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Abstract—In this work, we address the emerging scheduling
problem existed in the design of secure and energy-efficient real-
time embedded systems. The objective is to minimize the energy
consumption subject to security and schedulability constraints.
Due to the complexity of the problem, we propose a dynamic
programming based approximation approach to find the near-
optimal solutions with respect to predefined security constraint.
The proposed technique has polynomial time complexity which
is about half of traditional approximation approaches. The
efficiency of our algorithm is validated by extensive experiments.

I. INTRODUCTION

Real-time embedded systems are facing more and more
severe security threats, e.g. due to the integration of new
communication interfaces. One of the emerging needs is
to protect sensitive data in critical embedded systems [1],
[2]. Since snooping, spoofing and altering security-critical
data can lead to significant losses or serious system fail-
ures, resulting in great loss of finance or human life. We
refer to such systems as Security-Critical Real-Time Systems
(SCRTS). Examples of SCRTS are flight control systems,
satellite communication systems and radar tracking systems,
which all have strict security requirements. To protect SCRTS
against potential threats, a series of security services, i.e.
integrity, confidentiality and authentication protection, need to
be considered in the design process of SCRTS. With the most
suitable security protections regarding the demands, SCRTS
would be effectively protected via using the right amount of
resources, e.g. CPU utilization.

Energy efficiency is another fundamental requirement in the
context of SCRTS [3], [4], [5]. But security protections usu-
ally demand a significant amount of energy [2]. Quick energy
depletion or early exhaustion of battery may cause failure to
mission-critical tasks, resulting in unexpected losses, such as
the energy incurred failure of Mars Pathfinder. Hence, how to
design energy-efficient SCRTS becomes a great challenge.

Task scheduling policy plays an important role for achiev-
ing high performance in embedded systems. Unfortunately,
traditional real-time scheduling approaches were mostly de-
signed to guarantee timing requirements only [6]. Recently,
security-aware real-time scheduling has become a hot research
topic, e.g. [7], [8], [9], [10], [11]. However, all these works did
not consider the energy factor in system-level designs, which
may deliver solutions with unexpected energy consumptions.

In this paper, we identify the uniprocessor scheduling
problem lying in many SCRTS designs considering energy,
security and real-time dimensions. Specifically, we want to
schedule a set of periodical real-time tasks with the objective
of minimizing energy consumption, while satisfying security
and timing constraints. The primary contributions of this paper
are in two aspects. First, a typical security- and energy-aware
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Fig. 1. A motivational application
SCRTS application is presented. Second, we study the existing
policies and propose an efficient approximation approach
that guarantees the security requirements. Our approach has
polynomial time complexity, and requires bounded memory
space. To the best of our knowledge, this is the first work
that addresses the security- and energy-aware real-time task
scheduling problem.

II. APPLICATION AND SYSTEM MODEL

A. Motivational application

In this paper we focus on the SCRTSs with limited energy
budget, for example, an unmanned aerial vehicle (UAV)
depicted in Fig. 1. The UAV is battery driven, and has limited
resources, i.e. CPU and memory. It runs critical tasks that
are periodically released, and exchanges information with
other peers or service centers. Each task generates or receives
some private data that needs to be transmitted over insecure
environments. Different data has different requirements of
security and deadline guarantee ratios. In order to make
the communication secure (i.e. to protect the confidentiality
or integrity of the messages), we need to perform cryp-
tographic algorithms like RC5, DES and SHA-2, on the
data before or after the normal executions of corresponding
tasks. Thus, the energy consumption of each task consists
of two parts that are from the normal execution and extra
security protections, which will be discussed in Sec. II(B).
Although there are many available cryptosystems, it is hard
to obtain the best choices among different solutions having
different execution and energy overhead, and the UAV only
has limited energy and processing capability. Therefore, how
to allocate resources to protect different data becomes an
important design trade-off. In other words, we are aiming to
schedule a set of periodic real-time tasks with the objective
of minimizing energy consumption while satisfying security
and schedulability constraints.



B. Task model for security-critical real-time systems

In this paper, we consider a set of periodic security-
and energy-aware tasks running on SCRTS. Each task Ti is
modeled as a tuple Ti = {BEi, Li, Si, S

DM
i , Vi, SRi, Pi}.

