
Bus Access Design for Combined Worst and Average Case Execution Time
Optimization of Predictable Real-Time Applications on Multiprocessor

Systems-on-Chip
Jakob Rosén1, Carl-Fredrik Neikter1, Petru Eles1, Zebo Peng1, Paolo Burgio2, Luca Benini2

1Department of Computer and Information Science, Linköping University, Sweden
2Department of Electronics, Computer Sciences and Systems, University of Bologna, Italy

Abstract—Optimization techniques for improving the
average-case execution time of an application, for which
predictability with respect to time is not required, have been
investigated for a long time in many different contexts. How-
ever, this has traditionally been done without paying attention
to the worst-case execution time. For predictable real-time
applications, on the other hand, the focus has been solely
on worst-case execution time optimization, ignoring how this
affects the execution time in the average case. In this paper, we
show that having a good average-case delay can be important
also for real-time applications for which predictability is
required. Furthermore, for real-time applications running on
multiprocessor systems-on-chip, we present a technique for
optimizing the average case and the worst case simultaneously,
allowing for a good average-case execution time while still
keeping the worst case as small as possible.

I. INTRODUCTION AND RELATED WORK

For real-time systems, correctness of a program not
only depends on the produced computational results, but
also on its ability to deliver these on time, according to
specified time constraints. Therefore, for a real-time appli-
cation, predictability with respect to time is of uttermost
importance. The obvious example is safety-critical hard real-
time systems, such as medical and avionic applications, for
which failure to meet a specified deadline not only renders
the computations useless, but also can have catastrophic
consequences. However, predictability is getting more and
more desirable for other classes of embedded applications,
for instance within the domains of multimedia and telecom-
munication, for which QoS guarantees are desired [1]. As
these kinds of applications grow more complex, they also
require more computational power in terms of hardware
resources. In order to satisfy these demands, multi-core
systems on a single chip are used to an increasing extent [2].

To achieve predictability with respect to time, various
techniques are applied, assuming that the worst-case ex-
ecution time (WCET) of every task is known. A lot of
research has been carried out within the area of worst-case
execution time analysis [3]. However, according to the pro-
posed techniques, each task is analyzed in isolation, as if it
was running on a monoprocessor system. Consequently, it is
assumed that memory accesses over the bus take a constant
amount of time to process, since no bus conflicts can occur.
For multiprocessor systems with a shared communication
infrastructure, however, transfer times depend on the bus

load and are therefore no longer constant, causing the tradi-
tional methods to produce incorrect results [4], [5]. The main
obstacle when performing timing analysis on multiprocessor
systems is that the scheduling of tasks assumes that their
worst-case execution times are known. However, to calculate
these worst-case execution times, knowledge about the task
schedule is required. The traditional method of separating
WCET analysis and task scheduling no longer works, and
new approaches are required. We have previously proposed
a novel technique to achieve predictability on multiprocessor
systems by doing WCET analysis and scheduling simulta-
neously [6].

The worst-case program path is, for most applications,
taken very seldom. This generally leads to much longer exe-
cution times than what can be expected on average, resulting
in a gap between the worst-case global delay (WCGD) and
the average-case global delay (ACGD). Therefore, when de-
signing periodic systems, there will be a significant interval
of time after the program has finished until the next period
starts. During this time interval, the processors are free to be
used for anything, as long as they are ready and free at the
start of the new period. Thus, instead of just letting them be
idle, doing nothing, we can utilize this slack for performing
computations not requiring strict predictability, or we can
just shut off the processors to save energy. Consequently, it
can be of great interest that the average-case global delay is
as short as possible, even for hard real-time systems.

Consider the hard real-time application in Figure 1a,
composed of the three tasks τ1, τ2 and τ3 running on two
processors. The application is periodically executed with a
period equal to the worst-case global delay. After finishing
the last computation, the processors are powered off, to save
energy, until the start of the next period. Consequently, in
the average case, the processors are shut off between the
time instants ACGD and WCGD, and, since the goal is
to reduce the power consumption as much as possible, we
would like to maximize this time interval. However, we
also need to have a short period and, therefore, the worst-
case global delay must remain small. Hence, optimizing for
the average case without caring for the worst case is not
suitable for these kind of systems. On the other hand, if
we optimize for the ACGD while also making sure that the
WCGD is kept at a near-minimum, it is possible to benefit
from a substantial reduction of power consumption while

C
P
U
1

C
P
U
2

τ
1

τ
2

τ
3

WCGDACGD

off

off

a) Optimized for the WCGD

C
P
U
1

C
P
U
2

τ
1

τ
2

τ
3

WCGD'ACGD'

off

off

b) Optimized for the WCGD and ACGD

C
P
U
1

C
P
U
2

τ
1

τ
2

τ
3

WCGD'ACGD'

τ
4

τ
5

c) Performing additional best effort calculations

τ
6

Figure 1. Motivational Example For a Hard Real-Time System

r
t

r
t-n

Data is periodically fetched

C
P

U
1

C
P

U
2

τ
1

τ
2

τ
3

WCGDACGD

r
t

r
t-1

r
t-2

...
r

t-n

Buffer

Figure 2. Motivational Example For a Buffer-Based System

extending the application period only marginally. This is
exactly the case in Figure 1b, where it can be seen that
the energy consumed for running the application is reduced,
but since the WCGD is increased only by a small amount,
the application period can still be kept low.

The interval between the end time of the application and
the WCGD can, obviously, also be used for other purposes
than switching off the processors. In Figure 1c, we have
used the remaining time, after the end of the application,
for running best effort calculations, represented by the tasks
τ4, τ5 and τ6. These tasks can, if needed, be preempted at
the end of the application period.

Another example can be found in Figure 2. The appli-
cation, consisting of the three tasks τ1, τ2 and τ3 running
on two processors, is writing a produced result to a FIFO
buffer at the end of its execution. An external consumer
is periodically reading data from the other end of the
buffer. A small ACGD allows for high data rates, but in
order to guarantee a minimum rate and to help the system
designer dimension the buffer, the WCGD must be known
and preferably be small as well.

