
Linköping Studies in Science and Technology

Thesis No. 1503

Predictable Real-Time Applications on
Multiprocessor Systems-on-Chip

by

Jakob Rosén

Submitted to Linköping Institute of Technology at Linköping University in partial
fulfilment of the requirements for degree of Licentiate of Engineering

Department of Computer and Information Science
Linköping University

SE–581 83 Linköping, Sweden

Linköping 2011

This is a Swedish Licentiate’s Thesis.
The Licentiate’s degree comprises 120 ECTS credits of postgraduate

studies.

ISBN 978-91-7393-090-1, ISSN 0280-7971
Printed by LiU-Tryck, Linköping, Sweden 2011
Copyright c© 2011 Jakob Rosén
Electronic version:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70138

PRESS PLAY ON TAPE

Predictable Real-Time Applications on
Multiprocessor Systems-on-Chip

by

Jakob Rosén

September 2011
ISBN 978-91-7393-090-1

Linköping Studies in Science and Technology
Thesis No. 1503
ISSN 0280-7971

LIU-TEK-LIC-2011:42

ABSTRACT

Being predictable with respect to time is, by definition, a fundamental require-
ment for any real-time system. Modern multiprocessor systems impose a challenge
in this context, due to resource sharing conflicts causing memory transfers to become
unpredictable. In this thesis, we present a framework for achieving predictability for
real-time applications running on multiprocessor system-on-chip platforms. Using
a TDMA bus, worst-case execution time analysis and scheduling are done simul-
taneously. Since the worst-case execution times are directly dependent on the bus
schedule, bus access design is of special importance. Therefore, we provide an ef-
ficient algorithm for generating bus schedules, resulting in a minimized worst-case
global delay.

We also present a new approach considering the average-case execution time in
a predictable context. Optimization techniques for improving the average-case ex-
ecution time of tasks, for which predictability with respect to time is not required,
have been investigated for a long time in many different contexts. However, this has
traditionally been done without paying attention to the worst-case execution time.
For predictable real-time applications, on the other hand, the focus has been solely
on worst-case execution time optimization, ignoring how this affects the execution
time in the average case. In this thesis, we show that having a good average-case
global delay can be important also for real-time applications, for which predictabil-
ity is required. Furthermore, for real-time applications running on multiprocessor
systems-on-chip, we present a technique for optimizing for the average case and the
worst case simultaneously, allowing for a good average case execution time while still
keeping the worst case as small as possible. The proposed solutions in this thesis
have been validated by extensive experiments. The results demonstrate the efficiency
and importance of the presented techniques.

This research work was funded in part by CUGS (the National Graduate School of
Computer Science, Sweden).

Department of Computer and Information Science
Linköpings universitet

SE–581 83 Linköping, Sweden

Acknowledgments

So, here I am. The end of this winding road has been reached, and the
thesis is finally ready. However, I would never have come to this point
without the many people who gave me support, inspiration and courage
during the past years. Let me first start by thanking my supervisors
Zebo Peng and Petru Eles, for giving me the opportunity to become a
graduate student and for always believing in me. I am very grateful for
that. The working environment at IDA has been excellent, and I wish
I could thank every one of my colleagues individually. If you work here
and read this, consider yourself thanked!

Carl-Fredrik Neikter did a fantastic job contributing to the frame-
work which this thesis is built upon, and I truly enjoyed our collab-
oration. Alexandru Andrei spent many late nights helping me with
technical issues during the writing of our first paper, and for that I
am thankful. I also want to thank Soheil Samii and Sergiu Rafiliu for
our frequent and (usually) very enjoyable “board meetings”, where we
discussed all kinds of subjects related to our work.

Anton Blad and Fredrik Kuivinen have been my friends for a long
time, and I really enjoyed the luxury of also having them as colleagues
for a while. In particular, I want to thank them for the fun moments
we spent developing the TRUT64 device (and testing it!), and of course
also for just being such great guys. Furthermore, I want to express
gratitude to Traian Pop for introducing me to the world of research in
a friendly manner, and for throwing the best birthday parties. A big
thank you must also go to everyone who participated in the official duck
feeding sessions at the university pond, and to the geese and the ducks
for kindly accepting the bread that I brought.

Finally, I thank my family for giving me love and support. Always.

Jakob Rosén

Linköping, August 2011

iii

Contents

1 Introduction 1

1.1 Multiprocessor Real-Time Systems 2

1.2 Related Work . 3

1.3 Contribution . 5

1.4 Thesis Organization . 5

2 System Model 7

2.1 Hardware Architecture 7

2.2 Application Model . 8

2.3 Bus Model . 9

3 Predictability Approach 13

3.1 Motivational Example 13

3.2 Overall Approach . 15

4 Worst-Case Execution Time Analysis 19

4.1 TDMA-Based WCET Analysis 19

4.2 Compositional WCET Analysis Flow 20

v

vi Contents

4.2.1 Monoprocessor WCET Example 21
4.2.2 Multiprocessor WCET Example 23

4.3 Noncompositional Analysis 25

5 Bus Schedule Optimization 27
5.1 WCGD Optimization . 27
5.2 Cost Function . 28
5.3 Optimization Approach 30

5.3.1 Slot Order Selection 30
5.3.2 Determination of Initial Slot Sizes 31
5.3.3 Generation of New Slot Size Candidates 34
5.3.4 Density Regions 35

5.4 Simplified Algorithm . 38
5.5 Memory Consumption 39
5.6 Experimental Results . 40

5.6.1 Bus Schedule Approaches 41
5.6.2 Synthetic Benchmarks 43
5.6.3 Real-Life Example 45

6 Worst/Average-Case Optimization 49
6.1 Motivation . 50
6.2 Average-Case Execution Time Estimation 52
6.3 Combined Optimization Approach 57
6.4 Bus Access Optimization for ACGD and WCGD 58

6.4.1 Task and Bus Segments 59
6.4.2 Bus Bandwidth Distribution Analysis 61
6.4.3 Cost Function . 63
6.4.4 Bus Schedule Optimization 64

6.5 Experimental Results . 65

7 Conclusions 69

A Bus Bandwidth Calculations 77
A.1 Bus Bandwidth Calculations 77

A.1.1 Calculation of the Desired Bus Bandwidth 77
A.1.2 Calculation of the Current Bus Bandwidth . . . 80

List of Figures

2.1 Hardware Model . 8

2.2 Task graph . 9

2.3 Example of a bus schedule 10

2.4 Bus schedule table representation 11

3.1 Motivational example 14

3.2 Overall approach example 16

3.3 Overall approach . 18

4.1 WCET tool program flow 21

4.2 Example CFG . 22

4.3 Example TDMA bus schedule 23

5.1 Estimating the global delay 29

5.2 The optimization approach 30

5.3 Close-up of two tasks . 32

5.4 Calculation of new slot sizes 34

5.5 Subtask evaluation algorithm 39

vii

viii LIST OF FIGURES

5.6 The simplified optimization approach 40
5.7 BSA1 bus schedule . 41
5.8 BSA2 bus schedule . 42
5.9 BSA3 bus schedule . 42
5.10 BSA4 bus schedule . 43
5.11 Four bus access policies 44
5.12 Comparison between BSA2 and BSA3 46
5.13 BSA2 optimization steps 46

6.1 Motivational example for a hard real-time system 51
6.2 Motivational example for a buffer-based system 51
6.3 Example histogram for 1000 executions 53
6.4 Example histogram for 12 executions 53
6.5 Example table for hypothetical path classification 54
6.6 Example table for cache miss selection 55
6.7 Three hypothetical execution paths and the correspond-

ing average-case execution time estimation 57
6.8 Combined optimization approach 58
6.9 Example task graph . 60
6.10 Average-case chart . 60
6.11 Average-case chart with corresponding execution paths . 61
6.12 Average-case chart with density regions 61
6.13 The improve function 66
6.14 Relative ACGD improvement 67
6.15 Relative ACGD improvement and WCGD extension . . 68

Abbreviations

ACET Average-Case Execution Time
ACGD Average-Case Global Delay
BSA Bus Scheduling Approach
CFG Control Flow Graph
DS Density Region Based Sizes
ISS Initial Slot Sizes
NWCET Naive Worst-Case Execution Time
QoS Quality of Service
SSA Slot Size Adjustments
TDMA Time Division Multiple Access
WCET Worst-Case Execution Time
WCGD Worst-Case Global Delay

ix

x Abbreviations

1

Introduction

Embedded real-time systems have become a key part of our society,
helping us in almost every aspect of our daily living. Of significant
importance is the class of safety-critical embedded real-time systems, to
which we entrust our lives, for instance at hospitals, in aeroplanes and in
cars. These systems must be reliable and, consequently, it is of crucial
importance that they are predictable with respect to time. However,
predictability is desirable not only for this kind of traditional hard real-
time systems, but for any system exhibiting real-time properties.

This thesis describes techniques for designing predictable embedded
real-time systems in a multiprocessor environment. Besides serving as
an introduction to the topic, this chapter presents a summary of the
state-of-the-art research within the field. After briefly describing the
contributions of this thesis, the chapter ends with an outline of what
follows next.

1

2 CHAPTER 1. INTRODUCTION

1.1 Multiprocessor Real-Time Systems

For real-time systems, correctness of a program not only depends on
the produced computational results, but also on its ability to deliver
these on time, according to specified time constraints. Therefore, for a
real-time application, predictability with respect to time is of uttermost
importance. The obvious example is safety-critical hard real-time sys-
tems, such as medical and avionic applications, for which failure to meet
a specified deadline not only renders the computations useless, but also
can have catastrophic consequences. However, predictability is getting
more and more desirable also for other classes of embedded applications,
for instance within the domains of multimedia and telecommunication,
for which QoS guarantees are desired [8].

As these kinds of applications become increasingly complex, they
also require more computational power in terms of hardware resources.
Generally, the trend in processor design is to increase the number of
cores as means to improve the performance and power efficiency, and
microprocessors with hundreds of cores are expected to arrive on the
market in the not-so-distant future [4]. In order to satisfy the demands
of complex and resource-demanding embedded systems, for which pre-
dictability is required, multicore systems implemented on a single chip
are used to an increasing extent [16, 36].

To achieve predictability with respect to time, schedulability analy-
sis techniques are applied, assuming that the worst-case execution time
(WCET) of every task is known. A lot of research has been carried out
within the area of worst-case execution time analysis [21]. However,
according to the proposed techniques, each task is analyzed in isola-
tion, as if it was running on a monoprocessor system. Consequently, it
is assumed that memory accesses over the bus take a constant amount
of time to process, since no bus conflicts can occur. For multipro-
cessor systems with a shared communication infrastructure, however,
transfer times depend on the bus load and are therefore no longer con-
stant, causing the traditional methods to produce incorrect results [32].
The main obstacle when performing timing analysis on multiprocessor
systems is that the scheduling of tasks assumes that their worst-case
execution times are known, but to calculate these worst-case execution
times, knowledge about the task schedule is required. Clearly, the tra-
ditional method of separating WCET analysis and task scheduling no
longer works, and new approaches are required.

Of great interest when measuring the execution time of a real-time

1.2. RELATED WORK 3

application is the global delay, defined as the time it takes to execute
the application from its beginning to the very end. In this thesis, we
propose an approach for designing predictable real-time embedded sys-
tems on multiprocessor system-on-chip architectures. We show how it is
possible to design predictable systems using a TDMA bus architecture,
and we also propose algorithms for generating intelligent bus schedules
minimizing the worst-case global delay (WCGD) of the application.

Furthermore, we take a new approach to hard real-time system de-
sign by, in addition, also considering the effects on the average-case
global delay (ACGD) while making sure that the WCGD is kept to a
near-minimum. Optimization techniques for improving the average case
execution time of an application, for which predictability with respect
to time is not required, have been investigated in nearly every scientific
discipline involving a computer. However, this has traditionally been
done without paying attention to the worst-case execution time. For
predictable applications, on the other hand, the focus has been solely
on worst-case execution time optimization, which still is a hot research
topic [6, 7]. To the best of our knowledge, this is the first time the com-
bination of these two concepts has been investigated within the context
of achieving predictability.

1.2 Related Work

The fundament for achieving predictability is worst-case execution time
(WCET) analysis, and a lot of research has been carried out within this
area. Wilhelm et al. present an overview of the existing methods and
tools [33]. None of them can, however, be applied directly to mul-
tiprocessor systems with a shared communication infrastructure, since
these techniques assume a monoprocessor environment. Yan and Zhang
present a new approach for worst-case execution time analysis on mul-
ticore processors with shared L2 caches [37]. They describe their work
as a first, important step towards a complete framework rather than a
full solution to the problem.

One approach is to use an additive bus model, assuming that con-
flicts on the bus do not affect the calculated worst-case execution times
significantly compared to when running the same program on a mono-
processor platform. It has been shown that this is a good assumption
if the bus load is kept below 60% [2], but even for such low bus loads,
no worst-case execution time guarantees can be made. Furthermore,

4 CHAPTER 1. INTRODUCTION

increasing the number of processor cores will also increase the bus con-
gestion [35] and, thus, the additive bus model is likely to not perform
well for future architectures, even when strict time-predictability is not
required.

Schoeber and Puschner present a technique for achieving predictabil-
ity on TDMA bus-based chip multiprocessors [30]. Similar to the ap-
proach in this thesis, the output from the worst-case execution time
analysis is used to improve the bus schedule. However, in order to
avoid the problem of scheduling tasks, they assume that the number of
cores are greater than the number of tasks.

In a recently published paper, Lv et al. use abstract modeling in
Uppaal to calculate the worst-case execution time of tasks running
on multiprocessor systems with a shared communication infrastructure
[14]. The contribution of their approach is a very general framework
with support for many kinds of buses. However, their solution does not
handle computer architectures exhibiting timing anomalies.

Within the context of response time analysis [9], Schliecker et al.
propose a technique using accumulated busy times instead of consid-
ering each memory access individually [29]. The result is a framework
for multiprocessor analysis that computes worst-case response times
with good precision, but without providing any hard timing guaran-
tees. A more recent approach by the same authors provides conser-
vative bounds, but without support for noncompositional architectures
[28]. Schranzhofer et al. present a technique for response time analy-
sis for TDMA bus-based multiprocessor systems with shared resources
[31]. The analysis is safe, but does not support the presence of timing
anomalies. Pellizzoni and Caccamo propose an approach for calculating
the delay caused by bus interference for tasks running on systems with
several connected peripherals [19]. They also provide a corresponding
schedulability analysis framework.

Edwards and Lee argue in favor of hardware customized for achieving
timing predictability, in contrast to today’s platforms optimized solely
for good average case performance [5]. Lickly et al. present an exam-
ple of one such processor [12]. However, no such hardware exists on the
market today. Paolieri et al. propose a predictable multiprocessor hard-
ware architecture, using custom bus arbiters, designed for running hard
and soft real-time tasks concurrently [17]. For hard real-time tasks, it
provides a maximum bound on the memory access transfer time. The
big advantage of this approach is that traditional worst-case execution

1.3. CONTRIBUTION 5

time analysis techniques can be used without modifications. However,
applications with many hard real-time tasks will make this upper bound
become large, potentially increasing the pessimism.

1.3 Contribution

The main contributions of this thesis are:

1. We propose a novel technique to achieve predictability on mul-
tiprocessor systems by doing worst-case execution time analysis
and scheduling simultaneously [1, 23, 24]. With respect to a given
TDMA bus schedule, tasks are scheduled at the same time as their
worst-case execution times are calculated, and the resulting worst-
case global delay of the application is obtained.

2. To generate good bus schedules, we have constructed efficient op-
timization algorithms that minimize the worst-case global delay
of the given application [23].

3. Combining optimization for the worst case and the average case,
we have developed an approach to achieve a good average-case
global delay while still keeping the worst-case delay as small as
possible [25].

1.4 Thesis Organization

The remaining part of the thesis is outlined as follows. In the next
chapter, the system model is described in detail. The overall approach
for achieving predictability is then presented in Chapter 3. In Chapter
4, we discuss the underlying worst-case analysis framework necessary
for implementing our approach. Chapter 5 presents algorithms for op-
timization of the worst-case global delay using several bus scheduling
approaches. Experimental results are presented at the end of the chap-
ter. The algorithms for combining WCGD and ACGD optimization are
presented in Chapter 6, together with a motivation for why the average
case is important also for predictable real-time systems. The chapter
ends with experimental results validating our approach. Finally, Chap-
ter 7 presents our conclusions.

6 CHAPTER 1. INTRODUCTION

2

System Model

This chapter starts by describing the hardware platform that is assumed
throughout the rest of the thesis. Next, the software application model
is explained. Finally, we describe the model of the TDMA-based com-
munication infrastructure.

2.1 Hardware Architecture

As hardware platform, we have considered a multiprocessor system-on-
chip architecture with a shared communication infrastructure, as shown
in Figure 2.1, typical for the new generation of multiprocessor system-
on-chip designs [11]. Each processor has its own cache for storing data
and instructions, and is connected to a private memory via the bus. For
interprocessor communication, a shared memory is used. All memory
accesses to the private memories are cached, as opposed to accesses to
the shared memory which, in order to avoid cache coherence problems,
are not cached. All memory devices are accessed using the same, shared
bus. However, in the case of private memory accesses, the bus is used
only when an access results in a cache miss.

7

8 CHAPTER 2. SYSTEM MODEL

Bus

CPU 1

Cache

CPU 2

Cache

Memory 1
(Private)

Memory 0
(Shared)

Memory 2
(Private)

Figure 2.1 Hardware Model

Within the context of worst-case execution time analysis, hardware
platforms can be divided into compositional architectures and noncom-
positional architectures [34], depending on whether or not the platform
exhibits timing anomalies [13, 22]. Timing anomalies occur when a
local worst-case scenario, such as a cache miss instead of a hit, does
not result in the worst case globally. This complicates the worst-case
execution time analysis significantly, since no local assumptions can
be made. Compositional architectures, such as the ARM7, do not ex-
hibit timing anomalies, and the analysis can therefore be divided into
disjunct subproblems, simplifying the analysis procedure. Noncomposi-
tional architectures, on the other hand, require a far more complicated
and time-consuming analysis. The PowerPC 775 is an example of a
noncompositional architecture [34]. As will be described further on,
our approach works for both compositional architectures and noncom-
positional architectures.

