
Fast Synthesis of Power and Temperature Profiles for the
Development of Data-Driven Resource Managers

Ivan Ukhov, Diana Marculescu, Petru Eles, and Zebo Peng

Abstract—The goal of this work is to facilitate the development
of proactive power- and temperature-aware resource managers
that leverage machine learning in order to attain their objectives.
In this context, the availability of sufficiently large amounts of
relevant data, which are essential for learning and, therefore,
exploration of research ideas, is elusive. In order to fulfill the need,
we present a toolchain for fast generation of realistic power and
temperature profiles of computer systems. The toolchain provides
profuse representative data to learn from during development
stages. The overreaching objective is to help research by making
it tractable to experiment with the highly promising but data-
demanding state-of-the-art techniques for prediction.

Index Terms—Computer system, machine learning, network
traffic, power, simulation, temperature, workload.

I. INTRODUCTION AND MOTIVATION

P OWER CONSUMPTION and heat dissipation are of great
importance. Power translates to energy, and energy to

hours of battery life and to electricity bills. Temperature, on
the other hand, is one of the major causes of permanent damage
[1], which necessitates adequate cooling equipment and, hence,
escalates product expenses [2]. The situation is deteriorated
further by the power-temperature interplay: higher power leads
to higher temperature, and higher temperature to higher power
[3]. Therefore, accounting for power and temperature is key
to achieving effectiveness, efficiency, and robustness.

Our work is to assist researchers who are concerned with
power and temperature in one specific but rather broad context:
the development of data-driven power- and temperature-aware
resource managers for computer systems where data-driven
refers to the usage of algorithms that learn from data [4]. To
this end, we develop a toolchain for fast synthesis of realistic
power and temperature profiles, which is motivated as follows.

The power and temperature characteristics of a computer sys-
tem are difficult to describe mathematically or algorithmically.
Modern computer systems are complex, and many aspects are
inherently uncertain to the designer due to such phenomena
as process variation [5], aging [6], and varying workload. The
concern is particularly difficult to address from a theoretical
standpoint; it can be better dealt with taking a more pragmatic
approach, namely, making use of runtime data. Assuming that
the system provides mechanisms for profiling and monitoring,
direct or indirect power and temperature measurements are an
invaluable source of information for making proactive power-
and temperature-aware resource-management decisions [2], [7].

Acting proactively requires forecasting the future by learning
from the past, which is typically accomplished by virtue of
machine learning [4]. Regardless of the learning technique
utilized, the technique requires data to learn from. Real data are
rarely available in large enough quantities. The target platform
might not be at one’s disposal or might not be an appropriate

place for early experimentation, which is common in research.
Therefore, a research environment is typically composed of a
number of computer simulators as they constitute a feasible
alternative source of the needed data. An illustrative example
is given in Fig. 1, which depicts a potential environment for
developing a resource manager for a computer system.

Computer simulators, however, fall short when it comes
to complex systems: it might take days for a state-of-the-art
simulator to simulate a short, in wall-clock time, program. This
scheme is not affordable for designing data-driven solutions as
they require many simulations with potentially large payloads.

To summarize, real data are rarely and sparingly available,
and simulation data are prohibitively time consuming to obtain,
which hampers the development of data-driven solutions. The
need for alternative sources of high-quality data is prominent,
which brings us to the goal of this work: our objective is to
provide such a source for the case of power and temperature.

It is well understood that the solution being developed will
eventually face real data, and, therefore, it should be tested
and, if it is needed, calibrated in a stage environment prior
to deploying the solution to a production environment. The
synthetic data that we generate can substantially speed up
this process due to the flexibility and fast feedback that they
provided. In particular, one can filter out inadequate ideas at
early stages and focus solely on those that are viable.

The remainder of the paper is organized as follows. In
Sec. II, we elaborate on the related work and summarize our
contribution. The addressed problem is formalized in Sec. III.
The methodology that we follow and our toolchain are presented
in Sec. IV and Sec. V, respectively. The experimental results
are given in Sec. VI. Section VII concludes the paper.

