4.2, where three VHDL component declarations are put together. The
idea of the picture is to show how a boundary scan interface, imple-

40 Board-Level Test Controller and Its Design

mented as a lego piece, is combined with two lego pieces that imple-
ment a Linear Feedback Shift Register (LFSR) for test pattern
compaction and a Pseudo Random Binary Sequence (PRBS) generator
for test pattern generation.

Figure 4.2: Sketch of the lego approach, in which a number of VHDL
component declarations are drawn as lego pieces.

It should be noted that the VHDL components in figure 4.2 are far
from a complete description even of the boundary scan part of the test
controller. To make up a complete VHDL description we also need to
describe the implementation of the component, instantiate the compo-
nents, and finally interconnect them, which is here symbolized with the
tags of the lego pieces, but is in VHDL done by means of signals.

For a more complete example of both what a lego piece may look
like and how it is interconnected in the board test controller a code
example is given below. This code was automatically generated by our
experimental tool from a database containing amongst others the behav-
ioral description of the LFSR (named LegoComp_3 by the tool). The
example code is not complete but just lists the parts of the design that
describes the LFSR. Where code has been skipped this is indicated with
three dots (...).

USE work.std_logic_1164.ALL;
ENTITY LegoComp_3 IS -- LFSRx

PORT (Clock : IN STD_LOGIC;
 DataIn : IN STD_LOGIC ; -- Data Scanned In
 CaptureData : IN STD_LOGIC ; -- Request Data
 Data7 : OUT STD_LOGIC ; -- Data Bits in Output
 Data6 : OUT STD_LOGIC ;
 Data5 : OUT STD_LOGIC ;

componentbsif is
generic (polynomial : ...
port (p1 : ...

endcomponent;

componentlfsr is
generic (polynomial : ...
port (p1 : ...

endcomponent;

componentprbsis
generic (polynomial : ...
port (p1 : ...

endcomponent;

41

 Data4 : OUT STD_LOGIC ;
 Data3 : OUT STD_LOGIC ;
 Data2 : OUT STD_LOGIC ;
 Data1 : OUT STD_LOGIC ;
 Data0 : OUT STD_LOGIC);
END LegoComp_3;
...
USE work.std_logic_1164.ALL;
ARCHITECTURE Behave OF LegoComp_3 IS
BEGIN
 p1: PROCESS
 VARIABLE poly : STD_LOGIC_VECTOR(8 DOWNTO 1) := “00000000”;
 VARIABLE tmp : STD_LOGIC;
 BEGIN
 WAIT ON CaptureData;

 IF CaptureData = ‘1’ THEN
 tmp := DataIn XOR poly(1);
 poly(7 DOWNTO 1) := poly(8 DOWNTO 2);
 poly(8) := tmp;
 END IF;

 Data7 <= poly(8);
 Data6 <= poly(7);
 Data5 <= poly(6);
 Data4 <= poly(5);
 Data3 <= poly(4);
 Data2 <= poly(3);
 Data1 <= poly(2);
 Data0 <= poly(1);

 END PROCESS;
END Behave;
...
-- Lego Piece id: 3
COMPONENT LegoComp_3 -- LFSRx
 PORT (Clock : IN STD_LOGIC;
 DataIn : IN STD_LOGIC ; -- Data Scanned In
 CaptureData : IN STD_LOGIC ; -- Request Data
 Data7 : OUT STD_LOGIC ; -- Data Bits in Output
 Data6 : OUT STD_LOGIC ;
 Data5 : OUT STD_LOGIC ;
 Data4 : OUT STD_LOGIC ;
 Data3 : OUT STD_LOGIC ;
 Data2 : OUT STD_LOGIC ;
 Data1 : OUT STD_LOGIC ;
 Data0 : OUT STD_LOGIC);
END COMPONENT;
...
LegoPiece_3 : LegoComp_3 -- LFSRx
 PORT MAP (Clock => Clock,
 DataIn => Si2p4s0i3p1s0,

42 Board-Level Test Controller and Its Design

 CaptureData => Si2p4s1i3p1s1,
 Data7 => Si3p2s0i5p1s0,
 Data6 => Si3p2s1i5p1s1,
 Data5 => Si3p2s2i5p1s2,
 Data4 => Si3p2s3i5p1s3,
 Data3 => Si3p2s4i5p1s4,
 Data2 => Si3p2s5i5p1s5,
 Data1 => Si3p2s6i5p1s6,
 Data0 => Si3p2s7i5p1s7);

LegoPiece_3 in the example code refers to the LFSR compactor, which
in the library is called “LFSRx” which can be seen from the comment
lines. The name LegoPiece_3 is generated by the tool as a unique lego
piece name. The same is true for the signals starting with a big “S” fol-
lowed by a sequence of automatically generated, unique signal names
derived from the numbers of the lego pieces and the cardinal number of
the ports between which the signal is to be connected. These signals are
also automatically declared by the tool1, but this part of the example
code has been cut. The code for the “LFSRx” lego piece, as it is stored
in the database, is shown in appendix A.

With our approach of a stored library of lego pieces, the hardware
complexity of a lego piece has to be calculated and stored along with the
lego piece in order to allow efficient hardware cost optimization. If such
a cost estimation would not be stored, it would be necessary to synthe-
size the whole test controller for each change in lego piece for each
change of the design, something that would make the optimization too
complex and slow. The disadvantage of estimating each lego piece in
isolation is that it can be argued that if the whole design is given to the
synthesis tool at once it may be possible for the synthesis tool to per-
form sharing between different lego pieces as well as optimize some
inter lego piece communication away. However, providing the complete
design at once to the synthesis tool is supported, it will only make the
implementation somewhat more cost effective than what was estimated.
We do not expect any problems with this approach. Experimentation
will be carried out as soon as we have a working tool.

The optimization that can be done will mainly be selection of lego
pieces for the implementation as well as parameter selection for generic
lego pieces. This selection can, however, be quite complex if we have

1. It should be noted that the simple experimental prototype implementation of the tool
did not handle array interconnections between lego pieces. This makes the code
unnecessarily long and complex, but is a straight forward programming exercise to
correct.

43

much freedom of choice as well as a complex optimization criteria
which considers several aspects of the design. The basic idea is that tabu
search will, through neighborhood search, find transformations to apply
in order to optimize the BTC. In figure 4.3 three BScan interfaces are
shown.

Figure 4.3: Boundary Scan interface undergoing transformations

All of the BScan interfaces provide both a Pseudo Random Binary
Sequence (PRBS) pattern generator, and a Linear Feedback Shift Regis-
ter (LFSR) pattern compactor, the difference being only with which lego
pieces they are implemented. In figure 4.3a the implementation chosen
for the respective lego pieces are called “PRBS1”, “LFSR1” and
“BSIF1” respectively. This means that the specific implementation with
cardinal number one has been chosen for implementation. For figure
4.3b the design has undergone a transformation in which “PRBS1” has
been substituted by “PRBS2”. This is a straight forward replacement of
a lego piece for another that can perform the same job at a more attrac-
tive cost given some cost function. The third example in figure 4.3c
shows how the boundary scan interface “BSIF1” has been replaced by
two lego pieces “BSIF1a” and “BSIF1b” that together implements the
same functionality as “BSIF1” does alone. The advantage of this is that
considering a complete design the possibilities for different functions to
share hardware may increase, i.e. assume that another boundary scan
interface is built by a “BSIF1a” and a “BSIF1c”. In such a case “BSIF1a”
may be shared while the whole implementation can not if neither
“BSIF1b” nor “BSIF1c” is general enough to replace the other. There are
more transformations that can be performed and in the example no
parameterized lego pieces are shown.