2.2 Application Model

The functionality of a software application is captured by a directed
acyclic task graph, G(Π,Γ). Its nodes Π represent computational tasks,
and the edges Γ represent data dependencies between them. A task
cannot start executing before all of its input data is available. Com-
munication between tasks mapped on the same processor is performed
by using the corresponding private memory, and is handled in the same
way as other memory requests during the execution of a task. Inter-
processor communication, or so called explicit communication, is done
via the shared memory and is modeled as two communication tasks –
one for transmitting and one for receiving – in the task graph. The
transmitting communication task is assigned to the same processor as

2.3. BUS MODEL 9

τ
1

τ
2

τ
1

τ
1w

τ
2r

τ
3 dl=4 ms

Mapped on processor 1
Mapped on processor 2

Figure 2.2 Task graph

the task that is sending data to the shared memory, and similarly the
receiving communication task is assigned to the processor fetching the
same data. An example is shown in Figure 2.2 where τ1w and τ2r rep-
resent the transmitting and receiving task, respectively.

A computational task cannot communicate with other tasks during
its execution, which means that it will not access the shared memory.
However, the task is accessing data, used in the computations, from
its private memory and program instructions are continuously fetched.
Consequently, the bus is accessed every time a cache miss occurs, re-
sulting in what we define as implicit communication. As opposed to ex-
plicit communication, implicit communication has not been taken into
account in previous approaches for real-time application system-level
scheduling and optimization [20, 27].

The task graph has a deadline which represents the maximum al-
lowed execution time of the entire application, known as the maximum
global delay. Individual tasks can have deadlines as well. The example
task graph in Figure 2.2 has a global delay of 4 milliseconds. The ap-
plication is assumed to be running periodically, with a period greater
than or equal to the application deadline.

2.3 Bus Model

A precondition for achieving predictability is to use a predictable bus
architecture. Therefore, we are using a TDMA-based bus arbitration
policy, which is suitable for modern system-on-chip designs with QoS

10 CHAPTER 2. SYSTEM MODEL

Slot belonging to CPU 1
Slot belonging to CPU 2

Segment 1 (ω
1
) Segment 2 (ω

2
)

Round 1 Round 2

0 10 30 40 60 70 80 90 100 110 120

Figure 2.3 Example of a bus schedule

constraints [8, 18, 26].
The behavior of the bus arbiter is defined by the bus schedule, con-

sisting of sequences of slots representing intervals of time. Each slot is
owned by exactly one processor, and has an associated start time and
an end time. Between these two time instants, only the processor own-
ing the slot is allowed to use the bus. A bus schedule is divided into
segments, and each segment consists of a round, that is, a sequence of
slots that is repeated periodically. See Figure 2.3 for an example.

The bus arbiter stores the bus schedule in a dedicated external mem-
ory, and grants access to the processors accordingly. If processor CPUi

requests access to the bus in a time interval belonging to a slot owned
by a different processor, the transfer will be delayed until the start of
the next slot owned by CPUi. A bus schedule is defined for one period
of the application, and is then repeated periodically. A table represen-
tation of the bus schedule in Figure 2.3 can be found in Figure 2.4.

To limit the required amount of memory on the bus controller needed
to store the bus schedule, a TDMA round can be subject to various
complexity constraints. A common restriction is to let every processor
own, at most, a specified number of slots per round. Also, one can let
the sizes be the same for all slots of a certain round, or let the slot order
be fixed.

2.3. BUS MODEL 11

Segment start

Segment length

0

60

Processor ID 1

Slot size 10

Processor ID 2

Slot size 20

Segment 1

Round 1

Segment start

Segment length

60

120

Processor ID 1

Slot size 10

Processor ID 2

Slot size 10

Segment 2

Round 2

Figure 2.4 Bus schedule table representation

12 CHAPTER 2. SYSTEM MODEL

3

Predictability Approach

This chapter begins with a motivational example illustrating the prob-
lems encountered when designing predictable multiprocessor-based real-
time systems. It then continues by describing our overall approach to
achieve predictability for such systems.

3.1 Motivational Example

Consider two tasks running on a multiprocessor system with two proces-
sors and a shared communication infrastructure according to Chapter 2.
Each task has been analyzed with a traditional WCET tool, assuming a
monoprocessor system, and the resulting Gantt chart of the worst-case
scenario is illustrated in Figure 3.1a. The dashed intervals represent
cache misses, each of them taking six time units to serve, and the white
solid areas represent segments of code not using the bus. The task run-
ning on processor 2 is also, at the end of its execution, transferring data
to the shared memory, and this is represented by the black solid area.

However, since the tasks are actually running on a multiprocessor
system with a shared communication infrastructure, they do not have

13

14 CHAPTER 3. PREDICTABILITY APPROACH

CPU1

CPU2

6 9 15 33 39 57

dl=63

6 11 17 24 36

CPU1

CPU2

BUS

6 9 18 36 49 67

dl=63

12 17 24 31 43

1 2 1 2 2 1

Deadline
violation!

CPU1

CPU2

BUS 2

6 9 15 33 39 57

dl=63

21 26

1 1 2

32 39 51

2 1

CPU1 CPU2 CPU1 CPU2

6 12 18 24 31 4943

a) Two Concurrent Tasks

b) FCFS Arbitration

c) TDMA Arbitration

Figure 3.1 Motivational example

exclusive access to the bus handling the communication with the mem-
ories. Hence, some kind of arbitration policy must be applied to dis-
tribute the bus bandwidth among the tasks. The result is that when
two tasks request the bus simultaneously, one of them has to wait until
the other has finished transferring. This means that transfer times are
no longer constant. Instead, they now depend on the bus conflicts re-
sulting from the execution load on the different processors. Figure 3.1b
shows the corresponding Gantt chart when the commonly used FCFS
arbitration policy is applied.

The fundamental problem when performing worst-case execution
time analysis on multiprocessor systems is that the load on the other
processors is in general not known. For a task, the number of cache

3.2. OVERALL APPROACH 15

misses and their location in time depend on the program control flow
path. This means that it is very hard to foresee where there will be
bus access collisions, since this will differ from execution to execution.
To complicate things further, the worst-case control flow path of the
task will change depending on the bus load originating from the other
concurrent tasks. In order to solve this and introduce predictability, we
use a TDMA bus schedule which, a priori, determines exactly when a
processor is granted the bus, regardless of what is executed on the other
processors. Given a TDMA bus schedule, the WCET analysis tool cal-
culates a corresponding worst-case execution time. Some bus schedules
will result in relatively short worst-case execution times, whereas others
will be very bad for the worst case. Therefore, it is important that a
clever bus schedule, optimized to reduce the worst case, is used. Algo-
rithms for this will be presented in Chapter 5. Note that regardless of
what bus schedule is given as input to the WCET analysis algorithm,
the corresponding worst-case execution time will always be safe. Fig-
ure 3.1c shows the same task configuration as previously, but now the
memory accesses are arbitrated according to a TDMA bus schedule.

3.2 Overall Approach

For a task running on a multiprocessor system, as described in Chapter
2, the problem for achieving predictability is that the duration of a bus
transfer depends on the bus congestion. Since bus conflicts depend on
the task schedule, WCET analysis cannot be performed before that is
known. However, task scheduling traditionally assumes that the worst-
case execution times of the tasks to be scheduled are already calculated.

To solve this circular dependency, we have developed an approach
based on the following principles:

1. A TDMA-based bus access policy, according to Section 2.3, is
used for arbitration. The bus schedule, created at design time, is
enforced during the execution of the application.

2. The worst-case execution time analysis is performed with respect
to the bus schedule, and is integrated with the task scheduling
process, as described in Figure 3.3.

We illustrate our overall approach with a simple example. Consider
the application in Figure 3.2a. It consists of three tasks – τ1, τ2 and
τ3 – mapped on two processors. The static cyclic scheduling process is

16 CHAPTER 3. PREDICTABILITY APPROACH

τ
1

τ
2

τ
3

C
P
U
1

C
P
U
2

τ
1

τ
2

a) Task Graph b) Traditional Schedule

τ
3

0 64 192

1560

C
P
U
1

C
P
U
2

τ
1

τ
2

c) Predictable Schedule

τ
3

0 84 242

1880
B
U
S ω

1
ω
2

ω
3
242188840

Figure 3.2 Overall approach example

based on a list scheduling technique, and is performed in the outer loop
described in Figure 3.3 [10]. Let us, as is done traditionally, assume that
worst-case execution times have been obtained using techniques where
each task is considered in isolation, ignoring conflicts on the bus. These
calculated worst-case execution times are 156, 64, and 128 time units
for τ1, τ2, and τ3, respectively. The deadline is set to 192 time units, and
would be considered as satisfied according to traditional list scheduling,
using the already calculated worst-case execution times, as shown in
Figure 3.2b. However, this assumes that no conflicts, extending the bus
transfer durations (and implicitly the memory access times), will ever
occur on the bus. This is, obviously, not the case in reality and thus
results obtained with the previous assumption are wrong.

In our predictable approach, the list scheduler will start by schedul-
ing the two tasks τ1 and τ2 in parallel, with start time 0, on their respec-
tive processor (line 2 in Figure 3.3). However, we do not yet know the
end times of the tasks, and to gain this knowledge, worst-case execution
time analysis has to be performed. In order to do this, a bus schedule
which the worst-case execution times will be calculated with respect to
(line 6 in Figure 3.3) must be selected. This bus schedule is, at the
moment, constituted by one bus segment ω, as described in Section 2.3.
Given this bus schedule, worst-case execution times of tasks τ1 and τ2

will be computed (line 7 in Figure 3.3). Based on this output, new bus
schedule candidates are generated and evaluated (lines 5-8 in Figure
3.3), with the goal of obtaining those worst-case execution times that

3.2. OVERALL APPROACH 17

lead to the shortest possible worst-case global delay of the application.
Assume that, after selecting the best bus schedule, the corresponding

worst-case execution times of tasks τ1 and τ2 are 167 and 84 respectively.
We can now say the following:

• Bus segment ω1 is the first segment of the application bus sched-
ule, and will be used for the time interval 0 to 84.

• Both tasks τ1 and τ2 start at time 0.

• In the worst case, τ2 ends at time 84 (the end time of τ1 is still
unknown, but it will end later than 84).

Now, we go back to step 3 in Figure 3.3 and schedule a new task,
τ3, on processor CPU2. According to the previous worst-case execution
time analysis, task τ3 will, in the worst case, be released at time 84,
scheduled in parallel with the remaining part of task τ1. A new bus
segment ω, starting at time 84, will be selected and used for analyzing
task τ3. For task τ1, the already fixed bus segment ω1 is used for the
time interval between 0 and 84, after which the new segment ω is used.
Once again, several bus schedule candidates are evaluated, and finally
the best one, with respect to the worst-case global delay, is selected.
Assume that the segment ω2 is finally selected, and that the worst-case
execution times for tasks τ1 and τ3 are 188 and 192 respectively, making
task τ3 end at 276. Now, ω2 will become the second bus segment of the
application bus schedule, ranging from time 84 to 188, and this part of
the bus schedule will be fixed. Now, we repeat the same procedure with
the remaining part of τ3 (which now ends at time 242 instead of 276,
since ω3 assigns all bus bandwidth to CPU2). The final, predictable
schedule is shown in Figure 3.2c, and leads to a WCGD of 242.

An outline of the algorithm can be found in Figure 3.3. We define Ψ
as the set of tasks active at the current time t, and this is updated in the
outer loop. In the beginning of the loop, a new bus segment ω, starting
at t, is generated and the resulting bus schedule candidate is evaluated
with respect to each task in Ψ. Based on the outcome of the WCET
analysis, the bus segment ω is improved for each iteration. The bus
segments previously generated before time t remain unaffected. After
selecting the best segment ω, θ is set to the end time of the task in Ψ
that finished first. The time t is updated to θ and we continue with the
next iteration of the outer loop.

Communication tasks are treated as a special class of computational
tasks, which are generating a continuous flow of cache misses with no

18 CHAPTER 3. PREDICTABILITY APPROACH

01: θ=0
02: while not all tasks scheduled

03: schedule new task at t ≥ θ
04: Ψ=set of all tasks that are active at time t
05: repeat

06: select bus segment ω for the

time interval starting at t
07: determine the WCET of all tasks in Ψ
08: until termination condition

09: θ=earliest time a task in Ψ finishes

10: end while

Figure 3.3 Overall approach

computational cycles in between. The number of cache misses is speci-
fied such that the total amount of data transferred on the bus, due to
these misses, equals the maximum length of the explicit message. There-
fore, from an analysis point of view, no special treatment is needed for
explicit communication. In the following, when we talk about cache
misses, it applies to both explicit and implicit communication.

4

Worst-Case Execution Time
Analysis

In order to calculate the WCET of a task, the analysis needs to be
aware of the TDMA bus, taking into account that processors must be
granted the bus only during their assigned time slots. This chapter de-
scribes the modifications required in order to adopt a traditional WCET
algorithm to our predictable approach, without increasing the overall
time-complexity.

4.1 TDMA-Based WCET Analysis

Performing worst-case execution time analysis with respect to a TDMA
bus schedule requires not only knowledge about the number of cache
misses for a certain program path, but also their location with respect
to time. Hence, traditional ILP-based methods for worst-case execution
time analysis cannot be applied. Instead, each memory access needs to
be considered with respect to the bus schedule, granting access to the
bus only during the slots belonging to the requesting processor. How-
ever, to collect the necessary information used by our worst-case execu-
tion time analysis framework, the same techniques used in traditional

19

20 CHAPTER 4. WORST-CASE EXECUTION TIME ANALYSIS

methods can be utilized.

Calculating the worst-case execution time has to be done with re-
spect to the particular hardware architecture on which the task being
analyzed is going to be executed. Factors such as the instruction set,
pipelining complexity, caches and so on must be taken into account by
the analysis. For an application running on a compositional architec-
ture, the analysis can be divided into subproblems processed in a local
fashion, for instance on basic block level. We can be sure that the lo-
cal worst-case always contributes to the worst-case globally, allowing
for fast analysis techniques without the need to analyze every single
program path individually. This is, unfortunately, not the case when
using noncompositional architectures. The presence of timing anomalies
will force the analysis to consider all possible program paths explicitly,
naturally causing the analysis time to explode as the size of the tasks
increase.

For a predictable multiprocessor system with a shared communi-
cation structure, as described in Chapter 2, it is necessary to search
through all feasible program paths and match each possible bus trans-
fer to slots in the actual bus schedule, keeping track of exactly when
a bus transfer is granted the bus in the worst case. This means that
the execution time of a basic block will vary depending on when it is
executed. Fortunately, for an application running on a compositional
architecture, efficient search-tree pruning techniques dramatically re-
duce the search space, allowing for local analysis, just as for traditional
WCET techniques.

4.2 Compositional WCET Analysis Flow

A typical program flow for a WCET tool operating on compositional
architectures is shown in the left path of Figure 4.1 [33]. First, a con-
trol flow graph (CFG) is generated. A value analysis is then performed
to find program characteristics such as data address ranges and loop
bounds. To take into account performance-enhancing features of mod-
ern hardware, cache and pipeline analyses are carried out next. A path
analysis identifies the feasible paths and an ILP formulation for calcu-
lating the worst-case program path is then produced. The information
traditionally provided in this ILP formulation is, however, not suffi-
cient for calculating the WCET on a multiprocessor system since not
only the number of cache misses are needed for each basic block, but

4.2. COMPOSITIONAL WCET ANALYSIS FLOW 21

CFG Generation

Task

Value Analysis

Cache and Pipeline
Analysis

Path Analysis

ILP Formulation

Evaluation
(LP Solve)

Evaluation
(Miss Mapping)

Traditional Approach

MPSoC Approach

Figure 4.1 WCET tool program flow

also their positions with respect to time. If necessary, an underlying
WCET tool has to be modified to provide this information. A more
in-depth description can be found in the work published by Neikter [3].

Our TDMA-based approach for compositional WCET analysis is
illustrated in the right path of Figure 4.1. After the path analysis, the
information from the previous steps is used to calculate the worst-case
program path by mapping the cache misses to the corresponding bus
slots in the TDMA schedule. We will now show the idea behind this
with a simple example.

4.2.1 Monoprocessor WCET Example

Consider a task τ executing on a system with two processors (processor
1 and processor 2). The task is being mapped on processor 1, and has
start time 0. First, an annotated control flow graph, as illustrated in
Figure 4.2, is constructed. The rectangular elements B, C, H, E, F in

22 CHAPTER 4. WORST-CASE EXECUTION TIME ANALYSIS

A
Root

B
0
2
5

C
0
9
3

D

E
0
9

F
7
1

G

Loop
Bound: 3

H
15

I
Sink

Figure 4.2 Example CFG

the graph represent basic blocks, and the circles A, D, G, I represent
control nodes gluing them together. The loop starting at control node G
will run at most three times, so the loop bound is consequently set to 3.
The annotated numbers in the basic blocks represent consecutive cycles
of execution, in the worst case, not accessing the bus. For instance,
basic block B will, when executed, immediately – after 0 clock cycles
– issue a cache miss. After this, 2 cycles will be spent without bus
accesses before the next (and last) cache miss occurs. Finally, 5 bus
access-free cycles will be executed before the basic block ends. Hence,
the execution time of basic block B will be (0 + k1 + 2 + k2 + 5) where
k1 and k2 represent the transfer times of the first and second cache miss
respectively. Note that usually, loop unrolling is performed in order
to decrease the pessimism of the analysis. This example is, however,
purposely kept as simple as possible, and therefore the loop has not
been unrolled.

For a typical monoprocessor system, all cache misses take the same
constant amount of time to process, and the execution time of basic
block B would be known immediately. However, for multiprocessor
architectures such as the one described in Chapter 2, we must calculate
the individual transfer times with respect to a given TDMA schedule.

4.2. COMPOSITIONAL WCET ANALYSIS FLOW 23

0 10 20 30 40 50 60 70

...

