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Abstract—Worst-case execution time analysis is the funda-
ment of real-time system design, and is therefore an area
which has been subject to great scientific interest for a long
time. However, traditional worst-case execution time analysis
techniques assume that the underlying hardware is a mono-
processor system, and this class of hardware platforms is
getting less suitable for modern embedded applications, which
demand more and more in terms of computational power. For
multiprocessor systems, traditional worst-case analysis tools
do not produce correct results and can consequently not be
used. To solve this problem, we have previously proposed
a technique for achieving predictability on multiprocessor
systems-on-chip using a shared TDMA bus. One of the main
benefits with our approach is that existing, traditional worst-
case execution time analysis techniques can, after some small
modifications, be applied. In this paper, we describe the nature
of these modifications and how to handle different types of
multiprocessor architectures.

I. INTRODUCTION AND RELATED WORK

For real-time systems, correctness of a program not only
depends on the produced computational results, but also
on its ability to deliver these on time to satisfy speci-
fied time constraints. Therefore, for a real-time application,
predictability with respect to time is of uttermost impor-
tance. The obvious example is safety-critical hard real-
time systems, such as medical and avionic applications, for
which failure to meet a specified deadline not only renders
the computations useless, but also can have catastrophic
consequences. However, predictability is getting more and
more desirable for other classes of embedded applications,
for instance within the domains of multimedia and telecom-
munication, for which QoS guarantees are desired [1]. As
these kinds of applications grow more and more complex,
they also require more computational power in terms of
hardware resources. In order to satisfy these demands, multi-
core systems implemented on a single chip are used to an
increasing extent [2].

To achieve predictability with respect to time, schedu-
lability analysis techniques are applied, assuming that the
worst-case execution time (WCET) of every task is known.
A lot of research has been carried out within the area of
worst-case execution time analysis [3]. However, each task
is, traditionally, analyzed in isolation as if it was running on

a monoprocessor system. Consequently, it is assumed that
memory accesses over the bus take constant amount of time
to process. For multiprocessor systems with a shared com-
munication infrastructure, however, transfer times depend on
the bus load and are therefore no longer constant, causing
the traditional methods to produce incorrect results [4].

The main obstacle when performing WCET analysis
on multiprocessor systems is that the scheduling of tasks
assumes that their worst-case execution times are known,
but to calculate these worst-case execution times, knowledge
about the task schedule is required. Clearly, the traditional
method of separating WCET analysis and task scheduling
no longer works, and new approaches are required. We
have previously proposed a novel technique to achieve
predictability on multiprocessor systems by doing worst-case
execution time analysis and scheduling simultaneously [5],
[6]. With respect to a given TDMA bus schedule, tasks are
scheduled at the same time as their worst-case execution
times are calculated, and the resulting worst-case global
delay of the application is obtained. In order to calculate
the WCET of a task, the analysis needs to be aware of
the TDMA bus, taking into account that processors must
only be granted the bus during their assigned time slots. To
accomplish this, the analysis procedure must be modified.

II. SYSTEM MODEL

A. Hardware Architecture

As hardware platform, we have considered a multipro-
cessor system-on-chip architecture with a shared communi-
cation infrastructure, as shown in Figure 1, typical for the
new generation of multiprocessor system-on-chip designs
[7]. Each processor has its own cache for storing data and
instructions, and is connected to a private memory via the
bus. For interprocessor communication, a shared memory
is used. All memory accesses to the private memories are
cached, as opposed to accesses to the shared memory which,
in order to avoid cache coherence problems, are not cached.
All memory devices are accessed using the same, shared
bus. However, in the case of private memory accesses, the
bus is used only when an access results in a cache miss.

Within the context of worst-case execution time analysis,
hardware platforms can be divided into compositional archi-
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Figure 2. Example of a bus schedule

tectures and noncompositional architectures [8], depending
on whether or not the platform exhibits timing anomalies
[9], [10]. Timing anomalies occur when a local worst-case
scenario, such as a cache miss instead of a hit, does not
result in the worst case globally. This complicates the worst-
case execution time analysis significantly, since no local
assumptions can be made. Compositional architectures, such
as the ARM7, do not exhibit timing anomalies, and the
analysis can therefore be divided into disjunctive subprob-
lems, simplifying the analysis procedure. Noncompositional
architectures, on the other hand, require a far more compli-
cated and time-consuming analysis. The PowerPC 775 is an
example of a noncompositional architecture [8]. As will be
described below, our approach works for both compositional
architectures and noncompositional architectures.