BEi denotes the worst case execution time (WCET) of its
non-security part. Li is size of the data that is generated
or received by Ti and needs to be protected using selected
security service. Si and SDM

i are the chosen and designated
security levels of Ti, respectively. If SDM

i is achieved, this
task is assumed to be absolutely secure. Vi is the security
impact value of Ti representing the relevant importance of
the messages processed by Ti. SRi is the security risk of Ti,
and means the potential loss of the security protection, which
will be elaborated in Sec.II(D). Pi is the period and also the
relative deadline of Ti.

C. Time and energy overhead of security critical tasks

It is known that security protections can be achieved by ad-
ditional security services, which also compete resources with
other executions. For example, doing AES encryption on one
message may reduce the available CPU resource for protecting
other messages. So it is indispensable to always allocate the
right amount of resource to the security protections among
tasks in order to reach the best global security protection.

It is still an open problem of quantifying the security
strength of different cryptographic algorithms. So we quantify
the security level of an algorithm based on its execution time
similar to [8]. Then security levels of typical algorithms are
enumerated as their relative strengths. Based on the measure-
ment on a S3C2440 ARM board with 500MHz CPU and
64MB SDRAM [12], we obtain the time and energy overheads
of six widely used confidentiality services for protecting 1 KB
data as shown in Table I. For example, we assign security
level 1 to the relatively weakest algorithm RC4 that has
the shortest encryption time. In this paper, we only consider
periodic tasks, so we assume that the key setup procedures
for the security algorithms are prepared before the system
starts, and thus, ignored, for the sake of simplicity. Note that
this paper just gives a reasonable quantification of security
level of cryptography algorithms. It can be changed by more
reasonable data. If there exists newly developed algorithm
with higher security strength while lower time overhead, we
can use it to replace the ones with larger overhead and lower
level.

If task Ti generates or receives Li Bytes security sensitive
data, then the execution time of Ti can be formulated as
follows,

Exei = BEi + θ(Si) ∗ Li (1)

θ(Si) is the mapping function of security level Si to unit
execution time of the chosen algorithm. Taking Si = 3
for example, θ(Si) is thus the unit execution time overhead
of BLOWFISH algorithm according to Table I. As can be
observed from Table I, there is a close to linear relation
between energy consumption and encryption time, i.e. approx-
imately 320mJ/S, which is recognized as the power. We also
found that the power of task’s basic execution is nearly the
same situation in our measurement. Thus, the total energy
consumption Ti including the data protections is the product
of power (POW) and the whole execution time.

Eni = POW ∗ Exei = POW ∗ (BEi + θ(Si) ∗ Li) (2)

TABLE I
TIME AND ENERGY OVERHEAD OF CONFIDENTIALITY ALGORITHMS

Ciphers time(ms/KB) Energy(mJ/KB) Sec. Level
RC4 0.0063 2.0237 1
RC5 0.0125 4.0340 2
BLOWFISH 0.0170 5.4696 3
IDEA 0.0196 6.2822 4
SKIPJACK 0.0217 6.9658 5
3DES 0.0654 21.0914 6

D. Risk model for security-critical task
To quantify the security quality of tasks, it is necessary

to introduce security risk model. In [8] and [10], linear profit
model, which is the sum of weighted security levels, is used to
evaluate the quality of each security-critical task. Obviously,
this model is impractical to capture the real security quality.
Since the potential risk is the product of security violation
probability and consequence of security breach [13], we
model the security risk (SR) as the expected security loss
of Ti:

SRi = Vi ∗ Proriski , (3)

where Vi is the security impact value of Ti representing the
relevant importance of its data. It could be finance loss or
other metrics, e.g., 500$ loss if Ti failed. Proriski is the failure
probability of Ti with chosen security level Si formulated as

Proriski =

{
1− e−λi(S

DM
i −Si), if Si < SDM

i

0, if Si ≥ SDM
i .

(4)

λi is the security risk coefficient of Ti, which can be adjusted
by the designer based on different scenarios. As implied
in Eq. 4, if the assigned security level is greater or equal
to the demanded security, we assume no failure will occur
when facing attacks. Inversely, the task has the probability
to fail, and bigger security demand gap leads to higher
probability of security violation. This paper just introduces a
more reasonable and practicable metric, i.e. the security risk
model, to quantify the quality of security-aware tasks, and
uses it to assess the system performance.