Slot belonging to processor 1

Slot belonging to processor 2

Figure 4.3 Example TDMA bus schedule

4.2.2 Multiprocessor WCET Example

Instead of a monoprocessor system, assume a multiprocessor system, as
described in Chapter 2, using the bus schedule in Figure 4.3. Processor
1, on which the task is running, gets a bus slot of size 10 processor
cycles periodically assigned to it every 20th cycle. In this particular
example, a cache miss takes 10 cycles for the bus to transfer, resulting
in the bus being granted to processor 1 only at times t satisfying t ≡ 0
(mod 20), where ≡ is the congruence operator.

To calculate the worst-case program path, we must evaluate all feasi-
ble program paths in the control flow graph. In the very simple example
in Figure 4.2, there are 30 program paths1 to explore, growing exponen-
tially with the number of branches and loop bounds. Fortunately, due
to the nature of the compositional architecture and the TDMA bus, not
all of them have to be investigated explicitly. In fact, in a task graph
with all loops unrolled, each basic block would need to be investigated
exactly once, as will be explained in the following.

Let us denote the worst-case start time of a basic block Z by s(Z),
and the end time in the worst case by e(Z). The execution time of
a basic block Z, in the worst case, is then defined as w(Z) = e(Z) −
s(Z). Without considering bus conflicts, as in traditional methods,
the worst-case execution time of the basic blocks would be wtrad(B) =
27, wtrad(C) = 32, wtrad(E) = 19, wtrad(F) = 18 and wtrad(H) = 15.
The corresponding worst-case program path becomes C,E,E,E,H re-
sulting in a worst-case execution time of 27+19·3+15 = 104 clock cycles.
However, this assumes that all cache misses take the same amount of
time to transfer, and this is false in a multiprocessor system with a
shared communication structure. In our TDMA-based approach, the
execution time of a basic block depends on its start time in relation to
the bus schedule. We start from the root node and successively calculate
the execution time of each basic block with respect to the worst-case

12 + 22 + 23 + 24 = 30

24 CHAPTER 4. WORST-CASE EXECUTION TIME ANALYSIS

start time. At the same time, the worst-case path is calculated.
With respect to the TDMA schedule in figure 4.3, the worst-case

start times of the basic blocks connected directly to the root node is 0,
since they will never execute at any other time instant. The execution
time of block B, in the worst case, is w(B) = 0 + 10 + 2 + 18 + 5 = 35
whereas the corresponding execution time of block C is w(C) = 0+10+
9+11+3 = 33. Note that w(B) > w(C), even though the relation is the
opposite in the traditional case above where wtrad(B) < wtrad(C). In
order to decide which one of these two basic blocks is on the critical path,
two very important observations must be made based on the predictable
nature of the TDMA bus (and the compositionality considered in this
section).

1. The absolute end time of a basic block can never increase by letting
it start earlier. That is, a basic block Z with s(Z) = x and
e(Z) = y, any start time x′ < x will result in an end time y′ ≤ y.
The execution time of the particular basic block can increase, but
the increment can never exceed the difference x−x′ in start time.
This means that for a basic block Z, the basic block will never
end later than e(Z) as long as it start before (or at) s(Z). This
guarantees that the worst-case calculations will never be violated,
no matter what program path is taken. Note that w(Z) is the
execution time in the worst case, with respect to e(Z), and that
the time spent by executing Z can be greater than w(Z) for an
earlier start time than s(Z).

2. Consider a basic block Z with worst-case start time s(Z) = x and
worst-case end time e(Z) = y. If we, instead, assume a worst-case
start time of s(Z) = x′′ where x′′ > x, the corresponding resulting
absolute end time e(Z) = y′′ will always satisfy the relation y′′ ≥
y. This means that the greatest assumed worst-case start time
s(Z) will also result in the greatest absolute end time e(Z).

Based on the second observation, we can be sure that the maximum
absolute end time for the basic block (E, F or H) succeeding B and C
will be found when the worst-case start time is set to 35 rather than
33. Therefore, we conclude that B is on the worst-case program path
and, since they are not part of a loop, B and C do not have to be
investigated again.

Next follow three choices. We can enter the loop by executing either
E or F, or we can go directly to H and end the task immediately. Due

4.3. NONCOMPOSITIONAL ANALYSIS 25

to observation 2 above, we can conclude that the worst-case absolute
end time of H, and thus the entire task, will be achieved when the loop
iterates the maximum possible number of times, which is 3 iterations,
since that will maximize s(H). Therefore, the next step is to calculate
the worst-case execution time for basic blocks E and F respectively
for each of the three iterations, before finally calculating the worst-
case execution time of H. In the first iteration, the worst-case start
time is s(E1) = s(F1) = 35 and the execution times become w(E1) =
0+15+9 = 24 and w(F1) = 7+28+1 = 36 for E and F respectively. We
conclude that the worst-case program path so far is B,F and the new
start time is set to s(E2) = s(F2) = 35 + 36 = 71. In the second loop
iteration, we get w(E2) = 0 + 19 + 9 = 28 and w(F2) = 7 + 12 + 1 = 20.
Hence, in this iteration, E contributes to the worst-case program path
and the new worst-case start time becomes s(E3) = s(F3) = 99. In the
final iteration, the execution times are w(E3) = 0 + 11 + 9 = 20 and
w(F3) = 7 + 24 + 1 = 32 respectively, resulting in the new worst-case
start time s(H) = 131. We now know that the worst-case program path
is B,F,E,F,H, and since H contains no cache misses, and therefore
always takes 15 cycles to execute, the WCET of the entire task is e(H) =
146.

As shown in this example, in a loop-free control flow graph, each
basic block has to be visited once. For control flow graphs containing
loops, the number of investigations will be the same as for the case
where all loops are unrolled according to their respective loop bounds.
The result, when the graph is traversed, is a time-complexity not higher
than for traditional monoprocessor worst-case execution time analysis
techniques.

4.3 Noncompositional Analysis

In the presence of timing anomalies, it is no longer possible to do local
assumptions about the global worst case execution time. Therefore, for
such architectures, every program path has to be analyzed explicitly.
This is the case, not only for multiprocessor systems, but for any worst-
case execution time framework operating on a noncompositional plat-
form. Also, all steps in Figure 4.1, from the cache and pipeline analyses
and forward, must be integrated since it, for noncompositional archi-
tectures, is impossible to assume safe initial cache and pipeline states
for a basic block, regardless of the allowed pessimism. Since also tradi-

26 CHAPTER 4. WORST-CASE EXECUTION TIME ANALYSIS

tional WCET analysis operating on noncompositional hardware has to
perform a global search through all program paths, the modifications in
order to make it aware of the TDMA bus is, in theory, straight-forward.
To adapt a traditional noncompositional WCET analysis technique to
the class of multiprocessor systems described in Chapter 2, for each
considered cache miss, the bus schedule has to be searched in order to
find the start and end times of the corresponding bus transfer. This op-
eration is of linear complexity and will therefore not increase the total,
already exponential, complexity of the traditional worst-case execution
time analysis.

5

Bus Schedule Optimization

Given any TDMA bus schedule, the WCET analysis framework de-
scribed in Chapter 4 calculates a safe worst-case execution time. This
means that the WCET of a task is directly dependent on the bus sched-
ule. This chapter describes how to generate a bus schedule, while sat-
isfying various efficiency requirements. At the end of the chapter, we
present experimental results showing the efficiency of our approach.

5.1 WCGD Optimization

Since the bus schedule is directly affecting the worst-case execution time
of the tasks, and consequently also the worst-case global delay of the
application, it is important that it is chosen carefully. Ideally, when
constructing the bus schedule, we would like to allocate a time slot for
each individual cache miss on the worst-case control flow path, granting
access to the bus immediately when it is requested. There are, however,
two significant problems preventing us from doing this. The first one is
that several processors can issue a cache miss at the same time instant,
creating conflicts on the bus. The second problem is that allocating bus

27

28 CHAPTER 5. BUS SCHEDULE OPTIMIZATION

slots for each individual memory transfer would create a very irregular
bus schedule, requiring an unfeasible amount of memory space on the
bus controller.

In order to solve the problem of irregular, memory consuming bus
schedules, some restrictions on the TDMA round complexity need to be
imposed. For instance, an efficient strategy is to allow each processor
to own a maximum number of slots per round. Other limitations can
be to let each round have the same slot order, or to force the slots in a
specific round to have the same size. In this chapter, we assume that
every processor can own at most one bus slot per round. The slots
in a round can have different sizes, and the order can be set without
restrictions. However, it is straight-forward to adapt this algorithm to
more (or less) flexible bus schedule design rules. In addition to the main
algorithm, we present a simplified algorithm for the special case where
all slots in a round must be of the same size.

The problem of handling cache miss conflicts is solved by distributing
the bus bandwidth such that the transfer times of cache misses, con-
tributing directly to the worst-case global delay, are minimized. This
is done in the inner loop of the overall approach outlined in Figure 3.3.
For the optimization process, we start by defining a cost function that
estimates the worst-case global delay as a function of the bandwidth
distribution. A detailed description will follow in the next section.

5.2 Cost Function

Given a set of active tasks τi ∈ Ψ (see Figure 3.3), the goal is now to
generate a close to optimal bus segment schedule with respect to Ψ. An
optimal bus schedule, however, is a bus schedule taking into account
the global context, minimizing the global delay of the application. This
global delay includes tasks not yet considered and for which no bus
schedule has been defined. This requires knowledge about future tasks,
not yet analyzed, and, therefore, we must find ways to approximate
their influence on the global delay.

In order to estimate the global delay, we first build a schedule Sλ

of the tasks not yet analyzed, using a list scheduling technique. When
building Sλ we approximate the WCET of each task by its respective
worst-case execution time in the naive case, where no conflicts occur
on the bus and any task can access the bus at any time. From now
on we refer to this conflict-free WCET as NWCET (Naive Worst-Case

5.2. COST FUNCTION 29

C
PU

1
C

PU
2

(a) Gantt chart with respect to the NWCET of each task
0 3 11 14 18 21

t

t

τ
1

τ
2

τ
3

τ
4

τ
5

τ
6

τ
7

Λ
C

PU
1

C
PU

2

(b) Gantt chart with optmized bus schedule for τ
1

0 4 14 17 21 24

t

t

τ
1

τ
2

τ
3

τ
4

τ
5

τ
6

τ
7

Λ

6 9

Λ+Δ

C
PU

1
C

PU
2

(c) Gantt chart with optimized bus schedule for τ
2

0 4 15 19 21 22

t

t

τ
1

τ
2

τ
3

τ
4

τ
5

τ
6

τ
7

Λ

7 12

Λ+Δ

8

Figure 5.1 Estimating the global delay

Execution Time).

When optimizing the bus schedule for the tasks τ ∈ Ψ, we need an
approximation of how the WCET of one task τi ∈ Ψ affects the global
delay. Let Di be the union of the set of all tasks depending directly on
τi in the process graph, and the singleton set containing the first task
in Sλ that is scheduled on the same processor as τi. We now define the
tail λi of a task τi recursively as:

• λi = 0, if Di = ∅

• λi = max
τj∈Di

(xj + λj), otherwise.

where xj = NWCETj if τj is a computation task. For communication
tasks, xj is an estimation of the communication time, depending on the
length of the message. Intuitively, λi can be seen as the length of the
longest (with respect to the NWCET) chain of tasks that are affected
by the execution time of τi. Without any loss of generality, in order
to simplify the presentation, only computation tasks are considered in
the examples of this section. Consider Figure 5.1a, illustrating a Gantt
chart of tasks scheduled according to their NWCETs. Direct data de-
pendencies exist between tasks τ4 & τ5, τ5 & τ6, and τ5 & τ7; hence,

30 CHAPTER 5. BUS SCHEDULE OPTIMIZATION

for instance, D3 = {τ5} and D4 = {τ5, τ7}. The tails of the tasks are:
λ7 = λ6 = 0 (since D7 = D6 = ∅), λ5 = 7, λ4 = λ3 = 10, λ2 = 18 and
λ1 = 15.

Since our concern when optimizing the bus schedule for the tasks in
Ψ is to minimize the global delay, a cost function taking λi into account
can be formulated as follows:

CΨ,θ = max
τi∈Ψ

(θ + WCETθ
i + λi) (5.1)

where WCETθ
i is defined as the length of that portion of the worst case

execution path of task τi which is executed after time θ.

5.3 Optimization Approach

The optimization algorithm is outlined in Figure 5.2.

1. Calculate initial slot sizes.

2. Calculate an initial slot order.

3. Analyze the WCET of each task τ ∈ Ψ and

evaluate the result according to the cost

function.

4. Generate a new slot order candidate and

repeat from 3 until all candidates are

evaluated.

5. Generate a new slot size candidate and

repeat from 2 until the exit condition is

met.

6. The best configuration according to the cost

function is then used.

Figure 5.2 The optimization approach

These steps will now be explained in detail, starting with the inner
loop that decides the order of the slots. Given a specific slot size, we
search the order of slots that yields the best cost.

5.3.1 Slot Order Selection

At step 2 of the algorithm in Figure 5.2, a default initial order is set.
When step 4 is reached for the first time, after calculating a cost for
the current slot configuration, the task τi ∈ Ψ that is maximizing the
cost function in Equation 5.1 is identified. We then construct n − 1

5.3. OPTIMIZATION APPROACH 31

new bus schedule candidates, n being the number of tasks in the set
Ψ, by moving the slot corresponding to this task τi, one position at a
time, within the TDMA round. The best configuration with respect to
the cost function is then selected. Next, we check if any new task τj ,
different from τi, now has taken over the role of maximizing the cost
function. If so, the procedure is repeated, otherwise it is terminated.

5.3.2 Determination of Initial Slot Sizes

At step 1 of the algorithm in Figure 5.2, the initial slot sizes are dimen-
sioned based on an estimation of how the slot size of an individual task
τi ∈ Ψ affects the global delay.

Consider λi, as defined in Section 5.2. Since it is a sum of the
NWCETs of the tasks forming the tail of τi, it will never exceed the
accumulative WCET of the same sequence of tasks. Consequently, if
we for all τi ∈ Ψ define

Λ = max
τi∈Ψ

(NWCETθ
i + λi) (5.2)

where NWCETθ
i is the NWCET of task τi ∈ Ψ counting from time θ,

a lower limit of the global delay can be calculated by θ + Λ. This is
illustrated in Figure 5.1a, for θ = 0. Furthermore, let us define ∆ as
the amount by which the estimated global delay increases due to the
time each task τi ∈ Ψ has to wait for the bus.

See Figure 5.1b for an example. Contrary to Figure 5.1a, τ1 and τ2

are now considered using their real WCETs, calculated according to a
particular bus schedule (Ψ = {τ1, τ2}). The corresponding expansion
∆ is 3 time units. Now, in order to minimize ∆, we want to express a
relation between the global delay and the actual bus schedule. For task
τi ∈ Ψ, we define mi as the number of remaining cache misses on the
worst case path, counting from time θ. Similarly, also counting from θ,
li is defined as the sum of each code segment and can thus be seen as
the length of the task minus the time it spends using the bus or waiting
for it (both mi and li are determined by the WCET analysis). Hence,
if we define the constant k as the time it takes to process a cache miss
when ignoring bus conflicts, we get

NWCETθ
i = li +mik (5.3)

As an example, consider Figure 5.3a showing a task execution trace, in
the case where no other tasks are competing for the bus. A black box

32 CHAPTER 5. BUS SCHEDULE OPTIMIZATION

τ
1

0

τ
2

0

δ
1
=32 k

(a) The anatomy of a task
δ
2
=30 δ

3
=25 δ

4
=28

δ'
1
=32 δ'

2
=30 δ'

3
=25

(b) The anatomy of a subtask

λ'
2

τ'
2

Θ
2

t

t

Figure 5.3 Close-up of two tasks

represents the idle time, waiting for the transfer, due to a cache miss,
to complete. In this example m1 = 4 and l1 = δ1 + δ2 + δ3 + δ4 = 115.

Let us now, with respect to the particular bus schedule, denote the
average waiting time of task τi by di. That is, di is the average time
task τi spends waiting, due to other processors owning the bus and the
actual time of the transfer itself, every time a cache miss has to be
transferred on the bus. Then, analogous to Equation 5.3, the WCET
of task τi, counting from time θ, can be calculated as

WCETθ
i = li +midi (5.4)

The dependency between a set of average waiting times di and a bus
schedule can be modeled as follows. Consider the distribution P, defined
as the set p1, . . . , pn, where

∑
pi = 1. The value of pi represents the

fraction of bus bandwidth that, according to a particular bus schedule,
belongs to the processor running task τi ∈ Ψ. Given this model, the
average waiting times can be rewritten as

di =
1

pi
k (5.5)

Putting Equations 5.2, 5.4, and 5.5 together and noting that Λ has been
calculated as a maximum over all τi ∈ Ψ, we can formulate the following

5.3. OPTIMIZATION APPROACH 33

system of inequalities:

θ + l1 +m1
1

p1
k + λ1 ≤ θ + Λ + ∆

...

