Reliability-Aware Energy Optimisation for Fault-Tolerant Embedded MP-SoCs

Summary

- Design optimisation tool for distributed embedded real-time systems
- Decides mapping, fault-tolerance policy and fault-tolerant schedule
 - Hard real-time
 - Hard reliability goal
 - Static schedule for processes and messages
 - Fault-tolerance for & transient/soft faults
- Optimise for minimal energy consumption
- While considering impact of lowering voltages on the probability of faults
- Constraint logic programming (CLP) based implementation

Fault-tolerant scheduling

- More complex scheduling schemes yield more slack for energy management
 - Trade-off transparency for performance
 - Performance, and hence the obtainable energy savings are greatly increased
- More complex schemes demand larger schedule tables to be stored in the processing elements, and more sophisticated online schedulers

Reliable energy management

- System reliability is affected by use of energy management
 - The use of DVS increases the probability of faults, thus damaging the system reliability
- Reliability must be considered in the optimisation process
 - Considering reliability in the optimisation process allows for finding the minimum energy schedule that meets the reliability goal
 - Reliability is imposed as a constraint
- Reliability can be met at very little energy cost
 - Considering the reliability while optimising enables us to find reliable schedules with comparable energy savings

Comparison of FT schemes

- Fully Transparent Scheduling
 - PE1: P1, P2, P3, P4, P5, P6
 - Bus 1: 100% E0
- Slack Sharing Scheduling
 - PE1: P1, P2, P3, P4, P5, P6
 - Bus 2: R=0.999 999 987
 - PE1: 63% E0
- Conditional Scheduling
 - PE1: P1, P2, P3, P4, P5, P6
 - Bus 3: R=0.999 999 878
 - PE1: 38% E0

Energy vs. reliability

- Straightforward (SS)
 - PE1: P1, P2, P3, P4, P5, P6
 - Bus 4: R=0.999 999 987
 - PE1: 100% E0
- Energy optimisation (EO)
 - PE1: P1, P2, P3, P4, P5, P6
 - Bus 5: R=0.999 999 878
 - PE1: 68% E0
- Reliable energy optimisation (REO)
 - PE1: P1, P2, P3, P4, P5, P6
 - Bus 6: R=0.999 999 900
 - PE1: 73% E0

Fault-tolerance

- Faults are tolerated by using temporal or spatial redundancy, or a combination of the two
- Fault detection is done using well known techniques such as: timing and bit coding

Energy vs. Faults

- Recent research\(^1\) shows that the probability of transient/soft faults increases dramatically when decreasing the voltage of a circuit
- Many modern designs use dynamic voltage scaling (DVS) to minimise energy consumption
- Fault-tolerant systems that use power management techniques may prove to be fault-tolerant but unreliable due to increase in faults
- Relation between faults and voltage is given by:\(^1\):

\[
\frac{\lambda}{\lambda_0} = A \cdot 10^{-\frac{V}{V_{max}}}
\]

Reliability vs. number of processes

Comparison of energy savings

<table>
<thead>
<tr>
<th>Number of processes</th>
<th>Energy Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>3</td>
<td>0.7</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>0.4</td>
</tr>
<tr>
<td>7</td>
<td>0.3</td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Comparison of system reliability

<table>
<thead>
<tr>
<th>Number of processes</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>3</td>
<td>0.7</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>0.4</td>
</tr>
<tr>
<td>7</td>
<td>0.3</td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>0.1</td>
</tr>
</tbody>
</table>