Optimization techniques for improving the average-case

Bus

CPU 1

Cache

CPU 2

Cache

Memory 1
(Private)

Memory 0
(Shared)

Memory 2
(Private)

Figure 3. Hardware model

execution time of an application, for which predictability
with respect to time is not required, have been investigated
in nearly every scientific discipline involving a computer.
However, this has traditionally been done without paying
attention to the worst-case execution time. For predictable
applications, on the other hand, the focus has been solely on
worst-case execution time optimization, which still is a hot
research topic [7][6]. The main contribution of this paper is
the combination of these two concepts and, to the best of
our knowledge, this is the first time it has ever been done
within the context of achieving predictability.

II. SYSTEM AND APPLICATION MODEL

A. Hardware Architecture

As hardware platform, we have considered a multipro-
cessor system-on-chip with a shared communication in-
frastructure, as shown in Figure 3, typical for the new
generation of multiprocessor system-on-chip designs [8].
Each processor has its own cache for storing data and
instructions, and is connected to a private memory via the
bus. For interprocessor communication, a shared memory
is used. All memory accesses to the private memories are
cached, as opposed to accesses to the shared memory which,
in order to avoid cache coherence problems, are not cached.
All memory devices are accessed using the same, shared
bus. However, in the case of private memory accesses, the
bus is used only when an access results in a cache miss.

B. Application Model

The functionality of a software application is captured
by a directed acyclic task graph, G(Π,Γ). Its nodes rep-
resent computational tasks, and the edges represent data
dependencies between them. A task cannot start executing
before all its input data is available. Communication between
tasks mapped on the same processor is performed by using
the corresponding private memory, and is handled in the
same way as memory requests during the execution of
a task. Interprocessor communication, so called explicit
communication, is done via the shared memory and is
modeled as two communication tasks - one for transmitting
and one for receiving - in the task graph. The transmitting
communication task is assigned to the same processor as
the task that is sending data to the shared memory and,
similarly, the receiving communication task is assigned to

τ
1

τ
2

τ
1

τ
1w

τ
2r

τ
3 dl=4 ms

Figure 4. Task graph

Slot belonging to CPU 1
Slot belonging to CPU 2

Segment 1 (ω
1
) Segment 2 (ω

2
)

Round 1 Round 2

0 10 30 40 60 70 80 90 100 110 120

Figure 5. Example of a bus schedule

the processor fetching the same data. An example is shown
in Figure 4 where τ1w and τ2r represent the transmitting and
receiving task, respectively.

A computational task cannot communicate with other
tasks during its execution, which means that it will not
access the shared memory. However, the task is accessing
data from the private memory and program instructions
are continuously fetched. Consequently, the bus is accessed
every time a cache miss occurs, resulting in what we define
as implicit communication. As opposed to explicit commu-
nication, implicit communication has not been taken into
account in previous approaches for system-level scheduling
and optimization of real-time applications [9], [10].

The task graph has a deadline which represents the
maximum allowed execution time of the entire application,
known as the maximum global delay. Individual tasks can
have deadlines as well. The example task graph in Figure
4 has a global delay of 4 milliseconds. The application is
assumed to be running periodically, with a period greater
than or equal to the application deadline.

C. Bus Model

A precondition for predictability is to use a predictable
bus architecture. Therefore, we are using a TDMA-based
bus arbitration policy, suitable for modern system-on-chip
designs with QoS constraints [11], [12], [1], [13].

The behavior of the bus arbiter is defined by the bus
schedule, consisting of sequences of slots. Each slot is
owned by exactly one processor, and has an associated start
and end time pair. Between these two time instants, only the
processor owning the slot is allowed to use the bus. A bus
schedule is divided into segments, and each segment consists
of a round, that is, a sequence of slots, that is repeated
periodically. See Figure 5 for an example.

The bus arbiter stores the bus schedule in a dedicated
memory, and grants access to the processors accordingly. If
CPUi requests access to the bus in a time interval belonging
to a slot owned by a different processor, the transfer will be

Segment start

Segment length

0

60

Processor ID 1

Slot size 10

Processor ID 2

Slot size 20

Segment 1

Round 1

Segment start

Segment length

60

120

Processor ID 1

Slot size 10

Processor ID 2

Slot size 10

Segment 2

Round 2

Figure 6. Bus schedule table representation

τ
1

τ
2

τ
3

C
P
U
1

C
P
U
2

τ
1

τ
2

a) Task Graph b) Traditional Schedule

τ
3

0 64 192

1560

C
P
U
1

C
P
U
2

τ
1

τ
2

c) Predictable Schedule

τ
3

0 84 242

1880

B
U
S ω

1
ω
2

ω
3
242188840

Figure 7. Overall Approach Example

delayed until the start of the next slot with owner CPUi. A
bus schedule is defined for one period of the application,
and is then repeated periodically. A table representation of
the bus schedule in Figure 5 is depicted in Figure 6.

To limit the required amount of memory on the bus con-
troller, a TDMA round can be subject to various constraints.
A common restriction is to let every processor own, at most,
a specified number of slots per round. Also, one can let the
sizes be the same for all slots of a certain round, or let
the slot order be fixed [6]. The algorithms presented in this
paper work regardless of what restrictions are imposed with
respect to the TDMA round.

III. PRELIMINARIES

For a task running on a multiprocessor system, as de-
scribed in Section II-A, the problem for achieving pre-
dictability is that the duration of a bus transfer depends on
the bus congestion. Since bus conflicts depend on the task
schedule, WCET analysis cannot be performed before that is
known. However, task scheduling traditionally assumes that
the worst-case execution times of the tasks are already calcu-
lated. To solve this circular dependency, we have developed
an approach based on the following principles [6]:

1) A TDMA-based bus access policy (Section II-C) is used
for arbitration. The bus schedule, created at design time,

is enforced during the execution of the application.
2) The worst-case execution time analysis is performed

with respect to the bus schedule, and is integrated with
the task scheduling process, as described in Figure 8.