B. Bus Model

A precondition for achieving predictability is to use a
predictable bus architecture. Therefore, we are using a
TDMA-based bus arbitration policy, which is suitable for
modern system-on-chip designs with QoS constraints [11],
[12], [1].

The behavior of the bus arbiter is defined by the bus
schedule, consisting of sequences of slots. Each slot is
owned by exactly one processor, and has an associated start
time and an end time. Between these two time instants, only
the processor owning the slot is allowed to use the bus. A
bus schedule is divided into segments, and each segment
consists of a round, that is, a sequence of slots, that is
repeated periodically. See Figure 2 for an example.

The bus arbiter stores the bus schedule in a dedicated
external memory, and grants access to the processors accord-
ingly. If processor CPUi requests access to the bus in a time
interval belonging to a slot owned by a different processor,
the transfer will be delayed until the start of the next slot
with owner CPUi. A bus schedule is defined for one period
of the application, and is then repeated periodically. A table
representation of the bus schedule in Figure 2 can be found
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Figure 3. Bus schedule table representation
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in Figure 3.
To limit the required amount of memory on the bus con-

troller, a TDMA round can be subject to various complexity
constraints. A common restriction is to let every processor
own, at most, a specified number of slots per round. Also,
one can let the sizes be the same for all slots of a certain
round, or let the slot order be fixed. For more details, we
refer to our previous work [5].

III. MOTIVATIONAL EXAMPLE

Consider a multiprocessor system with two processors and
a shared communication infrastructure according to Section
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II. Each task has been analyzed with a traditional WCET
tool, assuming a monoprocessor system, and the resulting
Gantt chart of the respective worst-case program path is
illustrated in Figure 4a. The dashed intervals represent cache
misses, each of them taking six time units to serve, and the
white solid areas represent segments of code not using the
bus. Task 2 is also transferring data to the shared memory,
and this is represented by the black solid area.

However, since the tasks are now running on a multipro-
cessor system with a shared communication infrastructure,
they do not have exclusive access to their respective private
memories. Hence, some kind of arbitration policy must be
applied to distribute the bus bandwidth among the tasks.
The result is that when two tasks request the bus simultane-
ously, one of them has to wait until the other has finished
transferring. This means that transfer times are no longer
constant, but now instead depend on the load on the other
processors. Figure 4b shows the resulting Gantt chart when
the commonly used FCFS arbitration policy is applied.

The fundamental problem when performing worst-case
execution time analysis on multiprocessor systems is that
the load on the other processors is in general not known.
For a task, the number of cache misses and their location
in time depend on the program control flow path. This
means that it is very hard to foresee where there will be
bus access collisions, since this will differ from execution
to execution. To complicate things further, the worst-case
control flow path of the task will change depending on the
bus load originating from the other concurrent tasks. In order
to solve this and introduce predictability, we use a TDMA
bus schedule which, a priori, determines exactly when a
processor is granted the bus, regardless of what is executed
on the other processors. Given a TDMA bus schedule, the
WCET analysis tool calculates a corresponding worst-case
execution time. Therefore, it is important that a clever bus
schedule, optimized to reduce the worst case, is used. We
refer to our previous work for algorithms and more details
about how to create a good bus schedule [5]. Figure 4c
shows the same task configuration as previously, but now
the memory accesses are arbitrated according to TDMA.
The result is a predictable system, with optimized worst-
case task execution times.

IV. TDMA-BASED WCET ANALYSIS

Performing worst-case execution time analysis with re-
spect to a TDMA bus schedule requires not only knowledge
about the number of cache misses for a certain program
path, but also their location with respect to time. Hence,
traditional ILP-based methods for worst-case execution time
analysis cannot be applied. Instead, each memory access
needs to be considered with respect to the bus schedule,
granting access to the bus only during the slots belonging to
the requesting processor. However, to collect the necessary
information used by our worst-case execution time analysis

framework, the same techniques used in traditional methods
can be utilized.