III. PROBLEM FORMULATION

A. Original problem
In this paper, we consider a security-critical embedded

system that has a set of N tasks. A system monitor gives the
security Risk Bound (RB) that defines the current security
requirement of the whole system. In another words, if the
task executions lead to security violations, i.e. the system
cannot satisfy the expected RB, then it is recognized as an
unacceptable system. In certain situations, it is demanded that
the security risk should not succeed (1 + β)RB, where β
is the risk slack ratio and defined by designers according to
the system requirement. Higher security-critical application
has less value of β. So the problem is to assign the most
suitable security services for tasks using the minimum energy
consumption, and satisfy the strict real-time and security
constraints.

Before going further, let us introduce the definition of
hyperperiod (HP ) that is the least common multiple of all
tasks’ periods. Thus, the purpose of this paper becomes to
obtain the minimal long-term energy consumption for the
task set within a hyperperiod. So our energy minimization
scheduling problem can be formulated as

Minimize Energy =
N∑
i=1

(HP/Pi) ∗ Eni (5)



Subject to
∑N

i=1(HP/Pi) ∗ SRi ≤ RB∑N
i=1(BEi + θ(Si) ∗ Li)/Pi ≤ UBx

Smin ≤ Si ≤ Smax,

where, UBx denotes the utilization ratio bound of the x
scheduling policy. A set of periodic tasks is schedulable on
a processor using real-time scheduling policies, e.g. EDF
(UBEDF = 1) and RM (UBRM = 0.693), if the processor
utilization ratio is not more than the given bound. The first
two constraints are the system security risk constraint and real-
time constraint, respectively. The last constraint makes sure
the correctness of the selected security protection method: the
permitted security level must lie between Smin and Smax.

B. Reduced problem
The design problem that we are facing is a multi-

constrained optimization problem, which can be transformed
into a Multi-Dimensional Multiple Choice Knapsack Problem.
It takes large computation overhead to get the optimal solution
for large-scale designs. Thereby, we try to find an efficient
assignment algorithm that can obtain good solution while
satisfying the predefined constraints. In this section, we will
reduce the fore-mentioned problem. Combining Eq. 2 and Eq.
5, we can rewrite our optimization objective as

Energy =

N∑
i=1

(HP/Pi) ∗ Eni

= HP ∗ POW ∗
N∑
i=1

(BEi + θ(Si) ∗ Li)/Pi (6)

where,for the fixed hardware platform and application, the
hyperperperiod HP , power POW and task’s non-security
execution utilization

∑N
i=1 BEi/Pi are constant values. Con-

sequently, we can rewrite the design problem as follows,

Minimize
N∑
i=1

θ(Si) ∗ Li/Pi (7)

such that, 
∑N

i=1(HP/Pi) ∗ SRi ≤ RB∑N
i=1 Exei/Pi ≤ UBx

Smin ≤ Si ≤ Smax

Now with the reduced system problem, we only need
to consider the CPU utilization ratio caused by security
services and security risk for different level. In addition, this
design optimization problem will be further transformed into
a Markov decision-making procedure in the next section.

IV. APPROXIMATION BASED DYNAMIC PROGRAMMINGS

As the reduced system problem is still not easy to be
solved, we must find an efficient approximation approach
to solve it. In this section, we transform the problem to
a multi-stage Markov decision-making procedure, and use
approximate Dynamic Programming to address it.

A. Markov decision-making procedure
Considering a set of N periodic tasks, the utilization ratio

minimization problem can be formed as an N -stage Markov
decision-making procedure. The decision variable for the i-
th stage is the chosen security service Si that needs to be
assigned for task Ti. Thus, the purpose can be transformed as
to find a combination S∗ = (S1, S2, · · · , SN ) with minimum

system utilization ratio while satisfying the security risk
constraint.

We denote a triple (ξik, γik, Sik) to describe the k-th state
in i-th stage. ξik and γik are two values which present
the accumulated CPU utilization ratio and the accumulated
security risk for the first i tasks, respectively. Sik is the
specific value of security decision variable Si in this state.