II. RELATED WORK AND OUR CONTRIBUTION

The present work is related to computer simulation. For our
purposes, it is sufficient to distinguish four types of simulation:

Resource 
manager

DecisionsRuntime data

External 
data

Internal 
data

Traffic
simulator

Outside

Performance 
simulator

Temperature 
simulator

Power 
simulator

Computer system

Figure 1. Research environment for developing a resource manager for a
computer system. The right dashed box should be understood at a single
module, and the corresponding arrows should be treated accordingly.



traffic, performance, power, and temperature, which are shown
in Fig. 1. In this paper, traffic refers to a stream of jobs
that lade the system with work, and performance to various
performance metrics of the system such as the numbers of
executed instructions and read/write memory accesses.

Let us discuss traffic first. The Poisson process [8] is arguably
the most well-known model in this regard. However, the
seminal work in [9] and subsequent studies have shown that
network traffic exhibits fractal properties such as burstiness,
self-similarity, and long-range dependence. The Poisson process
is unable to express any of these properties. Another popular
model is the fractional Gaussian noise [8], which is a self-
similar stochastic process. However, this process is suited for
modeling arrivals per unit of time but not for modeling arrival
or inter-arrival times, which are what is typically needed for
simulation. Moreover, the noise can take negative values and is
a monofractal process, both of which are unrealistic. The work
in [10] addresses the aforementioned concerns by introducing
a multifractal wavelet model for characterizing positive-valued
sequences with long-range-dependent correlations.

A performance simulator that we would like to highlight is
Sniper [11]. Sniper is aimed at x86-based systems, and it has
been validated against Intel Core 2 and Nehalem architectures.
The simulator works at a higher level of abstraction than the
one of cycle-accurate simulators, which makes its simulation
times more affordable. Regarding power simulation, a common
choice is the McPAT framework [12]. McPAT is also capable
of estimating the areas occupied by processing elements, which
is useful since this information is essential for temperature sim-
ulation. Architecture-level temperature simulation is arguably
dominated by HotSpot [13]. A popular alternative is 3D-ICE
[14], which is particularly focused on 3D structures.

The pipeline assembled from the aforementioned simulators
is the one frequently used in today’s research (see the blue
boxes in Fig. 1). However, as we elaborate in Sec. I, it is
extremely time consuming and, hence, is not suitable for
learning purposes. In our experience, this is mainly due to
performance simulation and, to a lesser extent, power simulation.
Temperature simulation usually has a relatively small cost.
These concerns are to be discussed and illustrated in Sec. VI.

Our work makes the following major contribution. We
present an efficient toolchain for generating realistic power and
temperature profiles of computer systems in order to facilitate
the development of intelligent data-driven techniques for the
analysis and management of such systems. The toolchain is
open source and publicly available online at [15].

III. PROBLEM FORMULATION

Consider an in-design or in-production computer system.
The system is composed of a number of processing elements
and is capable of performing a number of operations. The
system receives a stream of user requests or jobs, which it
is supposed to process. Each job implies a certain amount of
work to be done and, thus, a certain amount of power to be
consumed and a certain amount of heat to be dissipated.

Consider now a research project targeted at developing a
resource manager for the system under consideration. Since the

importance of power and temperature is well understood, the
solution is required to take these two quantities into account.
Suppose further that the resource manager is to be based on a
technique that learns from the data available at runtime.

Our goal is to develop a toolchain for generating power
and temperature profiles of the system in order to provide the
project with plenty of data to experiment with. The generated
profiles should preserve the particularities of job arrivals and
program executions that are present in real life, which is what
makes the subsequent learning meaningful. In addition, the
generation process should be substantially faster than traditional
simulations, which is what makes the work worth doing.

