
Robustness Analysis of Real-Time Scheduling Against
Differential Power Analysis Attacks

Ke Jiang∗, Lejla Batina†, Petru Eles∗, Zebo Peng∗
ke.jiang@liu.se, lejla@cs.ru.nl, petru.eles@liu.se, zebo.peng@liu.se

∗Department of Computer and Information Science, Linköping University, Sweden
†Institute for Computing and Information Sciences, Radboud University Nijmegen, The Netherlands

Abstract—Embedded systems (ESs) have been a prominent
solution for enhancing system performance and reliability in
recent years. ESs that are required to ensure functional cor-
rectness under timing constraints are referred to as real-time
embedded systems (RTESs). With the emerging trend of utilizing
RTESs in safety and reliability critical areas, security of RTESs,
especially confidentiality of the communication, becomes of great
importance. More recently, side-channel attacks (SCAs) posed
serious threats to confidentiality protection mechanisms, namely,
cryptographic algorithms. In this work, we present the first
analytical framework for quantifying the influence of real-time
scheduling policies on the robustness of secret keys against
differential power analysis (DPA) attacks, one of the most
popular type of SCAs. We validated the proposed concept on
two representative scheduling algorithms, earliest deadline first
scheduling (EDF) and rate-monotonic scheduling (RMS), via
extensive experiments.

Index Terms—Embedded systems; Real-time scheduling; Dif-
ferential Power Analysis Attacks; AES; Robustness analysis

I. INTRODUCTION

Modern embedded systems can be found in all aspects of
our daily lives controlling various applications. Very often,
the correctness of a job execution in such systems relies
not only on the correctness of the delivered result, but also
on the timeliness of the response. One important aspect to
achieve real-time requirements is to deploy efficient scheduling
policies, e.g., [1], [2]. In this work, we focus on two illustrative
algorithms, namely earliest deadline first scheduling (EDF)
and rate-monotonic scheduling (RMS) [1], [3], to demonstrate
our analytical framework. Nevertheless, the conclusions drawn
are general enough to be applied on any scheduler.

Current real-time embedded systems (RTESs), e.g., cyber-
physical systems, require intensive communication with other
peers or service centers. However, security aspects of the com-
munication were seriously overlooked in the past, although,
for those RTESs used in critical applications, the communi-
cation messages may contain sensitive information that must
not be obtained by unauthorized parties. Therefore, security
mechanisms should be applied to all messages exchanged.
Among the large set of available cryptographic algorithms, the
Advanced Encryption Standard (AES) [4] stands out because
of its high applicability on embedded platforms, e.g., its
sound protection strength and high throughput rate. Hence, we
concentrate on the use of AES in this work. However, AES
is known to be vulnerable to many threats [5], [6], aiming
to retrieve secret information (the secret key or the message
content). Consequently, how to design secure systems with
AES and also to thwart different attacks has been extensively
studied. For example, the authors of [7] presented efficient
concurrent error detection architectures that can be used by
AES to resist under fault-based side-channel cryptanalysis. In
[8], the authors proposed hardware solutions against differen-

tial power analysis (DPA) attacks, and verified them on AES.
In addition, designing RTESs with high performance and

strong security protection under cost and timing constraints
is an emerging research area in recent years. The authors of
[9] presented a co-design approach for finding the minimal
hardware overhead under timing and security constraints. The
authors of [10] proposed a scheduling policy that distributes
slack times to security services based on calculated security
levels. The problem of designing secure multi-mode and
mixed-criticality RTESs have also been addressed in [11] and
[12], respectively. However, none of these works considered
the impact of side-channel attacks (SCAs) to the systems. An
automated protection technique for embedded cryptographic
hardware was proposed in [13] to withstand SCAs. But
the potential real-time requirements to the device was not
mentioned. To the best of our knowledge, there is no work
describing how to analyze and, consequently, design RTESs
to withstand potential SCAs.

