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ABSTRACT
In this paper we propose an analytical technique for the
steady-state dynamic temperature analysis (SSDTA) of mul-
tiprocessor systems with periodic applications. The approach
is accurate and, moreover, fast, such that it can be included
inside an optimization loop for embedded system design. Us-
ing the proposed solution, a temperature-aware reliability
optimization, based on the thermal cycling failure mecha-
nism, is presented. The experimental results confirm the
quality and speed of our SSDTA technique, compared to
the state of the art. They also show that the lifetime of
an embedded system can significantly be improved, without
sacrificing its energy efficiency, by taking into consideration,
during the design stage, the steady-state dynamic tempera-
ture profile of the system.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Microprocessor/microcomputer applications, real-time and
embedded systems; G.1.3 [Numerical Linear Algebra]:
Sparse, structured, and very large systems; G.3 [Probability
and Statistics]: Reliability and life testing; J.6 [Computer-
Aided Engineering]: Computer-aided design.

General Terms
Algorithms, Design, Performance, Reliability.

Keywords
Multiprocessor System, Periodic Power Profile, Temperature
Analysis, Leakage Power, Thermal Cycling Fatigue.

1. INTRODUCTION AND PRIOR WORK
Due to increasing power densities, temperature has evolved

into a major concern for designers of modern embedded sys-
tems. Thus, temperature analysis has become an important
component of current embedded system design frameworks.

Temperature-aware system-level design methods rely on
the availability of temperature modeling and analysis tools.
System-level temperature modeling approaches are mostly
based on the duality between heat transfer and electrical
phenomena [1]. The basic idea is to build an equivalent cir-
cuit of thermal resistances and capacitances capturing both
the architecture blocks and elements of the thermal pack-
age. HotSpot [2], an architecture and system-level model
and simulator, is the state of the art choice for system-level
temperature analysis, as in [3, 4, 5, 6, 7, 8, 9].

However, temperature analysis time with HotSpot, or other
similar approaches, is too long to be used inside a tempera-
ture-aware system-level optimization loop. The long thermal
simulation time can severely limit the efficiency of the design
space exploration. There has been some work on establish-
ing fast system-level temperature analysis techniques. They
also build on the duality between heat transfer and electrical
phenomena and are based on restrictive assumptions in or-
der to simplify the model. The approaches proposed in [10,
11], for example, are strictly restricted to monocore systems.
The method described in [12] is restricted to homogeneous
platforms and to applications in which the execution time of
individual tasks is long, comparable with the thermal time
constant of the package (in the order of 100 s).
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Broadly speaking, there are two types of thermal analysis:
(1) static temperature analysis, that produces a hypothetical
temperature value (the steady-state temperature) at which
the circuit is supposed to function if running for a long time
under a certain constant (average) input power; (2) dynamic
temperature analysis, that produces a transient temperature
curve, describing the temperature behavior of the circuit as a
function of time, when exposed to an arbitrary power profile.

The steady-state temperature, as produced by static anal-
ysis, is an approximation of the thermal behavior with lim-
ited applicability. It assumes that, eventually, the circuit
will function at one constant temperature. This, however, is
very often not the case in reality. In the context of a variable
power profile applied periodically, the circuit will not reach
a constant steady-state temperature but a steady state in
which temperature is varying according to a certain peri-
odic pattern. This pattern is captured by the steady-state
dynamic temperature profile (SSDTP).

A typical design task, for which the SSDTP is of cen-
tral importance, is temperature-aware reliability optimiza-
tion. The impact of temperature on the lifetime of electronic
circuits is well-known [3, 5, 8, 13]. The failure mechanisms
commonly considered are electromigration, time-dependent
dielectric breakdown, and thermal cycling, which are directly
driven by the temperature [13]. What is important in this
context is that not only average and maximum temperature,
but also the amplitude and frequency of temperature oscil-
lations, have a huge impact on the overall lifetime of the
chip. Thus, efficient reliability optimization depends on the
availability of the actual SSDTP.

Two approaches have been applied in the literature in or-
der to obtain the SSDTP, as a prerequisite for reliability
optimization. An approximate SSDTP can be produced by
running a temperature simulator over one or more succes-
sive periods of the application until one can assume that
a sufficient approximation of the thermal steady state has
been reached [3]. Such an approach is both time consuming
and potentially inaccurate. A very rough but fast approx-
imation of the SSDTP is proposed in [7]. It constructs a
stepwise temperature curve where each step corresponds to
the static steady-state temperature that would be reached if
a certain constant power was applied for a sufficiently long
time. In Sec. 4 we will further elaborate on these two state
of the art solutions. As our experiments show, they are too
slow and/or too inaccurate in order to efficiently be used in-
side a temperature-aware system-level optimization loop for,
e.g., reliability optimization.