IV. METHODOLOGY

In this section, we describe the general methodology that
our toolchain follows. An overview of the methodology is
given in Fig. 2 and can be summarized as follows. There are
two major stages: data acquisition and data synthesis. The
leftmost boxes in Fig. 2 correspond to the data-acquisition
stage, and the rightmost one to the data-synthesis stage. The
data-acquisition stage collects and stores reference data while
the data-synthesis stage fetches these data and produces the
desired power and temperature traces of the system. There are
two types of reference data: traffic and workload, which are
referred to as patterns. The two pieces characterize job arrivals
and job workloads, and they are to be discussed in Sec. IV-A
and Sec. IV-B and to be combined in Sec. IV-C.

A. Traffic

The foremost step is to construct a traffic model describing
when jobs arrive. The model should satisfy a number of
requirements in order to be practically useful. First, it should
be straightforward to configure given a data set of traffic data (a
sequence of arrival times of jobs) serving as a reference. Second,
it should be able to capture the idiosyncrasies present in real
traffic as it is the foundation for the subsequent generation of
power and temperature profiles (discussed in Sec. IV-C).

The required ability to absorb reference data acknowledges
the utility of the data that are readily at one’s disposal due to
the ubiquitously deployed monitoring and logging mechanisms.
These mechanisms are outside the scope of this work. In
Fig. 2, they are represented by a set of boxes labeled “Logger.”
The collected traffic patterns are assumed to be stored in a
repository; see the top cloud in Fig. 2. For a good example of
such data, the interested reader is referred to the cluster-usage
traces published by Google in 2011 [16]; the data set will
be discussed further in Sec. VI. Let us now move on to the
analysis and synthesis of a particular traffic pattern.

In order to be able to generate realistic traffic, we employ the
multifractal wavelet model proposed in [10], which is motivated
in Sec. II. In accordance with the model, we take a reference
time series of arrival times, analyze it by means of the discrete
wavelet transform based on Haar wavelets, and construct a
certain representation of the data, which can then be used for
generating random time series matching the fractal properties
of the original one. As a result, the model becomes tailored to
the traffic pattern of the particular problem at hand.



Recorder

Streamer

Workload 
repositoryReference 

program

Target 
architecture

System 
specification

Workload 
pattern

Workload 
patterns

Power 
profile

Temperature 
profile

Traffic 
repositoryLogger

Traffic 
pattern

Traffic 
pattern

Figure 2. Workflow of our methodology. The data-acquisition stage is to the left of the clouds, and the data-synthesis is to the right.

To summarize, we have obtained a data set of reference
arrival times and a technique for analyzing them and generating
similar arrival streams. The technique is capable of capturing
the properties that are commonly present in real traffic.

B. Workload

An arrival is only a time stamp without any information
about the actual workload. In this subsection, we describe how
workload candidates are obtained and complement job arrivals,
which is depicted at the bottom of Fig. 2. To begin with,
workload candidates should conform to a number of criteria.
First, since we aim to produce realistic trace, workloads should
represent well the applications or services that the system is
supposed to provide to the user. Second, a workload should
be fast to evaluate, which, in our context, refers to obtaining
the power consumption over time of that workload.

Our workload modeling is based on full-system simulations
of reference programs. However, if we had incorporated such
simulations into our workflow directly, we would have ended up
with a configuration similar to the one displayed in Fig. 1. This
would have defeated the purpose of our work since, as motivated
in Sec. I, detailed simulations are considerably time consuming.
Instead, we utilize high-level recordings; this functionality
corresponds to the boxes labeled “Recorder” in Fig. 2. To
elaborate, using a simulator capable of modeling the target
architecture, we execute each reference program in isolation
and record certain information about this execution. At a later
stage of our pipeline (see Streamer in Fig. 2), the collected
information is utilized in order to substantiate jobs upon their
arrival, and this stage requires no simulation.