In this work, we propose an analytical framework for
measuring the robustness of AES secret keys in RTESs against
DPA attacks which are a specific SCA introduced by Paul
Kocher et al. [14]. DPA exploits the data dependency of the
power consumption on a target device, and applies statistical
analysis on a large amount of obtained power traces to retrieve
secret information. Since its invention, DPA has become the
most severe threat to AES implementations on embedded
platform [15]. In order to counteract DPA attacks, various
countermeasures are required. Hiding in time or amplitude di-
mension in software or hardware [16] are common approaches
for protecting AES against DPA attacks. However, previous
works require either additional hardware or modifications
to off-the-shelf platforms, and may incur significant timing
or energy overhead. Moreover, none of existing solutions
considered aspects specific to real-time systems. To the best
of our knowledge, this is the first work focused on quantifying
the impact of real-time schedulers on the robustness of a given
RTES design against DPA attacks on AES.

Many RTES designs utilize dynamic scheduling policies,
such as EDF and RMS. A dynamic scheduler, by its nature, can
be considered as one special kind of countermeasure against
DPA attacks that implements the hiding in time dimension
concept. DPA works better on aligned power traces, which
means that the operations at each relative time point in the
obtained samples are the same. More specifically, it is much
more efficient for DPA attacks to retrieve the secret key if the
useful leakage fingerprints, i.e., processing the intermediate
value, in all obtained power traces (the samples) occurred
at the same relative time point. Fig. 1 illustrates the idea
with power traces of two AES encryptions on two messages

0 14 0 13
250 21 250 23
500 72 500 69
750 89 750 93

1000 74 1000 77
1250 85 1250 82
1500 93 1500 85
1750 67 1750 79
2000 88 2000 97
2250 73 2250 72
2500 82 2500 89
2750 86 2750 83
3000 83 3000 78
3250 76 3250 92
3500 98 3500 90
3750 67 3750 74
4000 87 4000 89
4250 70 4250 66
4500 86 4500 92
4750 24 4750 28
5000 19 5000 25

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

Time[ns]

V
ol

ta
ge

[m
V
]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

Time[ns]

V
ol

ta
ge

[m
V
]

Fig. 1. Power Traces of AES encryption on Two Messages

with the same key. The power consumption, i.e., indicated
by supply voltage, is uniformly sampled every 250ns over
each AES process of 5µs. Let us assume that two leakage
fingerprints are required to occur at the same relative time to
reveal the secret key using DPA attack. Then if the attacker
obtained two samples as in Fig. 1, in which both the leakage
points occurred at time 1µs, she can reveal the key. If the two
fingerprints happened at different times, she has to measure
more samples in order to see two leakages happened at the
same relative time. More details will be presented in the
following sections.

II. SYSTEM AND APPLICATION MODEL

In this paper we consider mono-processor embedded sys-
tems. The system interacts with the environment by various
peripherals, e.g., sensors and actuators, and communicates
with other peers or service centers via a communication
module (by wire or wirelessly). The computations in the
system are modeled as a set of preemptive and periodic tasks
T to be executed on the microprocessor µP . A task τi ∈ T is
associated with a set of attributes (ei, Ti, Mi). The attribute
ei is the execution time of τi on µP . Task τi is released
every Ti time units, which is its period and also deadline.Mi

represents the set of messages, via which τi interacts with the
outside world. They are either generated from, or received and
processed by τi. If there is no message associated with τi, then
Mi = ∅. The length (in number of AES blocks) of message
mij ∈Mi is represented by a value lij .

In order to secure the communication from/to the system,
we must carry out AES encryption/decryption on critical
incoming and outgoing messages. To simplify the forthcoming
discussions, we assume that the encryption/decryption τAESij

implied by message mij is merged into the run time of the
corresponding task τi. That is, all corresponding AES opera-
tions on the incoming and/or outgoing messages mij ∈ Mi

are considered to be part of the execution of τi. By this,
the execution time overhead of τAESij is also included in the
execution time ei of τi. A simple example with four tasks
is given in Table I. Tasks τ1 and τ2 do not have message
communication, while, tasks τ3 and τ4 are both associated
with a 128-bits long message, i.e., m31 and m41, respectively.