In this paper we consider multiprocessor systems running
applications exhibiting a power profile that can be consid-
ered periodic. Our contribution is twofold. First, we pro-
pose an approach that is both accurate and fast, for SSDTP
calculation. Second, we show how our approach makes it
possible to efficiently perform reliability optimization, based
on the thermal cycling (TC) failure mechanism. More ex-
actly, we propose a temperature-aware task mapping and
scheduling technique that addresses the TC ageing effect.
Experiments demonstrate the superiority of the proposed
techniques, compared to the state of the art.

The rest of the paper is organized as follows. In Sec. 2 we
introduce the architecture, power, and thermal models. The
problem formulation is given in Sec. 3. The state of the art
solutions are discussed in Sec. 4. In Sec. 5 we obtain an ana-
lytical formulation for the SSDTP calculation. In Sec. 6 and
Sec. 7 we propose a fast and accurate technique to compute
the SSDTP. Sec. 8 formulates the temperature-aware relia-
bility optimization problem and proposes a solution based on
our fast SSDTP calculation. Experimental results are given
in Sec. 9 and Sec. 10 concludes the paper. Supplementary
materials are given in the appendix, Sec. S1–S3.



2. ARCHITECTURE, POWER, AND
THERMAL MODELS

We consider a heterogeneous multicore architecture with
a set of processing elements Π defined as the following:

Π = {πi = (Vi, fi, Ngate i) : i = 0, . . . , Np − 1}

where Vi, fi, and Ngate i are the supply voltage, frequency,
and number of gates [4] of the ith core, respectively.

The total power dissipation of a processing element is de-
fined as the sum of the dynamic and leakage power: P =
Pdyn + Pleak. The dynamic part is modeled as Pdyn = Ceff ·
f · V 2 where Ceff is the effective switched capacitance, V
and f are the supply voltage and frequency, respectively.
The leakage part of the power dissipation is defined as [4]:

Pleak(T ) = Ngate V I0
[
A T 2e

α V+β
T +Be(γ V+δ)

]
(1)

where T and V are the current temperature and supply volt-
age, respectively, Ngate is the number of gates in the circuit,
I0 is the average leakage current at the reference temper-
ature and supply voltage. A, B, α, β, γ, and δ are the
technology-dependent constants found in [4].

Our proposed technique is based on the RC thermal model
that employs the analogy between electrical and thermal cir-
cuits [1]. Heat transfer is modeled with the following system
of differential equations:

C
dT(t)

dt
+ G (T(t)−Tamb) = P(t) (2)

where T is the temperature vector, Tamb is the ambient tem-
perature vector, C is the thermal capacitance matrix, G is
the thermal conductance matrix, and P is the power dissi-
pation vector. The dimensions of the system are Nn ×Nn,
where Nn is the number of nodes in the equivalent RC ther-
mal circuit, which is further discussed in Sec. S1.

3. PROBLEM FORMULATION
Consider a multicore system that consists of Np processing

elements Π = {πi : i = 0, . . . , Np − 1} and executes a peri-
odic application with a period τ . We construct an equivalent
RC thermal circuit of the system that contains Nn thermal
nodes. The dynamic power profile of the system is sampled
into Ns time intervals of duration ∆t, called sampling inter-
val, in such a way that the dynamic power dissipation and
temperature of each node are assumed to be constant within
an interval. The discrete dynamic power profile is defined as
the following:

Pdyn
def
= {Pij : i = 0, . . . , Ns − 1; j = 0, . . . , Nn − 1}

where Pij is the dynamic power dissipation during the ith
time interval of the jth thermal node. After the steady state
is reached, the corresponding temperature profile becomes
periodic and is defined as:

T def
= {Tij : i = 0, . . . , Ns − 1; j = 0, . . . , Nn − 1}

where Tij is the temperature of the jth node in the ith time
interval. The profile is called the steady-state dynamic tem-
perature profile (SSDTP).

Given:

◦ A multicore system with a set of processing elements Π
executing a periodic application.
◦ The discrete dynamic power profile Pdyn of the system1

with the sampling interval ∆t.
◦ The floorplan of the chip corresponding to the level of

details at which the thermal modeling is performed.
◦ The configuration of the thermal package, i.e., dimensions

of the thermal interface material, heat spreader, and heat
sink.
◦ The thermal parameters of the die and package, e.g., the

thermal conductivity and thermal capacitance.