Performance and power simulations are by far the largest
expense in terms of time. Therefore, the information about a
reference program’s execution that we record is the power
consumption of that execution. This approach pushes the
aforementioned expense to the data-acquisition stage and
eliminates it from the data-synthesis stage. Since the actual
data generation is deliver from the expensive simulations, it has
a very low computational demand. This demand is negligible
compared to the one of the scenario depicted in Fig. 1, in which
one undertakes performance and power simulations nonstop.

The power consumption of a program can be recorded in
different ways. The first aspect to note is that we record
power as a function of time (assuming a certain sampling
interval). Second, the dynamic and static components of the
power consumption are recorded separately for a better control

over the subsequent composition (Sec. IV-C). Third, the power
consumption is recorded for all the processing elements of
interest (for instance, cores and shared caches).

The result of the recording is a repository of power traces
corresponding to real programs, which we refer to as workload
patterns; see the bottom cloud in Fig. 2. Full-system simulations
take time; however, they have to be done only once.

Let us turn to the assignment of a workload pattern to an
arrival. We shall refer to this functionality as the workload
model. The input to this model is a stream of arrival times, and
its output is a stream of fully characterized jobs (time and work).
The workload model relies on domain-specific knowledge. For
instance, the output stream can be made dependent on the
input stream in order to introduce autocorrelations and, thereby,
model periodic and coupled workloads. Therefore, we let the
model be user defined. The default option that is used in our
toolchain is choosing workload patterns at random.

To recapitulate, we have obtained a database of reference
workloads and discussed the formation of job streams from
arrival streams. The utilized patterns correspond to executions
of real programs and, therefore, exhibit realistic traits.

C. Composition

The stream of jobs needs to be now processed by progres-
sively building a schedule, constructing a power profile, and
computing the corresponding temperature profile. In Fig. 2,
this functionality resides in the box labeled “Streamer.”

Since the major use case for our toolchain is the development
of data-driven resource managers, the resource manager of the
system at hand is assumed to be given, which also includes
the scheduling policy. For each job, the policy specifies what
computational resources are granted to the job and when.

Once the job has been scheduled, we proceed to updating the
power profile of the system. The power profile is a matrix that
specifies the power consumption of the processing elements
over discrete time moments; the rows and columns traverse
the processing elements and time moments, respectively. The
workload pattern of the job can also be seen as such a matrix
but smaller. Then, in accordance with the scheduling decision,
each row of the workload pattern is added to an appropriate
row of the power profile starting from an appropriate column.

There are several aspects that are worth noting. First, as
mentioned in Sec. IV-B, we record dynamic and static power
separately. We then make sure that the static component is
present even when no job is being “executed.” Second, the



Sniper

Redis

Reference 
program

Power 
pattern

Target 
architecture

McPAT

Main

Recorder

Figure 3. Recording infrastructure. The Recorder tool corresponds to the
two blue boxes on the right-hand side of the figure.

types of the processing elements that the workload pattern
was recorded on should be respected when scheduling and
distributing the pattern. Third, certain processing elements
might be shared across several jobs, which we discuss now.

The jobs that are mapped by the scheduling policy to disjoint
sets of processing elements require no special treatment. The
interleaving of several jobs on a core can be modeled by an
appropriate interleaving of the corresponding workload patterns:
workload patterns have the notion of time, and they can be cut
into pieces and stitched back as needed. The joint effect of
several jobs on a cache can be reproduced by an additive model:
the power values pertaining to the cache, as captured by the
workload patterns of the jobs in question, are summed up. This
approximation is sufficient as the power consumption of caches
is usually relatively low. Other effects originating from resource
sharing are not currently addressed in our methodology.

Finally, the temperature profile of the system is obtained by
gradually feeding the power profile into a temperature simulator.
These two profiles are our final output. They are fed into the
resource manager as if they were the actual sensor readings.

To recapitulate, the methodology that we follow is composed
of two stages. In the data-acquisition stage, reference traffic and
workload data are harvested. In the data-synthesis stage, the data
are used to generate a stream of jobs and subsequently compute
a power profile and a temperature profile. The produced profiles
preserve the particularities of the reference data. At the same
time, the synthesis is fast since it has no expensive performance
or power simulations involved; the time consumed by the
procedure delineated above is practically negligible.