We illustrate our overall approach with a simple example.
Consider the application in Figure 7a. It consists of three
tasks; τ1, τ2 and τ3 mapped on two processors. The static
cyclic scheduling process is based on a list scheduling tech-
nique [14] and is performed in the outer loop described in
Figure 8. Let us, as is done traditionally, assume that worst-
case execution times have been obtained using techniques
where each task is considered in isolation, ignoring conflicts
on the bus. These calculated worst-case execution times are
156, 64, and 128 time units for τ1, τ2, and τ3 respectively.
The deadline is set to 192 time units, and would be con-
sidered as satisfied according to traditional list scheduling,
using the already calculated worst-case execution times, as
shown in Figure 7b. However, this assumes that no conflicts,
extending the bus transfer durations (and implicitly the
memory access times), will ever occur on the bus. This is,
obviously, not the case in reality and thus results obtained
with the previous assumption are wrong.

In our predictable approach, the list scheduler will start by
scheduling the two tasks τ1 and τ2 in parallel, with start time
0, on their respective processor (line 2 in Figure 8). However,
we do not yet know the end times of the tasks, and to gain
this knowledge, worst-case execution time analysis has to
be performed. In order to do this, a bus schedule which the
worst-case execution times will be calculated with respect
to (line 6 in Figure 8) must be selected. This bus schedule
is, at the moment, constituted by one bus segment ω, as
described in Section II-C. Given this bus schedule, worst-
case execution times of tasks τ1 and τ2 will be computed
(line 7 in Figure 8). Based on this output, new bus schedule
candidates are generated and evaluated (lines 5-8 in Figure
8), with the goal of obtaining those worst-case execution
times that lead to the shortest possible worst-case global
delay of the application.

Assume that, after selecting the best bus schedule, the
corresponding worst-case execution times of tasks τ1 and τ2
are 167 and 84 respectively. We can now say the following:

• Bus segment ω1 is the first segment of the bus schedule,
and will be used for the time interval 0 to 84.

• Both tasks τ1 and τ2 start at time 0.
• In the worst case, τ2 ends at time 84 (the end time of
τ1 is still unknown, but it will end later than 84).

Now, we go back to step 3 in Figure 8 and schedule a
new task, τ3, on processor one. According to the previous
worst-case execution time analysis, task τ3 will, in the worst
case, be released at time 84, scheduled in parallel with the
remaining part of task τ1. A new bus segment ω, starting
at time 84, will be selected and used for analyzing task τ3.
For task τ1, the already fixed bus segment ω1 is used for the

01: θ=0
02: while not all tasks scheduled
03: schedule new task at t ≥ θ
04: Ψ=set of all tasks that are active at time t
05: repeat
06: select bus segment ω for the

time interval starting at t
07: determine the WCET of all tasks in Ψ
08: until termination condition
09: θ=earliest time a task in Ψ finishes
10: end while

Figure 8. Overall Approach

time interval between 0 and 84, after which the new segment
ω is used. Once again, several bus schedule candidates are
evaluated, and finally the best one, with respect to the worst-
case global delay, is selected. Assume that the segment ω2

is finally selected, and that the worst-case execution times
for tasks τ1 and τ3 are 188 and 192 respectively, making
task τ3 end at 276. Now, ω2 will become the second bus
segment of the application bus schedule, ranging from time
84 to 188, and this part of the bus schedule will be fixed.
Now, we repeat the same procedure with the remaining part
of τ3 (which now ends at time 242 instead of 276, since ω3

assigns all bus bandwidth to CPU2). The final, predictable
schedule is shown in Figure 7c, and leads to a WCGD of
242.

An outline of the algorithm can be found in Figure 8.
We define Ψ as the set of tasks active at the current time t,
and this is updated in the outer loop. In the beginning of the
loop, a new bus segment ω, starting at t, is generated and the
resulting bus schedule candidate is evaluated with respect
to each task in Ψ. Based on the outcome of the WCET
analysis, the bus segment ω is improved for each iteration.
The bus segments previously generated before time t remain
unaffected. After selecting the best segment ω, θ is set to
the end time of the task in Ψ that finished first. The time t
is updated to θ and we continue with the next iteration of
the outer loop.

Since our approach requires knowledge about not only
the number of cache misses for a certain program path,
but also their location with respect to time, this must be
taken into consideration by the WCET analysis on line
7 in Figure 8. Consequently, we must search through all
feasible program paths and match each possible bus transfer
to slots in the actual bus schedule, keeping track of exactly
when a bus transfer is granted the bus in the worst case.
Since the number of program paths grows exponentially, the
number of possible search paths in the control flow graph
quickly becomes very large. Fortunately, efficient search-tree
pruning techniques dramatically reduce the search space, and
allow for quick analyses also for big and complex tasks.

Given whatever TDMA bus schedule, our WCET analysis
calculates a safe corresponding worst-case execution time.
An integrated worst-case cache miss analysis, supporting
set associative instruction and data cache models of various
sizes, is used in order to collect information about the

possible bus transfers. The analysis technique is applicable
to both compositional and noncompositional hardware ar-
chitectures, as defined by Wilhelm et al. [15], and is of the
same computational complexity as traditional methods. We
refer to our previous work for an extensive coverage of the
used WCET analysis framework [16][6].

IV. AVERAGE-CASE EXECUTION TIME ESTIMATION

When calculating the WCET of a task, one tries to find
the worst-case program path with respect to the specified
bus schedule. The bus optimization algorithm then locates
where, with respect to the worst-case program path, to
allocate bandwidth. This technique is not directly applicable
to average-case execution time (ACET) analysis, since there
is generally no particular program path corresponding to the
ACET of a task.

To evaluate how good a bus schedule is from the point
of view of the ACET, the application has to be executed a
large number of times so that the end time of each run can
be recorded and used to calculate a mean. This is a rather
time-consuming process and, therefore, using this method
repetitively inside an optimization loop leads to excessively
long analysis times. Also, in order for the optimization
algorithm to know where to allocate bus bandwidth for
a certain task, the locations, with respect to time, of the
cache misses for an average execution of the task have to
be approximated. We solve these two problems by using a
histogram-based technique, where simulation data is used to
create task profiles then given as input to the optimization
algorithm.