θ + ln +mn
1

pn
k + λn ≤ θ + Λ + ∆

p1 + · · ·+ pn = 1

What we want is to find the bus bandwidth distribution P that results
in the minimum ∆ satisfying the above system. Unfortunately, solving
this system is difficult due to its enormous solution space. However, an
important observation that simplifies the process can be made, based
on the fact that the slot distribution is represented by continuous vari-
ables p. Consider a configuration of p1, . . . , pn, ∆ satisfying the above
system, and where at least one of the inequalities are not satisfied by
equality. We say that the corresponding task τi is not on the critical
path with respect to the schedule, meaning that its corresponding pi
can be decreased, causing τi to expand over time without affecting the
global delay. Since the values of p must sum to 1, decreasing pi, allows
for increasing the percentage of the bus given to the tasks τ that are on
the critical path. Even though the decrease might be infinitesimal, this
makes the critical path shorter, and thus ∆ is reduced. Consequently
the smallest ∆ that satisfies the system of inequalities is achieved when
every inequality is satisfied by equality. As an example, consider Figure
5.1b and note that τ5 is an element in both sets D3 and D4 according
to the definition in Section 5.2. This means that τ5 is allowed to start
first when both τ3 and τ4 have finished executing. Secondly, observe
that τ5 is on the critical path, thus being a direct contributor to the
global delay. Therefore, to minimize the global delay, we must make τ5

start as early as possible. In Figure 5.1b, the start time of τ5 is defined
by the finishing time of τ4, which also is on the critical path. However,
since there is a block of slack space between τ3 and τ5, we can reduce
the execution time of τ2 and thus make τ4 finish earlier, by distributing
more bus bandwidth to the corresponding processor. This will make the
execution time of τ1 longer (since it receives less bus bandwidth), but
as long as τ3 ends before τ4, the global delay will decrease. However, if
τ3 expands beyond the finishing point of τ4, the former will now be on
the critical path instead. Consequently, making task τ3 and τ4 end at
the same time, by distributing the bus bandwidth such that the sizes of

34 CHAPTER 5. BUS SCHEDULE OPTIMIZATION

CPU1

CPU2

CPU3

(a)

(b)

(c)

Figure 5.4 Calculation of new slot sizes

τ1 and τ2 are adjusted properly, will result in the earliest possible start
time of τ5, minimizing ∆. In this case the inequalities corresponding to
both τ1 and τ2 are satisfied by equality. Such a distribution is illustrated
in Figure 5.1c.

The resulting system consists of n+ 1 equations and n+ 1 variables
(p1, . . . , pn and ∆), meaning that it has exactly one solution, and
even though it is nonlinear, it is simple to solve. Using the resulting
distribution, a corresponding initial TDMA bus schedule is calculated
by setting the slot sizes to values proportional to P .

5.3.3 Generation of New Slot Size Candidates

One of the possible problems with the slot sizes defined as in Section
5.3.2 is the following: if one processor gets a very small share of the bus
bandwidth, the slot sizes assigned to the other processors can become
very large, possibly resulting in long wait times. By reducing the sizes
of the larger slots while trying to keep their mutual proportions, this
problem can be avoided.

We illustrate the idea with an example. Consider a round consisting
of three slots ordered as in Figure 5.4a. The slot sizes have been dimen-
sioned according to a bus distribution P = {0.49, 0.33, 0.18}, calculated
using the method in Section 5.3.2. The smallest slot, belonging to CPU
3, has been set to the minimum slot size k, and the remaining slot sizes
are dimensioned proportionally 1 as multiples of k. Consequently, the
initial slot sizes become 3k, 2k and k. In order to generate the next set
of candidate slot sizes, we define P ′ as the actual bus distribution of
the generated round. Considering the actual slot sizes, the bus distri-
bution becomes P ′ = {0.50, 0.33, 0.17}. Since very large slots assigned
to a certain processor can introduce long wait times for tasks running

1While slot sizes, in theory, do not have to be multiples of the minimum slot size
k, in practice this is preferred as it avoids introducing unnecessary slack on the bus.

5.3. OPTIMIZATION APPROACH 35

on other processors, we want to decrease the size of slots, but still keep
close to the proportions defined by the bus distribution P . Consider
once again Figure 5.4a. Since, p′1− p1 > p′2− p2 > p′3− p3, we conclude
that slot 1 has the maximum deviation from its supposed value. Hence,
as illustrated in Figure 5.4b, the size of slot 1 is decreased one unit.
This slot size configuration corresponds to a new actual distribution
P ′ = {0.40, 0.40, 0.20}. Now p′2 − p2 > p′3 − p3 > p′1 − p1, hence the
size of slot 2 is decreased one unit and the result is shown in Figure
5.4c. Note that in the next iteration, p′3 − p3 > p′1 − p1 > p′2 − p2, but
since slot 3 cannot be further decreased, we recalculate both P and P ′,
now excluding this slot. The resulting sets are P = {0.60, 0.40} and
P ′ = {0.67, 0.33}, and hence slot 1 is decreased one unit. From now
on, only slot 1 and 2 are considered, and the remaining procedure is
carried out in exactly the same way as before. When this procedure
is continued as above, all slot sizes will converge towards k which, of
course, is not the desired result. Hence, after each iteration, the cost
function (Equation 5.1) is evaluated and the process is continued only
until no improvement is registered for a specified number π of itera-
tions. The best ever slot sizes (with respect to the cost function) are,
finally, selected. Accepting a number of steps without improvement
makes it possible to escape certain local minima (in our experiments we
use 8 < π < 40, depending on the number of processors).

5.3.4 Density Regions

A problem with the technique presented above is that it assumes that
the cache misses are evenly distributed throughout the task. For most
tasks, this is not the case in reality. A solution to this problem is
to analyze the internal cache miss structure of the actual task and,
accordingly, divide the worst case path into disjunct intervals, so called
density regions. A density region is defined as an interval of the path
where the distance between consecutive cache misses (δ in Figure 5.3)
does not differ more than a specified number. In this context, if we
denote by α the average time between two consecutive cache misses
(inside a region), the density of a region is defined as 1

α+1 . A region
with high density, close to 1, has very frequent cache misses, while the
opposite holds for a low-density region.

Consequently, in the beginning of the optimization loop, we identify
the next density region for each task τi ∈ Ψ. Now, instead of construct-
ing a bus schedule with respect to each entire task τi ∈ Ψ, only the

36 CHAPTER 5. BUS SCHEDULE OPTIMIZATION

interval [θ..Θi) is considered, with Θi representing the end of the den-
sity region. We call this interval of the task a subtask since it will be
treated as a task of its own. Figure 5.3b shows a task τ2 with two den-
sity regions, the first one corresponding to the subtask τ ′2. The tail of τ ′2
is calculated as λ′2 = λ′′2 + λ2, with λ′′2 being defined as the NWCET of
τ2 counting from Θ2. Furthermore, in this particular example m′2 = 3
and l′2 = δ′1 + δ′2 + δ′3 = 87.

Consider Figure 3.3 illustrating the overall approach. Analogous to
the case where entire tasks are analyzed, when a bus schedule for the
current bus segment has been decided, θ′ will be set to the finish time of
the first subtask. Just as before, the entire procedure is then repeated
for θ = θ′.

However, modifying the bus schedule can cause the worst-case con-
trol flow path to change. Therefore, the entire cache miss structure
can be transformed during the optimization procedure (lines 4 and 5 in
Figure 5.2), resulting in possible changes with respect to both subtask
density and size. We solve this problem by using an iterative approach,
adapting the bus schedule to possible changes of the subtask structure
while making sure that the total cost is decreasing. This procedure will
be described in the following paragraphs.

Subtask Evaluation

First, let us in this context define two different cost functions, both
based on Equation 5.1. Let τ

′end
i be the end time of subtask τ ′i , and

define τ
′end as:

τ
′end = min

τi∈Ψ
(τ

′end
i) (5.6)

Furthermore, let NWCETτ
′end

i be the NWCET of the task τi, count-
ing from τ

′end to the end of the task. The subtask cost C
′
Ψ,θ can now

be defined as:

C
′
Ψ,θ = max

τi∈Ψ
(τ

′end + NWCETτ
′end

i + λi) (5.7)

Hence, the subtask cost is a straight-forward adaption of the cost func-
tion in Equation 5.1 to the concept of subtasks. Instead of using the
worst-case execution time of the entire task, only the part correspond-
ing to the first density region after time θ is considered. The rest of

5.3. OPTIMIZATION APPROACH 37

the task, from the end of the first density region to the end of the en-
tire task, is accounted for in the tail, with respect to its corresponding
NWCET.

In order to more accurately approximate how the subtask affects the
worst-case global delay, we also introduce its complementary task cost

C
′′
Ψ,θ in addition to the subtask cost. Let WCETτ

′end

i be the worst-case

execution time of task τi starting from time τ
′end. We here assume that

WCETτ
′end

i has been calculated with respect to a tailored bus segment,
starting after τ

′end. The bus schedule representing this bus segment
is calculated considering the cache miss structure of the corresponding
part of the task, for instance by using the algorithm described in Section
5.3.2 for calculating initial slot sizes. This way we can approximate the
transfer delays of the cache misses between τ

′end and the end of the task,
instead of using the corresponding NWCET (as is done when calculating
the subtask cost). The complementary task cost can be defined as:

C
′′
Ψ,θ = max

τi∈Ψ
(τ

′end + WCETτ
′end

i + λi) (5.8)

Note that the only difference between this cost function and the
previous one in Equation 5.7 is that we now use a calculated WCET for
the remaining part of the task, instead of the NWCET. Consequently,
the complementary task cost is always greater than or equal to the
subtask cost. The problem with using the NWCET, as done when
calculating the subtask cost, is that small subtasks tend to be favored.
The complimentary cost is more precise, but also more time-consuming
to calculate. Therefore the idea is to use it only when necessary.

With the two cost functions defined, we can formulate an algorithm
for subtask evaluation, presented in Figure 5.5. In step 2, the tasks
τi ∈ Ψ are analyzed, in their entirety, in order to achieve an initial cache
miss structure. This structure is then used to identify the first subtask
τ ′i of each task (step 3), and to calculate an initial bus schedule (step
4). In order to evaluate the bus schedule, the complementary cost is
evaluated in step 5. In step 8, the bus schedule is modified with respect
to the subtasks τi. The algorithms, changing the slot sizes and order
of the current TDMA round, used for these modifications can be found
in Section 5.3.3 and Section 5.3.1. In step 9, the first corresponding
subtask τ ′i of each task τi ∈ Ψ is reidentified with respect to the new
cache miss structure, and an updated cost is calculated (by using the

38 CHAPTER 5. BUS SCHEDULE OPTIMIZATION

less expensive subtask cost function). If this cost is an improvement of
the previous cost2, we also evaluate the complementary cost C

′′
Ψ,θ. If

the new complementary cost is lower than the best cost Cbest
inner found so

far in the inner loop, we update Cbest
inner to this new lowest cost.

We then try to modify the bus schedule further until no more im-
provements are found (steps 8-12). Consequently, reaching step 13
means two things. Either we have found the best bus schedule, or the
worst-case control flow path has changed during the iterations, result-
ing in a different cache miss structure, not suitable for the generated
bus schedule (again, note that the steps 8-12 try to improve the ini-
tial sizes calculated, with respect to a specific density, in step 4). If
Cbest

inner = Cbest
outer, we did not manage to improve the existing best cost

from the last time the inner loop was visited, and the algorithm is
halted. If Cbest

inner < Cbest
outer, on the other hand, we identify new subtasks

with respect to the improved bus schedule (step 3), and repeat the pro-
cedure. Note that this algorithm will always converge since it never
accepts solutions that lead to higher costs.

5.4 Simplified Algorithm

For the case where all slots of a round have to be of the same, round-
specific size, calculating the distribution P makes little sense. Therefore,
we also propose a simpler, but quality-wise equally efficient algorithm,
tailor-made for this class of more limited bus schedules. The slot order-
ing mechanisms are still the same as for the main algorithm, but the
procedures for calculating the slot sizes are now vastly simplified. The
algorithm is summarized in Figure 5.6.

In step 1, we start by using the smallest possible slot size, since this
will minimize the maximum transfer delay. Next, an initial slot order,
chosen arbitrarily, is specified in step 2. The slot order candidates are
then generated just as in the general algorithm, by changing the position
of the slot belonging to the processor on the critical path. After finding
the best order for a particular slot size, the latter is modified by, for
instance, increasing it k steps. After an appropriate slot size is found, it
can also be ”‘fine tuned”’ by increasing or decreasing the size by a very
small amount, less than k. Since all processors get the same amount

2In the opposite case, for which no improvement of the cost was made, there is
no need to calculate C

′′
Ψ,θ since C

′
Ψ,θ < C

′′
Ψ,θ.

5.5. MEMORY CONSUMPTION 39

1. Set Cbest
outer = ∞.

2. Calculate initial slot sizes with respect

to all tasks τi ∈ Ψ.

3. For each task τi ∈ Ψ, calculate the WCET

and identify the corresponding first

subtask τ ′i.
4. Calculate the initial slot sizes with

respect to the subtasks τ ′i.
5. Calculate the complementary task cost

C
′′
Ψ,θ.

6. If C
′′
Ψ,θ < Cbest

outer, set Cbest
outer = C

′′
Ψ,θ.

7. Set Cbest
inner = Cbest

outer.

8. Modify the bus schedule with respect to

the cache miss structure of τ ′i.
9. Once again, for each task τi ∈ Ψ,

calculate the WCET and identify the first

corresponding subtask τ ′i.

10. Calculate the subtask cost C
′
Ψ,θ.

11. If C
′
Ψ,θ < Cbest

inner, calculate the

complementary task cost C
′′
Ψ,θ and, if

C
′′
Ψ,θ < Cbest

inner, set Cbest
inner = C

′′
Ψ,θ.

12. Repeat from 8 until no improvements have

been made for N iterations.

13. If Cbest
inner < Cbest

outer then set Cbest
outer = Cbest

inner

and goto 3

14. Use the bus schedule corresponding to

Cbest
outer for the interval between θ and the

end time of the subtask that finished

first, and update θ to this end time.

Figure 5.5 Subtask evaluation algorithm

of bus bandwidth, the concept of density regions is not useful in this
simplified approach.

5.5 Memory Consumption

As stated in Section 2.3, a TDMA bus schedule is composed of segments.
Therefore, the amount of memory space needed to store the bus schedule
is defined by the number of segments and the complexity restrictions
imposed, by the system designer, on the underlying TDMA rounds. In
order to calculate an upper bound on the number of segments needed,
we make the observation that a new segment is created at every time

40 CHAPTER 5. BUS SCHEDULE OPTIMIZATION

1. Initialize the slot sizes to the minimum

size k.
2. Calculate an initial slot order.

3. Analyze the WCET of each task τ ∈ Ψ and

evaluate the result according to the cost

function.

4. Generate a new slot order candidate and

repeat from 3 until all candidates are

evaluated.

5. Increase the slot sizes one step.

6. If no improvements were achieved during a

specified number of iterations then exit.

Otherwise repeat from 2.

7. The best configuration according to the

cost function is then used.

Figure 5.6 The simplified optimization approach

t when at least one task starts or finishes. For the case when density
regions are not used, these are also the only times when a new segment
will be created. Hence, an upper bound on the number of segments is
2|Π|, where Π is the set of all tasks as defined in Chapter 2.

When using density regions, the start and finish of every region can
result in a new segment each. Therefore, tasks divided into very many
small density regions will result in bus schedules consuming more mem-
ory. A straight-forward solution is to limit, according to the available
controller memory, the minimum size of a density region. For instance,
if the minimum density region size for a task τi is x% of the task length
li as defined above, the number of generated segments becomes at most
2|Π|100

x .

5.6 Experimental Results

The complete flow illustrated in Figure 3.3 has been implemented and
used as a platform for the experiments presented in this section. The bus
schedule synthesis was carried out on a general purpose PC with a dual
core Pentium 4 processor, running at 2.8 GHz. We have developed a
WCET analysis tool, using SymTA/P from Braunschweig University as
starting point, based on the considerations in Chapter 4. A system-on-
chip design according to Chapter 2, consisting of several ARM7 cores, is
assumed for the worst-case execution time analysis. For these examples,

5.6. EXPERIMENTAL RESULTS 41

0 10

Slot start Owner
0 CPU1

10 CPU2
40 CPU1
60 CPU2
70 CPU1

40 60

...Bus

Slot belonging to CPU1
Slot belonging to CPU2

... ...

70

Figure 5.7 BSA1 bus schedule

we have assumed that 12 clock cycles are required to handle a memory
access due to a cache miss.

5.6.1 Bus Schedule Approaches

To evaluate our algorithms, we defined four bus schedule approaches
of varying complexity. The least restrictive approach, BSA1, imposes
no restrictions at all and is therefore mostly of interest for comparisons
with the other approaches. Since there is no requirement for regularity,
a BSA1 schedule is composed by only one segment, consisting of a
(very complex) round having the same size as the segment itself. Each
processor can own any number of slots of different sizes, and the order
of the slots is arbitrary. An example of a BSA1 bus schedule and its
table representation can be found in Figure 5.7.

With the more restrictive BSA2, each processor can own at most one
bus slot per round. However, the slots in a round can still have different
sizes, and the order can be set arbitrarily. Imposing this restriction on
the round dramatically decreases the memory needed to store the bus
schedule, since the regularity can be used to store it in an efficient
fashion. An example of a BSA2 bus schedule is depicted in Figure
5.8. The first segment starts at time unit 0 and ends at time unit 60,
immediately followed by the second segment. The main algorithm in
this chapter assumes that a BSA2 bus schedule is used.

BSA3 is as BSA2 but with the additional restriction that all slots

42 CHAPTER 5. BUS SCHEDULE OPTIMIZATION

0 10

Slot sizeOwner
10CPU1
20CPU2
10CPU2
10CPU1
......

30 40

...Bus

Slot belonging to CPU1
Slot belonging to CPU2

60 70 80 90 100

Segment start

0

60

...

Figure 5.8 BSA2 bus schedule

0 10

Slot sizeOwner

10
CPU2
CPU1

20
CPU1
CPU2

......

20 30

...Bus

Slot belonging to CPU1
Slot belonging to CPU2

40 60 80 100 120

Segment start

0

40

...

Figure 5.9 BSA3 bus schedule

in a round must be of the same size, regardless of owner. This further
decreases the amount of memory required on the bus arbiter, since only
one size has to be stored for each round, regardless of the number of
slots. The order is, however, still arbitrary, just as for BSA2. An
example is illustrated in Figure 5.9. The simplified algorithm explained
in this chapter operates on BSA3 bus schedules.