Calculating the worst-case execution time has to be done
with respect to the particular hardware architecture on which
the task being analyzed is going to be executed. Factors
such as the instruction set, pipelining complexity, caches and
so on must be taken into the account by the analysis. For
an application running on a compositional architecture, the
analysis can be divided into subproblems processed in a local
fashion, for instance on basic block level. We can be sure
that the local worst-case always contributes to the worst-case
globally, allowing for fast analysis techniques without the
need to analyze every single program path individually. This
is, unfortunately, not the case when using noncompositional
architectures. The presence of timing anomalies will force
the analysis to consider all possible program paths explicitly,
naturally causing the analysis time to explode as the size of
the tasks increase. Consequently, this kind of architectures
are not suitable for hard real-time systems, and therefore,
most WCET analysis tools emphasize on compositional
platforms.

For a predictable multiprocessor system with a shared
communication structure, as described in Section II, it is
necessary to search through all feasible program paths and
match each possible bus transfer to slots in the actual bus
schedule, keeping track of exactly when a bus transfer is
granted the bus in the worst case. This means that the
execution time of a basic block will vary depending on when,
in time, it is executed. Fortunately, for an application running
on a compositional architecture, efficient search-tree pruning
techniques dramatically reduce the search space, allowing
for local analysis, just as for traditional WCET techniques.

V. COMPOSITIONAL WCET ANALYSIS FLOW

A typical program flow for a WCET tool operating on
compositional architectures is shown in the left path of
Figure 5 [13]. First, a control flow graph (CFG) is generated.
A value analysis is then performed to find program charac-
teristics such as data address ranges and loop bounds. To
take into account performance-enhancing features of modern
hardware, cache and pipeline analyses are carried out next.
A path analysis identifies the feasible paths and an ILP
formulation for calculating the worst-case program path is
then produced. The information traditionally provided in this
ILP formulation is, however, not sufficient for calculating
the WCET on a multiprocessor system since not only the
number of cache misses are needed for each basic block,
but also their positions with respect to time. If necessary, an
underlying WCET tool has to be modified to provide this
information. A more in-depth description can be found in
our previous work [14].

Our TDMA-based approach for compositional WCET
analysis is illustrated in the right path of Figure 5. After
the path analysis, the information from the previous steps is
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used to calculate the worst-case program path by mapping
the cache misses to the corresponding bus slots in the TDMA
schedule. We will now show the idea behind this with a
simple example.

A. Monoprocessor WCET Example

Consider a task τ executing on a system with two proces-
sors (processor 1 and processor 2). The task is being mapped
on processor 1, and has start time 0. First, an annotated
control flow graph, as illustrated in Figure 6, is constructed.
The rectangular elements B, C, H, E, F in the graph
represent basic blocks, and the circles A, G, I represent
control nodes gluing them together. The loop starting at
control node G will run at most three times, so the loop
bound is consequently set to 3. The annotated numbers in

0 10 20 30 40 50 60 70

...

Slot belonging to processor 1

Slot belonging to processor 2

Figure 7. Example TDMA Bus Schedule

the basic blocks represent consecutive cycles of execution,
in the worst case, not accessing the bus. For instance, basic
block B will, when executed, immediately - after 0 clock
cycles - issue a cache miss. After this, 10 cycles will be spent
without bus accesses before the next (and last) cache miss
occurs. Finally, 10 bus access-free cycles will be executed
before the basic block ends. Hence, the execution time of
basic block B will be (0+ k1+10+ k2+10) where k1 and
k2 represent the transfer times of the first and second cache
miss respectively.

For a typical monoprocessor system, all cache misses
take the same constant amount of time to process, and
the execution time of basic block B would be known
immediately. However, for multiprocessor architectures such
as the one described in Section II, we must calculate the
individual transfer times with respect to a given TDMA
schedule.

B. Multiprocessor WCET Example

Instead of a monoprocessor system, assume a multiproces-
sor system, as described in Section II, using the bus schedule
in Figure 7. Processor 1, on which the task is running, gets
a bus slot of size 10 processor cycles periodically assigned
to it every 20th cycle. In this particular example, a cache
miss takes 10 cycles for the bus to transfer, resulting in the
bus being granted to processor 1 only at times t satisfying
t ≡ 0 (mod 20), where ≡ is the congruence operator.