In order to build the memory access histogram, N sets of
input data are generated for each task. This data is random-
ized with respect to a distribution representing typical input
patterns for the particular task in question. Every task is then
simulated, in isolation, N times and, for each simulation,
a trace file containing the locations of the cache misses
is generated. Using this information, we want to find out
where, in time, cache misses are most likely to occur so that
bus bandwidth can be assigned accordingly. This is done by
building, for each task, a histogram over bus accesses in
time (excluding the time spent using the bus), with respect
to all N simulations.

Figure 9 shows an example of a histogram based on 1000
simulations. The y-value of the histogram denotes how many
of the N simulations of the task requested the bus during the
time interval represented by the corresponding x-value. For
instance, in this example, it can be seen that all simulations
request the bus at the very start of the task due to instruction
cache misses. During the time regions denoted by t1, t2,
t3 and t4, most simulations request the bus. Consequently,
making sure that the task gets a lot of bandwidth during these
time periods is most likely a good idea, from the point of
view of the ACET.

Time

Frequency

t
1

t
2

t
3

t
4

0

1000

Figure 9. Memory Access Histogram

Given the histogram and a specified bus schedule, we can
obtain an estimation of the average-case task execution time.

By using the frequency data on the y-axis, a hypothetical
program path can be constructed, corresponding to the
average-case memory access pattern. To get an average-case
execution time estimation, we can then apply our technique
outlined in the last paragraph of Section III, using this
hypothetical program path.

We want to design a bus schedule that produces a good
ACGD. However, since we want to keep the WCGD small,
we must also consider the worst-case program path during
the optimization process. This requires a new optimization
technique, which will be outlined in the next section.

V. COMBINED AVERAGE AND WORST CASE
OPTIMIZATION APPROACH

We assume that the steps in Figure 8 have been car-
ried out, and that we have the result in the form of a
task schedule, sworst

0 , and a bus schedule, B0, correspond-
ing to the smallest possible WCGD. These are, together
with a designer-specified limit on the maximum allowed
WCGD and the memory access histogram data for the tasks
τi ∈ G(Π,Γ), taken as input parameters to our combined
optimization approach, as illustrated in Figure 10. As output
from the algorithm, a bus schedule Bfinal, optimized for both
ACGD and WCGD, is returned together with the final worst-
case task schedule sworst

final and average-case task schedule
length ACGDest.

In the first step of our algorithm in Figure 10, the average-
case schedule savg

0 is calculated with respect to B0. Then an
iterative function, denoted as improve on line 4 in Figure
10, tries to improve the bus schedule with respect to both
the average and the worst case. The termination condition
is reached when no more improvements can be found, and
the algorithm then exits and returns the best bus schedule
Bfinal and corresponding worst-case task schedule sworst

final .

VI. BUS ACCESS OPTIMIZATION FOR ACGD AND
WCGD

The improve function (line 4 in Figure 10) takes as
input parameters a bus schedule Bk, the initial worst-case
task schedule sworst

0 , the initial average-case task schedule
savg

0 and WCGDmax. As output, we get the improved bus

Algorithm: Combined ACGD and WCGD optimization
Input: - Initial bus schedule B0

- Initial worst-case schedule sworst0
- Maximum worst-case global delay WCGDmax
- Memory access histograms of the tasks τi ∈ G(Π,Γ)

Output: - The resulting bus schedule Bfinal

- The resulting worst-case task schedule sworstfinal

01: Calculate initial average-case schedule savg0
02: k = 0
03: repeat
04: [Bk+1, sworstk+1 , savgk+1] = improve(Bk)
05: k=k+1
06: until termination condition
07: Bfinal = Bk

08: sworstfinal = sworstk

Figure 10. Combined Optimization Approach

schedule Bk+1 together with the corresponding worst-case
task schedule sworst

k+1 and average-case task schedule savg
k+1.

The goal is to modify the bus schedule so that the ACGD of
the application is reduced, while the WCGD is increased as
little as possible. To do so, the effects on both the ACGD and
WCGD have to be considered for each possible modification.
However, performing average-case and worst-case execution
time analysis with respect to several bus schedule candidates
is time-consuming. Therefore, it is desirable to identify
the most interesting parts of the bus schedule, where a
modification is likely to result in positive effects for the
global delay, and then perform execution time analysis with
respect to modifications of these parts only. Consequently,
we start the improve function by investigating which parts
of the bus schedule to modify for a decreased ACGD,
without initially considering the effects on the WCGD. Only
the most interesting parts are then investigated with respect
to both the ACGD and WCGD.

A. Task and Bus Segments

The first step of the improve function is to generate
the average-case task schedule savg

k by performing ACET
analysis (Section IV), for each task, with respect to the
bus schedule Bk. From the execution time analysis, we can
extract interesting properties, such as bus transfer times and
the number of memory accesses, of certain time intervals,
and these properties are then used to determine how much
the corresponding parts of the bus schedule can be improved
with respect to the ACGD (and later also how to modify the
bus schedule).

In order to find suitable time intervals, we first divide both
the bus schedule Bk and the average-case task schedule savg

k

into segments. For this, we distinguish between two different
kind of segments: task segments and bus segments. A task
segment is defined as the longest time interval in which a
specific set of tasks, with respect to a specific task schedule,
are executing concurrently. Every task schedule can be seen
as a disjunctive set of task segments, Ξ. This is a natural
division, since the execution time analysis operates on these
kind of sets. Bus segments are defined just as in Section
II-C, i.e. as intervals of the bus schedule where the same

C
P
U
1

C
P
U
2

τ
1

τ
2

τ
3

ω
1

ω
2

ω
3Bus

Ω
1

Ω
2

Ω
3

ACGD WCGD

Figure 11. Division of an Application Into Segments

TDMA round is repeated. Consequently, the bus schedule
can be regarded as a disjunctive set of bus segments, B.

Figure 11 shows a task schedule for an application with
three tasks mapped on two processors, and the corresponding
bus schedule. The task schedule is divided into three task
segments: Ω1, Ω2 and Ω3. The three dashed areas of the
bus schedule represent the bus segments ω1, ω2 and ω3.
What we, initially, would like to do is to identify the areas
of the bus schedule, represented by task segments and bus
segments, for which modifications can result in the most
beneficial change of the ACGD. In order to perform this
identification, we start with an investigation of how the
bus bandwidth is distributed to the task segments and bus
segments, in the average case.