(b)

(c)

PRBS1

BSCAN1

LFSR1

(a)

PRBS2 LFSR1

BSCAN1

PRBS1 LFSR1

BSCAN1a

BSCAN1b

44 Board-Level Test Controller and Its Design

4.3 The Tool

As has been mentioned a simple prototype tool was implemented early
during this work. This was done before it was decided upon a more spe-
cific design representation of the test controller (see chapter 5). The pur-
pose of the prototype implementation was to demonstrate that we can
synthesize working test controllers from a very abstract lego piece rep-
resentation of the controller.

4.3.1 Building Blocks

There is a large freedom in our test controller model to chose any types
of lego pieces for inclusion in the test controller. This means that our
modeling of the test controller can be adapted both to upcoming test
tasks and techniques as well as be extended in directions that we have
not directly considered in our work. The main functions that we have
considered for this work are boundary scan testing with different types
of test pattern generators and compactors. We have also considered
BIST in general both when it is initialized through the boundary scan
interface and when it requires other means of initialization which can
then be done by having special lego pieces send the initialization sig-
nals. Further we have CPU interfaces for the purposes of handling CPU
BIST testing as well as movement of functionality from the hardware
implementation of the test controller to a software implementation
within the microprocessor. Further we have lego pieces not directly
related to the testing itself, but rather for additional support of the hier-
archical test concept. These lego pieces may include identification of a
board, which means that the board reports what kind of board it is and
what revision status it has. There may also be lego pieces to handle the
powering up/down of a board so that maintenance software running at a
higher hierarchical level can take the board on or off line automatically.
There can also be lego pieces for watch dog timers which are used to
interrupt operation after a certain time has elapsed if no result was pro-
duced. These can be used to guarantee that the test controller does not
get stuck and locks infinitely because of some external problems (e.g. a
CPU BIST program that never returns because of a failing ROM mem-
ory or jammed address bus).

45

5 Test Controller
Representation and
Synthesis

5.1 TDG Representation

The Test Design Graph (TDG) is the graphical notation we use to repre-
sent a test controller. A TDG is capable of capturing three individual
test controller properties; the test tasks to be performed by the test con-
troller, the control program (or FSM) that is to control the test activities
and the hardware required for the implementation. Roughly the last part
corresponds to the lego pieces discussed earlier. The finite state machine
is used to coordinate the operation of the lego pieces, and the test tasks
describe which lego pieces are necessary and how they are to be used.

5.1.1 Introduction to TDG

A TDG consists of two parts, a control part that handles the overall con-
trol of the test controller and a test path that implements the functions
that are performed by the test controller. The control part is based on
Petri net theory [Pet 81]. A Petri net is a graphical and mathematical
representation of systems. It can be used to capture the partially ordered
events of the given system. Thus Petri nets can be used to formally
describe how control flows from one state to another.

An example of a very simple Petri net is given in figure 5.1. This
Petri net consists of five places which are the circles marked with a “P”
and a number. In a Petri net one or more places can be active at the same
time. An active place means that the system is in a specific state, and a
place is active iff there is a token in the place1. In figure 5.1 there is a
token in place P1 (the token is shown as a small grey circle within the
place). One or more places can be deactivated when one or more new

46 Test Controller Representation and Synthesis

places are activated. This is done via firing transitions which are shown
as black, horizontal lines on the interconnection between the places in
figure 5.1. A transition will “consume” all the tokens in its input places
(as can be seen in the figure a Petri net is a directed graph) and at the
same time put tokens in all its outgoing places. In figure 5.1 there are
only transitions with single inputs/outputs. Therefore there will always
be only one token in the net, since there is only one token initially.

Transitions can be fired only when a transition is activated. In TDG a
transition is activated if there is a token in each of its incoming places
and the conditions associated with the transition are fulfilled. Examples
of such conditions can be that a transition is activated when a test has
finished execution or when a watch dog timer signals that time is up.
Thus it is possible to make decisions in a TDG, by having fan-out on a
place to several transitions with different conditions. In figure 5.1 there
is a choice for the token to move between P1 and P2 or between P1 and
P4 depending on the conditions associated with the T1 and T4 transi-
tions.

Figure 5.1: A small Petri net with four places and five transitions.

1. This assumes a safe Petri net. A safe Petri net can not have more than one token in a
place at the same time.

P1

P2

P3

P4

T1

T2

T3

T4

T5

47

Based on Petri net theory a design representation for hardware
design has been developed [Pen 87][Pen 94]. This design representation
is called ETPN for Extended Timed Petri Nets. The basic idea is to rep-
resent the control part of a hardware design by a Petri net, and to add a
data path that describes the data manipulating functions, such as adders
and registers etc. The ETPN design can then be synthesized to RTL-
level designs in a straight forward manner, where the control part is syn-
thesized to a finite state machine and the nodes in the data path can be
taken directly from the component library of the given technology.

An example of an ETPN graph can be seen in figure 5.2. The control
part is the Petri net to the left in the figure, while the data path can be
seen to the right. In this example the values of the two input registers R1
and R2 are multiplied to form a product in output register R3. Each of
the nodes in the data path is assumed to correspond to a cell in a module
library that will eventually be used for implementing the data part on
real hardware. Thus the library of nodes for the data path is specific to
the technology that will be used to implement the circuit.

Figure 5.2: An example ETPN performing a multiplication operation.

Since an ETPN is a synchronous representation, transitions in the
control part can be fired on every clock cycle given that the conditions
associated with the transitions are fulfilled. Although it is not the case in
this simple example, conditional expressions are usually formed by the
data path and associated with transitions in the control part, thus the cal-
culations in the data path can control the flow of the control part. Con-
trol of the data path is obtained by enabling the vertices in the data path.
In this example the multiplication is performed when state P1 is acti-

P0

P1

T1

T2

R1 R2

R3

P1 P1

P1

48 Test Controller Representation and Synthesis

vated since P1 is associated with all three vertices that connects to the
multiplier. A formal definition of ETPN syntax and semantics can be
found in [Pen 94].

The purpose of the ETPN representation is to get an easily visual-
ized graphical representation of hardware that can be reasoned about.
For ETPN there is a tool, CAMAD [Pen 94], that can be used to compile
VHDL or ADDL [Fje 92] to ETPN and ETPN to VHDL, as well as opti-
mizing the Petri net in terms of performance (execution time) and
implementation cost (area).

In this thesis we present yet another design representation, the Test
Design Graph (TDG), which is based on the ideas developed for ETPN,
but that better captures our specific needs when we want to reason about
test controller designs. The purpose of the ETPN and the TDG is quite
different, where ETPN is used as a general target representation for
compiled VHDL or ADDL, the TDG representation is only supposed to
capture a test controller design, and is not a target for compilation from
VHDL or ADDL, while it still should be a representation from which
VHDL (or other high level description languages) should be able to be
generated. For the TDG representation it is more important to reason at
a higher level than it is for the application areas that ETPN was devel-
oped for. Optimization in the TDG and test controller generation case is
rather a question of choosing between alternative ways of implementing
bigger functional blocks than tuning the design at the register transfer
level. Thus ETPN should be seen as a lower level design representation
than the TDG, and it would be feasible to compile TDG representation
into ETPN representation after optimization and reasoning have been
performed at the TDG level.