III. ATTACKER MODEL

In order to make a trustworthy analysis, we make a pes-
simistic assumption of a strong attacker who aims to find the
secret AES key (keys) used in the system. The attacker has
physical access to the system, and can accurately measure the
power consumption of the microprocessor. She feeds the tasks

TABLE I
AN ILLUSTRATIVE APPLICATION

Task e T M
τ1 1 5 ∅
τ2 2 8 ∅
τ3 4 10 {m31}
τ4 3 20 {m41}

running on the microprocessor with arbitrary data, e.g., by
replacing the messages from sensors. She knows the periods
of all tasks1, but does not know their actual execution times.

The attacker tries to find the secret key(s) of AES using
DPA attack. The power consumption of a device depends on
the operation it performs and the data it processes. DPA ex-
ploits the fact that there exists an intermediate result (leakage
fingerprint) in the AES process which is a function of a given
text and a few key bits, e.g., 8-bits, referred to as a subkey.
Therefore, the inputs are processed by AES with the same
subkey and same operation at certain fixed time. Although the
input processed are different, the power consumptions at these
time points have certain relations with each other. Based on
this understanding, the subkeys of a secret key are attacked
one by one until the whole key is obtained, or until it is trivial
for mounting a brute-force attack on the rest key bits.

Thereby, the attacker first tries to feed one AES task (having
secret key Key) with a set of different plaintexts PT , and
records the power consumption of µP . After that, she chooses
a sample window W , and divides the whole measured power
sequence of D time units into S = D/W samples captured by
a two dimensional matrix P = [i−j](i = 1, ..., S; j = 1, ..., I)
with size S ∗I . Dimension I is the number of recorded power
consumption points within the corresponding sample, and is
determined by the measurement granularity. Each element Pi,j
of P is a measured power result.

After that, the attacker chooses an intermediate result from
the AES operation, and then calculates the hypothetical inter-
mediate results from all the input plaintexts PT with all K
possible subkey values, e.g., K = 256, if the attack is based
on 8-bits of an AES secret key. She organizes all hypothetical
intermediate results into a matrix V = [i− j](i = 1, ..., S; j =
1, ...,K), which is later mapped to a hypothetical power
consumption matrix H based on simulations or accurate power
models. Until now, the attacker has gathered all information
for performing a DPA attack. Then she compares (looks
for correlations) between each column of the real power
consumption matrix P and her hypothetical power matrix
H . One common metric of correlation for this purpose is to
calculate the Pearson correlation coefficient (PCC) between
two columns from P and H . For example, we denote the t-
th column of P as PS,t and the k-th column of H as HS,k,
where S includes all rows. Columns PS,t and HS,k represent
the measured power consumptions at time t and hypothetical
power consumptions on subkey k in all samples, respectively.
Then the PCC ρ can be calculated as follows,

ρ(PS,t, HS,k) =

∑S
s=1(Hs,k −HS,k)(Ps,t − PS,t)√∑S

s=1(Hs,k −HS,k)2
∑S
s=1(Ps,t − PS,t)2

,

(1)
1which, e.g., can be deduced from arrival rates of signals

...

...

...

...

P1,1 P1,2 P1, I

P2,1 P2,2 P2, I

PS ,1 PS ,2 PS , I

H 1,1 H 1,2 H 1, K

H 2,1 H 2,2 H 2,K

H S ,1 H S ,2 H S , K

...

...

...

...

G1,1 G1,2 G1, I

G2,1 G2,2 G2, I

GK ,1 GK , 2 GK , I

Pearson's
correlation

...

...

...

...

Fig. 2. The Correlation Calculation Procedure

where, HS,k and PS,t are the means of HS,k and PS,t,
respectively. The result ρ shows the linear relationship between
PS,t and HS,k. The higher ρ is, the stronger correlation the two
columns have. After analyzed all pairs of columns, the attacker
obtains a new matrix G = [i − j](i = 1, ...,K; j = 1, ..., I)
that collects all the correlation coefficients between all pairs
of columns from P and H (as shown in Fig. 2). The highest
values in G reveals the most likely used subkey by the device,
since most columns are highly uncorrelated. Assuming that at
time tc in all samples, the system processes the intermediate
values using subkey kc, then ρkc,tc should have the dominating
value in G. We refer to ρkc,tc as ρmax which mainly deter-
mines the difficulty of attacking the device. We will elaborate
more on the difficulty issues in the next section.