The State Set Ωi for i-th stage is defined as Ωi =
{(ξi1, γi1, Si1), (ξi2, γi2, Si2), · · · , (ξiimax , γiimax , Siimax)},
where imax is total number of states in the i-th stage. Given
Ωi−1 in (i − 1)-th stage, we can obtain the state subset Ωik

by adding utilization ratio and security risk of task Ti under
security level Sik ∈ [Smin, Smax] to all states in Ωi−1 as
follows,

Ωik = Ωi−1

⊎
(Ui(Sik), SRi(Sik), Sik)

= {(ξi−1,1 + Exei(Sik)/Pi, γi−1,1 + SRi(Sik), Sik),

(ξi−1,2 + Exei(Sik)/Pi, γi−1,2 + SRi(Sik), Sik), · · · }
Thus, the state set in i-th stage is Ωi =

∪|Si|
k=1 Ωik. |Si| is

the number of available options for task Ti. In the first stage,
there are only |S1| states, and the number of states in i-th
stage is the production of |Si| and the number of states in
stage i-1. The maximal state space is:

SS =
N∏
i=1

|Si| (8)

As can be noticed from Eq. 8, the state space grows expo-
nentially as the numbers of tasks and security choices grow.
Thus it is infeasible to apply Dynamic Programming on large
system designs. So, we must find methods to reduce the
solution space. Inspired by the approximation algorithm of
Knapsack problem [14], grouping the security risk into a
series of discrete integers is a good approach to reduce the
decision states on each stage. Setting ∆ as the group factor,
then the security risk of each task can be transformed to an
integer decided by SRi/∆. Thus, in each stage, we just keep
the state with minimal security risk when several states have
the same risk value. Bigger ∆ gives smaller scaled security
risk values and smaller number of states in each decision-
making stage. Since the number of states in each decision-
making step can be maximized to a constant M = ⌈RB/∆⌉,
we can leverage a two-dimension table to show the states of
all stages.

B. Four approximating approaches

1) Round to Ceiling approach: Round to Ceiling (RC)
approach means that we round the divided value to the closest
bigger integer. Most of the previous related works concerning
energy used this policy to approximate the divided values, like
[15] and [16]. For each Ti, the security risk value is divided
by ∆. According to the RC policy, the result is scaled up to
the closet bigger integer, i.e. RC(SRi) =

⌈
SRi

∆

⌉
.

2) Round to Floor approach: Round to Floor (RF) ap-
proach is similar to the fore-mentioned RC policy, but the
obtained result is scaled down to its closest integer, i.e.
RF (SRi) =

⌊
SRi

∆

⌋
.

3) Round Randomly: As can be observed, RC will bring
positive deviation comparing to the real value, while RF leads
to negative deviation. In this section, we introduce a Randoml
Round (RR) policy, which round the divided value to the



closest two integers with a certain probability i.e.

RR(SRi) =

{
⌈SRi

∆ ⌉with prob. ρ1 = SRi

∆ − ⌊SRi

∆ ⌋
⌊SRi

∆ ⌋with prob. ρ2 = ⌈SRi

∆ ⌉ − SRi

∆

(9)

4) Round to Nearest approach: RR can erase the potential
deviation for a set of tasks, but in extreme situations, the
deviation is still big. Hence, we introduce a simple scaling
policy, Round to Nearest (RN) integer, which scales the
divided value to the closest integer with minimal deviation
as follows.

RN(SRi) = SR∆
i =

{
⌈SRi

∆ ⌉, if SRi

∆ − ⌊SRi

∆ ⌋ ≥ 0.5

⌊SRi

∆ ⌋, if SRi

∆ − ⌊SRi

∆ ⌋ < 0.5
(10)

C. (1 + β) Approximating Analysis
As proposed in the last section, the approximation approach

may return results deviating with the real security risks. Thus,
in this section, we analyze the deviation of each approach in
the whole optimization problem, and identify the most suitable
policy to be used in our scheduling mechanism.

Let us assume that there exists N tasks, and RC policy is
applied to discretize security risks, then the Overall Deviation
(OD) between the real and approximated risk for the whole
system is as follows.

ODRC =
N∑
i=1

(SRi −∆ ∗RC(SRi))

≥
N∑
i=1

(SRi −∆ ∗ (SRi

∆
+ 1))

= −N∆ (11)
Similarly, we have

ODRF ≤ N∆ (12)
and

−N∆ ≤ ODRR ≤ N∆ (13)

RN policy has two extreme scenarios. The first one is that
the fraction part of grouped security risk is always bigger
than 0.5. Then, according to Eq. 10, we can obtain the risk
deviation as

ODRN =
N∑
i=1

(SRi −∆ ∗RN(SRi))

≥
N∑
i=1

(SRi −∆ ∗ (SRi

∆
+ 1/2))

= −N∆/2

For the other case when the fraction part of grouped security
risk is always less than 0.5, the overall risk deviation is
ODRN = N∆/2. Hence, we can get that the risk deviation
for all cases, since all scenarios are lying between the above
two extreme cases, i.e.