To calculate the worst-case program path, we must eval-
uate all feasible program paths in the control flow graph. In
the very simple example in Figure 6, there are 30 program
paths1 to explore, growing exponentially with the number of
branches and loop bounds. Fortunately, due to the nature of
the compositional architecture and the TDMA bus, not all
of them have to be investigated explicitly. In fact, in a task
graph with all loops unrolled, each basic block would need
be be investigated exactly once, as will be explained in the
following.

Let us denote the worst-case start time of a basic block
Z by s(Z), and the end time in the worst case by e(Z).
The execution time of a basic block Z, in the worst
case, is then defined as w(Z) = e(Z) − s(Z). Without
considering bus conflicts, as in traditional methods, the
worst-case execution time of the basic blocks would be
wtrad(B) = 27, wtrad(C) = 32, wtrad(E) = 19, wtrad(F) = 18
and wtrad(H) = 15. The corresponding worst-case program

12 + 22 + 23 + 24 = 30
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path becomes C,E,E,E,H resulting in a worst-case exe-
cution time of 27+19 ·3+15 = 104 clock cycles. However,
this assumes that all cache misses take the same amount of
time to transfer, and this is false in a multiprocessor system
with a shared communication structure. In our TDMA-based
approach, the execution time of a basic block depends on its
start time in relation to the bus schedule. We start from the
root node and successively calculate the execution time of
each basic block with respect to the worst-case start time.
At the same time, the worst-case path is calculated.

With respect to the TDMA schedule in figure 7, the worst-
case start times of the basic blocks connected directly to the
root node is 0, since they will never execute at any other
time instant. The execution time of block B, in the worst
case, is w(B) = 0 + 10 + 2 + 18 + 5 = 35 whereas the
corresponding execution time of block C is w(C) = 0+10+
9+ 11+ 3 = 33. Note that w(B) > w(C), even though the
relation is the opposite in the traditional case above where
wtrad(B) < wtrad(C). In order to decide which one of these
two basic blocks is on the critical path, two very important
observations must be made based on the predictable nature
of the TDMA bus.

1) The absolute end time of a basic block can never
increase by letting it start earlier. That is, a basic
block Z with s(Z) = x and e(Z) = y, any start time
x′ < x will result in an end time y′ ≤ y. The execution
time of the particular basic block can increase, but the
increment can never exceed the difference x − x′ in
start time. This means that for a basic block Z, the
basic block will never end later than e(Z) as long as it
start before (or at) s(Z). This guarantees that the worst-
case calculations will never be violated, no matter what
program path is taken. Note that w(Z) is the execution
time in the worst case, with respect to e(Z), and that
the time spent by executing Z can be greater than w(Z)
for an earlier start time than s(Z).

2) Consider a basic block Z with worst-case start time
s(Z) = x and worst-case end time e(Z) = y. If we,
instead, assume a worst-case start time of s(Z) = x′′

where x′′ > x, the corresponding resulting absolute end
time e(Z) = y′′ will always satisfy the relation y′′ ≥ y.
This means that the greatest assumed worst-case start
time s(Z) will also result in the greatest absolute end
time e(Z).

Based on the second observation, we can be sure that the
maximum absolute end time for the basic block (E, F or
H) succeeding B and C will be found when the worst-case
start time is set to 35 rather than 33. Therefore, we conclude
that B is on the worst-case program path and, since they are
not part of a loop, B and C do not have to be investigated
again.

Next follow three choices. We can enter the loop by
executing either E or F, or we can go directly to H and

end the task immediately. Due to observation 2 above, we
can conclude that the worst-case absolute end time of H,
and thus the entire task, will be achieved when the loop
iterates the maximum possible number of times, which is
3 iterations, since that will maximize s(H). Therefore, the
next step is to calculate the worst-case execution time for
basic blocks E and F respectively for each of the three
iterations, before finally calculating the worst-case execution
time of H. In the first iteration, the worst-case start time
is s(E1) = s(F1) = 35 and the execution times become
w(E1) = 0 + 15 + 9 = 24 and w(F1) = 7 + 28 + 1 = 36
for E and F respectively. We conclude that the worst-case
program path so far is B,F and the new start time is
set to s(E2) = s(F2) = 35 + 36 = 71. In the second
loop iteration, we get w(E2) = 0 + 19 + 9 = 28 and
w(F2) = 7 + 12 + 1 = 20. Hence, in this iteration, E con-
tributes to the worst-case program path and the new worst-
case start time becomes s(E3) = s(F3) = 99. In the final
iteration, the execution times are w(E3) = 0+ 11+ 9 = 20
and w(F3) = 7 + 24 + 1 = 32 respectively, resulting
in the new worst-case start time s(H) = 131. We now
know that the worst-case program path is B,F,E,F,H,
and since H contains no cache misses, and therefore always
takes 15 cycles to execute, the WCET of the entire task is
e(H) = 146.