V. TOOLCHAIN

The toolchain follows the methodology described in Sec. IV.
It consists of a number of command-line tools, and the tools are
composed of a number of stand-alone packages. We also make
use of third-party software, including the simulators introduced
in Sec. II. The toolchain is publicly available online at [15].

The main programs of the toolchain are called Recorder and
Streamer, which we discuss in the following subsections.

A. Recorder

The Recorder tool is used at the data-acquisition stage of our
methodology in order to record reference workload patterns,
which are discussed in Sec. IV-B and needed for Streamer. In
Fig. 2, Recorder corresponds to the bottom-left boxes labeled

Job
model

HotSpot/ 
3D-ICE

MainWorkload 
patterns

Traffic 
pattern

Jobs Power 
profile

Temperature 
profile

System 
specification

Figure 4. Streamer tool. System specification refers primarily to the
information about the thermal package and floorplans of the platform, which
are needed for temperature simulation. Job model refers jointly to the traffic
and workload models (Sec. IV-A and Sec. IV-B).

“Recorder.” The tool has a curtain infrastructure around it. This
infrastructure is depicted in Fig. 3, in which Recorder itself is
represented by the two blue boxes on the right-hand side.

Given a reference application and a target platform, the first
step is performance simulation, which we undertake by virtue
of the Sniper simulator [11]. The output of the simulator is a
series of files containing performance-related information over
time. These files are further processed by our Recorder.

The communications between Sniper and Recorder are
handled by Redis [17] (see Fig. 3), which is an in-memory
key-value storage commonly used for caching and message
passing. Whenever Sniper produces a new file with performance
information, it sends a message with the file’s location to a
Redis queue. Recorder fetches this message from the queue
(observe the diagonal arrow in Fig. 3) and processes the
corresponding file. There are several aspects to note here.
First, the indirection allows Sniper and Recorder to work
asynchronously, each at its own pace. Second, there can be
multiple Recorder processes serving the same message queue.
Third, there can be many Sniper processes, each of which
simulates a different program and uses a different Redis queue.
The above aspects substantially seed up the recording.

The next step is power simulation, which is delegated to
McPAT [12]. McPAT is originally a command-line program;
we have made a shared library out of it and embedded it into
Recorder. In addition, we have introduced a caching mecha-
nism into McPAT, which is inspired by Sniper. The caching
mechanism eliminates the repetition of certain computations
inside McPAT, which leads to considerable time savings. For
caching purposes, we again use Redis; see the direct arrows
between Redis and McPAT in Fig. 3. All Recorder processes
that are connected to the same Redis server can leverage the
same cache, making the caching mechanism shine.

Finally, the computed power pattern is stored in a file, which
can then be uploaded to a repository as described in Sec. IV-B
and illustrated in Fig. 2. Each such output file is an SQLite
database [18], which implies that the versatile SQL language
is automatically at one’s disposal for working with the data.

B. Streamer

The Streamer tool corresponds to the data-synthesis stage.
It is responsible for synthesizing power and temperature data
using reference data as a material for the synthesis. In Fig. 2,



Table I
RECORDING (THE PARSEC BENCHMARK SUITE)

Recording time (hours) Simulated time (seconds)
Program Small Medium Large Small Medium Large

blackscholes 0.18 0.74 3.00 0.07 0.28 1.13
bodytrack 0.51 2.00 7.36 0.17 0.70 2.71
canneal 0.61 1.74 4.04 0.18 0.67 1.72
dedup 1.35 3.48 17.20 1.97 2.85 10.75
facesim 12.68 13.18 15.48 7.84 7.93 7.87
ferret 0.83 2.65 12.15 0.40 1.06 4.59
fluidanimate 0.78 2.18 6.90 0.53 1.32 4.11
freqmine 1.24 4.87 18.04 0.67 2.63 9.21
raytrace 4.22 5.69 10.08 0.24 0.63 1.51
streamcluster 0.74 2.88 15.71 0.34 1.40 10.68
swaptions 0.59 2.33 9.05 0.23 0.91 3.64
vips 1.57 4.89 14.47 0.53 1.59 4.39
x264 0.49 2.59 8.61 0.17 0.99 3.09

Small, medium, and large signify the input size of the programs.

it corresponds to the rightmost box labeled “Streamer.” The
structure of the tool is illustrated in Fig. 4.