We have also defined a fourth approach, BSA4, which is as BSA3
but with the very strong restriction of allowing only bus schedules con-
stituted by one segment (and thus one round). This requires almost no

5.6. EXPERIMENTAL RESULTS 43

0 20

Slot sizeOwner

20
CPU2
CPU1

...Bus

Slot belonging to CPU1
Slot belonging to CPU2

40 60 80 100 120

Segment start

0

Figure 5.10 BSA4 bus schedule

memory at all on the bus arbiter. Since this approach is extremely lim-
ited, it is interesting mostly for comparisons with the other approaches,
just as for BSA1. An example is shown in Figure 5.10

5.6.2 Synthetic Benchmarks

Our first set of experiments was done using benchmarks consisting of
randomly generated task graphs with 50 to 200 tasks. The individual
tasks were generated according to control flow graphs extracted from
various C programs, such as algorithms for sorting, searching, matrix
multiplications and DSP processing. We have run experiments for con-
figurations consisting of 2 to 10 processors, and for each configuration,
50 randomly generated task graphs were used and an average WCGD
was calculated.

For comparison, this set of experiments was carried out using each of
the four bus scheduling approaches defined in Section 5.6.1. In addition,
to use as a baseline for evaluating our algorithms, the WCGD was
also calculated assuming immediate access to the bus for all processors,
resulting in no memory access being delayed. Note that this is an
unrealistic assumption, even for a hypothetical optimal bus schedule,
resulting in optimistic and unsafe results. Nevertheless, this would be
the (wrong!) result if traditional worst-case execution time analysis
methods were used.

The result of our experiments is depicted in Figure 5.11. The di-
agram corresponding to each bus scheduling approach represents how
many times larger the respective average WCGD is, in relation to the
baseline. As can be seen, not surprisingly, BSA1 produces the shortest

44 CHAPTER 5. BUS SCHEDULE OPTIMIZATION

1 2 3 4 5 6 7 8 9 10
1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2

BSA1
BSA2
BSA3
BSA4

Number of Processors

N
or

m
al

iz
ed

 S
ch

ed
ul

e
Le

ng
th

Figure 5.11 Four bus access policies

worst-case global delays. This is expected, since the corresponding bus
schedules have no restrictions with respect to flexibility. The results
produced by BSA2 and BSA3 are, however, not at all far behind. This
shows that the price for obtaining regular bus schedules, which can be
fitted into memories with a relatively small capacity, is very low. The
poor flexibility provided by BSA4, on the other hand, is not enough,
and for large bus schedules, the results become inferior.

In a second set of experiments, we have compared the BSA2 and
BSA3 bus scheduling approaches, since they are the important alterna-
tives from a practical viewpoint. In particular, we were interested in
the efficiency of these policies for applications with different cache miss
patterns. A cache miss pattern of a particular task is, in this context,
characterized by the standard deviation of the set of time-intervals be-
tween all consecutive cache misses. Three classes of applications, each
one representing a different level of cache miss irregularity, were cre-
ated. Every application was composed, according to a randomized task
graph, by 20 randomly generated tasks, and each class contained 30
applications. For all tasks, the average distance between consecutive
caches misses was 73 clock cycles.

The first class of applications was generated with a uniformly dis-
tributed cache miss pattern, corresponding to a standard deviation of

5.6. EXPERIMENTAL RESULTS 45

0 clock cycles. The other two classes had a more irregular cache miss
structure, corresponding to standard deviations of 50 and 150 clock cy-
cles, respectively. Just as for the previous set of examples, the unsafe
traditional case, where no processor ever has to wait for the bus, is used
as a baseline. A comparison of the resulting average worst-case global
delays is shown in Figure 5.12. It is expected that the two approaches
produce the same worst-case global delays for very regular cache miss
structures since, most of the time, all processors will demand an equal
amount of bus bandwidth. However, as the irregularity of the cache
miss structure increases, the ability of BSA2 to distribute the band-
width more freely becomes more and more of an advantage.

We also carried out a third set of experiments, demonstrating the
efficiency of the successive steps of our main bus access optimization
algorithm. The same three classes of applications were used as for the
previous set, as well as the same baseline. The results are presented in
Figure 5.13. The ISS bar represents the average worst-case global delay
obtained using the initial slot sizes, calculated as described in Section
5.3.2. The SSA bar corresponds to the average WCGD after slot size
adjustments, as described in Section 5.3.3, have been performed as well.
Finally, the DS bar shows the result of also applying the concept of
density regions, according to Section 5.3.4, in addition to the previous
two steps. As expected, density regions are efficient for irregular cache
miss patterns, but do not help if the structure is uniformly distributed.

The execution time, for the whole flow, of an example consisting of
100 tasks on 10 processors is 120 minutes for the BSA2 algorithm and
5 minutes for the simplified BSA3 version.

5.6.3 Real-Life Example

In order to validate the real-world applicability of this approach, we
have also analyzed a smart phone. It consists of a GSM encoder, GSM
decoder and an MP3 decoder, mapped on four ARM7 processors. The
GSM encoder and decoder are mapped on one processor each, whereas
the MP3 decoder is mapped on two processors. The software appli-
cations have been partitioned into 64 tasks, and the size of one such
task is between 70 and 1304 lines of C code for the GSM codec, and
200 and 2035 lines for the MP3 decoder. We have assumed a 4-way
set associative instruction cache with a size of 4 kilobytes and a direct
mapped data cache of the same size. The worst-case global delay was
calculated using the four bus scheduling approaches defined in Section

46 CHAPTER 5. BUS SCHEDULE OPTIMIZATION

0 50 150
1

1,1

1,2

1,3

1,4

1,5

1,6

BSA3
BSA2

Standard Deviation

N
or

m
al

iz
ed

 S
ch

ed
ul

e
Le

ng
th

Figure 5.12 Comparison between BSA2 and BSA3

0 50 150
1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

ISS
SSA
DS

Standard Deviation

N
or

m
al

iz
ed

 S
ch

ed
ul

e
Le

ng
th

Figure 5.13 BSA2 optimization steps

5.6.1. For comparison, we also calculated the WCGD assuming, un-
realistically, immediate access to the bus for each processor, as done
by traditional worst-case execution time analysis techniques. Table 5.1
shows, for each of the four bus scheduling approaches, how many times
larger the obtained safe worst-case global delay is compared to the un-
realistic counterpart. As can be seen, the results are coherent with the
experiments in Section 5.6.2.

5.6. EXPERIMENTAL RESULTS 47

BSA1 BSA2 BSA3 BSA4

1.17 1.31 1.33 1.62

Table 5.1 Results for the smart phone

48 CHAPTER 5. BUS SCHEDULE OPTIMIZATION

6

Worst/Average-Case
Optimization

When optimizing a system platform for a hard real-time application, the
goal is, traditionally, to minimize the worst-case global delay. However,
the worst-case program path of an application is in most cases taken
very seldom, and doing so generally leads to a much longer execution
time than what can be expected on average, resulting in a gap between
the WCGD and the average-case global delay (ACGD). Therefore, when
designing periodic systems, there will be a significant interval of time
after the program has finished until the next period starts. During this
time interval, the processors are free to be used for anything, as long
as they are ready and available at the start of the new period. Thus,
instead of just letting them be idle, doing nothing, we can utilize this
slack for performing computations not requiring strict predictability, or
we can just shut off the processors to save energy. Consequently, it
can be of great interest that the average-case global delay is as short as
possible, even for hard real-time systems. In this chapter, we present an
efficient algorithm for obtaining predictable real-time applications with
a low average-case global delay, while still keeping the WCGD close to
a minimum.

49

50 CHAPTER 6. WORST/AVERAGE-CASE OPTIMIZATION

6.1 Motivation

Consider the hard real-time application in Figure 6.1a, composed of the
three tasks τ1, τ2 and τ3 running on two processors. The application
is periodically executed with a period equal to the worst-case global
delay. After finishing the last computation, the processors are powered
off, until the start of the next period, to save energy. Consequently, in
the average case, the processors are shut off between the time instants
ACGD and WCGD, and since the goal is to reduce the power consump-
tion as much as possible, we would like to maximize this time interval.
However, we also want to have a short period and, therefore, the worst-
case global delay must remain small. Hence, optimizing for the average
case without caring for the worst case is not suitable for this kind of
systems. On the other hand, if we optimize for the ACGD while also
making sure that the WCGD is kept at a near-minimum, it is possi-
ble to benefit from a substantial reduction of power consumption while
extending the application period only marginally. This is exactly the
case in Figure 6.1b, where it can be seen that the energy consumed for
running the application is dramatically reduced, but since the WCGD
is increased only by a small amount, the application period can still be
kept low.

The interval between the end time of the application and the WCGD
can, obviously, also be used for other purposes than switching off the
processors. In Figure 6.1c, we have used the remaining time, after the
end of the application, for running best effort calculations, represented
by the tasks τ4, τ5 and τ6. These tasks can, if needed, be preempted at
the end of the application period.

Another example, outside the traditional hard real-time domain, can
be found in Figure 6.2. The application, consisting of the three tasks
τ1, τ2 and τ3 running on two processors is, at the end of its execution,
writing a produced result to a FIFO buffer and is then immediately
restarted. An external consumer is periodically reading data from the
other end of the buffer. For such systems, a small ACGD allows for
high data rates, but in order to guarantee a minimum rate and to help
the system designer dimension the buffer, the WCGD must be known
and, preferably, be small as well.

6.1. MOTIVATION 51

C
P
U
1

C
P
U
2

τ
1

τ
2

τ
3

WCGDACGD

off

off

a) Optimized for the WCGD

C
P
U
1

C
P
U
2

τ
1

τ
2

τ
3

WCGD'ACGD'

off

off

b) Optimized for the WCGD and ACGD

C
P
U
1

C
P
U
2

τ
1

τ
2

τ
3

WCGD'ACGD'

τ
4

τ
5

c) Performing additional best effort calculations

τ
6

Figure 6.1 Motivational example for a hard real-time system

r
t

r
t-n

Data is periodically fetched

C
P

U
1

C
P

U
2

τ
1

τ
2

τ
3

WCGD'ACGD'

r
t

r
t-1

r
t-2

...
r

t-n

Buffer

Figure 6.2 Motivational example for a buffer-based system

52 CHAPTER 6. WORST/AVERAGE-CASE OPTIMIZATION

6.2 Average-Case Execution Time Estimation

When calculating the worst-case execution time of a task, one tries to
find the worst-case program path with respect to the specified bus sched-
ule. The optimization algorithm then locates where, with respect to the
worst-case program path, to allocate bandwidth. This technique is not
directly applicable to average-case execution time analysis, since there is
generally no particular program path corresponding to the average-case
execution time of a task.

To evaluate how good a bus schedule is from the point of view of the
average-case execution time, the application has to be executed a large
number of times so that the end time of each run can be recorded and
used to calculate a mean. This is, naturally, a rather time-consuming
process, and therefore, using this method repetitively inside an opti-
mization loop leads to unmanageably long analysis times. Also, in order
for the optimization algorithm to know where to allocate bus bandwidth
for a certain task, the locations, with respect to time, of the cache misses
for an average execution of the task have to be approximated. We solve
these two problems by using a histogram-based technique, where task
measurement data is used to create task profiles then given as input to
the optimization algorithm.

In order to build the memory access histogram, N sets of input data
are generated for each task. This data is randomized with respect to a
distribution representing typical input patterns for the particular task
in question. Every task is then executed, in isolation, N times and,
for each execution, a trace file containing the locations of the cache
misses is generated. Using this information, we want to find out where,
in time, cache misses are most likely to occur so that bus bandwidth
can be assigned accordingly. This is done by building, for each task,
a histogram over bus accesses in time (not considering the actual time
spent waiting for and using the bus), with respect to all N measured
executions.

Figure 6.3 shows an example of a histogram based on 1000 execu-
tions. The y-value of the histogram denotes how many of the N mea-
sured executions of the task accessed the bus during the time interval
represented by the corresponding x-value. For instance, in this exam-
ple, it can be seen that all measured executions access the bus at the
very start of the task due to instruction cache misses. During the time
regions denoted by t1, t2, t3 and t4, most measured executions access
the bus, and therefore chances are high that so will be the case during

6.2. AVERAGE-CASE EXECUTION TIME ESTIMATION 53

an average execution of the task. Consequently, making sure that the
task gets a lot of bandwidth during these time periods is most likely a
good idea.

Time

Frequency

t
1

t
2

t
3

t
4

0

1000

Figure 6.3 Example histogram for 1000 executions

Given the histogram and a specified bus schedule, we can obtain an
estimation of the average-case task execution time with respect to the
bus schedule. By using the frequency data on the y-axis, a set of NH

representative hypothetical program paths can be constructed. These
hypothetical paths can then be used to approximate the average-case
execution time by analyzing their respective global delay and calculating
the mean. We will illustrate how this is done by a simple example.

100 20 30 40 50
0

12

Figure 6.4 Example histogram for 12 executions

Consider the histogram in Figure 6.4. In this example, 12 executions
have been carried out (N = 12), and we want to use this information
to estimate the average-case execution time of the measured task with
respect to a certain bus schedule. For each execution of the task during
the construction of the histogram, the corresponding execution path
length, defined as the end-to-end delay excluding bus transfer times, and
the number of cache misses are recorded. This information is sorted,

54 CHAPTER 6. WORST/AVERAGE-CASE OPTIMIZATION

with respect to the execution path length, and presented in Figure 6.5.
We can see that the shortest execution path was 8 clock cycles long
(excluding transfer times) and had 5 cache misses. The longest path,
on the other hand, measured 60 clock cycles and generated 15 cache
misses.

Path Length Number of Misses
8 5
9 6
11 5
12 8
18 9
28 12
32 11
34 12
39 11
48 14
57 16
60 15

Figure 6.5 Example table for hypothetical path classification

For this example, we want to create three hypothetical control flow
paths (NH = 3). Consequently, we start by dividing the measured exe-
cution paths in Figure 6.5 into three equally sized groups, with respect
to their execution path lengths. The first group (Group 1) contains the
four shortest executions (lengths 8, 9, 11 and 12), whereas the two other
groups (Group 2 and Group 3) contain the medium-length executions
(lengths 18, 28, 32, 34) and the longest executions (lengths 39, 48, 57,
60), respectively. The idea is to now construct a hypothetical execution
path for each of the three groups, capturing their characteristics.

First, we want to compute the representative execution path length
and corresponding number of cache misses for each of the three hy-
pothetical paths. This is done by calculating the averages for each
group. The hypothetical path corresponding to Group 1 will thus have
an execution path length of (8 + 9 + 11 + 12)/4 = 10 and be assigned
(5 + 6 + 5 + 8)/4 = 6 cache misses. The path corresponding to Group
2 will have a length of 28 with 11 cache misses, and for Group 3 the
corresponding values will be 51 and 14, respectively. We can now, with
respect to the histogram, assign cache misses to the hypothetical paths.

6.2. AVERAGE-CASE EXECUTION TIME ESTIMATION 55

We will show how to do this for Group 1, with the shortest execution
path lengths.

Position Misses P r
1

r
2

r
3

Included

0 12 1.00 0.13 - - Yes
3 8 0.67 0.71 0.75 0.55 Yes
2 7 0.58 0.53 - - Yes
1 6 0.50 0.22 - - Yes
4 5 0.42 0.96 0.46 - No
5 4 0.33 0.31 - - Yes
9 4 0.33 0.76 0.34 - No
6 3 0.25 0.43 0.29 - No
8 3 0.25 0.60 0.24 - Yes
7 2 0.17 0.43 0.41 - No

Figure 6.6 Example table for cache miss selection

The idea is to now position the 6 cache misses inside the hypothet-
ical path corresponding to Group 1. To help us do this, we have the
histogram in Figure 6.4, telling where it is appropriate to assign cache
misses. Since the hypothetical path shall be of length 10, only the data
from time 0 to 9 is of interest. This data is sorted and transformed
into a table, as shown in the two leftmost columns of Figure 6.6. The
third column represents the probability of a cache miss occurring at the
actual position. For example, this probability is 1 for position 0, since
a cache miss was issued there in all 12 measured executions.

In order to choose if a specific cache miss is to be included, we draw
a random number r ∈ [0..1] ⊆ R and compare that number with the
cache miss probability. Since we only have 6 cache misses to assign,
we start with the most probable cache misses, at the top of the table,
to make sure that they get the chance to be included. We draw one
random number for each cache miss, going from top to bottom. If the
random number is lower than or equal to the corresponding probability,
the cache miss is included. If the random number instead is greater,
the cache miss is excluded – for now. After repeating this procedure
for each cache miss in the table, we can start a new iteration and begin
from the top again, or we can choose to include the most probable cache
misses that were excluded earlier and consider the hypothetical path as

56 CHAPTER 6. WORST/AVERAGE-CASE OPTIMIZATION

generated.

Since the table is sorted with respect to the cache miss probabil-
ity, we start at the first row, corresponding to location 0, and move
downwards step by step. The column labeled r1 contains the random
numbers drawn during the first iteration of the drawing process. The
first generated random number is 0.13, which of course is less than 1
so the hypothetical path will have a cache miss at location 0. The un-
derlining of the random value in Figure 6.6 means that it was lower
than the corresponding probability and the cache miss was included.
We move to the next row, corresponding to location 3. The new gen-
erated random number is 0.71, which is greater than the corresponding
probability of 0.67. Hence, we do not put a cache miss at position 3 of
the hypothetical path right now.

This procedure goes on until we reach the last row of the table.
Then, we can see that four cache misses were included in total, and
they will be found on location 0, 1, 2 and 5 in the hypothetical path.
However, we need two more cache misses. We can now choose to include
the two previously excluded cache misses with the highest probability,
which in this case corresponds to locations 3 and 4. Another option is
to perform another iteration of drawing to give the less probable cache
misses a new chance as well. In Figure 6.6, the random numbers of a
second iteration is shown in the column labeled r2. If the corresponding
cache miss was already included, no random number is drawn, leaving
the cell empty. When the final cache miss is selected, the algorithm is
halted. In this particular example, three iterations were needed in order
to find all of the 6 cache misses, resulting in a hypothetical path with
cache misses on locations 0, 1, 2, 3, 5 and 8. The maximum number of
iterations, denoted as NR, is specified by the designer, and makes sure
that the algorithm will eventually halt. When the number of iterations
has reached NR, the remaining - not yet selected - cache misses with
the highest probability are chosen, just as described above.

We can now obtain the end-to-end delay, with respect to a specified
bus schedule, corresponding to each execution path by mapping the
cache misses to the bus slots. It is here assumed that each execution
has the same probability, and therefore all hypothetical paths will have
probability 1/NH (since they are constructed by an equal number of
executions1). The ACGD of the task is then calculated by computing

1If not, it is straight-forward to use individual probabilities for the hypothetical
paths instead.