IV. TIME RANDOMIZATION BASED COUNTERMEASURE

In this section, we discuss how randomization in the time di-
mension influences the difficulty of mounting DPA attacks on
AES. As can be noticed, DPA attacks have high requirements
on the samples. That is, it is important that the recorded power
consumptions of the leakage fingerprints are not affected by
noise and purely rely on the AES operation and the used sub-
key, and the samples are correctly aligned. In other words, the
power consumption of leakage points at the considered time t
in all samples should be caused by processing the intermediate
values and not by other operations. Therefore, two ways of
realizing countermeasures against DPA attacks on AES are
(1) to reduce the signal-noise-ratio of executed operations, and
(2) to randomize the leakage point occurrences (shuffling the
occurrence time of attackable intermediate results) along the
time dimension, namely, to make the the leakage points occur
at different times to reduce the potential correlations [17].

The first aspect has already been studied earlier, e.g., [18],
[19]. In this paper, we are the first to study the second
approach under the context of real-time systems. In fact,
dynamic scheduling algorithms serve this purpose by nature.
Because of dynamic preemptions, the leakage fingerprints may
occur at different times in different samples, which reduces
the correlations between columns of matrices P and H .
The impact of real-time scheduling on DPA attacks has not
been considered in literature. In this section, we propose an
analytical framework to quantitatively capture the impact of
task scheduling on the robustness against DPA attacks.

All countermeasure techniques on DPA attacks try to ob-
fuscate the attacker from obtaining a straight-forward corre-
lation between her hypothetical power consumptions and the

recorded samples. Now let us discuss how the time dimen-
sional shuffling method increases the difficulty of mounting
DPA attacks. In order to reduce ρmax, the intermediate values
should be processed at different time points in different
samples. By this, the time tc when the same subkey kc is
used is different in different samples. In the optimal case, there
exists no two samples that process the intermediate values with
kc at the same relative time, i.e., ρmax ≈ 0. In this case, the
attacker needs infinite amount of samples to correctly reveal
the subkey kc.

Let us denote the moment of time when the leakage finger-
prints occur with the highest probability in the samples as t̂.
It is clear that, the power consumptions PS,t̂ have the highest
correlation with power hypotheses HS,kc from the real subkey
kc among all t ∈ {0, I} (we remind that I is the measurement
granularity, see section III). We denote as p̂ the probability of
the leakage point occurring at time t̂. The power consumption
of the device at t̂ is denoted as P̂ . So, the probability that
P̂ is caused by processing the intermediate results (that gives
leakage fingerprints) is p̂. Similarly, the probability that P̂ is
caused by other tasks is (1− p̂). Therefore, in the presence of
time shuffling, ρ̂max can be calculated from the definition of
PCC, and reduced to:

ρ̂max = ρ(HS,kc , P̌S,t̂) ∗ p̂ ∗

√
V ar(P̌S,t̂)

V ar(PS,t̂)
, (2)

where, PS,t̂ and P̌S,t̂ are all power consumption points and the
points related to leakage fingerprints at time t̂ in the samples,
respectively. Coefficient ρ(HS,kc , P̌S,t̂) solely depends on the
accuracy of the attacker’s simulation or power model about
the targeted device, and is set to the most conservative value
1. The variances V ar(PS,t̂) and V ar(P̌S,t̂) are determined by
the device characteristics. We assume V ar(PS,t̂) = V ar(P̌S,t̂)
to make our analysis independent of devices. Thus, we have

ρmax = p̂. (3)
We define the system robustness against DPA attacks as

the difficulty in terms of time overhead for the attacker to
gather sufficient amount of information to observe a high
correlation between the hypothetical power consumptions and
the measured samples. We first calculate the lower bound
of number of samples N for noticing a significant peak of
the correlation coefficient ρmax in G. In fact, the sampling
distribution of the PCC can be transformed to a normal
distribution using Fisher transformation. Then we can calculate
the attacker’s confidence interval of her hypothetical attacks
on the obtained power traces. As shown in [8], this calculation
can be transformed into the following equation, allowing the
designer to calculate the lower bound N of the required
number of samples, i.e.,