B. Bus Bandwidth Distribution Analysis

Based on the information from the average-case execution
time analysis, for each task segment Ωi ∈ Ξ and bus segment
ωj ∈ B, we want to determine the following:

1) The desired bus bandwidth, that, when given to this
particular interval of the bus schedule, minimizes the
global delay in the average case. For a specific task
segment Ωi ∈ Ξ, this bandwidth is denoted PΩi

and
is a vector of n elements, PΩi

= pΩi
(1), . . . , pΩi

(n),
where n is the number of processors in the system
and each element represents the desired bandwidth
for the corresponding processor. Similarly, Pωj =
pωj

(1), . . . , pωj
(n) is the corresponding vector for a

bus segment ωj ∈ B. The bandwidth is represented as
the fraction of the total bus bandwidth, thus satisfying:∑

k

pΩi(k) = 1,
∑
k

pωj (k) = 1

Detailed descriptions for how to perform these calcu-
lations can be found in AppendixA-A and A-B.

2) The bandwidth currently given to each processor during
the specific interval Ωi ∈ Ξ and ωj ∈ B, represented by
the vectors P

bus

Ωi
= pbusΩi

(1), . . . , pbusΩi
(n) and P

bus

ωj
=

pbusωj
(1), . . . , pbusωj

(n). As for the desired bandwidth,
the elements are representing fractions of the total
bandwidth, therefore summing up to one. Section A-C
describes how these two vectors are calculated.

For a specific task segment Ωk ∈ Ξ, let αΩk
∈ [1..n] ⊆ Z,

where n is the number of processors, denote the processor

on which the task on the critical path, with respect to the
average-case task schedule, is executed during that particular
time interval. For every task segment, there is always one
such processor. Let us define the scalar p∆

Ωk
, for a task

segment Ωk ∈ Ξ, as the difference between the desired task
bandwidth and the provided bus bandwidth for processor
αΩk

. That is, p∆
Ωk

= pΩk
(αΩk

)− pbusΩk
(αΩk

).
Since many task segments can overlap a bus segment,

several different processors can execute tasks that are on
the (same) critical path during the particular time interval
represented by the bus segment. Hence, let Aωk

be the set
of processors αωk

that are running tasks on the critical path
during the interval represented by bus segment ωk ∈ B. We
then define p∆

ωk
as:

p∆
ωk

= max
(⋃
αi∈Aωk

(
pωk

(αi)− pbusωk
(αi)

))
(1)

A high p∆
Ωi

for a task segment Ωi ∈ Ξ or p∆
ωk

for a bus
segment ωj ∈ B means that the corresponding interval of
the bus schedule has room for improvement with respect to
the average-case global delay. Therefore, time intervals with
a high corresponding p∆

x , x ∈ (Ξ ∪ B) are interesting from
an optimization point of view, whereas intervals with a low
p∆
x , x ∈ (Ξ ∪ B) do not need further investigation. We can

now limit the search space by just looking at parts of the bus
schedule with a corresponding p∆

x , x ∈ (Ξ ∪ B) exceeding
a specified threshold.

If we wanted to just optimize for the average case, we
would start by modifying the region represented by the
segment (task or bus) with the highest p∆

x , x ∈ (Ξ ∪ B).
However, a large decrease in ACGD is not necessarily good,
if that makes the WCGD increase too big. When deciding
which region of the bus schedule to improve, one must
also take into account the effect on the WCGD. In fact,
what we want to improve is the ratio between average-
case improvement and worst-case extension, with respect to
the global delay. In order for our optimization algorithm to
decide how good a bus schedule is for both the ACGD and
WCGD, a cost function is specified in the next section.

C. Cost Function

We denote with length(s) the length of schedule s. Let
sworst

old and savg
old be worst-case and average-case schedules,

for the same application, generated with respect to a bus
schedule Bold. After creating a new bus schedule Bnew, by
modifying a suitable interval of Bold, we obtain updated
task schedules sworst

new and savg
new. If an improvement was made,

the task schedules will satisfy length(savg
new) < length(savg

old),
and length(sworst

new) > length(sworst
old) (since the WCGD is

expected to grow1). If the bus schedule Bnew does not lead

1For the special case when length(sworst
new) ≤ length(sworst

old), the ratio
in Equation 2 is set to ∞.

to an improvement with respect to the ACGD, it is discarded
and not considered further by the optimization algorithm.
Provided that the new bus schedule Bnew actually results
in an improvement, a good measure of how good the bus
modification is can be given by the ratio:

qsworst
new ,savg

new,s
worst
old ,savg

old
=

length(savg
old)− length(savg

new)

length(sworst
new)− length(sworst

old)
(2)

Consequently, a suitable cost function for our optimization
algorithm can be expressed as:

C(sworst
new , savg

new, s
worst
old , savg

old) = −qsworst
new ,savg

new,s
worst
old ,savg

old
(3)

With respect to this cost function, we can now evaluate a
set of bus schedule candidates and choose the best one.

D. Bus Schedule Optimization

We create a new bus schedule candidate Bk′ from bus
schedule Bk (taken as input parameter on line 4 in Figure
10) by modifying the part of Bk corresponding to the time
interval represented by a task segment Ωi ∈ Ξ or bus seg-
ment ωj ∈ B. To calculate the cost of Bk′ , we must compute
the schedules sworstk′ and savgk′ . This is done by invoking
the execution time analysis framework twice, for the entire
application, and that is relatively costly from a computation-
time perspective. Therefore, as stated previously, the solution
is to limit the search space and thus only generate candidates
that are likely to perform good. It can be assumed that
improving areas corresponding to segments with a low p∆

Ωi

or p∆
ωj

, for Ωi ∈ Ξ and ωj ∈ B respectively, will not lead to
the best results. Therefore, we define Ξ′ as the set of the t
task segments Ωi ∈ Ξ which have the greatest corresponding
p∆

Ωi
values. Similarly, B′ is defined as the set of b bus

segments ωj ∈ B with the greatest corresponding p∆
ωi

. The
t+b segments in Ξ′∪B′ are selected for further investigation.
High t and b values, set by the designer, allow the algorithm
to evaluate more bus schedule candidates, but at the expense
of computation time.