6.3. COMBINED OPTIMIZATION APPROACH 57

τ3

τ2

τ1

τ1 τ2 τavg τ3

t

t

t

t

a) Execution path 1

b) Execution path 2

c) Execution path 3

d) Average-case execution time estimation

Figure 6.7 Three hypothetical execution paths and the corre-
sponding average-case execution time estimation

the mean of all NH execution path end-to-end delays. An example
can be found in Figure 6.7. Figures 6.7a-c depict three hypothetical
execution paths – τ1, τ2 and τ3 – of a task τ . Their execution times are
200, 520 and 1870 time units, respectively. The average-case execution
time of task τ can be estimated to (200 + 520 + 1870)/3 = 863 time
units, as illustrated in Figure 6.7d.

Using this estimation approach, we want to design a bus schedule
that produces a good ACGD. However, since we also want to keep
the WCGD as small as possible, the worst-case program path must
be considered during the optimization process. This requires a new
technique for optimization, which will be described in the next section.

6.3 Combined Optimization Approach

We assume that the steps in Figure 3.3 have been carried out, and
that we have the result in the form of a task schedule, sworst

0 , and a bus
schedule, B0, corresponding to the smallest possible WCGD. These are,
together with a designer-specified limit on the maximum allowed worst-
case global delay and the memory access histogram data for the tasks
τi ∈ G(Π,Γ), taken as input parameters to our combined optimization
approach, as illustrated in Figure 6.8. As output from the algorithm, a
bus schedule Bfinal, optimized for both ACGD and WCGD, is returned

58 CHAPTER 6. WORST/AVERAGE-CASE OPTIMIZATION

Algorithm: Combined ACGD and WCGD optimization

Input: - Initial bus schedule B0

- Initial worst-case schedule sworst0
- Maximum worst-case global delay WCGDmax
- Memory access histograms of the tasks τi ∈ G(Π,Γ)

Output: - The resulting bus schedule Bfinal

- The resulting worst-case task schedule sworstfinal

- The ACGD estimation ACGDest

01: Calculate initial average-case schedule s
avg
0

02: k = 0
03: repeat

04: [Bk+1, sworstk+1 , s
avg
k+1] = improve(Bk, sworstk , s

avg
k)

05: k=k+1

06: until termination condition

07: Bfinal = Bk
08: sworstfinal = sworstk
09: ACGDest = length(s

avg
k)

Figure 6.8 Combined optimization approach

together with the final worst-case task schedule sworst
final and average-case

task schedule length ACGDest.

In the first step of our algorithm in Figure 6.8, the average-case
schedule savg

0 is calculated with respect to B0. Then an iterative func-
tion, denoted as improve on line 4 in Figure 6.8, tries to improve the
bus schedule with respect to both the average and the worst case. The
termination condition is reached when no more improvements can be
found, and the algorithm then exits and returns the best bus schedule
Bfinal and corresponding worst-case task schedule sworst

final . The applica-
tion is finally simulated a large number of times in order to measure
the real ACGD.

6.4 Bus Access Optimization for ACGD and
WCGD

The improve function in Figure 6.8 takes as input parameters a bus
schedule Bk, the current worst-case task schedule sworst

k , the current
average-case task schedule savg

k and WCGDmax. As output, we get the
improved bus schedule Bk+1 together with the corresponding worst-case
task schedule sworst

k+1 and average-case task schedule savg
k+1. A description

of the computations performed in the improve function will now follow.

6.4. BUS ACCESS OPTIMIZATION FOR ACGD AND WCGD 59

The goal is to modify the bus schedule so that the average-case
global delay of the application is reduced, while the WCGD is increased
as little as possible. To do so, the effects on both the ACGD and
WCGD have to be considered for each possible modification. However,
performing average-case and worst-case execution time analysis with
respect to several bus schedule candidates is a time-consuming process.
Therefore, it is desirable to identify the most interesting parts of the
bus schedule, where a modification is likely to result in positive effects
for the global delay, and then perform execution time analysis with
respect to modifications of these parts only. Consequently, we start the
improve function by investigating which parts of the bus schedule to
modify for a decreased ACGD, without initially considering the effects
on the WCGD. Only the most interesting parts are then investigated
with respect to both the ACGD and WCGD.

6.4.1 Task and Bus Segments

The first step of the improve function is to generate the average-case
task schedule savg

k by performing ACET analysis (Section 6.2), for each
task, with respect to the bus schedule Bk. From the execution time
analysis, we can extract interesting properties, such as bus transfer
times and the number of memory accesses, of certain time intervals, and
these properties are then used to determine how much the corresponding
parts of the bus schedule can be improved with respect to the ACGD
(and later also how to modify the bus schedule).

In order to find suitable time intervals, we first divide both the bus
schedule Bk and the average-case task schedule savg

k into segments. For
this, we distinguish between two different kind of segments: task seg-
ments and bus segments. Bus segments are defined just as in Section
2.3, i.e. as intervals of the bus schedule where the same TDMA round
is repeated. Consequently, the bus schedule can be regarded as a dis-
junctive set B of bus segments.

A task segment can be of arbitrary size and represents an interval of
time, with respect to the task schedule. Every task schedule can be seen
as a disjunctive set of task segments, Ξ. The division of the task sched-
ule into task segments is done with respect to the cache miss structure
of the application, with the goal of obtaining a uniform distribution of
cache misses in each segment. We will now show how this is done with
a small example.

Consider the task graph in Figure 6.9. We have five tasks – τ1, τ2, τ3,

60 CHAPTER 6. WORST/AVERAGE-CASE OPTIMIZATION

τ
1

τ
2

τ
3

τ
4

τ
5

Mapped on CPU1
Mapped on CPU2

Figure 6.9 Example task graph

C
P
U
1

C
P
U
2

t

t

τ
1
avg τ

4
avg

τ
2
avg avgτ

3
avgτ
5

Figure 6.10 Average-case chart

τ4 and τ5 – mapped on two processors. A Gantt chart of the application,
in the case where the estimated average-case execution time is used for
scheduling the tasks, is illustrated in Figure 6.10.

In this example, NH is set to NH = 2, and hence each task has
two hypothetical execution paths. These are depicted in Figure 6.11.
In order to handle the effect of interprocessor data dependencies, we
divide the task schedule into a disjunctive set of dependency intervals. A
new dependency interval begins whenever a task with an interprocessor
dependency is released, or when the longest hypothetical execution path
of a task also executing in a previous dependency interval ends. In this
example, we get six dependency intervals, denoted by Di1, Di2, Di3,
Di4, Di5 and Di6. A task segment spanning over multiple dependency
intervals can lead to bandwidth assignment conflicts within the segment,
and therefore we do not allow such a division. Consequently, a task
segment must belong to exactly one dependency interval.

The task segments are now created by calculating the average cache
miss density for all overlapping execution paths, and then dividing the
dependency intervals with respect to these average densities so that
every subinterval gets a close to uniform distribution on each active
processor. These subintervals are the actual task segments. The result,
in our particular example, can be seen in Figure 6.12. In this simple
case, we distinguish between two different levels of average cache miss

6.4. BUS ACCESS OPTIMIZATION FOR ACGD AND WCGD 61

C
P
U
1

C
P
U
2

t

t

τ
1
1 τ

1
τ
4
1 τ

4
22

τ
2
1 τ

2
2 τ

3
1 τ

3
2 τ

5
1 τ

5
2

Di1 Di2 Di3 Di5 Di6Di4

Figure 6.11 Average-case chart with corresponding execution
paths

C
P

U
1

C
P

U
2

t

t

τ
1
1 τ

1
τ
4
1 τ

4
22

τ
2
1 τ

2
2 τ

3
1 τ

3
2 τ

5
1 τ

5
2

i1 i8 i13i2 i3 i4 i5 i6 i7 i9 i10 i11 i12 i14 i15 i16

Low cache miss density High cache miss density

Figure 6.12 Average-case chart with density regions

density. Areas with white color represent regions with low cache miss
density, whereas the gray intervals represent high density regions. In
this case we get 16 task segments, i1-i16. Dependency interval Di1, for
instance, is divided into task segments i1-i6.

What we, initially, would like to do is to identify the areas of the
bus schedule, represented by task segments and bus segments, for which
modifications can result in the most beneficial change of average-case
global delay. In order to perform this identification, we start with an
investigation of how the bus bandwidth is distributed to the task seg-
ments and bus segments, in the average case.

6.4.2 Bus Bandwidth Distribution Analysis

Based on the information from the average-case execution time analysis,
for each task segment Ωi ∈ Ξ and bus segment ωj ∈ B, we want to
determine the following:

1. The desired bus bandwidth, that, when given to this particular
interval of the bus schedule, minimizes the global delay in the aver-

62 CHAPTER 6. WORST/AVERAGE-CASE OPTIMIZATION

age case. For a specific task segment Ωi ∈ Ξ, this bandwidth is de-
noted PΩi and is a vector of n elements, PΩi = pΩi(1), . . . , pΩi(n),
where n is the number of processors in the system and each ele-
ment represents the desired bandwidth for the corresponding pro-
cessor. Similarly, Pωj = pωj (1), . . . , pωj (n) is the corresponding
vector for a bus segment ωj ∈ B. The bandwidth is represented
as the fraction of the total bus bandwidth, thus satisfying:∑

k

pΩi(k) = 1,
∑
k

pωj (k) = 1

Detailed descriptions for how to perform these calculations can be
found in Appendix A.1.1.

2. The bandwidth currently given to each processor during the spe-
cific interval Ωi ∈ Ξ and ωj ∈ B, represented by the vectors

P
bus
Ωi = pbusΩi

(1), . . . , pbusΩi
(n) and P

bus
ωj = pbusωj (1), . . . , pbusωj (n) re-

spectively. Just as for the desired bandwidth, the elements are
representing fractions of the total bandwidth, therefore summing
up to one. Appendix A.1.2 describes how these two vectors are
calculated.

For a specific task segment Ωk ∈ Ξ, let αΩk ∈ [1..n] ⊆ Z, where
n is the number of processors, denote the processor on which the task
on the critical path, with respect to the average-case task schedule, is
executed during that particular time interval. Let us define the scalar
p∆

Ωk
, for a task segment Ωk ∈ Ξ, as the difference between the desired

task bandwidth and the provided bus bandwidth for processor αΩk .
That is, p∆

Ωk
= pΩk(αΩk)− pbusΩk

(αΩk).
Since many task segments can overlap a bus segment, several differ-

ent processors can execute tasks that are on the (same) critical path
during the particular time interval represented by the bus segment.
Hence, let Aωk be the set of processors αωk that are running tasks on
the critical path during the interval represented by bus segment ωk ∈ B.
We then define p∆

ωk
as:

p∆
ωk

= max
(⋃
αi∈Aωk

(
pωk(αi)− pbusωk

(αi)
))

(6.1)

A high p∆
Ωi

for a task segment Ωi ∈ Ξ or p∆
ωk

for a bus segment
ωj ∈ B means that the corresponding interval of the bus schedule has

6.4. BUS ACCESS OPTIMIZATION FOR ACGD AND WCGD 63

room for improvement with respect to the average-case global delay.
Therefore, time intervals with a high corresponding p∆

x , x ∈ (Ξ∪B) are
interesting from an optimization point of view, whereas intervals with
a low p∆

x , x ∈ (Ξ ∪ B) do not need further investigation. We can now
limit the search space by just looking at parts of the bus schedule with
a corresponding p∆

x , x ∈ (Ξ ∪B) exceeding a specified threshold.

If we wanted to just optimize for the average case, we would start by
modifying the region represented by the segment (task or bus) with the
highest p∆

x , x ∈ (Ξ∪B). However, a large decrease in average-case global
delay is not necessarily good, if that makes the WCGD increase too big.
When deciding which region of the bus schedule to improve, one must
also take into account the effect on the worst-case global delay. In fact,
what we want to improve is the ratio between average-case improvement
and worst-case extension, with respect to the global delay. In order for
our optimization algorithm to decide how good a bus schedule is for
both the ACGD and WCGD, a cost function is specified in the next
section.

6.4.3 Cost Function

We denote with length(s) the length of schedule s. Let sworst
old and

savg
old be worst-case and average-case schedules, for the same applica-

tion, generated with respect to a bus schedule Bold. After creating a
new bus schedule Bnew, by modifying a suitable interval of Bold, we
obtain updated task schedules sworst

new and savg
new. If an improvement was

made, the task schedules will satisfy length(savg
new) < length(savg

old) and
length(sworst

new) > length(sworst
old)2 (since the WCGD is expected to grow).

If the bus schedule Bnew does not lead to an improvement with re-
spect to the ACGD, it is discarded and not considered further by the
optimization algorithm. Provided that the new bus schedule Bnew ac-
tually results in an improvement, a good measure of how good the bus
modification is can be given by the ratio:

qsworst
new ,savg

new,s
worst
old ,savg

old
=

length(savg
old)− length(savg

new)

length(sworst
new)− length(sworst

old)
(6.2)

2For the special case when length(sworst
new) <= length(sworst

old), the ratio in Equation
6.2 is set to ∞

64 CHAPTER 6. WORST/AVERAGE-CASE OPTIMIZATION

Consequently, a suitable cost function for our optimization algorithm
can be expressed as:

C(sworst
new , savg

new, s
worst
old , savg

old) = −qsworst
new ,savg

new,s
worst
old ,savg

old
(6.3)

With respect to this cost function, we can now evaluate a set of bus
schedule candidates and choose the best one.

6.4.4 Bus Schedule Optimization

We create a new bus schedule candidate Bk′ from bus schedule Bk
(taken as input parameter on line 4 in Figure 6.8) by modifying the
part of Bk corresponding to the time interval represented by a task seg-
ment Ωi ∈ Ξ or bus segment ωj ∈ B. To calculate the cost of Bk′ , we
must compute the schedules sworstk′ and savgk′ . This is done by invoking
the execution time analysis framework twice, for the entire applica-
tion, and that is relatively costly from a computation-time perspective.
Therefore, as stated previously, the solution is to limit the search space
and thus only generate candidates that are likely to perform good. It
can be assumed that improving areas corresponding to segments with
a low p∆

Ωi
or p∆

ωj , for Ωi ∈ Ξ and ωj ∈ B respectively, will not lead to
the best results, since the room for average-case global delay improve-
ments is small. Therefore, we define Ξ′ as the set of the t task segments
Ωi ∈ Ξ which have the greatest corresponding p∆

Ωi
values. Similarly,

B′ is defined as the set of b bus segments ωj ∈ B with the greatest
corresponding p∆

ωi . The t+ b segments in Ξ′∪B′ are selected for further
investigation. High t and b values, set by the designer, allow the algo-
rithm to evaluate more bus schedule candidates, but at the expense of
computation time.

For each segment in Ξ′∪B′, we want to generate several bus schedule
candidates and evaluate them with respect to the cost function defined
in Equation 6.3. When no more bus schedule candidates are left to
evaluate for any segment in Ξ′ ∪ B′, the candidate associated with the
lowest cost is kept and returned as bus schedule Bk+1 (line 4 in Figure
6.8).

The first bus schedule candidate Bk′0 for a specific segment in Ξ′∪B′
is generated by inserting a new bus segment into the previously gener-
ated bus schedule Bk. This new bus segment is constituted by a TDMA
round r, generated so that the bus bandwidth during the correspond-
ing interval is assigned according to the desired bus bandwidth PΩi or
Pωj , depending on if the segment in Ξ′ ∪B′ being investigated is a task

6.5. EXPERIMENTAL RESULTS 65

segment Ωi ∈ Ξ′ or a bus segment ωj ∈ B′. With respect to the bus
schedule candidate Bk′0 , the schedules sworst

k′0
and savg

k′0
are generated and

Bk′0 is then evaluated according to the cost function in Equation 6.3.
To create the next bus schedule candidate Bk′i (where now, in this case,
i = 1) for the same segment, round r is modified according to the out-
come of the execution time analysis, using the hill climbing optimization
technique to adjust the bandwidth distribution. Other modifications,
such as slot order permutations, can also be carried out depending on
the restrictions imposed on TDMA complexity. The procedure of im-
proving round r – each improvement resulting in a new bus schedule
candidate – is repeated a specified number of times or until no further
improvements are found, and then the next segment in Ξ′ ∪B′ is inves-
tigated. The best bus schedule candidate Bk′ is then chosen as the new
bus schedule Bk+1 for the application, and the function returns. The
improve function is summarized in Figure 6.13.

Note that adding new bus segments will increase the complexity of
the bus schedule. Since the memory on the bus arbiter is limited, there
might be a limit for how many bus segments we can allow. Once this
maximum number of bus segments is reached, we cannot increase the
number of segments of the bus schedule without first deleting at least
one, already existing, bus segment. Therefore, immediately after in-
serting the new bus segment, resulting in the bus schedule candidate
Bk′0 , and before making any improvements to the corresponding round
r constituting it, we evaluate the effect of merging every pair of consec-
utive bus segments in the bus schedule using the ACGD and WCGD
analyses and computing the resulting cost. The best merge is then kept,
and we continue by generating more bus schedule candidates Bk′i (by
trying to improve r, as usual). Note that this is only a problem when
improving the bus schedule with respect to task segments Ωi ∈ Ξ′, since
improving with respect to bus segments ωj ∈ B′ does not increase the
bus schedule complexity.

6.5 Experimental Results

We have evaluated our framework using an extensive set of generated C
programs. The programs were constructed with respect to randomized
task graphs consisting of between 20 and 200 tasks, mapped on 2 to 8
processors. The individual tasks were generated according to control
flow graphs corresponding to programs for commonly used computa-

66 CHAPTER 6. WORST/AVERAGE-CASE OPTIMIZATION

01: Perform an average-case execution time analysis.

02: Divide the resulting task schedule into a set of

task segments Ξ.
03: Calculate current and desired bus bandwidth,

PΩi
and Pωj , with respect to the ACGD only, for

each task segment and bus segment.