Given a traffic pattern and a set of workload patterns,
Streamer proceeds as follows. The traffic pattern is processed
as it is described in Sec. IV-A, which results in an adequately
configured multifractal wavelet model [10]. The model is then
used to generate a stream of arrival times. The arrival times are
substantiated using the workload patterns, which is explained
in Sec. IV-B. The result is a stream of jobs. In Fig. 4, the
whole above operation takes place in the box labeled “Job
model.” The rest follows Sec. IV-C. Namely, the job stream
is first handled by the user’s resource manager, which resides
in the box labeled “Main.” As jobs are being scheduled, the
power profile of the system is being progressively constructed.
The power profile is piped into a temperature simulator (to be
discussed), which delivers a temperature profile. Finally, the
synthesized power and temperature profiles are made available
to the manager. They can also be saved on disk, in which case,
similar to reference data, the output is an SQLite database.

Let us now elaborate on the temperature simulation that
Streamer undertakes. It is based on the well-known thermal
RC model. We construct a thermal RC circuit for the platform
at hand and then use it for analyzing the thermal behavior of
the system. The analysis boils down to solving a system of
differential equations. In our case, the solution is based on a
solver leveraging exponential integrators [19]. The construction
of thermal circuits is delegated to either HotSpot [13] or 3D-
ICE [14] (see Fig. 4) depending on the user’s preferences.

To summarize, Recorder captures workload patterns, and
Streamer produces streams of power and temperature data. Both
closely follow the methodology described in Sec. IV.

VI. EXPERIMENTAL RESULTS

This section illustrates the performance of the toolchain
presented in Sec. V. The experiments that are reported below
were conducted on a GNU/Linux machine equipped with 16
CPUs Intel Xeon E5520 2.27 GHz and 24 GB of RAM.

In order to obtain real-life traffic patterns for our experiments,
we used a data set published by Google in 2011 [16]. The

data set contains the usage data of a large computer cluster
over a month period. We downloaded the table tracking the
life cycle of the jobs submitted to the cluster and extracted the
time stamp of the first event related to each job. As a result,
there were around 670 000 arrival times available, which we
used for fitting the traffic model as it is described in Sec. IV-A.

A set of workload patters was obtained by simulating and
recording (via our infrastructure shown in Fig. 3) the programs
from the popular PARSEC [20] and SPEC CPU2006 [21]
benchmark suites; the former contains 13 programs, and the
latter 29 programs. The architecture used in these simulations
is Intel’s Nehalem-based Gainestown series; Sniper is shipped
with a configuration for this architecture (nehalem.cfg and
gainestown.cfg), and we used it without any changes.

All the reference data that we collected and processed to
make them suitable for our toolchain are available at [15].

A. Recording

In the above, we outlined how the reference workload data
were harvested using Recorder and the infrastructure around
it (recall Sec. V-A and Fig. 3). Let us now elaborate on the
performance characteristics of that recording process.

The benchmark suite that we shall look at is PARSEC. Our
findings are summarized in Table I. PARSEC provides several
choices of inputs to the programs, and each program was
recorded with three different inputs, namely, with the ones
classified as small, medium, and large. There are two types of
information shown in Table I: recording time (in hours), which
is the time that was taken to simulate and record the programs,
and simulated time (in seconds), which is the time that the
programs would have taken in real life. The sampling interval
used in all the experiments was one millisecond.