Find:

◦ The corresponding periodic temperature profile T of the
system when the steady state is reached.

1Power dissipation of inactive nodes, i.e., the nodes that
belong to the thermal package, is zero.

4. STATE OF THE ART SOLUTIONS
4.1 Iterative Simulation

A rough approximation of the SSDTP can be obtained by
running a temperature simulation over successive periods of
the application until it can be assumed that the system has
reached the thermal steady state. The simulator performs
the transient temperature analysis where the common ap-
proach is to solve Eq. (2) numerically, for instance, using
the fourth-order Runge-Kutta method [14].

The number of iterations required to reach the SSDTP
depends on the thermal characteristics of the system. In
order to illustrate this aspect, we have considered an appli-
cation with the period of 0.5 s running on five hypothetical
platforms with core areas between 1 and 25 mm2. The con-
figuration of the die and thermal package can be found in the
appendix (Tab. S1). We have run the temperature simula-
tion with HotSpot [2] for 50 successive periods. The temper-
ature profile in each period has been compared with the ac-
tual SSDTP, obtained with our analytical approach (Sec. 6),
and the normalized root mean square error (NRMSE) has
been calculated. The result is shown in Fig. 1a. It can be
observed that the number of successive periods over which
the temperature simulation has to be performed, in order to
achieve a satisfactory level of accuracy, is significant for the
majority of configurations. For a 9 mm2 die, for example,
after 15 iterations, the NRMSE is still close to 20%. This
leads to large computation times, making it difficult to apply
the technique inside an intensive optimization loop.

4.2 Steady-State Approximation (SSA)
An approximation of the SSDTP has been proposed in [7].

Instead of solving the system of equations in Eq. (2), it is
assumed that during each time interval ∆ti, in which the
power is constant, the system stays in its steady state. The
derivative dT/dt = 0 and temperature can be calculated as
Ti = G−1Pi. The result is a stepwise temperature curve
where each step corresponds to the steady-state tempera-
ture Ti that would be reached if the constant power Pi was
applied for a sufficiently long time.

An example of such an approximation (SSA) along with
the corresponding SSDTP for an application with 10 tasks
and period of 0.1 s is given in Fig. 1b. The die area is 25
mm2, the configuration of the chip is the same as in Tab. S1.
The reduced accuracy of the SSA is due to the mismatch be-
tween the actual temperature within each interval ∆ti and
the hypothetical steady-state temperature. The inaccuracy
depends on the thermal characteristics of the respective plat-
form and on the application itself. To illustrate this, we have
generated five applications with periods between 0.01 and 1 s
and computed approximated SSDTPs using the SSA for die
areas between 1 and 25 mm2. The NRMSE relative to the
correct SSDTP is shown in Fig. 1c. It can be seen that, e.g.,
for a die area of 10 mm2 and a period of 100 ms the NRMSE
with the SSA is close to 40%.

5. ANALYTICAL SOLUTION
As shown in Sec. 4, the state of the art solutions either

produce inaccurate and, in many cases, completely useless
results, or they are unacceptably slow. In this section we
eliminate the first problem by obtaining an analytical solu-
tion for the SSDTP and tackle the second one in Sec. 6 where
a fast solution technique is proposed.

In the following explanation, without loss of generality,
we assume T(t) ≡ T(t)−Tamb. Let the power consumption
vector P(t) be constant and equal to P; then the system
given by Eq. (2) is a system of ordinary differential equations
(ODE) with the following solution:

T(t) = eAt T0 + A−1(eAt − I) C−1P (3)

where A = −C−1 G, T0 is the initial temperature and I
is the identity matrix. Therefore, given a discrete power
profile, the corresponding temperature profile can be found
using the following recurrence:

Ti+1 = Ki Ti + Bi Pi (4)

where Ki = eA∆ti and Bi = A−1(eA∆ti − I)C−1. The
approach can be used to perform the TTA as it is discussed
in the appendix (Sec. S2.1).
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Figure 1: State of the art solutions.

For the SSDTA calculation the following system of linear
equations can be derived from Eq. (4):

K0 T0 −T1 = −B0 P0

...

−T0 + KNs−1 TNs−1 = −BNs−1 PNs−1

where the last equation enforces the boundary condition, the
equality of temperature values on both ends of the period:

T0 = TNs (5)

To get the whole picture, the system can be written as:
K0 −I 0 · · · 0

0 K1 −I
...

...
. . . −I 0

0 KNs−2 −I
−I 0 · · · 0 KNs−1


︸ ︷︷ ︸

A


T0

...

TNs−1


︸ ︷︷ ︸

X

=


−B0 P0

...