04: Calculate Ξ′ and B′.
05: For each element in Ξ′ ∪B′, generate a set of

bus schedule candidates and evaluate them

according to the cost function in Equation 6.3.

06: Return the candidate that generates the lowest cost,

while keeping the WCGD below WCGDmax.

Figure 6.13 The improve function

tions such as sorting, searching, matrix multiplications and DSP pro-
cessing. In total, 8000 applications were generated and evaluated. To
calculate the memory access histograms, as described in Section 6.2,
1000 executions were carried out for each task.

As hardware platform, we have used the MPARM multiprocessor
cycle-accurate simulator from Bologna University [15], configured ac-
cording to the model in Section 2.1, using 8 ARM7 cores running at
200 MHz. An AMBA AHB-compliant bus arbiter, enforcing the bus
model in Section 2.3, was implemented and incorporated into the sim-
ulation framework. The bus speed was set to 100 MHz, resulting in
a memory access taking 13 CPU clock cycles to serve. In order to re-
strict the amount of memory on the controller, we imposed the following
restrictions on TDMA round complexity:

1. A processor can own at most one slot in a TDMA round.

2. The slot order is fixed, and cannot be changed during the opti-
mization procedure.

The values of t and b, described in Section 6.4.4, were set to 100 and 50,
respectively. We also limited the total number of bus segments allowed
in the bus schedule to 1000.

Using the approach described in Chapters 3 and 5, for each of the
applications, we started by generating a bus schedule minimizing the
worst-case global delay, completely ignoring the average case. Let us de-
note this initial, minimized, worst-case global delay by WCGD0, and let
ACGD0 be the ACGD calculated with respect to the same bus schedule.

6.5. EXPERIMENTAL RESULTS 67

2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

1%
5%
10%

Number of Processors

AC
G

D
 Im

pr
ov

em
en

t (
%

)
WCGD
Extension:

Figure 6.14 Relative ACGD improvement

The bus schedule, optimized for the worst case, and the corresponding
worst-case task schedule were then sent as input parameters to the al-
gorithm outlined in Figure 6.8, together with the generated memory
access histograms for each task in the application task graph. A maxi-
mum allowed WCGD was also supplied.

We now investigated how much the ACGD can be decreased, given a
maximum allowed increment (with respect to WCGD0) of the resulting
WCGD. For all applications, we performed the optimization procedure
three times, allowing WCGD increments of 1%, 5% and 10% respec-
tively. For each of these allowed increments, a corresponding average
ACGD improvement was calculated. The result is presented in Fig-
ure 6.14. For instance, for two processors, accepting an 1% extension
with respect to WCGD0 leads to an average ACGD improvement of
13.2%. Accepting a greater WCGD increment naturally results in a
more substantial ACGD reduction. It can be observed that using a
lower number of processors allows for a higher ACGD decrement, with
respect to ACGD0. This is explained by the fact that fewer competing
processors leave more room for tailoring the bus schedule for a specific
processor, allowing for a more flexible design.

In a second experiment, we investigated how optimizing for the
ACGD, without considering the WCGD at all, affects the latter. The
idea is to show that optimizing only for the ACGD leads to unreasonably
high worst-case global delays, compared to when optimizing for both.
For this second experiment, we used the very same generated test ex-
amples as in the first experiment, allowing for direct comparisons with

68 CHAPTER 6. WORST/AVERAGE-CASE OPTIMIZATION

2 3 4 5 6 7 8
0

5

10

15

20

25

WCGD Extension
ACGD Improvement

Number of Processors

G
lo

ba
l D

el
ay

 C
ha

ng
e

(%
)

Figure 6.15 Relative ACGD improvement and WCGD exten-
sion

the already calculated WCET0 and ACET0. Initially, an algorithm for
optimizing the bus schedule, taking into account only the ACGD, was
applied to the test applications, and then the WCGD was calculated
with respect to that bus schedule. Let us denote the resulting ACGD
and WCGD by ACGD′0 and WCGD′0 respectively. In Figure 6.15, we
have plotted the relative average extension of WCGD′0 compared to
WCGD0, and the average reduction of ACGD′0 compared to ACGD0.
As can be seen, not taking the WCGD into consideration when optimiz-
ing the bus schedule leads to higher worst-case global delays, whereas
the corresponding ACGD improvement is only slightly better than when
also optimizing for the WCGD and accepting a WCGD increase of 10%.
For instance, for a 5 processor application, the WCGD extension com-
pared to the optimal case (WCGD0) is 15% whereas the improvement of
the ACGD relative ACGD0 is 6.0%. By looking in Figure 6.14, we can
see that when optimizing for both ACGD and WCGD simultaneously,
for 5 processors we can obtain a 5.5% (instead of 6%) improvement with
only a 10% (compared to 15%) degradation of the WCGD.

All experiments were executed on a dual core Pentium 4 processor
running at 2.8 GHz. The time to process one application ranged from
10 minutes to 4 hours, depending on the application complexity.

7

Conclusions

In this thesis, we have presented an approach to achieve time-predictability
for real-time applications running on modern multiprocessor systems-
on-chip, taking into consideration potential memory access conflicts be-
tween concurrent tasks. In particular, we have focused on the issue of
bus access optimization. Efficient algorithms for minimizing the worst-
case global delay have been proposed, making sure that the price to pay
for predictability, in terms of time, becomes as small as possible.

We have also presented an entirely new, within the domain of real-
time systems, concept of optimizing for the average-case global delay
while keeping the WCGD as small as possible. The proposed algorithms
show that this dual approach is more efficient than optimizing only for
either the worst-case or the average-case.

All algorithms were validated by an extensive sets of experiments.

69

70 References

Bibliography

[1] A. Andrei, P. Eles, Z. Peng, and J. Rosén, “Predictable Implemen-
tation of Real-Time Applications on Multiprocessor Systems-on-
Chip,” in VLSI Conference, 2008.

[2] D. Bertozzi, A. Guerri, M. Milano, F. Poletti, and M. Rug-
giero, “Communication-Aware Allocation and Scheduling Frame-
work for Stream-Oriented Multi-Processor Systems-on-Chip,” in
DATE, 2006, pp. 3–8.

[3] C.-F. Neikter, “Cache Prediction and Execution Time Analysis on
Real-Time MPSoC,” 2008, Master Thesis, LIU-IDA/LITH-EX-A–
08/046–SE.

[4] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger, “A
Hybrid Real-Time Scheduling Approach for Large-Scale Multicore
Platforms,” in ECRTS, 2007.

[5] S. A. Edwards and E. A. Lee, “The Case for the Precision
Timed (PRET) Machine,” EECS Department Technical Report No.
UCB/EECS-2006-149, University of California, Berkeley, 2006.

71

72 References

[6] H. Falk, “WCET-aware Register Allocation based on Graph Col-
oring,” in DAC, 2009.

[7] H. Falk and J. C. Kleinsorge, “Optimal Static WCET-aware
Scratchpad Allocation of Program Code,” in DAC, 2009.

[8] K. Goossens, J. Dielissen, and A. Radulescu, “AEthereal Network
on Chip: Concepts, Architectures, and Implementations,” IEEE
Design & Test of Computers, vol. 2/3, pp. 115–127, 2005.

[9] M. Joseph and P. Pandya, “Finding Response Times in a Real-
Time System,” The Computer Journal, vol. 29, 1986.

[10] E. C. Jr and R. Graham, “Optimal Scheduling for Two-Processor
Systems,” Acta Inform., vol. 1, pp. 200–213, 1972.

[11] I. A. Khatib, D. Bertozzi, F. Poletti, L. Benini, and et al., “A Mul-
tiprocessor Systems-on-Chip for Real-Time Biomedical Monitoring
and Analysis: Architectural Design Space Exploration,” in DAC,
2006, pp. 125–131.

[12] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A.
Lee, “Predictable Programming on a Precision Timed Architec-
ture,” EECS Department Technical Report No. UCB/EECS-2008-
40, University of California, Berkeley, 2008.

[13] T. Lundqvist and P. Stenström, “Timing Anomalies in Dynam-
ically Scheduled Microprocessors,” in The 20th IEEE Real-Time
Systems Symposium (RTSS), 1999, pp. 12–21.

[14] M. Lv, N. Guan, W. Yi, and G. Yu, “Combining Abstract Interpre-
tation with Model Checking for Timing Analysis of Multicore Soft-
ware,” in The 31st IEEE Real-Time Systems Symposium (RTSS),
2010.

[15] MPARM homepage,
“http://www-micrel.deis.unibo.it/sitonew/research/mparm.html”.

[16] F. Nemati, M. Behnam, and T. Nolte, “Independently-
Developed Real-Time Systems on Multi-Cores with Shared Re-
sources,” in 23rd EUROMICRO Conference on Real-Time Systems
(ECRTS’11), July 2011.

References 73

[17] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero,
“Hardware Support for WCET Analysis of Hard Real-Time Mul-
ticore Systems,” in ISCA, 2009, pp. 57–68.

[18] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Fast Explo-
ration of Bus-based On-chip Communication Architectures,” in
CODES+ISSS, 2004, pp. 242–247.

[19] R. Pellizzoni and M. Caccamo, “Impact of Peripheral-Processor In-
terference on WCET Analysis of Real-Time Embedded Systems,”
IEEE Transactions on Computers, vol. 59, no. 3, pp. 400–415,
2010.

[20] P. Pop, P. Eles, Z. Peng, and T. Pop, “Analysis and Optimization
of Distributed Real-Time Embedded Systems,” ACM Transactions
on Design Automation of Electronic Systems, vol. Vol. 11, pp. 593–
625, 2006.

[21] P. Puschner and A. Burns, “A Review of Worst-Case Execution-
Time Analysis,” Real-Time Systems, vol. 2/3, pp. 115–127, 2000.

[22] J. Reineke, B.Wachter, S. Thesing, R.Wilhelm, I. Polian,
J. Eisinger, and B. Becker, “A Definition and Classification of Tim-
ing Anomalies,” in International Workshop on WCET Analysis,
2006, pp. 23–28.

[23] J. Rosén, A. Andrei, P. Eles, and Z. Peng, “Bus Access Optimiza-
tion for Predictable Implementation of Real-Time Applications on
Multiprocessor Systems-on-Chip,” in The 28th IEEE Real-Time
Systems Symposium (RTSS), 2007, pp. 49–60.

[24] J. Rosén, P. Eles, Z. Peng, and A. Andrei, “Predictable Worst-Case
Execution Time Analysis for Multiprocessor Systems-on-Chip,” in
The 6th International Symposium on Electronic Design, Test and
Applications (DELTA), 2011.

[25] J. Rosén, C.-F. Neikter, P. Eles, Z. Peng, P. Burgio, and L. Benini,
“Bus Access Design for Combined Worst and Average Case Execu-
tion Time Optimization of Predictable Real-Time Applications on
Multiprocessor Systems-on-Chip,” in The 17th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS),
2011.

74 References

[26] E. Salminen, V. Lahtinen, K. Kuusilinna, and T. Hamalainen,
“Overview of Bus-Based System-on-Chip Interconnections,” in IS-
CAS, 2002, pp. 372–375.

[27] S. Schliecker, M. Ivers, and R. Ernst, “Integrated Analysis of
Communicating Tasks in MPSoCs,” in The International Con-
ference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2006, pp. 288–293.

[28] S. Schliecker, M. Negrean, and R. Ernst, “Bounding the Shared
Resource Load for the Performance Analysis of Multiprocessor
Systems,” in Proc. of Design, Automation, and Test in Europe
(DATE), Dresden, Germany, 2010.

[29] S. Schliecker, M. Negrean, G. Nicolescu, P. Paulin, and R. Ernst,
“Reliable Performance Analysis of a Multicore Multithreaded
System-On-Chip,” in The International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS),
2008.

[30] M. Schoeberl and P. Puschner, “Is Chip-Multiprocessing the End of
Real-Time Scheduling?” in 9th International Workshop on Worst-
Case Execution Time (WCET) Analysis, 2009.

[31] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Timing Analysis for
TDMA Arbitration in Resource Sharing Systems,” in 16th IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2010, pp. 215–224.

[32] L. Thiele and R. Wilhelm, “Design for Timing Predictability,”
Real-Time Systems, vol. 28, no. 2/3, pp. 157–177, 2004.

[33] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, , and P. Sten-
ström, “The Worst-Case Execution Time Problem – Overview of
Methods and Survey of Tools,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 7, no. 3, 2008.

[34] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand, “Memory Hierarchies, Pipelines, and Buses for Fu-
ture Architectures in Time-Critical Embedded Systems,” IEEE
Transactions on CAD of Integrated Circuits and Systems, 2009.

References 75

[35] S. Williams, A. Waterman, and D. Patterson, “Roofline: An In-
sightful Visual Performance Model for Multicore Architectures,”
Communications of the ACM, vol. 52, no. 4, 2009.

[36] W. Wolf, Computers as Components: Principles of Embedded
Computing System Design. Morgan Kaufman Publishers, 2005.

[37] J. Yan and W. Zhang, “WCET Analysis for Multi-Core Processors
with Shared L2 Instruction Caches,” in 14th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2008,
pp. 80–89.

76 References

A

Bus Bandwidth Calculations

A.1 Bus Bandwidth Calculations

This section presents the theoretical foundation for the bus bandwidth
calculations needed by the optimization algorithm in Section 6.3. We
demonstrate how to calculate the desired bus bandwidth that theoret-
ically will result in the lowest possible average-case global delay. This
is done for both task segments and bus segments, as defined in Section
6.3. Furthermore, we show how to calculate the current bus bandwidth
that is actually being distributed to the active processors. While this
procedure is trivial for bus segments, it requires more computations for
task segments.

A.1.1 Calculation of the Desired Bus Bandwidth

We will now describe how to calculate the desired bandwidth PΩi for
a task segment Ωi ∈ Ξ, or Pωi for a bus segment ωi ∈ B, as required
by the algorithm in Section 6.3. Since a bus segment can be seen as a
particular variant of a task segment, we will only talk about the latter

77

78 APPENDIX A. BUS BANDWIDTH CALCULATIONS

in this section.

The overall idea is the same as for the approach used in Chapter
5, where the the initial slot sizes of a TDMA bus schedule are deter-
mined by formulating a set of inequalities. In that section, we calculate
the bandwidth distribution that theoretically minimizes the worst-case
global delay. Now, on the other hand, we want to do the same, but
with respect to the ACGD instead. While these are similar procedures
sharing many computation steps, there are several significant differences
between them.

First, it is assumed that an average-case execution time analysis has
been performed with respect to a bus schedule, partly or fully tailored
for the worst case. The desired bus bandwidth for a specific part of this
bus schedule is, in this context, the distribution of bandwidth that will
reduce the average-case global delay as much as possible.

Let τ si be the first task after τi ∈ Tj that is scheduled on the same
processor. Furthermore, let D1

i be the set of all tasks τj ∈ G(Π,Γ)
which task τ si depends directly on in the task graph G(Π,Γ). Now, Di

is defined as the set {τi}∪D1
i . This means that task τ si will be released

only when all tasks in Di have finished executing.

Now, for a task segment Ωk ∈ Ξ, let us define the following functions:

• fo
k (τ ji) is defined as the number of time units of the execution path

τ ji (of task τi) that executes during the time interval represented
by Ωk ∈ Ξ.

• fm
k (τ ji) is defined as the number of cache misses on the execu-

tion path τ ji (of task τi) that is issued during the time interval
represented by Ωk ∈ Ξ.

• f s
k(τ

j
i) is defined as the number of time units execution path τ ji (of

task τi) spends executing code during the time interval represented
by Ωk ∈ Ξ, excluding transfer times.

We also define the following functions, not specific to a particular
task segment:

• fp(τ ji) is defined as the length, in time units, of the execution

path τ ji (of task τi).

• u(τi) is defined as the processor number that task τi is executing
on.

A.1. BUS BANDWIDTH CALCULATIONS 79

Remember that the desired bandwidth, represented as the fraction of
the total bandwidth, for a task τi ∈ Tj running on processor β during
the time interval represented by Ωj is defined as pΩj (β). Let us, for
convenience, denote this fraction as pi. If a is defined as the time it
takes for the bus to immediately transfer a cache miss, the average
waiting time can then be modeled in terms of the desired bandwidth as
follows:

di =
1

pi
a (A.1)

Let us define Gβ as the set of tasks τi ∈ G(Π,Γ) executing on pro-
cessor β, and let N be the number of processors. The number of hypo-
thetical paths is denoted by NH . We can now estimate the average-case
global delay, as a function of the bus bandwidth given during the task
segment Ωk ∈ Ξ, by the following formula:

max
β=0..N

∑
τq∈Gβ

max
τi∈Dq

∑
j=1..NH fp(τ ji)− fo

k (τ ji) + fm
k (τ ji)du(τi) + f s

k(τ ji)

NH

(A.2)

We want to calculate the bandwidth distribution resulting in the
shortest global delay. This can be done by solving - with respect to
the bandwidth distribution p1, p2, . . ., pN and the global delay t - the
following system of inequalities:

∑
τq∈G1

max
τi∈Dq

∑
j=1..NH fp(τ ji)− fo

k (τ ji) + fm
k (τ ji) a

pu(τi)
+ f s

k(τ ji)

NH
≤ t

∑
τq∈G2

max
τi∈Dq

∑
j=1..NH fp(τ ji)− fo

k (τ ji) + fm
k (τ ji) a

pu(τi)
+ f s

k(τ ji)

NH
≤ t

...∑
τq∈GN

max
τi∈Dq

∑
j=1..NH fp(τ ji)− fo

k (τ ji) + fm
k (τ ji) a

pu(τi)
+ f s

k(τ ji)

NH
≤ t

p1 + p2 + · · ·+ pn = 1

80 APPENDIX A. BUS BANDWIDTH CALCULATIONS

Consequently, we want to find the bandwidth distribution p1, . . . , pn
that results in the smallest possible global delay t. This minimization
problem can be solved using standard techniques.

A.1.2 Calculation of the Current Bus Bandwidth

Finally, we will now show how to calculate the current bus bandwidth
used in the optimization algorithm in Section 6.3. Finding the current

bandwidth P
bus
ωj for a bus segment ωj ∈ B is trivial, since it is alone

determined by the TDMA round constituting the bus segment.