For each segment in Ξ′ ∪ B′, we generate several bus
schedule candidates and evaluate them with respect to the
cost function defined in Equation 3. When no more bus
schedule candidates are left to evaluate for any segment in
Ξ′∪B′, the candidate associated with the lowest cost is kept
and returned as bus schedule Bk+1 (line 4 in Figure 10).

The first bus schedule candidate Bk′0 for a specific seg-
ment in Ξ′∪B′ is generated by inserting a new bus segment
into the previously generated bus schedule Bk. This new
bus segment is constituted by a TDMA round r, generated
so that the bus bandwidth during the corresponding interval
is assigned according to the desired bus bandwidth PΩi

or
Pωj , depending on if the segment being investigated is a task
segment Ωi ∈ Ξ′ or a bus segment ωj ∈ B′. With respect
to the bus schedule candidate Bk′0 , the schedules sworst

k′0
and

savg
k′0

are generated and Bk′0 is then evaluated according to
the cost function in Equation 3. To create the next bus

01: Perform an average-case execution time analysis.
02: Divide the resulting task schedule into a set of

task segments Ξ.
03: Calculate current and desired bus bandwidth,

PΩi
and Pωj

with respect to the ACGD only, for

each task segment and bus segment.
04: Calculate Ξ′ and B′.
05: For each element in Ξ′ ∪ B′, generate a set of

bus schedule candidates and evaluate them
according to the cost function in Equation 3.

06: Return the candidate that generates the lowest cost,
while keeping the WCGD below WCGDmax.

Figure 12. The improve Function

schedule candidate Bk′i (where now, in this case, i = 1)
for the same segment, round r is modified according to
the outcome of the execution time analysis, by assigning
more bandwidth to the processor on the critical path. The
cost is then recalculated. Other modifications, such as slot
order permutations, can also be carried out depending on the
restrictions imposed on TDMA complexity. The procedure
of improving round r - each improvement resulting in a
new bus schedule candidate - is repeated a specified number
of times or until no further improvements are found, and
then the next segment in Ξ′ ∪ B′ is investigated. The best
bus schedule candidate Bk′ is then chosen as the new bus
schedule Bk+1 for the application, and the function returns.
The improve function is summarized in Figure 12.

Note that adding new bus segments will increase the
complexity of the bus schedule. Since the memory on the bus
arbiter is limited, there might be a limit for how many bus
segments we can allow. Once this maximum number of bus
segments is reached, we cannot increase the number of seg-
ments of the bus schedule without first deleting at least one,
already existing, bus segment. Therefore, immediately after
inserting the new bus segment, resulting in the bus schedule
candidate Bk′0 , and before making any improvements to the
corresponding round r constituting it, we evaluate the effect
of merging every pair of consecutive bus segments in the
bus schedule using the ACGD and WCGD analyses and
computing the resulting cost. The best merge is then kept,
and we continue by generating more bus schedule candidates
Bk′i (by trying to improve r, as usual). Note that this is only
a problem when improving the bus schedule with respect to
task segments Ωi ∈ Ξ′, since improving with respect to bus
segments ωj ∈ B′ does not increase the number of bus
segments.

VII. EXPERIMENTAL RESULTS

We have evaluated our framework using an extensive set
of generated C programs. The programs were constructed
with respect to randomized task graphs consisting of be-
tween 20 and 200 tasks, mapped on 2 to 8 processors.
The individual tasks were generated according to control
flow graphs corresponding to programs for commonly used
computations such as sorting, searching, matrix multiplica-
tions and DSP processing. In total, 8000 applications were

generated and evaluated. To calculate the memory access
histograms, as described in Section IV, 1000 simulations
where carried out for each task.

As simulation environment, we have used the MPARM
multiprocessor cycle-accurate simulator from Bologna Uni-
versity [17], configured according to the hardware model in
Section II-A, using 8 ARM7 cores running at 200 MHz. An
AMBA AHB-compliant bus arbiter, enforcing the bus model
in Section II-C, was implemented and incorporated into the
simulation framework. The bus speed was set to 100 MHz,
resulting in a memory access taking 13 CPU clock cycles
to serve. In order to restrict the amount of memory on the
controller, we imposed the following restrictions on TDMA
round complexity:

1) A processor can own at most one slot in a TDMA
round.

2) The slot order is fixed, and cannot be changed during
the optimization procedure.

The values of t and b, described in Section VI-D, were set
to 100 and 50 respectively. We also limited the total number
of bus segments allowed in the bus schedule to 1000.

Using the approach outlined in Section III, for each of
the applications, we started by generating a bus schedule
minimizing the worst-case global delay, completely ignoring
the average case. Let us denote this initial, minimized,
worst-case global delay by WCGD0, and let ACGD0 be the
ACGD calculated with respect to the same bus schedule.
The bus schedule, optimized for the worst case, and the
corresponding worst-case task schedule were then sent as
input parameters to the algorithm outlined in Figure 10,
together with the generated memory access histograms for
each task in the application task graph. A maximum allowed
WCGD was also supplied.

We now investigated how much the ACGD can be de-
creased, given a maximum allowed increment (with respect
to WCGD0) of the resulting WCGD. For all applications, we
performed the optimization procedure three times, allowing
WCGD increments of 1%, 5% and 10% respectively. For
each of these allowed increments, a corresponding average
ACGD improvement was calculated. The result is found in
Figure 13. For instance, for two processors, accepting an
1% extension with respect to WCGD0 leads to an average
ACGD improvement of 13.2%. Accepting a greater WCGD
increment naturally results in a more substantial ACGD
reduction. It can be observed that using a lower number
of processors allows for a higher ACGD decrement, with
respect to ACGD0. This is explained by the fact that fewer
competing processors leave more room for tailoring the
bus schedule for a specific processor, allowing for a more
flexible design.