5.1.2 Formal Definition of TDG

The TDG is based on two interconnected subgraphs. The first is thecon-
trol part, captured as a Petri net which holds all necessary information
about test controller test scheduling. The control part is defined in defi-
nition 5.1.

Definition 5.1: A control part,Γ, is a four-tuple,Γ = <S, T, F, M0>,
where

S = {S1, S2, …, Sn} is a finite set ofcontrol states (places);
T = {T1, T2, …, Tm} is a finite set oftransitions;
F ⊆ (S×T)∪(T×S) is a binary relation, theflow relation.

49

M0: S→{0,1} is an initial marking function.

A control part consists of interconnected control states (places) and
transitions. One or more control states are active at a time. This part
contains the information used when the finite state machine that controls
the test controller is to be synthesized. Alternatively it can also be used
to generate a microcode program for a more flexible, programmable test
controller or even a machine code program if the test controller is devel-
oped as a slave device to a microprocessor.

The next part of the TDG is the test path. This is the part of the rep-
resentation that indicates what lego pieces (called implementation
nodes) are to be used within the test controller. It also shows how the
lego pieces are interconnected with each other, and how the lego pieces
connect to the pads of the test controller (called interface nodes) as well
as what purpose the lego piece is there fore (each service the test con-
troller can perform is referred to as a test task). The formal definition of
the test path is given in definition 5.2.

Definition 5.2: A test path,Λ, is a six-tuple,Λ=<TA , IM , IN , NP, BN,
BT>, where

TA = {TA 1, TA2, …, TAn} is a finite set oftest tasks;
IM = {IM 1, IM2, …, IMm} is a finite set ofimplementation nodes;
IN = {IN 1, IN2, …, INp} is a finite set ofinterface nodes;
NO = IM ∪IN is the set ofnodes in the design graph;
NP = NP(NO1)∪NP(NO2)∪…∪NP(NOq) whereNP(NOi) is the

set ofnode ports associated withnode i;
BN ⊆ (NP×NP)={<NP1,NP2> | NP1∈NP(NOi), NP2∈NP(NOj),

NP1∪NP2⊄NP(IN)} is a finite set of arcs that connects twonode ports;
BT ⊆ (TA×NO) is a finite set of edges that associatestest tasks

with nodes.

An example of the graphically notation used for visualizing a test
path is shown in figure 5.3. It has been indicated in the figure how the
graphical objects relates to the objects defined in definition 5.2.

50 Test Controller Representation and Synthesis

Figure 5.3: Subset of a test path with additional explanations

The Test Design Graph is the over all data structure that incorporates
both the control part and the test path. It also serves the purpose of inte-
grating them with each other through so called command ports and
response ports which are the means through which the control part com-
mands the test path, respectively gets feedback from the test path.

Definition 5.3: A Test Design Graph, TDG, is a six-tuple, TDG=<Γ, Λ,
CP, RP, BC, BR>, where

Γ = <S, T, F, M0> is acontrol part;
Λ = <TA , IM , IN , NP, BN, BT> is atest path;
CP = CP(TA1)∪CP(TA2)∪…∪CP(TAn) whereCP(TAi) is the set

of command ports associated withtest task i;
RP = RP(TA1)∪RP(TA2)∪…∪RP(TAm) whereRP(TAi) is the set

of response ports associated withtest task i;
BC: S→2CP is a mapping fromcontrol states in thecontrol part to a

set ofcommand ports in the test path;
BR: RP→2T is a mapping fromresponse ports in thetest path to a

set oftransitions in thecontrol part.

5.1.3 TDG Semantics

The semantics of the control part is defined below:

Definition 5.3: Given a Test Design Graph, its behavior is defined as
follows:

1. A function M:S → {0, 1} is called amarking of Γ. A marking is an

BScan IF

Intercon

BScan

B
S

ca
n

S1

T1
T2

BScan

Intercon

Test task

Implementation node

Interface node Edge Arc

Response port

Command port

51

assignment of tokens to the control states.

2. Initially there is a token in each control state Si such that M0(Si)=1 as
defined by the initial marking M0.

3. A transition T is said to be enabled at a marking M iff M(Pi)=1 for

every Pi such that <Pi,T > ∈ F

4. A transition may be fired when it is enabled and the guard condition is
true. If a transition has more than one guard condition, an AND opera-
tion is applied to them; therefore, all guard conditions must be true in
order for the transition’s guard condition as a whole to be true.

5. Firing an enabled transition T removes a token from each of its input
control states and deposits a token in each of its output control states.

6. When a control state, S, holds a token the command ports on one or
more test tasks associated with the control state is true. If a command
port has more than one control state associated to it an OR operation is
applied to them.

7. A response port, RP, can be activated iff its corresponding command
port, CP, is active.

8. An enabled response port, RP, is deactivated iff the command port, CP,
that activated the response port is deactivated.

Related to the formal definition of semantics is the very special
facility of a TDG to reset itself. This is not directly part of the seman-
tics, but is possible since the test path allows basically any operation.
This means that it is fully allowed to let an implementation node in the
test path reset the whole test controller. This means that the TDG may
be re-initialized by itself by activating a reset function.

In figure 5.4 a simple test design graph is shown. This TDG
describes a test controller that is capable of interacting with a test bus
from which it receives its commands of what to do as well as reports
success/failure status for the tests that it performs. Further it is capable
of carrying out two different tests; a boundary scan interconnect test and
a P-BIST test as the test path graph has test tasks for these two actions.
Finally an overall reset of the test controller can be performed via the
“Reset” test task shown at the bottom of figure 5.4.

52 Test Controller Representation and Synthesis

Figure 5.4: A simple TDG example.

P-BIST

Core

Error Report

Reset

BScan IF

CPU IF

TBus IF

Reset IF

Intercon

BScan

P-BIST

Core

Error

Reset

B
S

ca
n

C
P

U
T

es
t B

us
R

es
et

S5

S6

S8

S1

S2

S3

S4

S7

S1

S2

S3

S4 S6 S7

S8

T1

T2

T3

T4

T5 T6

T7 T8

T1

T2

T3

T4

T5

T6

T7 T8

S1: Start
S2: BScain Inter
S3: Processor BIST
S4: Report OK

S5: Idle, OK
S6: S2 Error Report
S7: S3 Error Report
S8: Reset

BScan

Intercon

Report

53

In the control part all states have been marked with “Sx” wherex is
used to enumerate the states and ranges from one to eight. Similarly all
transitions have been marked with “Ty” wherey enumerates the transi-
tions. There is an association between the command ports in the test
path and the states in the control part. To indicate this the states that
control command ports are printed under the test task whose command
port it controls. If more than one state is put under the same test task
this means that the test task has the same number of command ports as
the number of states put there, where each command port is controlled
by its own state. In the same manner the response ports have their asso-
ciated transitions printed over the test tasks.

When a TDG is initiated (or when it has been reset) there are tokens
in the initial states. In the TDG given in figure 5.4 the initial states are
states S1 and S5. This activates the Core test task which awaits com-
mands to arrive from the test bus. In this model it only has one com-
mand defined, and that is the command to start testing. When such a
command is received on the test bus the core will signal this on the
response port and thus enable transition T1 which is associated with it.
As S1 now holds a token and T1 is activated, T1 is fired which means
that the token is removed from S1 and put in S2 instead.