−N∆/2 ≤ ODRN ≤ N∆/2 (14)
Bigger ∆ reduces the states in the Markov decision pro-

cedure, but brings deviation comparing with the real security
risk value. Based on the above analyses, bigger ∆ will also
increase the deviation for all four policies. If the approxi-
mation algorithm can find the near-optimal solution within
polynomial time while satisfying the security risk deviation
ratio β, then it is a good approach.

For RC policy, the real risk value is less than the scaled
value, which means it won’t exceed the security risk bound

Algorithm 1 RN-based approximation algorithm
1: //Step 1: Schedulability test
2: if

∑N
i=1(HP/Pi)SRi(S

max) > RB
or

∑N
i=1 Exei(S

min)/Pi > UBx then
3: Return. /*Given task set is not schedulable*/
4: //Step 2: Initialization
5: Compute ∆ = 2βRB/N and M = ⌈RB/∆⌉
6: Initialize state matrix ΩN×M with each element Ωi,j = (0, 0, 0)
7: Initialize Ω1 by calculate (ξ1, γ1, S1) with each S1 ∈

[Smin, Smax]
8: //Step 3: Update the state matrix in N -Stage decision procedure
9: for i = 2 to N do

10: while (ξi−1, γi−1, Si−1) ̸= (0, 0, 0) in Ωi−1 do
11: for S′

i = Smin to Smax do
12: Calculate temporary state (ξ′i, γ

′
i, S

′
i)

13: if ξ′i > UBx or γ′
i > RB then

14: Ignore this state and break /*Schedulability or security
violated*/

15: if state Ωi,j , (j = γ′
i) is not existed then

16: Ωi,j = (ξ′i, γ
′
i, S

′
i) /*Store new state*/

17: else if ξ′i < ξi in Ωi,j then
18: Ωi,j = (ξ′i, γ

′
i, S

′
i) /*Keep state with smaller utiliza-

tion*/
19: //Step 4: Find the minimal energy consumption solution
20: Find Ω∗

N,j with minimal utilization ratio ξ∗N
21: Obtain the final security assignment decision (S1, S2, · · · , SN )

by backtracking
22: Energy∗ = ξ∗N ∗HP ∗ POW /*The minimal energy*/

(RB). To the satisfy the minus deviation ratio −β, it should
satisfy following equation

−β ∗RB ≤ −N ∗∆. (15)
Then, the maximal ∆ is ∆ = β∗RB

N
For RF policy, the real risk value is more than the scaled

value. Therefore, in order to satisfy the risk bound as (1+β)∗
RB, the maximal ∆ is also β∗RB

N . For RR policy, it has the
deviation between RC and RF policies. Then, the maximal ∆
is also the same as the above two policies to satisfy (1+β) ∗
RB. Meanwhile, the case for RN policy is different. Given ∆,
the deviation of RN policy is less than the other approaches.
More specifically, the deviation is only one second of them
according to Eq. 14. Hence, given risk slack ratio β, we can
get the maximal ∆ as

∆ =
2 ∗ β ∗RB

N
(16)

From Eq. 16, we can notice that RN allows twice larger
value of ∆ than RF, RC and RR, while satisfying the given
security risk deviation ratio. In another words, RN policy
gives less time complexity, which is about half of other three
policies. So RN is the best policy among the four studied
methods, and we will present a RN based approximation
algorithm for our system optimization problem in next section.

D. RN-based Approximating Algorithm

Based on the RN policy and the 2-dimensional states
presentation, we proposed a Dynamic Programming based
security-aware approximation solution. The main purpose of
RN-based Approximation Algorithm (RNAA) is to assign the
most suitable security level to each task using the minimum
energy while satisfying the security requirements. The detailed
optimization procedure is presented as pseudo-code in Algo-
rithm 1.

RNAA is composed of four steps. In the first step, we test
the schedulability of the given task set. If the minimal security
risk is higher than the risk bound, i.e. all tasks have the
maximal security levels, then the task set is not schedulable; if



the minimal CPU utilization ratio is higher than the utilization
bound even if only the minimal demanded security level are
assigned on each task, then the task set is also not feasible.
In Step 2, RNAA initializes the group factor ∆ and the 2-
dimensional state matrix.