In a second experiment, we investigated how optimizing
for the ACGD, without considering the WCGD at all, affects
the latter. The idea is to show that optimizing only for the
ACGD leads to unreasonably high worst-case global delays,

2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

1%
5%
10%

Number of Processors

AC
G

D
 Im

pr
ov

em
en

t (
%

)

WCGD
Extension:

Figure 13. Relative ACGD Improvement

2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

WCGD
Extension
ACGD
Improvement

Number of Processors

G
lo

ba
l D

el
ay

 C
ha

ng
e

(%
)

Figure 14. Relative ACGD Improvement and WCGD Extension

compared to when optimizing for both. For this second
experiment, we used the very same generated test examples
as in the first experiment, allowing for direct comparisons
with the already calculated WCET0 and ACET0. Initially,
an algorithm for optimizing the bus schedule, taking into
account only the ACGD, was applied to the test applications,
and then the WCGD was calculated with respect to that bus
schedule. Let us denote the resulting ACGD and WCGD by
ACGD′0 and WCGD′0 respectively. In Figure 14, we have
plotted the relative average extension of WCGD′0 compared
to WCGD0, and the average reduction of ACGD′0 compared
to ACGD0. As can be seen, not taking the WCGD into con-
sideration when optimizing the bus schedule leads to very
high worst-case global delays, whereas the corresponding
ACGD improvement is only slightly better than when also
optimizing for the WCGD. For instance, for a 5 processor
application, the WCGD extension compared to the optimal
case (WCGD0) is 28% whereas the improvement of the
ACGD relative ACGD0 is 6.0%. By looking in Figure 13, we
can see that when optimizing for both ACGD and WCGD
simultaneously, for 5 processors we can obtain a 5.5%
(instead of 6%) improvement with only a 10% (compared
to 28%) degradation of the WCGD.

All experiments were executed on a dual core Pentium
4 processor running at 2.8 GHz. The time to process one
application ranged from 10 minutes to 4 hours, depending
on the application complexity.

VIII. CONCLUSIONS

In this paper, we have presented an approach for bus
design optimization, taking into consideration both the
average-case and worst-case global delay for real-time ap-
plications running on multiprocessor systems-on-chip. Using
our technique, the average-case global delay is reduced
while the worst case is kept as small as possible. This
is the first approach in literature to combine worst and
average case optimization for real time systems, and the
presented experimental results demonstrate its efficiency. It
is important to mention that the proposed approach provides
guarantees for worst-case predictability.

REFERENCES

[1] K. Goossens, J. Dielissen, and A. Radulescu, “AEthereal
Network on Chip: Concepts, Architectures, and Implemen-
tations,” IEEE Design & Test of Computers, vol. 2/3, pp.
115–127, 2005.

[2] W. Wolf, Computers as Components: Principles of Embedded
Computing System Design. Morgan Kaufman, 2008.

[3] P. Puschner and A. Burns, “A Review of Worst-Case
Execution-Time Analysis,” Real-Time Systems, vol. 2/3, pp.
115–127, 2000.

[4] L. Thiele and R. Wilhelm, “Design for Timing Predictability,”
Real-Time Systems, vol. 28, no. 2/3, pp. 157–177, 2004.

[5] S. Schliecker, J. Rox, M. Ivers, and R. Ernst, “Providing
Accurate Event Models for the Analysis of Heterogeneous
Multiprocessor Systems,” in CODES+ISSS, 2008.

[6] J. Rosén, A. Andrei, P. Eles, and Z. Peng, “Bus access opti-
mization for predictable implementation of real-time applica-
tions on multiprocessor systems-on-chip,” in Proceedings of
the 28th IEEE Real-Time Systems Symposium (RTSS), 2007,
pp. 49–60.

[7] H. Falk, “WCET-aware Register Allocation based on Graph
Coloring,” in DAC, 2009.

[8] I. A. Khatib, D. Bertozzi, F. Poletti, L. Benini, et al., “A mul-
tiprocessor systems-on-chip for real-time biomedical monitor-
ing and analysis: Architectural design space exploration,” in
DAC, 2006, pp. 125–131.

[9] P. Pop, P. Eles, Z. Peng, and T. Pop, “Analysis and Opti-
mization of Distributed Real-Time Embedded Systems,” ACM
Transactions on Design Automation of Electronic Systems,
vol. Vol. 11, pp. 593–625, 2006.

[10] A. Davare, Q. Zhu, M. D. Natale, C. Pinello, S. Kanajan, and
A. L. Sangiovanni-Vincentelli, “Period Optimization for Hard
Real-time Distributed Automotive Systems,” in DAC, 2007,
pp. 278–283.

[11] E. Salminen, V. Lahtinen, K. Kuusilinna, and T. Hamalainen,
“Overview of bus-based system-on-chip interconnections,” in
ISCAS, 2002, pp. 372–375.

[12] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Fast ex-
ploration of bus-based on-chip communication architec-
tures,” in Proceedings of the International Conference
on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2004, pp. 242–247.

[13] A. Schranzhofer, J. Chen, and L. Thiele, “Timing Analysis
for TDMA Arbitration in Resource Sharing Systems,” in 16th
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2010.

[14] E. C. Jr and R. Graham, “Optimal Scheduling for two
processor systems,” Acta Informatica, vol. 1, pp. 200–213,
1972.

[15] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, , and P. Sten-
ström, “The Worst-case Execution Time Problem – Overview
of Methods and Survey of Tools,” ACM Transactions on
Embedded Computing Systems (TECS), 2008.

[16] C.-F. Neikter, “Cache prediction and execution time analysis
on real-time mpsoc,” 2008, Master Thesis, LIU-IDA/LITH-
EX-A–08/046–SE.

[17] MPARM homepage,
“http://www-micrel.deis.unibo.it/sitonew/research/mparm.html”.

APPENDIX A.
BUS BANDWIDTH CALCULATIONS

A. Desired Bus Bandwidth Calculation for a Task Segment

In this subsection, we will describe how to calculate the
desired bandwidth PΩi

for a task segment Ωi ∈ Ξ, as
required by the algorithm in Section V. It is assumed that
an average-case execution time analysis has been performed
with respect to a bus schedule, that partly or fully is tailored
for the worst case. The desired bus bandwidth for a specific
part of this bus schedule is, in this context, the distribution
of bandwidth that will reduce the average-case global delay
as much as possible.