When S2 is activated boundary scan interconnect test starts since S2
is controlling the command port of the “Intercon BScan” test task. The
outcome of this test can be either a success in which case testing is sup-
posed to proceed with the next test, or a failure where testing will have
to be aborted and the error reported. To let the test task indicate these
two possible outcomes it has two response ports, one for success and
one for failure. We assume this time that the testing succeeds, and thus
T2 is enabled by the response that is associated with it, which means
that state S2 is deactivated and S3 is activated. If testing fails, however,
transition T5 is enabled instead. When T5 is enabled S5 is deactivated
and S6 is activated. S6 will invoke the error report test task.

The error report test task has three command ports, one for reporting
success (which is reported when all test have been performed success-
fully) and two for reporting failure, i.e. one failure report for each of the
two tests that are performed in this example. After having reported the
failure control proceeds from S6 to S8, where S8 controls the “Reset”
test task which performs an overall reset of the test controller. This
means that the test controller is put in its initial state with tokens in S1
and S5 only, and the test controller is thus ready to accept a new com-
mand via its “Core” test task that is re-enabled by state S1.

54 Test Controller Representation and Synthesis

Going back to the case of successful boundary scan test, S3 now
holds control and thus starts the “P-BIST” test task which will report
success or failure in the same way as the boundary scan interconnect
test. For success S4 is activated and the “Error Report” test task is here
used to report success to the test bus instead of error as was the case
when a report was requested from S6. After the success report state S1
regains control and the test controller is ready for the next command. If
the P-BIST test failed, control would have gone to state S7 in the same
way as failure of the boundary scan test gave control to S6. From S7 an
error would be reported. As S7 has a different command port on the
“Error Report” test task than S6, an error report different from the S6
error can be given when the P-BIST test fails. Finally the test controller
is again reset in state S8 and the test controller is again ready for the
next command.

5.2 TDG Transformations

Three basic transformations have been defined to perform transforma-
tion on theimplementation nodes. They are described below.

5.2.1 Substitution

A transformation of type substitution is employed to exchange a set of
implementation nodes for an alternative set that performs the same func-
tion but with a different hardware realization. Graphically a substitution
operation is depicted in figure 5.5. There, a type A realization of a
BScan interface is substituted for the alternative type B implementation.
The type B implementation, however, requires a special parameter node
to be functionally equivalent. Therefore the substitution must handle
sets instead of single implementation nodes. In the example a set with
only one member is substituted for a set with two members. It is
required that each set is connected (by arcs) in such a way that no two
disconnected subsets can be formed within the set. The two sets must
also contain the same arcs to the rest of the test path. An algorithmic
description of how the transformation affects the test path is given
below:

1. Find a set of implementation nodesIM 1 to be replaced by another set
IM 2.

55

2. Check that all implementation nodes inIM 1 have exactly the same
edge connections to test tasks. Otherwise sharing is done within the set
IM 1 and substitution can not be performed.

3. ReplaceIM 1 with IM 2.

4. All external arcs are preserved, and all nodes withinIM 2 get the same
edges as the nodes inIM 1

Figure 5.5: Example of a substitution transformation.

5.2.2 Merging

Merging provides the ability for two or more test tasks to share common
hardware resources in the test path. The motivation for this ability is a
reduction in hardware cost. Merging, is used to merge two implementa-
tion nodes to one. There is a reverse transformation to merging which is
called splitting. The split transformation splits a merged node into two
distinct nodes.

The merge transformation will merge two implementation nodes of
the same type. A merge operation has been depicted in figure 5.6 and the
merge operation corresponds to a move downwards in the figure. Unlike
the substitution transformation, a merge (and also split) transformation
always operates on single implementation nodes. An algorithmic

BScan Inter

BScan IF BScan Inter

Substitution

BScan Inter

BScan Inter

BScan IF BScan Inter
P
o
r
t

P
o
r
t

Type A

Type B Parameters

56 Test Controller Representation and Synthesis

description of how the transformation affects the test path is given
below:

1. Identify two implementation nodes IM1 and IM2 to be merged.

2. Copy all node arcs from IM2 that are not on IM1.

3. Copy all edges from IM2 to IM1.

4. Remove IM2 along with its arcs and edges.

Figure 5.6: Example of a sharing transformation.

5.2.3 Splitting

The second transformation to implement the sharing concept is splitting.
It is basically a reverse merge transformation in which a single imple-
mentation node is split into two distinct nodes. After a node has been
split, the newly created node will always be associated with exactly one

BScan Inter

BScan Inter

BScan IF

BScan Inter

BScan Inter

BScan Inter

BScan Inter

BScan IF BScanInter

Splitting

BScan Inter

BScan Inter

BScan Inter

BScan Inter

Merging

Parameters

Parameters

Engine

P
o
r
t

P
o
r
t

Engine

Engine Parameters

Parameters

57

test task. Thus if an implementation node is shared by N test tasks, after
the split the original node will be shared by N-1 test tasks while the N:th
test task will have its own implementation node. To split in other ways
successive split and merge transformation will have to be performed. An
algorithmic description of how the transformation affects the test path is
given below:

1. Identify an implementation node, IM1, that is to be split. It is required
that this node has at least two edge connections since otherwise it is not
shared.

2. Choose which edge, BT1, that is to get its own implementation node.

3. Make a copy of IM1 and call this copy IM2.

4. Disconnect edge BT1 from IM1 and reconnect it to IM2.

5. All arcs connecting nodes to the left of IM1 to IM1 are duplicated to
also connect to IM2.

6. All nodes to the right of IM1 that are connected to the edge BT1 get arc
connections to IM2. If such a node does not have any edge left that
points to the same test task that there exists an edge for M1 for the arc
between IM1 and this node is removed.

5.3 Test Controller Parameters

When designing a TDG, there is one essential piece of information that
is not captured graphically. This refers to the different parameters that
are necessary for fully describing the operations. Most operations are
not fully described for optimization or synthesis without additional
parameters. An example of parameters for a boundary scan interconnect
test task would be parameters describing the length of the boundary scan
chain, the properties of the boundary scan chain (i.e inputs/outputs/bidi-
rectionals etc.). These test task related parameters will have to be trans-
formed into parameters suitable for association with the implementation
nodes, since otherwise it will neither be possible to know what transfor-
mations can be allowed nor how to finally synthesize the nodes.

58 Test Controller Representation and Synthesis

5.3.1 Parameters and Transformations

Associated with each node is a set of parameters. To exemplify this con-
sider a part of a test controller that will do boundary scan interconnect
test on a very simple, short boundary scan chain with two directly inter-
connected ICs, figure 5.7.

Figure 5.7: A boundary scan interconnect example.

The information the TDG would have to capture about this design is
listed in table 5.1. First of all the type of test that is to be performed has
to be captured in some parameter. In this case we simply call this
parameter “Test Method” and associates “Walking Zero” with it, which
means that the interconnection test that we want to perform is the walk-
ing zero test. The test method parameter belongs to the test task, which
means that the parameter is fixed regardless of the implementation
choices. Other parameters are related directly to the boundary scan
chain and describe in detail how the scan chain will be handled. These
parameters are associated with the “BScan Inter Parameters” implemen-
tation node, and consist of the “Scan Length” parameter which contains
the length of the boundary scan chain, the “Ignore” parameter indicating
which cells in the boundary scan chain should be masked out during
testing. In this case cells 1 to 6 and 13 to 18 should be masked out since

BScan Inter

BScan IF BScan Inter BScan Inter

TDI

TDO

P
o
r
t

Engine Parameters

59

they are not used for interconnection within the scan chain. Further we
have the “Runs” parameter which describes how many walking zero pat-
terns will be used, which in this example is six and equals the number of
interconnected pads between the circuits.