Step 3, the core of RNAA, conducts the upgrading pro-
cedure of decision states for every decision-making stage.
Based on each non-zero risk state in (i− 1)-th stage, RNAA
calculates every possible state for i-th stage. If a temporarily
generated state obtains higher security risk than the given
bound RB or more utilization ratio than UB, it is immediately
ignored. Furthermore, if there is no such state with the same
risk as the temporary state in N rows of the state matrix,
or the temporary state has lower utilization ratio comparing
with prior state in i-th stage with the same security risk, then
RNAA replaces the old state with the new one that has lower
utilization.

After all the decision states in each stage have been
renewed, RNAA selects the state with the smallest utilization
ratio in the N -th stage in Step 4. To obtain the final security
protection decision, RNAA goes back from N to the first stage
to get the vector of security assignments. In the end of Step 4,
RNAA successfully obtains the minimal energy consumption.

Complexity Analysis: In step 1, it takes O(n) to complete
the schedulability test. In step 2, it takes O(1). For step 3,
there are N −1 decision stages (line 11). Based on each state
at the (i−1)-th stage, it takes O|Si| to update all states at i-th
stage (see lines 13-20). Due to the number of states can be at
most M for (i−1)-th stage, it will take O((n−1)∗ |Si| ∗M)
for the whole step 3. For step 4, it takes O(n) to find the
minimal energy solution. Therefore, the time complexity of
RNAA can be inferred as O(RNAA) = O(n) + O(1) +
O((n − 1) ∗ |Si| ∗ M) + O(n) = O(n2|Si|/2β). According
to the analysis in Sec.IV(D), it will take O(n2|Si|/β) time
overhead by using other policies (RF, RC, and RR). Thus,
we conclude that RNAA is polynomial of tasks number n,
security choices |Si| and 1/2β and has half time complexity
of other traditional approximating policies.

V. EXPERIMENTAL RESULTS

In this section, we conducted synthetic experiments to
verify the performance of the proposed algorithm. We im-
plement a task scheduler that includes security assignment
and scheduling in .Net environment. For evaluation pur-
poses, we compare our RNAA algorithm with one group
of approximation methods, i.e. RCAA and RSAA, and one
group of heuristics, named GRDY and SEAS. RCAA is an
approximation approach based on RC policy like in [16],
while RRAA is the approximation approach based on RR
policy. For GRDY scheme, the security levels are assigned in a
greedy fashion. It provides the current highest security level to
tasks step by step until all available energy slacks are depleted.
SERS is a Security and Energy-aware Real-time Scheduling
(similar to SASES [8]). SERS increase gradually the security
level of tasks by comparing the risk-energy ratio among tasks,
while satisfying the risk and utilization constraints, just like
the benefit-cost ratio used in SASES.

The performance metrics in our experiments are energy
consumption and risk deviation ratio. Risk deviation ratio
is the deviation ratio of real system security risk to the
risk bound. We performed two groups of simulations. For
both groups, we generate three synthetic sets. Final results

are obtained as the average of these three sets. For each
task, the basic execution time is normally generated in the
range of 5 ms to 10 ms, and the period is between 300 ms
and 500 ms. The security demands are randomly assigned
between level 6 and 8 for confidentiality protection. The
impact value of each task is randomly generated between 5
and 10, and the size of sensitive data ranges from 100KB
to 400KB uniformly. The security coefficient λ is set in [1, 3]
for all tasks. Other parameters are set correspondingly in each
simulation group. For execution time and energy consumption
of security services, we use the same values as Table I.

A. Impacts of Risk Bound over different approaches
In this group of simulation, we analyze the performances

under different security bounds. Tasks are generated as dis-
cussed in the previous section, and are scheduled by EDF.
Thus, the schedulability of the system can be tested by
checking whether the utilization bound is not bigger than
1. For a set of tasks, the maximal security risk (MAR)
and minimal security risk (MIR) can be calculated when
each task is assumed to use the maximal security level or
minimal level respectively. In this section, we refer to the
risk bound as α. So the real risk bound can be obtained by
MIR + α ∗ (MAR − MIR). We set the risk slack ratio
β to 0.05 and the risk bound varying from 0.4 to 0.9 with
step size of 0.1. The overall energy cost is normalized to
the energy consumption of all tasks (each with the maximal
security level). Fig. 2 and 3 are the obtained results of the
five different algorithms that were discussed at the beginning
of this section under different security risk bounds.