N = 3 + 8

(
zα

ln(1+ρmax

1−ρmax
)

)2

, (4)

where zα is the quantile of standard normal distribution that
determines the distance between the distribution of ρ = 0
and ρ = ρmax. The value α in zα is often called the error
probability, and reflects how likely the attack can observe a
significant peak in G, i.e., the higher α, the more likely. In this

τ1

τ2

τ3

τ4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Time

Ta
sk

Fig. 3. System Schedule under Earliest Deadline First Scheduling (EDF)

τ1

τ2

τ3

τ4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Time

Ta
sk

Fig. 4. System Schedule under Rate-Monotonic Scheduling (RMS)

paper, we set α = 0.9 (giving zα = 1.282) in our analysis.
The result of N is the determinant value for measuring how

good a time shuffling countermeasure is. Combining Eq. 3 and
4, we can rewrite the calculation of N as follows,

N = 3 +
13.148

ln2(1+p̂
1−p̂)

. (5)

As can be noticed, N is strictly decreasing with p̂. In addition
to N , the time that the system takes to generate one sample
also influences the difficulty of mounting DPA attacks. As
the measured power are grouped into samples based on W ,
it therefore takes W time units to generate a sample. Now,
we can define our quantification of the system’s robustness R
against DPA attacks:

R = N ∗W. (6)
The result R is the value that captures the robustness of a
particular real-time scheduling solution against DPA attacks.

V. AN ILLUSTRATIVE EXAMPLE

In this section, we evaluate two representative scheduling
policies, i.e., earliest deadline first scheduling (EDF) and rate-
monotonic scheduling (RMS). As discussed in the previous
section, the time point tc at which AES leakage fingerprints
(processing the intermediate value) happen with the highest
probability p̂ is the decisive parameters for the robustness of
the system. One way to obtain the approximation of p̂ is to
simulate the actual system execution and then analyze the
simulated schedule using statistical methods. After that, the
robustness of the system can be quantified using Eq. 6.

Let us consider the application with four tasks from Table
I. Tasks τ1 and τ2 do not have communication demands.
Tasks τ3 and τ4 are application tasks that interact with the
service center wirelessly via 128-bits long messages m31

and m41, respectively. The two messages are encrypted by
AES operations τAES31 and τAES41 before being sent over the
communication interface. The AES operations are included in
the execution of tasks τ3 and τ4. For illustration purposes, we
assume that the attacker measures the power consumption of
the processor at each time unit. The leakage fingerprints of
τAES31 and τAES41 are assumed to be at the last time units of

τ3 and τ4, respectively.
The two system schedules obtained from simulations of

EDF and RMS over one hyperperiod HP of T are depicted
in Fig. 3 and 4, respectively. The hyperperiod HP of a task
set is defined as the least common multiplier of all task
periods (in this case, 40). The green rectangles indicate the
executions of the normal tasks and non-leakage part of AES.
The red rectangles represent the leakage points of τAES31 and
τAES41 , and generate attackable power consumptions (refer to
the highlighted points in Fig. 1). The gray rectangles indicate
that the task executions are blocked by higher prioritized tasks.
Depending on whether the designer decides to use the same
secret key or not in τAES31 and τAES41 , two different analyses
need to be conducted.

Case of Key(τAES31) 6= Key(τAES41): In this case, the
attacker may target one or both of the keys. As shown in
Eq. 6, the robustness of a key depends on two aspects, the
lower bound Ni of the number of required samples to observe
high correlations and the time for obtaining a sample, i.e., the
sample windowW . Now, let us first study the robustness of the
two keys R(Key(τAES31)) and R(Key(τAES41)) separately. We
assume that the attacker groups her obtained power traces into
samples based on the period of message mij , i.e., W = Ti.