Table 5.1: Parameters associated with an example BScan interconnect test.

It can be seen that no parameters need to be associated with the
“BScan Inter Engine” implementation node. This makes this node more
general and allows for sharing as shown in section 5.2.2. We do not
claim that the table contains all necessary parameters, and what is nec-
essary depends also on the reasoning capabilities of the environment,
which we have not built yet. An example of this is whether it will be
necessary to explicitly indicate which cells in the boundary scan chain
that are interconnected to each other, or if this can be derived automati-
cally from a netlist. If it can be automatically derived, table 5.1 would
indicate what is given by the designer, and eventually the table will be
refined automatically by the tool to contain further derivable details.

5.3.2 Cost Function

The cost function used when optimizing the TDG requires calculation of
both the hardware cost of the TDG and the time required for the test
operations in the TDG.

TDG Object Parameter Value

Port none

BScan Inter Test Method Walking Zero

BScan IF none

BScan Inter Engine none

BScan Inter Parameters
Scan Length 24

Ignore {1:6,13:18}

Runs 6

60 Test Controller Representation and Synthesis

Hardware Cost

The hardware cost of the TDG is the sum of the cost of the control part
and the test path.

The cost of the control part is taken as an estimation of the complex-
ity of the Petri net. Thus the number of arcs is counted instead of places/
transitions since the complexity is more closely related to the number of
arcs. The formula looks as follows:

Cost(Γ)=∑i [|Si˙| + |˙Si|] + ∑j [|Tj˙| + |˙Tj|]

where
˙Si = { T | (T, Si) ∈ F}, the pre-set of Si ∈ S;
Si˙ = { T | (Si, T) ∈ F}, the post-set of Si ∈ S;
˙Tj = { S | (S, Tj) ∈ F}, the pre-set of Tj ∈ T;
Tj˙ = { S | (Tj, S)∈ F}, the post-set of Tj ∈ T;

The cost of the test path is calculated as:

Cost() =∑i Cost(IMi) + ∑j Cost(INj) + ∑k Cost(TAk)

where
Cost(IMi) = a function over the type of the node and its associated

parameters.
Cost(INj) = the number of pads in INj
Cost(TAk) = |CP(TAk)| + |RP(TAk)|

The hardware cost of an implementation node is calculated by a spe-
cial function associated with the type of the implementation node. This
function differs for each type of node and is specially designed to take
parameters of the actual node type into account when performing the
calculation. Since the parameters associated with different types of
nodes differ, no general cost formula has been developed.

Execution Time

The cost related to the execution time of the test task is estimated by
analyzing the Petri net to see what test tasks that are activated. For each
test task that is found to be activated a time can be estimated by a cost

61

function associated with the test task in much the same way as with the
hardware cost function.

A typical Petri net for a small test can be seen in figure 5.8. We want
to estimate the execution time of either the test operation (the left most
path in the left Petri net) or the identification operation (the right most
path in the left Petri net). We do not consider the error exception Petri
net (the right one) since our estimation of time will only measure the
normal case in which tests are assumed to be successful. We make this
choice since most tests are successful (if not there is a quality problem).

Figure 5.8: A typical control part for a very simple TDG.

As the execution time can be difficult to estimate in situations where
there are loops involved in the control part bounds have to be put on the
maximum number of iteration each loop will be allowed to take.

P6

P7

P9

P1

P2

P3

P4

P5
P8

P1: Start
P2: BScan Inter
P3: Processor BIST
P4: Report OK
P5: Identify

P6: Idle, OK
P7: P2 Error Report
P8: P3 Error Report
P9: Reset

62 Test Controller Representation and Synthesis

63

6 A Board Example

A board example has been developed. This example contains important
components extracted from a real telecommunications board designed
by Ericsson. The complete board design is not included though, since
that would be unnecessarily complex and too detailed for the exemplifi-
cation purpose.

6.1 Board Example

The heart of the board is a Motorola M68360 QUICC (Quad Integrated
Communication Controller) 32-bit microprocessor. It is a processor
originally derived from the Motorola 68020 design but targeted for
embedded control. The processor can be seen in many real telecom
applications. It also has the benefit of containing a standardized IEEE
1149.1 BScan interface [IEEE 90].

The external devices connected to this processor are assumed to be
designed for 8 and 16-bit data busses. Since the M68360 processor has
dynamic data bus sizing between 8, 16 and 32 bits this kind of devices
can easily be handled. Nonvolatile memory for the processor is stored in
a 64 kilobyte PROM memory contained in one single chip with a 16-bit
data bus. RAM memory is constructed from two 128 kilobyte DRAM
chips that together make up 256 kilobyte storage with a 16-bit data bus
interface.

Application specific hardware implementation is constructed from
one FPGA (a Xilinx) and one ASIC. Both of these contain boundary
scan. The FPGA is connected directly to the data bus through a 16-bit
interface, while the ASIC lacks proper bus interfacing and is therefore
connected to the bus through a bidirectional three-state driver, a BScan
enabled 74BCT8244 chip. This gives the ASIC only 8-bit access to the
bus. To load the Xilinx FPGA chip a dedicated serial ROM is employed.
Loading is not performed at power up since we want to use the BScan
logic that is assumed to be present in our Xilinx model at power up.

64 A Board Example

Later when initial BScan testing has been performed, the Xilinx is
loaded. A sketch of the board can be seen in figure 6.1.

Figure 6.1: Example board derived from a real telecom application.

6.2 Test Requirements

The first step to take in designing the test controller is to perform a test
requirements analysis. In this step we decide what we want to test. In
the example given in figure 6.1 the internals of the ASIC, RAM, ROM,
Xilinx (with its dedicated ROM) and the CPU should be tested. Further
we want to test the interconnections on the board. We must also decide
the test method that is to be used to perform the test. Here we choose to
use the BIST capability of the ASIC for its testing, while the RAM
memory is tested by the Mach scheme [Goo 91]. The ROM is tested by
calculating its checksum. When we come to the Xilinx chip we have no
BIST scheme so the only way to test it is to do it functionally through P-
BIST where we let the microprocessor exercise it to see that it is both
correct and also correctly loaded from its serial ROM memory. In this
way we also get an indirect test of the Xilinx dedicated ROM memory,
since if it would not work properly the Xilinx would not have been cor-
rectly loaded. The final chip to test is the CPU itself, which is also

RAM RAM

BTC

CPU

PROM ASIC

ROM

FPGA

T
es

t B
us

I/O Port

65

tested through P-BIST. We let it execute some code to exercise some of
its instruction set as well as its interfaces to the environment.

After the individual components on the board have been tested their
interconnects are to be tested. This will be done by boundary scan inter-
connect test. Since all major components on the example board is
equipped with boundary scan, except for the memory chips, this will
work efficiently.

Finally we want to add an identification feature to the test controller.
This means that the test controller will be able to identify itself upon
request by sending a special code on the test bus. A summary of the test
requirements can be seen in table 6.1.

Table 6.1: Test requirements for the example board.

6.3 An Initial Test Design Graph

The designer now has to design an initial TDG. This graph will be the
origin from which the tool will be able to perform optimizations. As
usual the graph is divided into a test flow, which can be seen in figure
6.2, and a control part, which can be seen in figure 6.3.