There are several interesting phenomenons that can be
observed in Fig. 2. For example, with the increase of security
risk bound α, the energy costs of all approaches are gradually
reducing. This is because that loose risk constraint gives larger
search space for each algorithm to decrease their security
protection levels, which can result in less energy consumption.
GRDY has the largest energy cost while RNAA and RRAA
have nearly lowest energy costs. The energy costs of RCAA
and SERS lie between them. More specifically, RNAA saves
14.5%, 5.9% and 4.3% energy from GRDY, RCAA and SERS,
respectively. RRAA has roughly the same average energy
costs as RNAA.

From Fig. 3, we can see the real security risk deviation
with different risk bound α. All RNAA, RRAA and RCAA
can guarantee the risk slack ratio value 0.05. RCAA has the
largest negative deviation ratio as −0.025 averagely. From
this group of experiments, we can reach to the conclusion
that our proposed RNAA uses the minimal energy cost within
given security risk constraint among all the five solutions.
Comparing with RRAA and RCAA, the time complexity of
RNAA is about half of them according to the derivation in
section IV. Therefore, RNAA is the most suitable approach
for the scheduling optimization problem of this paper (refer
to Section III).

B. Impacts of Risk Slack ratio
Different user or system designer may have different se-

curity risk deviation demands on approximating approaches.
For example, users can tolerate larger risk deviation for less
important applications but require smaller risk deviation for
security-critical applications. Thus, the goal of this group
of simulations is to evaluate the performance under differ-
ent risk slack ratios β. We set the security risk bound as
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Fig. 2. Impacts of α on energy
consumption
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Fig. 4. Impacts of β on energy
consumption
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Fig. 5. Impacts of β on risk deviation
ratio

MIR + 0.7 ∗ (MAR − MIR). The risk slack ratio varies
from 0.02 to 0.2 with step increment of 0.02. The task
attributes are generated as discussed in the previous section.
The simulation results of overall energy consumption and
security risk deviation ratio are shown in Fig. 4 and Fig. 5,
respectively.

For security risk in Fig. 4, we can see that RNAA also
gives nearly the minimal energy cost on average, while GRDY
approach results in the largest energy overhead. The energy
costs of GRDY and SERS are constant in this experiment,
because GRDY and SERS are not impacted by risk slack
ratios. The energy cost of RCAA is increasing with bigger
ratios, while the results of RNAA and RRAA demonstrate
their random characteristics. RNAA can averagely reduce the
energy cost than GRDY, SERS and RCAA by 19.3 percent,
10.0 percent and 16.3 percent, respectively.

Fig. 5 depicts the risk deviation ratios under different risk
slack factors. The risk deviation ratios of GRDY and SERS are
also constant as they are independent from risk slack factors.
All RNAA, RRAA and RCAA can satisfy the given risk slack
factor even if the slack factor is very small, e.g. 0.02 and
0.04. RCAA generally obtains negative deviation ratio. RNAA
and RRAA have smaller (absolute) risk deviation ratio than
RCAA. For example, RNAA can get smaller deviation ratio
than RCAA, for example, when it becomes negative with
the slack factor value 0.14. The reason is that RNAA and
RRAA utilize random scaling policies which cancel out the
positive and negative deviations. Based on these two figures,
we can find that RNAA is the best algorithm among the five
approaches which obtains the lowest energy cost with little
security risk deviation.

VI. CONCLUSION

Energy and security are two important factors for design-
ing mission-critical real-time embedded systems running on
constrained resources. This paper addresses one common
scheduling problem for security- and energy-critical real-
time applications, in which minimizing energy consumption
while satisfying the security and schedulability constraints is
of central importance. This problem is a multi-dimensional
knapsack problem which is proved to be NP-hard. Then,
we reduce the problem based on the relationship between
energy consumption and CPU utilization. To find the solu-
tion efficiently, we introduce and analyze four approximation
policies, and then propose our dynamic programming based
approximation algorithm to find the near-optimal solutions
within predefined security risk constraints efficiently. The
proposed algorithm has fully polynomial time complexity that
is roughly half of the existing FPTAS approaches. Moreover,
our algorithm has also low memory overhead, which is
suitable to be used in resource limited embedded systems.

Finally, synthetic simulations demonstrate the advantages of
our proposed scheduling framework.
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