Let us first analyze the simulated EDF schedule as shown
in Fig. 3. As we assumed that the attacker measures power
consumption of the device at each time unit, she gets 40
discrete power values over one hyperperiod HP . Each power
value corresponds to a task operation on µP that can be
retrieved from Fig. 3. Assume that Key(τAES31) for message
m31 is the current target of the attacker. If the attacker defines
W = T3 = 10, then she can get 4 samples within HP ,
and further align the samples, as shown in Fig. 5. Since all
operations from other tasks including the leakage points of
τAES41 (because Key(τAES31) 6= Key(τAES41)) are independent
with the leakage fingerprints of Key(τAES31), we depict these
operations in gray. We can observe from Fig. 5 that, in the first
and forth sample, leakages happened both at the 8-th time unit,
while in the second and third, leakages happened at the 5-th
and 7-th time unit, respectively. Therefore, the highest proba-
bility p̂ that the leakage fingerprints occur at the same relative

1 2 3 4 5 6 7 8 9 10Time

S
a

m
p

le
 in

st
a

n
ce sp1

sp2

sp3

sp4

Fig. 5. Aligned samples from EDF for Key(τAES
31)

1 2 3 4 5 6 7 8 9 10Time

sp1

sp2

sp3

S
a

m
p

le
 in

st
a

n
ce

sp4

Fig. 6. Aligned samples from RMS for Key(τAES
31)

time point is p̂ = 2
4 = 0.5 at t̂ = 8. Now we can quantify

the robustness of the Key(τAES31) against DPA attacks using
Eq. 6, and get REDF (Key(τAES31)) = 140. Similarly, we get
the robustness of Key(τAES41) as REDF (Key(τAES41)) = 280
when she chooses W = T4 = 20.

Now let us study the influence of RMS on key robustness.
As depicted in Fig. 4, the attacker also gets four samples
for τAES31 and two samples for τAES41 when she organizes the
samples based on T3 and T4, respectively. For Key(τAES31), we
can notice from the aligned samples shown in Fig. 6 that three
leakage fingerprints happened at the 8-th time units, thereby,
probability p̂ = 0.75 at t̂ = 8. Consequently, we can calculate
RRMS(Key(τAES31)) = 70. If we compare the robustnesses
of the secret key Key(τAES31) under EDF and RMS, we can
find that REDF (Key(τAES31)) > RRMS(Key(τAES31)), which
means that, for this example, it is more difficult for the attacker
to mount a successful DPA attack, if the system is scheduled
by EDF policy. In other words, the key Key(τAES31) is better
protected when EDF is applied for scheduling the application.
In the same way, we can calculate RRMS(Key(τAES41)) =
280. So the key Key(τAES41) is equally protected by EDF and
RMS. However, the first instance of τ4 missed its deadline
under RMS, which is not the case under EDF.

The case of Key(τAES31) = Key(τAES41): If the secret
keys used by τAES31 and τAES41 are the same, the leakages
fingerprints from the two AES encryptions are identical.
Therefore, the weakest key Key(τAES31) from the previous
analysis determines the current system-wise robustness. In
addition, the system may be even more vulnerable under DPA
attacks since probability p̂ can become higher under the current
situation because some of the leakage points due to τAES41

might be aligned with those from τAES31 . Thus, we need to do
a new analysis on the simulated schedule using W = 10. The
system robustness are then calculated, i.e., REDF = 140 and
RRMS = 70.

VI. EXPERIMENTAL EVALUATION

We have conducted experimental analyses on a Linux
machine with a quad-core Intel Xeon 2.66GHz CPU. The
test applications were generated with random task parameters
under the requirements of different evaluation scenarios. Each
task is associated with at most one message having length (in
AES blocks) randomly selected from the set {0, 1, 2, 3, 4} with

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Processor Utilization

Fig. 7. Results of 5 Tasks under Different Processor Utilizations

probability {50%, 12.5%, 12.5%, 12.5%, 12.5%}. If lij = 0,
then τi does not have any communication demand, i.e.,Mi =
∅. The number of AES leakage fingerprints depends on the
number of blocks of the message. We carried out experiments
on EDF and RMS under three different scenarios to study the
influence of the scheduler against DPA attacks from different
perspectives. Since the case of all AES operations having the
same secret key is a special case of different keys, we only
present the results of the second case due to space limit.

a) Evaluation under different processor utilizations:
Now let us first have a look at how processor utilization
influences the robustness of the system under EDF and RMS.
In order to judge which scheduler outperformed the other in
an experiment, we have the following definition that focuses
on which scheduler gives higher robustness:

f(REDF (k),RRMS(k)) =


1 , if REDF (k) > RRMS(k)