Circuit to Test Test Method

ASIC BIST

RAM Mach Test

ROM Check Sum

Xilinx (with ROM) P-BIST

CPU P-BIST

Board Interconnect Boundary Scan

Identification -

66 A Board Example

Figure 6.2: First version test path for the board example.

BScan

ASIC BIST

Xilinx P-BIST

ROM

RAM March

P-BIST

Core

Identify

Error Report

Reset

BScan IF2

CPU IF3

TBus IF1

Reset IF1

ASIC

BScan

P-BIST1

ROM

RAM

P-BIST1

Core2

Identify1

Error

Reset1

B
S

ca
n

C
P

U
T

es
t B

us
R

es
et

S0

S1

S2

S3

S4

S5

S6

S7

S8

S10 S11 S12 S13
S14

S15

S16

R1

R2

R6

R3

R4

R5

R0

R9

R7

R17

R15

R11

R10

R12

R13

R14

R8

R16

checksum1

March1

Report1

checksum

BIST1

Intercon1Intercon

67

Figure 6.3: Control part for the board example.

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10 S11 S12 S13 S14 S15

S16

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10 R11 R12 R13

R0

R14

R16

R15

R17

R16 R16 R16 R16R16

S0: Wait
S1: BScan Inter
S2: ASIC BIST
S3: ROM checksum
S4: RAM March
S5: P-BIST
S6: Xilinx P-BIST
S7: Signal OK
S8: Identify

S9: Wait
S10: Signal Error
S11: Signal Error
S12: Signal Error
S13: Signal Error
S14: Signal Error
S15: Signal Error
S16: Reset

68 A Board Example

In figure 6.2 we can see that four different interface nodes have been
introduced on the test controller. These are BScan, CPU, test bus and
reset ports. Since we assume that we connect the boundary scan chain
on the board into one single chain we only need one BScan interface
node. The CPU and test bus interface nodes are for communication with
the microprocessor and the test bus respectively and they must be spe-
cially designed to operate with the CPU and test bus at hand. Finally a
reset node is incorporated. This node is used to signal reset to the board,
which means that it should reset the whole board including the test con-
troller itself. This is used when a fault is found during testing, and
solves the problem of leaving the board in an undefined state.

The second layer in the TDG (and finally the BTC) that communi-
cates with the board is the left most implementation nodes. Each inter-
face node is controlled by a corresponding implementation node, which
provides the logic interface. Just as with the interface nodes themselves,
the implementation nodes depend also on the device with which they are
to interface. Implementation nodes can be changed during the optimiza-
tion step, whereas interface nodes can not. This difference comes from
the fact that there can be several implementation alternatives of one
implementation node, and each implementation can also differ in which
level of functionality it is suited to handle. An example of this can be
the CPU implementation node which in its simplest form would only be
able to interrupt the processor while in its more complex implementa-
tions perform efficient bi-directional data transfer between the CPU and
the BTC. The initial configuration is chosen such that the implementa-
tion nodes provide the minimum required functionality given the test
task that it belongs to. It may not be the optimum choice however.

The hardware realization of the test operation is captured in the right
most implementation nodes. While the (in this example) left most
implementation nodes will handle the protocol conversion between the
interface nodes and the other implementation nodes, the latter are used
for implementing the actual test. As mentioned above a complex imple-
mentation node may require a more advanced implementation node that
controls the interface node to support the demands that are put on the
protocol. In other situations different protocol handling implementation
nodes may be used with the same test realization implementation node,
but different performance may be experienced since some protocols are
more efficient than others.

69

6.4 Lego Piece Alternatives

To allow for optimization in the example, a set of interface and imple-
mentation nodes are proposed. There are two major alternations possible
when designing interface nodes; it can be chosen which protocol to
interface with and what level of features the chosen interface will sup-
port. The protocol can not be changed during the optimization (although
its implementation can) since the board is given with external protocols
such as, in this case, the M68360 QUICC CPU. The second issue, the
feature support, can be optimized since choices in the implementation
may put different requirements on the interface, e.g. if the check sum of
a ROM is to be calculated this can be done either by the CPU (which
does not require DMA capability of the CPU interface) or by the test
controller through a DMA capable CPU interface. The interface nodes
follow below. Note that we do not propose many alternatives regarding
the protocol issue, thus the choice of interface node in this library is
itself targeted to the example board.

Boundary Scan Interface
 • BScan IF1 supports only ASIC BIST
 • BScan IF2 supports ASIC BIST and Interconnect Tests

CPU Interface
 • CPU IF1 QUICC single interrupt vector
 • CPU IF2 QUICC multiple interrupt vectors
 • CPU IF3 QUICC DMA data transfer (multiple vector)
 • CPU IF4 QUICC CPU data transfer (multiple vector)

Test Bus Interface
 • TBUS IF1 IEEE 1149.5 interface
 • TBUS IF2 IEEE 1394 interface

Reset Interface
 • Reset IF1 Basic reset interface

The implementation nodes differ from the interface nodes as they do
not support a specific protocol since they talk to the protocol indirectly
through the interface nodes. Therefore the optimization choose the
cheapest implementation alternative that provides the desired function-
ality. Another important optimization aspect is the possibility of sharing

70 A Board Example

implementation nodes between different tests. This is more natural for
the implementation nodes than for the interface nodes since a protocol
always has to be available (at least the portion of it that can support an
idle situation). The following alternatives exist:

Boundary Scan Interconnect
 • BScan Intercon1 Basic BScan interconnect test without intelligence
 • BScan Intercon2 BScan with knowledge of in, out, 3-state and bidir

ASIC BIST
 • ASIC BIST1 BScan based BIST supporting one ASIC
 • ASIC BIST2 BScan based BIST supporting multiple ASICs

Processor BIST
 • P-BIST1 Generic P-BIST
 • P-BIST2 Generic P-BIST without parameters
 • P-BIST Parameters1 Parameters for P-BIST2

ROM checksum
 • ROM checksum1 CPU based checksum calculation
 • ROM checksum2 DMA based checksum calculation

RAM March
 • RAM March1 CPU based March test
 • RAM March2 DMA based March test

Core
 • Core1 Accepts commands from the test bus interface
 • Core2 Accepts commands with arguments from the bus interface

Identification
 • Identify1 Identifies board with a code
 • Identify2 Advanced identification that supports simple board que-

ries

Error Reporting
 • Error Report1 Reports errors

Reset
 • Reset1 Basic reset

71

6.5 Test Flow Optimization

Optimization is performed from the first version test path in figure 6.2
to the final test path in figure 6.4. The optimization will be carried out
with a tabu search algorithm, but a tabu search optimization will not be
described here; rather a description of what changes are made will be
done. The first optimization that can be made is the change of the
CPU IF3 implementation to a CPU IF2 implementation. This means that
a CPU interface capable of performing data transfers to and from the
test controller (or in other ways access the CPU busses since it has a
DMA interface) is changed for a simpler one that can only request the
CPU to perform a test or receive an ok or fail signal all of which can be
done through interrupt vectors and thus not requiring data transfers.
This change is possible since all of the test operations performed
through the CPU interface have fully CPU controlled implementations
and thus it is only necessary for the CPU test program to signal passed
or failed to the test controller without additional data. By doing this
optimization we gain area since the CPU interface lacking DMA capa-
bilities will be a smaller design.