As shown in the this example, in a loop-free control flow
graph, each basic block has to be visited once. For control
flow graphs containing loops, the number of investigations
will be the same as for the case where all loops are unrolled
according to their respective loop bounds. The result, when
the graph is traversed, is a time-complexity not higher
than for traditional monoprocessor worst-case execution time
analysis techniques.

VI. NONCOMPOSITIONAL ANALYSIS

In the presence of timing anomalies, it is no longer
possible to do local assumptions about the global worst
case execution time. Therefore, for such architectures, every
program path has to be analyzed explicitly. This is the case,
not only for multiprocessor systems, but for any worst-case
execution time framework operating on a noncompositional
platform. Also, all steps in Figure 5, from the cache and
pipeline analyses and forward, must be integrated since it,
for noncompositional architectures, is impossible to assume
safe initial cache and pipeline states for a basic block,
regardless of the allowed pessimism. Since also traditional
WCET analysis operating on noncompositional hardware
has to perform a global search through all program paths,
the modifications in order to make it aware of the TDMA
bus is, in theory, straight-forward. To adapt a traditional
noncompositional WCET analysis technique to the class of
multiprocessor systems described in Section II, for each
considered cache miss, the bus schedule has to be searched
in order to find the start and end times of the corresponding
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Figure 8. Predictable WCET Analysis vs Traditional WCET Analysis

bus transfer. This operation is of linear complexity and will
therefore not increase the total, already exponential, com-
plexity of the traditional worst-case execution time analysis.

VII. EXPERIMENTAL RESULTS

To demonstrate the efficiency of our approach, we have
performed WCET analysis on randomly generated appli-
cations running on a multiprocessor system configured as
described in Section II, with 10 ARM7 cores running at 200
MHz. Each application was constituted by 50 to 200 tasks,
generated according to randomized task graphs, that were
mapped on 2 to 10 processors. The individual tasks were
composed by commonly used routines for computations such
as sorting, searching, matrix operations and DSP processing.

For all of the generated applications, we calculated the
worst-case global delay, that is, the time it takes to execute
a particular application in the worst case. This was done
using both predictable, modified WCET analysis and the cor-
responding, non-modified, traditional analysis method that
assumes that no conflicts can occur on the bus. Naturally,
if possible bus conflicts are neglected when calculating the
worst-case global delay, the result will be optimistic and
therefore incorrect. Figure 8 shows how many times larger
the worst-case global delay becomes when using predictable
WCET analysis, relative to its traditional, incorrect coun-
terpart (represented by the baseline). For each processor
configuration, 50 applications were analyzed, and an average
was calculated.

Optimization techniques described in our previous work
[5] were used to compute the worst-case global delay
achieved with predictable WCET analysis, and consequently
the worst-case execution time of each task was calculated
several times to evaluate TDMA bus schedule candidates.
Still, a big application consisting of 100 tasks running on 10
processors took only 5 minutes to process on a 2.8 GHz dual
core Pentium 4 computer, from CFG generation to getting
the actual result. This clearly shows that the predictable,
TDMA-based WCET analysis is very fast.

VIII. CONCLUSIONS

Traditional worst-case execution time analysis techniques
cannot be applied directly to modern multiprocessor plat-
forms. In this paper, we have demonstrated how to mod-
ify existing WCET analysis tools to make them function

correctly for multiprocessor systems-on-chip, without sig-
nificantly increasing the time complexity. For compositional
architectures, our proposed modifications make it possible to
analyze each basic block locally, allowing for quick analysis
times, while achieving predictability. For noncompositional
architectures, the necessary modifications do not increase the
already high time complexity of traditional, monoprocessor
WCET analysis tools operating on such platforms.
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