0 , if REDF (k) = RRMS(k)

−1 , if REDF (k) < RRMS(k).
(7)

Then, the overall performance indicator F for a set of experi-
ments, i.e., the robustness of the secret key Key(τAESij) from
all experiments under the same evaluation criteria, is defined
as follows,
F(Key(τAESij)) =

1

n

n∑
e=1

f(REDFe (Key(τAESij)),RRMS
e (Key(τAESij))), (8)

where, n is the total number of valid experiments where
Mi 6= ∅. The result F(Key(τAESij)) captures the average
overall superiority of one scheduler over the other. EDF
delivers higher robustness for Key(τAESij) in more cases,
if F > 0. Similarly, RMS outperforms EDF on average, if
F < 0. EDF delivers better results in all the experiments if
F = 1. While, F = −1 would indicate that RMS gives higher
robustnesses in all cases.

The results shown in Fig. 7 were obtained under 9 different
utilization levels U from 0.5 to 0.9. On each utilization level,
200 test applications with 5 tasks were randomly generated.
The results demonstrate that, when the processor utilization
was low, both policies provided similar protections on average,
e.g., F = 0.043 at utilization U = 0.5. This is because when
the utilization is low, task executions are very sparsely spread
over time. Therefore, the executions have little preemptions
and, thus, occur more regularly at fixed time points. As the
utilization became higher, EDF delivered better and better
robustness on average than RMS, e.g., F = 0.307 at utilization
U = 0.9. This can be explained by the fact that task priorities
are dynamically changing based on their timelinesses in EDF,
that introduces more randomness into the occurrences of tasks

4 5 6 7 8 9 10
0.3

0.32

0.34

0.36

0.38

0.4

0.42

Problem Size (Number of Tasks)

P
er

fo
rm

an
ce

 I
nd

ic
at

or

Fig. 8. Results of Different Problem Sizes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1E+2

1E+3

1E+4

1E+5

1E+6

1E+7
EDF
RM

Experiment Number

R
ob

us
tn

es
s

Fig. 9. Robustness R(Key(τAES
41)) of 30 Exp. under EDF and RMS

executions.
b) Evaluation on different problem sizes: We also con-

ducted experiments on seven different problem sizes hav-
ing |T | = 4, 5, ..., 10 tasks. On each problem size, we
randomly generated 200 test applications with utilization
0.7 ≤ U ≤ 1, and used the average performance indicator
Fe = 1

|T |
∑|T |
i=1 F(Key(τAESij)) of all messages as the final

indication for each problem size. The results are presented in
Fig. 8. From the results, we can notice that on average EDF
outperformed RMS on all problem sizes under the utilization
bound 0.7 ≤ U ≤ 1.

c) Evaluation on the same problem size: Fig. 9 presents
the actual robustness values of secret key Key(τAES41) from
30 randomly selected valid experiments from the previous
experiments, with number of tasks |T | = 5. As can be
noticed, EDF provided better protection for Key(τAES41) in 15
experiments, while RMS outperformed EDF in 4 tests (Exp.
19, 21, 25, and 28). In the rest of the cases, EDF and RMS
gave the same robustness values. The experiments showed
that on average, i.e., in the majority of cases, EDF produced
superior robustness. While, there exists individual cases in
which RMS was better. Also worth-mentioning, EDF delivered
4.83 times higher robustness on average in the experiments,
and satisfied all deadline requirements. While, task τ4 suf-
fered from deadline misses in 2 cases when the system was
scheduled with RMS. However, we cannot conclude that EDF
was always preferable, since, in several cases, RMS delivered
excellent results while also satisfying deadline constraints for
all tasks in several experiments, e.g., Exp. 19 and 28.