The second optimization that can be performed is the unification of
the two P-BIST tests. Both are performed on the same CPU interface
and it would be feasible to share as much functionality between them as
possible. This can be achieved by first splitting each of them into P-
BIST2 and P-BIST Parameters1 nodes. The P-BIST2 implementation is a
subset of P-BIST1 lacking all parameters that are associated with P-
BIST1. To hold the parameters the parameters node P-BIST Parameters1
is used in conjunction with it. Since we now have two P-BIST2 nodes
without any parameters specific to their respective P-BIST tests we can
merge them and come up with one P-BIST2 and two P-BIST
Parameters1 nodes. By doing this we will reduce area (even if we now
have one more node than initially).

72 A Board Example

Figure 6.4: Final, optimized test path.

BScan

ASIC BIST

Xilinx P-BIST

ROM

RAM March

P-BIST

Core

Identify

Error Report

Reset

BScan IF2

CPU IF2

TBus IF1

Reset IF1

ASIC

BScan

ROM

RAM

P-BIST2

Core2

Identify1

Error

Reset1

B
S

ca
n

C
P

U
T

es
t B

us
R

es
et

S0

S1

S2

S3

S4

S5

S6

S7

S8

S10 S11 S12 S13
S14

S15

S16

R1

R2

R6

R3

R4

R5

R0

R9

R7

R17

P-BIST

P-BIST

R10

R15

R12

R13

R14

R8

R16

R11

Intercon1

BIST1

Parameters1

checksum1

Parameters1

March1

Report1

checksum

Intercon

73

7 Conclusions

7.1 Summary

Hierarchical test architecture is important for hardware test of complex
systems. Several research groups and industrial companies have been
developing both hierarchical test concepts and board-level test control-
lers. All approaches this far have either developed synthesis strategies
for the whole system where everything is prescribed from BIST func-
tionality within the circuits to the over all system [Hab 95] or proposed
more or less fixed test controllers. We believe that our approach in syn-
thesizing the test controller to fit into a more freely designed hierarchi-
cal test framework fills a big gap between these two approaches. Further
our approach will generate efficient test controllers that can be fitted
into mature products as they evolve, and it does not put any constraints
on what components must be used in the systems. With a full synthesis
technique for the whole system high volume, cost effective components
may be inappropriate since they do not fit into the full synthesis strat-
egy. Therefore we think that our work is very important and has realistic
uses in many cases where the more visionary ideas do not.

Our main contributions through the development of our board-level
test controller strategy are:

 • We have, in close cooperation with the industry, developed a hier-
archical test architecture that supports self-test at the system, sub-
system and board levels through the use of test controllers. The test
architecture supports both production test and operation and main-
tenance test.

 • A lego piece approach has been developed in which a test control-
ler can be constructed from a set of pre-designed (although param-
eterized) code blocks, called lego pieces.

 • We have developed a design representation, called the test design
graph, that supports the lego piece concept. The TDG representa-
tion is suitable for capturing a complete test controller, and is

74 Conclusions

designed with support for reasoning and optimization. The TDG is
built on the same ideas as ETPN, but is specially targeted for use in
test controller design.

 • Transformations have been defined to allow for a future inclusion
of a transformational optimization heuristic. This heuristic has yet
to be developed, but our plans are to base it on tabu search.

 • A simplified board example from the industry has been used to
demonstrate that the synthesis flow from a test requirement to a
final BTC design can be achieved with the proposed technique.

7.2 Future Work

The ideas and techniques developed in this thesis aim at an implementa-
tion of a tool that will semi-automatically construct board level test con-
trollers. The implementation of such a tool should be one of the highest
priority tasks in our continuing work. For such a semi-automatic tool to
work conveniently a well designed user interface will have to be
designed. This is important both since it must be taken into consider-
ation how the designer will influence the design process but also
because a well designed and easy to work with graphical user interface
will enhance the usability of such a tool.

The first step to take in the implementation of the tool is to make the
test controller generation part (see figure 4.1). This part of the tool is the
one that is most well described in this thesis and should therefore be the
first one to be implemented. Through implementing that part a larger
amount of lego pieces and parameters for them will have to be devel-
oped. Further more parameters associated with the different test tasks
will be discovered, and relevance of the already proposed parameters
will be verified.

Further work has to be done on the optimization issue which is only
conceptually described in the thesis but where additional work and
experimentation have to be made to ensure efficient cost/performance
ratios of the generated controllers. Tabu search is planned as the most
probable choice of optimization heuristic, as it has shown good results
previously in the electronic design automation area. It also fits well to
our transformation based approach of optimization with its neighbor-
hood search concept.

75

Appendix A
The LFSRx Lego Piece VHDL
Code

This appendix shows the implementation of the “LFSRx” lego piece,
which is a linear feedback shift register. Information about a lego piece
is captured in several independent files. The first one is the file
“_mapLFSRx.miv” which contains the VHDL port map of the lego
piece.

__LegoPiece__ : __CompName__ -- PRBSx
 PORT MAP (Clock => Clock,
 RequestData => RequestDataX,
 Data => DataX);

The second file is “_compLFSRx.miv” which contains the VHDL com-
ponent declaration of the lego piece.

COMPONENT __CompName__ -- LFSRx
 PORT (Clock : IN STD_LOGIC;
 DataIn : IN STD_LOGIC ; -- Data Scanned In (port
1)
 CaptureData : IN STD_LOGIC ; -- Request Data
 Data7: OUT STD_LOGIC ; -- Data Bits in Output (port 2)
 Data6 : OUT STD_LOGIC ;
 Data5 : OUT STD_LOGIC ;
 Data4 : OUT STD_LOGIC ;
 Data3 : OUT STD_LOGIC ;
 Data2 : OUT STD_LOGIC ;
 Data1 : OUT STD_LOGIC ;
 Data0 : OUT STD_LOGIC);
END COMPONENT;

76

The third file is “_archLFSRx.miv” which contains the actual architec-
ture of the lego piece, this is also written in VHDL.

USE work.std_logic_1164.ALL;
ENTITY __CompName__ IS -- LFSRx
 PORT (Clock : IN STD_LOGIC;
 DataIn : IN STD_LOGIC ; -- Data Scanned In (port
1)
 CaptureData : IN STD_LOGIC ; -- Request Data
 Data7 : OUT STD_LOGIC ; -- Data Bits in Output
(port 2)
 Data6 : OUT STD_LOGIC ;
 Data5 : OUT STD_LOGIC ;
 Data4 : OUT STD_LOGIC ;
 Data3 : OUT STD_LOGIC ;
 Data2 : OUT STD_LOGIC ;
 Data1 : OUT STD_LOGIC ;
 Data0 : OUT STD_LOGIC);
END __CompName__;

USE work.std_logic_1164.ALL;
ARCHITECTURE Behave OF __CompName__ IS
BEGIN
 p1: PROCESS
 VARIABLE poly : STD_LOGIC_VECTOR(8 DOWNTO 1) := "00000000";
 VARIABLE tmp : STD_LOGIC;
 BEGIN
 WAIT ON CaptureData;

 IF CaptureData = '1' THEN
 tmp := DataIn XOR poly(1);
 poly(7 DOWNTO 1) := poly(8 DOWNTO 2);
 poly(8) := tmp;
 END IF;

 Data7 <= poly(8);
 Data6 <= poly(7);
 Data5 <= poly(6);
 Data4 <= poly(5);
 Data3 <= poly(4);
 Data2 <= poly(3);
 Data1 <= poly(2);
 Data0 <= poly(1);

 END PROCESS;
END Behave;

77

Along with the VHDL definitions used for each lego piece our tool uses
two additional files in which all lego pieces are listed with some infor-
mation about them. The first file is “_archlist” which lists all lego pieces
along with their identity number and the files in which the port map,
component and architecture files can be found.