Each input class was recorded in a single batch: all 13
programs were simulated at the same time using 13 Sniper
processes, which is explained and motivated in Sec. V-B.
Consequently, the total recording time with respect to each
batch is dictated by the program that took the most time to
finish. For small and medium inputs, this program was facesim,
which took approximately 13 hours in both cases. The simulated
times of facesim indicate that PARSEC actually has only one
input size for this particular program. Regarding large inputs,
freqmine finished last; more concretely, the program took 18
hours. As an aside for the interested reader, the simulated and
recording times of SPEC CPU2006 (not shown) were an order
of magnitude larger than the ones of PARSEC.

It can be seen in Table I that the throughput in terms of
simulated time is (expectedly) low: roughly speaking, two–three
hours of recording time amounts to one second of simulated
time. However, it is important to realize that these are one-
time expenses in our methodology; the situation would be
much worse if one had to perform such simulations all the
time (see Sec. IV-B). Another important aspect to note is that
the observed recording times have been substantially reduced
by the choice of performance simulator—Sniper is based on
novel simulation ideas [11]—and the parallelization strategy
and caching mechanism described in Sec. V-B.



Table II
STREAMING (SYNTHESIS OF POWER AND TEMPERATURE PROFILES)

Synthesized
time (seconds)

Synthesis time (seconds)
4 + 1 8 + 2 16 + 4 32 + 8

10 0.24 0.40 0.67 1.13
100 2.11 3.66 6.18 10.19
1000 20.59 37.47 64.58 104.00
10000 214.98 394.84 598.89 984.59

“M+N” stands for M cores and N L3 caches. Every four cores have a single
shared L3 cache; therefore, it holds that N = M/4.

B. Streaming
Let us turn to Streamer, which corresponds to the data-

synthesis stage (recall Sec. V-B and Fig. 4). Our objective in
this subsection is to study the scalability of the tool as measured
by synthesis time, which is the time that is needed for the
tool to synthesize power and temperature profiles under certain
conditions or requirements. In these experiments, workload
patterns are assigned to job arrivals randomly, and a simple
first-in-first-served scheduling policy is assumed; both are the
default but easily replaceable options used by the toolchain.

The preformed experiments are consolidated in Table II. We
report our synthesis time along two axes: synthesized time
(rows) and platform size (columns). The former is analogous
to simulated time, and the latter represents different platforms
as follows. Each considered platform is composed of a number
of cores, and there is a single L3 cache for every four cores;
both cores and caches are referred to as processing elements.
Platform size is defined as the number of processing elements,
and it is denoted by “M +N” in Table II where M and N
are the numbers of cores and L3 caches, respectively.

Unlike the throughput of simulation (discussed in the
previous subsection), the throughput of synthesis in terms
of synthesized time is very high, which is well supported by
Table II. To give an example, it takes Streamer around a minute
to produce power and temperature data that are worth around 17
minutes of runtime of a computer system with 16 cores, which
would be practically infeasible to achieve with full-fledged
simulations (refer to the results given in Table I).

Another observation made from Table II is that synthesis time
scales linearly with respect to the length of the time span being
synthesized (synthesized time), and the same can be concluded
regarding the other dimension, platform size. The growth with
respect to platform size is due to the increasing complexity
of the underlying thermal RC circuit used for temperature
simulation; thermal circuits are elaborated on in Sec. V-B.

To summarize, the results reported in Table I motivate our
work and communicate well the message of this paper: the
speed of the state-of-the-art simulators is severely onerous for
the purpose of experimenting with machine-learning techniques.
The core problem is that such techniques typically require lots
of data (long execution traces); moreover, these data might
need to be recalculated each time a parameter changes such as
the parameterization of the scheduling policy used. The results
in Table II show that the proposed approach can efficiently

tackle this problem by taking the data burden away and, hence,
making it easier to experiment with data-driven techniques.