VII. CONCLUSION

Security has become an emerging topic for RTES designs
in which confidentiality of sensitive communication is often of
central importance. More recently, cryptographic algorithms,
e.g., AES, have been deployed in RTESs for protecting sensi-
tive information. However, AES implementations in embedded
platforms are known to be vulnerable towards side-channel
attacks, e.g., DPA attacks. Therefore, the problem of how
to design secure RTESs with robust AES must be carefully
studied. In this paper, we make the very first attempt to
proposing an analytical framework for quantifying the impact
of the scheduling policy on the robustness of secret keys

against DPA attacks. Extensive experiments were conducted,
and demonstrated that different scheduling policies do have
different impacts on robustness. Therefore, the designer must
carefully choose the most suitable scheduler for the given
application considering both deadlines and robustnesses. This
paper opens up a new research direction, and urges the needs
for proposing new scheduling policies that not only consider
timing aspects, but also reinforce the AES resistance against
SCAs. Finally, it is worth mentioning that, while in this paper
we considered DPA attacks, similar analyses can be applied
for other side-channel attacks based on the observations of
parameters as temperature and sound.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[2] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: exact characterization and average case behavior,” in Real-
Time Systems Symposium (RTSS), Dec 1989, pp. 166–171.

[3] G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications. Springer, 2011, vol. 24.

[4] J. Daemen and V. Rijmen, The design of Rijndael: AES–the advanced
encryption standard. Springer, 2002.

[5] E. Biham and N. Keller, “Cryptanalysis of reduced variants of Rijndael,”
in 3rd AES Conference, New York, USA, 2000.

[6] Y. Li, K. Sakiyama, L. Batina, D. Nakatsu, and K. Ohta, “Power
Variance Analysis breaks a masked ASIC implementation of AES,” in
Design, Automation and Test in Europe Conference (DATE), 2010, pp.
1059–1064.

[7] R. Karri, K. Wu, P. Mishra, and Y. Kim, “Concurrent error detection
schemes for fault-based side-channel cryptanalysis of symmetric block
ciphers,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 21, no. 12, pp. 1509–1517, 2002.

[8] S. Mangard, “Hardware countermeasures against DPA–a statistical anal-
ysis of their effectiveness,” in Topics in Cryptology–CT-RSA, 2004, pp.
222–235.

[9] K. Jiang, P. Eles, and Z. Peng, “Co-design techniques for distributed
real-time embedded systems with communication security constraints,”
in Design, Automation and Test in Europe Conference (DATE), 2012,
pp. 947–952.

[10] T. Xie and X. Qin, “Improving security for periodic tasks in embedded
systems through scheduling,” ACM Transactions on Embedded Comput-
ing, vol. 6, no. 3, p. 20, 2007.

[11] K. Jiang, P. Eles, and Z. Peng, “Optimization of secure embedded
systems with dynamic task sets,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2013. IEEE, 2013, pp. 1765–1770.

[12] X. Zhang, J. Zhan, W. Jiang, Y. Ma, and K. Jiang, “Design optimization
of security-sensitive mixed-criticality real-time embedded systems,” in
1st workshop on Real-Time Mixed Criticality Systems (ReTiMiCS), 2013.

[13] A. G. Bayrak, N. Velickovic, F. Regazzoni, D. Novo, P. Brisk, and
P. Ienne, “An eda-friendly protection scheme against side-channel at-
tacks,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2013, pp. 410–415.

[14] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
CRYPTO, 1999, pp. 388–397.

[15] S. B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, “Power-Analysis
Attack on an ASIC AES implementation,” in International Conference
on Information Technology: Coding and Computing (ITCC), vol. 2,
2004, pp. 546–552.

[16] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing
the secrets of smart cards. Springer, 2007.

[17] J.-S. Coron and I. Kizhvatov, “An efficient method for random delay
generation in embedded software,” in Cryptographic Hardware and
Embedded Systems (CHES). Springer, 2009, pp. 156–170.

[18] K. Tiri, M. Akmal, and I. Verbauwhede, “A dynamic and differential
CMOS logic with signal independent power consumption to withstand
differential power analysis on smart cards,” in the 28th European Solid-
State Circuits Conference (ESSCIRC), 2002, pp. 403–406.

[19] D. Mesquita, J.-D. Techer, L. Torres, G. Sassatelli, G. Cambon,
M. Robert, and F. Moraes, “Current mask generation: a transistor level
security against DPA attacks,” in 18th Symposium on Integrated Circuits
and Systems Design, 2005, pp. 115–120.