...
7 LFSRx _compLFSRx.miv _mapLFSRx.miv _archLFSRx.miv
8 Const25 _compConst25.miv _mapConst25.miv _archConst25.miv
9 Compx _compCompx.miv _mapCompx.miv _archCompx.miv
10 BSIFx _compBSIFx.miv _mapBSIFx.miv _archBSIFx.miv
...

The final file contains information about which ports on the lego pieces
that exist. It also indicates if the port is for input or output.

...
7 LFSRx 2 2 In DataInX In CaptureDataX 8 Out Data7X Out Data6X
Out Data5X Out Data4X Out Data3X Out Data2X Out Data1X Out
Data0X
8 Const25 1 8 Out Data7X Out Data6X Out Data5X Out Data4X Out
Data3X Out Data2X Out Data1X Out Data0X
9 Compx 3 8 In DataA7X In DataA6X In DataA5X In DataA4X In
DataA3X In DataA2X In DataA1X In DataA0X 8 In DataB7X In DataB6X
In DataB5X In DataB4X In DataB3X In DataB2X In DataB1X In
DataB0X 1 Out EqualX
10 BSIFx 7 8 In DataA7X In DataA6X In DataA5X In DataA4X In
DataA3X In DataA2X In DataA1X In DataA0X 8 In DataB7X In DataB6X
In DataB5X In DataB4X In DataB3X In DataB2X In DataB1X In
DataB0X 2 In DataInX Out RequestDataX 2 Out DataOutX Out Cap-
tureDataX 1 In StartX 1 Out FinishX 4 Out TDOX In TDIX Out TMSX
Out TCKX
...

78

79

References

[Abr 90] M. Abramovice, M. Breuer, A. Friedman,” Digital Systems Test-
ing and Testable Design,”IEEE Press, ISBN 0-7803-1062-4,
1990.

[Ang 97] C. Angelbro, “P-BIST Test Method Conquer the Ericsson World,”
IEEE European Test Workshop, Cagliari, May 28-30, 1997.

[Bre 88] M. A. Breuer, J. C. Lien, “A Test and Maintenance Controller for
a Module Containing Testable Chips,”International Test Con-
ference, pp. 502-513, 1988.

[Fje 92] B. Fjellborg, “Pipeline extraction for VLSI data path synthesis,”
Ph. D. dissertation No. 273, Dept. of Computer and Informa-
tion Science, Linköping University, 1992.

[Glo 93] F. Glover, E. Taillard and D. de Werra, “A user’s guide to tabu
search,”Annals of Operations Research, vol. 41, pp. 3-28,
1993.

[Goo 91] A.J. van de Goor, “Testing Semiconductor Memories: Theory and
Practice,”John Wiley & Sons, 1991.

[Hab 94] O. F. Haberl, T. Kropf, “Selft Testable Boards with Standard
IEEE 1149.5 Module Test and Maintenance (MTM) Bus Inter-
face,”The European Design and Test Conference, pp. 220-225,
1994.

[Hab 95] O. F. Haberl, T. Kropf, “HIST: A Hierarchical Self Test Method-
ology for Chips, Boards, and Systems,”Journal of Electronic
Testing: Theory and Applications, pp. 85-116, vol. 6, no. 1,
1995.

[Has 92] A. S. M. Hassan, V. K. Agarwal, B. Nadeau-Dostie, J. Rajski,
“BIST of PCB Interconnects Using Boundary-Scan Architec-
ture,” IEEE Transactions On Computer-Aided Design, pp.
1278-1288, vol. 11, no. 10, 1992.

80

[Håk 95] J. Håkegård, “Board Level Boundary Scan Testing and Test Con-
trollers,” CADLAB Memo 95-01, Department of Computer and
Information Science, Linköping University, 1995.

[Håk 96] J. Håkegård, G. Carlsson, Z. Peng, “A Board-Level Test Control-
ler to Support a Hierarchical DFT Architecture,”IEEE European
Test Workshop, June 1996.

[Håk 96b] J. Håkegård, Z. Peng, “A Board-Level Test Controller to Support
a Hierarchical DFT Architecture,”The Third International Test
Synthesis Workshop, Santa Barbara, USA, 1996.

[Håk 97] J. Håkegård, Z. Peng, “Design and Synthesis of a Generic Board-
Level Test Controller,” Short Contribution of the 23rd Euro-
micro Conference, Budapest, Hungrary, September 1-4, 1997.

[IEEE 90] IEEE Std. 1149.1-1990, “IEEE 1149.1 Standard Test Access Port
and Boundary-Scan Architecture,”IEEE Computer Society, 1990.

[IEEE 95] IEEE Std. 1149.5, “Standard for Module Test and Maintenance
Bus (MTM-Bus) Protocol,”IEEE Computer Society, 1995.

[ISO 10164] ISO, “Information Technology - Open Systems Interconnec-
tion - System Management: Confidence and Diagnostic Test
Classes,” ISO/IEC DIS 10164-14 draft.

[Jag 95] W. Jager, H. Hulvershorn, S. Adham, “Self-Testing Hardware to
Improve Fault Detection and Isolation in Switching Systems,”
International Switching Symposium, April 1995.

[Jar 91] N. Jarwala, C. W. Yau, “Achieving Board-Level BIST Using the
Boundary-Scan Master,”International Test Conference,pp.
649-658, 1991.

[Jar 91b] N. Jarwala, C. W. Yau, “The Boundary-Scan Master: Architecture
and Implementation,”2nd European Test Conference, pp. 1-10,
April 1991.

[Jar 92] N. Jarwala, C.W. Yau, P. Stiling, E. Tammaru, “A Framework for
Boundary-Scan Based System Test and Diagnosis,”Interna-
tional Test Conference,pp. 993-998, 1992.

81

[Lie 89] J. C. Lien, M. A. Breuer, “A Universal Test and Maintenance
Controller for Modules and Boards,”International Test Confer-
ence, pp. 231-240, May 1988.

[Mat 92] J. S. Matos, F. S. Pinto, J. M. M. Ferreira, “A Boundary Scan Test
Controller for Hierarchical BIST,”International Test Conference,
pp. 217-223, 1992.

[Mau 93] C. Maunder, “A Universal Framework for Managed Built-In
Test,” International Test Conference, pp. 21-29, 1993.

[Pen 87] Z. Peng, “A Formal Methodology for Automated Synthesis of
VLSI Systems,”Ph. D. Dissertation No. 170, Linköping Uni-
versity, Dept. of Computer and Information Science, 1987.

[Pen 94] Z. Peng, K. Kuchcinski, “Automated Transformation of Algo-
rithms into Register-Transfer Level Implementations,”IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, Vol. 14, No. 2, February 1994.

[Per 97] M. Perbost, L. Le Lan, C. Landrault, “Testability Analysis of dig-
ital boards and MCMs,”IEEE European Test Workshop,
Cagliari, May 28-30, 1997.

[Pet 81] J. L. Peterson, “Petri Net Theory and the Modeling of Systems,”
Prentice-Hall, Englewood Cliffs, N.J., ISBN 0-13-662983-5,
1981.

[Rig 89] J.-L. Rigo, “Hierarchical Built-In Self Test,”International Con-
ference on Radar, Paris, April, 1989.