Consider the task segment Ωk. We would like to calculate
the desired bus bandwidth for all processors executing
during the corresponding interval of time. Let Tj ⊆ G(Π,Γ)
be the ordered set of the tasks running on processor 1, . . . , n
during the time interval specified by Ωj , and denote these
tasks by τ1, . . . , τn. Hence, τi ∈ Tj runs on processor i.

To estimate the desired bandwidth for the different proces-
sors, an approximation is needed for how much the current
ACET of a task τi ∈ Tj contributes to the average-case
global delay. Let D1

i be the set of all tasks τj ∈ G(Π,Γ)
which have a direct dependency on τi ∈ Tj in the task graph
G(Π,Γ). Furthermore, let D2

i be the singleton set consisting
of the first task, after τi ∈ Tj , that is scheduled on the
same processor. Combining these two sets, Di is defined
as Di = D1

i ∪ D2
i . Now, we can calculate the length of

the longest chain of tasks, with respect to their average-case
execution times, that are affected by the execution time of

τi ∈ Tj . This longest chain of tasks is called the tail λi of
task τi ∈ Tj , and it is formally defined recursively as:
• λi = 0, if Di = ∅
• λi = max

τj∈Di

(ACETτj + λj), otherwise.

where ACETτj is the average-case execution time of task
τj ∈ G(Π,Γ) produced by the most recent average-case
execution time analysis.

Let us now denote the start time and the end time of
the task segment Ωj by Ωstart

i and Ωend
i respectively. For

task τi ∈ Tj , we define mi as the number of cache misses
on the average-case control flow path, counting from time
Ωstart
j to Ωend

j . Similarly, mend
i is defined as the number of

cache misses on the average-case path, starting from Ωend
j

and counting to the end of the task. Also, we define li as
the sum of the executed cycles, excluding the time using or
waiting for the bus, during the interval Ωj . lend

i is defined in
the same way, but the cycles are now counted between the
time Ωend

j and the end of the task.
Now, with respect to the current bus schedule, let di

denote the average time task τi ∈ Tj spends waiting, due to
bus conflicts and the bus transfer time, for the bus during
the time interval Ωj , each time a cache miss is issued. Note
that the following holds for any task τi ∈ Tj :

li +mi · di = Ωendj − Ωstartj (4)

Remember that the desired bandwidth, represented as the
fraction of the total bandwidth, for a task τi ∈ Tj running
on processor β during the time interval represented by Ωj
is defined as pΩj (β). Let us, for convenience, denote this
fraction as pi. The average waiting time can then be modeled
in terms of the desired bandwidth as follows:

di =
1

pi
k (5)

According to this model, if we, for a task τi ∈ Tj ,
approximate the part after time Ωendj by assuming that all
cache misses take k cycles to serve, the average-case global
delay can be expressed as:

ACGDΩj = max
τi∈Tj

(Ωstart
j + li +mi ·

1

pi
k + lri + λτi)

where lri = lendi + mend
i · k is the approximation of the

remaining part of task τi ∈ Tj , starting from time Ωendj .
For the segment Ωj ∈ Ξ, we now want to find the bus

bandwidth distribution that minimizes ACGDΩj
. This can

be formulated as a system of inequalities:

Ωstart
j + l1 +m1 ·

1

p1
k + lr1 + λ1 ≤ ACGDΩj

...

Ωstart
j + ln +mn ·

1

pn
k + lrn + λn ≤ ACGDΩj

p1 + · · ·+ pn = 1

Consequently, we want to find the p1, . . . , pn that results
in the smallest possible ACGDΩj

. A very important ob-
servation is that for the minimum ACGDΩj , the equations
above are satisfied with equality, simplifying the calculations
significantly. The resulting system of non-linear equations
can be solved quickly using standard techniques.

B. Desired Bus Bandwidth Calculation for a Bus Segment
In addition to calculating the desired bus bandwidth for

task segments, as done in Section A-A, we would like to
do the same for bus segments, i.e. calculate Pωi

for all bus
segments ωi ∈ B. Since the execution time analysis is used
to extract the parameters needed in order to determine the
desired bus bandwidth, and it operates on task segments, we
must find ways to apply this information to bus segments
instead. This has to be done differently depending on the
size of the bus segment in relation to the (with respect to
time) overlapping task segments. Note that the information
needed from the execution time analysis is already stored in
PΩi

for the task segments Ωi ∈ Ξ, so we do not have to
invoke it again.

For a bus segment ωk ∈ B, let Oωk
denote the set of

overlapping task segments in Ξ. We want to approximate
the desired bus bandwidth for ωk by using the already
calculated PΩi

vectors for all task segments Ωi ∈ Oωk
.

Furthermore, for each ωk ∈ B, we define the function
fωk

: Oωk
→ [0..1] ⊆ R, mapping every task segment

Ωi ∈ Oωk
to the fraction of how much it covers the time

interval corresponding to ωk (by overlapping it). Hence, for
any ωk ∈ B, the following holds:∑

Ωi∈Oωk

fωk
(Ωi) = 1 (6)

Now, the desired bandwidth of a bus segment ωk ∈ B can
be calculated as:

Pωk
=

∑
Ωi∈Oωk

fωk
(Ωi) · PΩi (7)

C. Current Bus Bandwidth Calculation

Finding the current bandwidth P
bus

ωj
for a bus segment

ωj ∈ B is trivial, since it is alone determined by the TDMA
round constituting the bus segment. For a task segment Ωi ∈
Ξ, P

bus

ωi
can be calculated with a technique similar to the

one previously used to derive Equation 7. For a task segment
Ωk ∈ Ξ, let OΩk

denote the set of overlapping bus segments
in B. Now, for each Ωk ∈ Ξ, let us define the function gΩk

:
OΩk

→ [0..1] ⊆ R, mapping every bus segment ωj ∈ OΩk

to the fraction of its total coverage of Ωk, with respect to
time. The current bandwidth of a task segment Ωk ∈ Ξ can
now be calculated as:

P
bus

Ωk
=

∑
ωj∈OΩk

gΩk
(ωj) · P

bus

ωj
(8)