For a task segment Ωi ∈ Ξ, P
bus
ωi can be calculated as follows. For a

task segment Ωk ∈ Ξ, let OΩk denote the set of overlapping bus segments
in B. Now, for each Ωk ∈ Ξ, let us define the function gΩk : OΩk →
[0..1] ⊆ R, mapping every bus segment ωj ∈ OΩk to the fraction of its
total coverage of Ωk, with respect to time. Hence, for any Ωk ∈ Ξ, the
following holds: ∑

ωj∈OΩk

gΩk(ωi) = 1 (A.3)

The current bandwidth of a task segment Ωk ∈ Ξ can now be calculated
as:

P
bus
Ωk

=
∑

ωj∈OΩk

gΩk(ωj) · P
bus
ωj (A.4)

LINKÖPINGS UNIVERSITET

Rapporttyp

Report category

Licentiatavhandling

Examensarbete

C-uppsats

D-uppsats

Övrig rapport

Språk
Language

 Svenska/Swedish

 Engelska/English

Titel
Title

Författare
Author

Sammanfattning
Abstract

ISBN

ISRN

Serietitel och serienummer ISSN
Title of series, numbering

Linköping Studies in Science and Technology

Thesis No. 1503

Nyckelord
Keywords

Datum
Date

URL för elektronisk version

X

X

2011-09-30

Avdelning, institution
Division, department

Institutionen för datavetenskap

Department of Computer

and Information Science

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70138

Predictable Real-Time Applications on Multiprocessor Systems-on-Chip

Jakob Rosén

Being predictable with respect to time is, by definition, a fundamental requirement for any real-time system. Modern

multiprocessor systems impose a challenge in this context, due to resource sharing conflicts causing memory

transfers to become unpredictable. In this thesis, we present a framework for achieving predictability for real-time

applications running on multiprocessor system-on-chip platforms. Using a TDMA bus, worst-case execution time

analysis and scheduling are done simultaneously. Since the worst-case execution times are directly dependent on the

bus schedule, bus access design is of special importance. Therefore, we provide an efficient algorithm for generating

bus schedules, resulting in a minimized worst-case global delay.

We also present a new approach considering the average-case execution time in a predictable context. Optimization

techniques for improving the average-case execution time of tasks, for which predictability with respect to time is not

required, have been investigated for a long time in many different contexts. However, this has traditionally been done

without paying attention to the worst-case execution time. For predictable real-time applications, on the other hand,

the focus has been solely on worst-case execution time optimization, ignoring how this affects the execution time in

the average case. In this thesis, we show that having a good average-case global delay can be important also for real-

time applications, for which predictability is required. Furthermore, for real-time applications running on

multiprocessor systems-on-chip, we present a technique for optimizing for the average case and the worst case

simultaneously, allowing for a good average case execution time while still keeping the worst case as small as

possible. The proposed solutions in this thesis have been validated by extensive experiments. The results

demonstrate the efficiency and importance of the presented techniques.

Computer Systems, Embedded Systems, Real-Time Systems, Predictability, Multiprocessor Systems

978-91-7393-090-1

0280-7971

LIU-TEK-LIC-2011:42

Department of Computer and Information Science

Linköpings universitet

Licentiate Theses

Linköpings Studies in Science and Technology

Faculty of Arts and Sciences

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at: FOA,

Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)

No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-

gorithms, 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.

No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.

No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.

No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.

No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.

No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.

No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.

No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.

No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Computer

Methodology, 1987.

No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.

No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.

No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.

No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.

No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.

No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Systems,

1987.

No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.

No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.

No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.

No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.

No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.

No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.

No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.

No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.

No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.

No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.

No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.

No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.

No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.

No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.

No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.

No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.

No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.

No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.

No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.

No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.

No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.

No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge- Bases,

1991.

No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.

No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm for

Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.

No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotational

Specification, 1992.

No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.

No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.

No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.

No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Systems, 1992.

No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.

No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.

No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.

No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.

No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.

No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.

No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.

No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.

No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.

No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.

No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.

No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.

No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.

No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.

No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.

FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinriktat och

samskapande perspektiv, 1994.

FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En komparativ

studie med utgångspunkt i två informationssystemstrategier, 1994.

No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.

No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.

No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.

No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.

No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques, 1994.

No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.

FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende

arbetssätt och arbetsformer, 1994.

No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.

No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.

No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.

No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.

No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.

No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.

No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.

No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.

FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylprogram, 1995.

No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Companion,

1995.

No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.

No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.

No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.

No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.

No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.

FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap och

metodanalys, 1995.

FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.

No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.

No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.

No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.

No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.

No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.

No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.

No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.

FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod, 1996.

No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.

No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska företag.

1996.

No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.

No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.

No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.

No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.

No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.

No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.

No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.

No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.

No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.

No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.

No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.

No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598 Rego Granlund: C
3
Fire - A Microworld Supporting Emergency Management Training, 1997.

No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.

No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions, 1997.

No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.

FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.

FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värdering och

vidareutveckling i T50-bolag inom ABB, 1997.

No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.

No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.

No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.

No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.

No 629 Gunilla Ivefors: Krigsspel och Informationsteknik inför en oförutsägbar framtid, 1997.

No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997

No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.

No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.

No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.

No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.

FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och värdering

av systemutvecklingsmodeller och dess användning, 1997.

No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.

No 676 Jan Håkegård: Hierarchical Test Architecture and Board-Level Test Controller Synthesis, 1998.

No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.

No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.

FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveckling,

1998.

No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.

No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.

FiF-a 16 Marie-Therese Christiansson: Inter-organisatorisk verksamhetsutveckling - metoder som stöd vid utveckling av

partnerskap och informationssystem, 1998.

No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt i

personal inom skogsindustrin, 1998.

No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.

No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.

No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.

No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svenska

organisationers operativa informationsförsörjning, 1998.

No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.

No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.

No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv, 1998.

FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.

FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.

No 737 Jonas Mellin: Predictable Event Monitoring, 1998.

No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.

FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.

No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.

No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.

No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder och

leverantörer på producentmarknader, 1999.

No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.

No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.

No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie ur ett

agentteoretiskt perspektiv, 2000.

No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.

No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.

No 775 Anders Henriksson: Unique kernel diagnosis, 1999.

FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.

No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.

No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,

2000.

No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.

No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.

No 800 Anders Subotic: Software Quality Inspection, 1999.

No 807 Svein Bergum: Managerial communication in telework, 2000.

No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.

FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter från ett

FOU-samarbete, 2000.

No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.

No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.

No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.

No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.

FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och

utveckling av affärsrelationer och informationssystem, 2000.

No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.

No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.

FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.

FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.

FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.

No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.

No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.

No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.

No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B e-procurement,

2001.

No 890 Annika Flycht-Eriksson: Domain Knowledge Management in Information-providing Dialogue systems, 2001.

FiF-a 47 Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer: Informationssystemarkitektur

och aktörssamverkan som förutsättningar för affärsprocesser, 2001.

No 894 Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.

No 906 Lin Han: Secure and Scalable E-Service Software Delivery, 2001.

No 917 Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.

No 916 Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet som

stöd för beslut om anskaffning av JAS 1982, 2002.

FiF-a-49 Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-

slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.

FiF-a-51 Per Oscarsson: Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-

mationssäkerhet och dess hantering, 2001.

No 919 Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded

Systems, 2001.

No 915 Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.

No 931 Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala

modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.

No 933 Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages, 2002.

No 938 Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.

No 942 Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.

No 956 Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in limited

liability companies, 2002.

FiF-a 58 Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.

No 964 Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.

No 973 Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.

No 958 Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,

2002.

FiF-a 61 Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.

No 985 Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times, 2002.

No 982 Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.

No 989 Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.

No 990 Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential

Equations, 2002.

No 991 Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.

No 999 Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002.

No 1000 Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.

No 1001 Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for Irregular

Architectures, 2002.

No 988 Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.

FiF-a 62 Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa

projektarbetsformen, 2003.

No 1003 Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.

No 1005 Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts, 2003.

No 1008 Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.

No 1010 Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.

No 1015 Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.

No 1018 Björn Johansson: Feedforward Control in Dynamic Situations, 2003.

No 1022 Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded

Systems, 2003.

FiF-a 65 Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i

affärstransaktioner, 2003.

No 1024 Aleksandra Tešanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.

No 1034 Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.

No 1033 Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid

införandet av nya redovisningsregler, 2003.

FiF-a 69 Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.

No 1049 Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.

No 1052 Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.

No 1054 Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.

FiF-a 71 Emma Eliason: Effektanalys av IT-systems handlingsutrymme, 2003.

No 1055 Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.

No 1058 Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.

FiF-a 73 Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och

interaktion vid förändring av systemutvecklingsverksamheter, 2004.

No 1079 Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.

No 1084 Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region, 2004.

FiF-a 74 Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.

No 1094 Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.

No 1095 Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.

No 1099 Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.

No 1110 Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.

No 1116 Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,

2004.

FiF-a 77 Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en

systemutvecklingsprocess, 2004.

No 1126 Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.

No 1127 Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.

No 1132 Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,

2004.

No 1130 Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.

No 1138 Thomas Gustafsson: Maintaining Data Consistency in Embedded Databases for Vehicular Systems, 2004.

No 1149 Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.

No 1156 Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.

No 1162 Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.

No 1165 Fidel Vascós Palacios: On the information exchange between physicians and social insurance officers in the sick

leave process: an Activity Theoretical perspective, 2005.

FiF-a 84 Jenny Lagsten: Verksamhetsutvecklande utvärdering i informationssystemprojekt, 2005.

No 1166 Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,

2005.

No 1167 Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-

cational technology, 2005.

No 1168 Cécile Åberg: Integration of organizational workflows and the Semantic Web, 2005.

FiF-a 85 Anders Forsman: Standardisering som grund för informationssamverkan och IT-tjänster - En fallstudie baserad på

trafikinformationstjänsten RDS-TMC, 2005.

No 1171 Yu-Hsing Huang: A systemic traffic accident model, 2005.

FiF-a 86 Jan Olausson: Att modellera uppdrag - grunder för förståelse av processinriktade informationssystem i

transaktionsintensiva verksamheter, 2005.

No 1172 Petter Ahlström: Affärsstrategier för seniorbostadsmarknaden, 2005.

No 1183 Mathias Cöster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.

No 1184 Åsa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution, 2005.

No 1185 Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging Industry,

2005.

No 1190 David Dinka: Role and Identity - Experience of technology in professional settings, 2005.

No 1191 Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting Data,

2005.

No 1192 Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.

No 1194 Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.

No 1204 Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered Approach,

2005.

No 1206 Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.

No 1207 John Wilander: Policy and Implementation Assurance for Software Security, 2005.

No 1209 Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett

landsting, 2005.

No 1225 He Tan: Aligning and Merging Biomedical Ontologies, 2006.

No 1228 Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.

No 1229 Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.

No 1231 Kalle Burbeck: Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks, 2006.

No 1233 Daniela Mihailescu: Implementation Methodology in Action: A Study of an Enterprise Systems Implementation

Methodology, 2006.

No 1244 Jörgen Skågeby: Public and Non-public gifting on the Internet, 2006.

No 1248 Karolina Eliasson: The Use of Case-Based Reasoning in a Human-Robot Dialog System, 2006.

No 1263 Misook Park-Westman: Managing Competence Development Programs in a Cross-Cultural Organisation - What

are the Barriers and Enablers, 2006.
FiF-a 90 Amra Halilovic: Ett praktikperspektiv på hantering av mjukvarukomponenter, 2006.

No 1272 Raquel Flodström: A Framework for the Strategic Management of Information Technology, 2006.

No 1277 Viacheslav Izosimov: Scheduling and Optimization of Fault-Tolerant Embedded Systems, 2006.

No 1283 Håkan Hasewinkel: A Blueprint for Using Commercial Games off the Shelf in Defence Training, Education and

Research Simulations, 2006.

FiF-a 91 Hanna Broberg: Verksamhetsanpassade IT-stöd - Designteori och metod, 2006.

No 1286 Robert Kaminski: Towards an XML Document Restructuring Framework, 2006.

No 1293 Jiri Trnka: Prerequisites for data sharing in emergency management, 2007.

No 1302 Björn Hägglund: A Framework for Designing Constraint Stores, 2007.

No 1303 Daniel Andreasson: Slack-Time Aware Dynamic Routing Schemes for On-Chip Networks, 2007.

No 1305 Magnus Ingmarsson: Modelling User Tasks and Intentions for Service Discovery in Ubiquitous Computing,

2007.

No 1306 Gustaf Svedjemo: Ontology as Conceptual Schema when Modelling Historical Maps for Database Storage, 2007.

No 1307 Gianpaolo Conte: Navigation Functionalities for an Autonomous UAV Helicopter, 2007.

No 1309 Ola Leifler: User-Centric Critiquing in Command and Control: The DKExpert and ComPlan Approaches, 2007.

No 1312 Henrik Svensson: Embodied simulation as off-line representation, 2007.

No 1313 Zhiyuan He: System-on-Chip Test Scheduling with Defect-Probability and Temperature Considerations, 2007.

No 1317 Jonas Elmqvist: Components, Safety Interfaces and Compositional Analysis, 2007.

No 1320 Håkan Sundblad: Question Classification in Question Answering Systems, 2007.

No 1323 Magnus Lundqvist: Information Demand and Use: Improving Information Flow within Small-scale Business

Contexts, 2007.

No 1329 Martin Magnusson: Deductive Planning and Composite Actions in Temporal Action Logic, 2007.

No 1331 Mikael Asplund: Restoring Consistency after Network Partitions, 2007.

No 1332 Martin Fransson: Towards Individualized Drug Dosage - General Methods and Case Studies, 2007.

No 1333 Karin Camara: A Visual Query Language Served by a Multi-sensor Environment, 2007.

No 1337 David Broman: Safety, Security, and Semantic Aspects of Equation-Based Object-Oriented Languages and

Environments, 2007.

No 1339 Mikhail Chalabine: Invasive Interactive Parallelization, 2007.

No 1351 Susanna Nilsson: A Holistic Approach to Usability Evaluations of Mixed Reality Systems, 2008.

No 1353 Shanai Ardi: A Model and Implementation of a Security Plug-in for the Software Life Cycle, 2008.

No 1356 Erik Kuiper: Mobility and Routing in a Delay-tolerant Network of Unmanned Aerial Vehicles, 2008.

No 1359 Jana Rambusch: Situated Play, 2008.

No 1361 Martin Karresand: Completing the Picture - Fragments and Back Again, 2008.

No 1363 Per Nyblom: Dynamic Abstraction for Interleaved Task Planning and Execution, 2008.

No 1371 Fredrik Lantz:Terrain Object Recognition and Context Fusion for Decision Support, 2008.

No 1373 Martin Östlund: Assistance Plus: 3D-mediated Advice-giving on Pharmaceutical Products, 2008.

No 1381 Håkan Lundvall: Automatic Parallelization using Pipelining for Equation-Based Simulation Languages, 2008.

No 1386 Mirko Thorstensson: Using Observers for Model Based Data Collection in Distributed Tactical Operations, 2008.

No 1387 Bahlol Rahimi: Implementation of Health Information Systems, 2008.

No 1392 Maria Holmqvist: Word Alignment by Re-using Parallel Phrases, 2008.

No 1393 Mattias Eriksson: Integrated Software Pipelining, 2009.

No 1401 Annika Öhgren: Towards an Ontology Development Methodology for Small and Medium-sized Enterprises,

2009.

No 1410 Rickard Holsmark: Deadlock Free Routing in Mesh Networks on Chip with Regions, 2009.

No 1421 Sara Stymne: Compound Processing for Phrase-Based Statistical Machine Translation, 2009.

No 1427 Tommy Ellqvist: Supporting Scientific Collaboration through Workflows and Provenance, 2009.

No 1450 Fabian Segelström: Visualisations in Service Design, 2010.

No 1459 Min Bao: System Level Techniques for Temperature-Aware Energy Optimization, 2010.

No 1466 Mohammad Saifullah: Exploring Biologically Inspired Interactive Networks for Object Recognition, 2011

No 1468 Qiang Liu: Dealing with Missing Mappings and Structure in a Network of Ontologies, 2011.

No 1469 Ruxandra Pop: Mapping Concurrent Applications to Multiprocessor Systems with Multithreaded Processors and

 Network on Chip-Based Interconnections, 2011

No 1476 Per-Magnus Olsson: Positioning Algorithms for Surveillance Using Unmanned Aerial Vehicles, 2011

No 1481 Anna Vapen: Contributions to Web Authentication for Untrusted Computers, 2011

No 1485 Loove Broms: Sustainable Interactions: Studies in the Design of Energy Awareness Artefacts, 2011

FiF-a 101 Johan Blomkvist: Conceptualising Prototypes in Service Design, 2011

No 1490 Håkan Warnquist: Computer-Assisted Troubleshooting for Efficient Off-board Diagnosis, 2011

No 1503 Jakob Rosén: Predictable Real-Time Applications on Multiprocessor Systems-on-Chip, 2011

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070320125831
 708.6614
 S5-utfall
 Blank
 496.0630

 Tall
 0
 0
 No
 635
 395
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 103
 102
 103

 1

 HistoryItem_V1
 DefineBleed

 Range: all pages
 Request: bleed all round 14.17 points
 Bleed area is outside visible: no

 0.0000
 0
 0.0000
 14.1732
 0
 0
 581
 343
 0.0000
 Fixed

 Both
 AllDoc

 PDDoc

 0.0000

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 103
 102
 103

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 5.67, distance 14.17 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 0 down, columns 0 across
 Align: centre

 0.0000
 14.1732
 5.6693
 1
 Corners
 0.2999
 ToFit
 0
 0
 0.7000
 0
 0
 0
 0.0000
 0

 D:20071003103129
 841.8898
 a4
 Blank
 595.2756

 Tall
 589
 352
 0.0000
 C
 0

 PDDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20090225115229
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 724
 429

 None
 Down
 99.2126
 85.0394

 Both
 405
 AllDoc
 410

 CurrentAVDoc

 Uniform
 99.2126
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 0
 103
 102
 103

 1

 HistoryList_V1
 qi2base