VII. CONCLUSION

In this paper, we have emphasized the need for developing
tools for the design of computer systems with data-driven com-
ponents. We have argued that the techniques which capitalize
on learning from runtime data have special requirements, and
that the state-of-the-art simulation tools are unable to fulfill
them due to their prohibitively large simulation times.

Acknowledging the importance of power and temperature for
resource management of computer systems, we have developed
a methodology for fast generation of power and temperature
profiles of such systems, which preserve the idiosyncrasies of
their real-life counterparts. Following the methodology, we have
implemented and open sourced a toolchain, which has been
assessed and shown to have a high computational throughput.

REFERENCES

[1] (2017, September) Failure mechanisms and models for semiconductor
devices. JEDEC. [Online]. Available: https://www.jedec.org

[2] M. Chaudhry et al., “Thermal-aware scheduling in green data centers,”
ACM Computing Surveys, vol. 47, pp. 39:1–39:48, February 2015.

[3] Y. Liu et al., “Accurate temperature-dependent integrated circuit leakage
power estimation is easy,” in DATE, 2007, pp. 1526–1531.

[4] C. Bishop, Pattern recognition and machine learning, ser. Information
Science and Statistics. Springer, 2006.

[5] A. Chandrakasan, W. Bowhill, and F. Fox, Design of high-performance
microprocessor circuits. Wiley-IEEE Press, 2000.

[6] A. Coskun et al., “Analysis and optimization of MPSoC reliability,” J.
Low Power Electronics, vol. 2, pp. 56–69, 2006.

[7] A. Coskun, T. Rosing, and K. Gross, “Proactive temperature management
in MPSoCs,” in International Symposium on Low Power Electronics &
Design, 2008, pp. 165–170.

[8] M. Lifshits, Random processes by example. World Scientific, 2014.
[9] W. Leland et al., “On the self-similar nature of Ethernet traffic,”

IEEE/ACM Trans. Networking, vol. 2, pp. 1–15, February 1994.
[10] R. Riedi et al., “A multifractal wavelet model with application to network

traffic,” IEEE Trans. Inf. Theory, vol. 45, pp. 992–1018, April 1999.
[11] T. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level

of abstraction for scalable and accurate parallel multi-core simulations,”
in Int. Conf. High Performance Computing, Networking, Storage and
Analysis, November 2011, pp. 52:1–52:12.

[12] S. Li et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in IEEE/ACM Int.
Symp. Microarchitecture, December 2009, pp. 469–480.

[13] K. Skadron et al., “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Trans. Architecture and Code Optimization, vol. 1,
pp. 94–125, March 2004.

[14] A. Sridhar et al., “3D-ICE: Fast compact transient thermal modeling for
3D ICs with inter-tier liquid cooling,” in IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., November 2010, pp. 463–470.

[15] (2017, September) Source code, configuration files, and input data.
Embedded Systems Laboratory at Linköping University. [Online].
Available: https://www.ida.liu.se/∼ivauk83/research/FSPT

[16] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage traces:
Format + schema,” Google, Tech. Rep., November 2011. [Online].
Available: https://github.com/google/cluster-data

[17] (2017, September) Redis. [Online]. Available: https://redis.io
[18] (2017, September) SQLite. [Online]. Available: https://sqlite.org
[19] I. Ukhov, P. Eles, and Z. Peng, “Temperature-centric reliability analysis

and optimization of electronic systems under process variation,” IEEE
Trans. VLSI Syst., December 2014.

[20] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[21] (2017, September) SPEC CPU2006. Standard Performance Evaluation
Corporation. [Online]. Available: https://www.spec.org/cpu2006

https://www.jedec.org
https://www.ida.liu.se/~ivauk83/research/FSPT
https://github.com/google/cluster-data
https://redis.io
https://sqlite.org
https://www.spec.org/cpu2006

	Introduction and Motivation
	Related Work and Our Contribution
	Problem Formulation
	Methodology
	Traffic
	Workload
	Composition

	Toolchain
	Recorder
	Streamer

	Experimental Results
	Recording
	Streaming

	Conclusion
	References