−BNs−1 PNs−1


︸ ︷︷ ︸

B

(6)

where A is a NnNs×NnNs matrix, X and B are vectors with
NnNs elements. It can be seen that we have obtained a reg-
ular system of linear equations. Straight-forward techniques
to solve it and their disadvantages are further discussed in
the appendix (Sec. S2.2).

6. PROPOSED TECHNIQUE
In this section we propose a fast approach to solve the

system in Eq. (6). The approach consists of an auxiliary
transformation (Sec. 6.1) and the actual solution (Sec. 6.2).

The major problem with straight-forward techniques (see
Sec. S2.2) is that (1) the sparseness of the matrix is not
taken into account and/or (2) its specific structure is to-
tally ignored, resulting in inefficiency and inaccuracy of the
computations. Using direct dense and sparse solvers, for ex-
ample, requires a computation time proportional to N3

nN
3
s

[14]. Our proposed technique considers both features and
delivers solutions in time proportional to NsN

3
n while oper-

ating only on a few Nn ×Nn matrices. It is important that
the dependency on Ns (the number of steps in the power
profile), which is by far dominating (Ns � Nn), is linear.

Observing the structure of the matrix in Eq. (6), non-
zero elements are located only on the block diagonal, on
one subdiagonal just above the block diagonal, and on one
subdiagonal in the left bottom corner. The block diagonal
is composed of Nn × Nn matrices while all elements of the
subdiagonals are equal to −1. Linear systems with the same
structure arise in boundary value problems for ODEs where
a technique to solve them is to form a so-called condensed
equation (CE), or condensed system [15].

6.1 Auxiliary Transformation
The analytical solution in Eq. (3) includes two computa-

tionally expensive operations, namely the matrix exponen-
tial and inverse involving A = −C−1 G, which is an arbi-
trary square matrix. It is preferable to have a symmet-
ric matrix to perform these computations, since for a real
symmetric matrix M the following eigenvalue decomposition
with independent eigenvectors holds [14]:

M = UΛUT (7)

where U is a square matrix of the eigenvectors, UT is the
transpose of U, and Λ is a diagonal matrix of the eigenvalues

λi of M. With such a decomposition, the calculation of
the matrix exponential and inverse becomes trivial: eM =
UeΛ UT and M−1 = UΛ−1 UT, where the central matrices
are diagonal with elements eλi and λ−1

i , respectively.
The conductance matrix G is a symmetric matrix, since

if a node A is connected to B, then B is also connected to A
with the same conductance. However, as it is mentioned pre-
viously, the product of G with the inverse of the capacitance
matrix C does not have this property. Since C is a diagonal
matrix, we use the following transformation in order to keep
the desired symmetry:

T̃(t) = C
1
2 T(t) Ã = −C− 1

2 G C− 1
2 (8)

where Ã is symmetric2. Consequently, the system of ODEs
(Eq. (2)) and its solutions (Eq. (3)) can be rewritten as the
following:

dT̃(t)

dt
= Ã Y(t) + C− 1

2 P

T̃(t) = eÃtT̃0 + Ã−1(eÃt − I)C− 1
2 P

where Ã is a symmetric matrix. Therefore, in the case of,
e.g., the matrix exponential we have:

eÃt = U eΛt UT = U diag
(
etλ0 , . . . , etλNn−1

)
UT (9)

where diag denotes a diagonal matrix and λi are the eigen-
values of Ã. A similar equation can be obtained for Ã−1.

The next step is to update the SSDTP system in Eq. (4):

T̃i+1 = K̃i T̃i + B̃i Pi (10)

K̃i = eÃ ∆ti B̃i = Ã−1
(
eÃ∆ti − I

)
C− 1

2

Using the eigenvalue decomposition, the last equation can
be computed in the following way:

B̃i = U diag

(
e∆ti λ0 − 1

λ0
, . . . ,

e∆ti λNn−1 − 1

λNn−1

)
UT C− 1

2

6.2 Solution with Condensed Equation (CE)
In the recurrence given by Eq. (10) we denote Qi = B̃iPi:

T̃i+1 = K̃i T̃i + Qi, i = 0, . . . , Ns − 1 (11)

T̃0 = T̃Ns

Performing the iterative repetition of Eq. (11) leads to:

T̃i =

i−1∏
j=0

K̃j T̃0 + Wi−1, i = 1, . . . , Ns (12)

where Wi are defined as follows:

W0 = Q0 Wi = K̃i Wi−1 + Qi, i = 1, . . . , Ns − 1 (13)

We calculate the final vector T̃Ns using Eq. (12) and Eq. (13):

T̃Ns =

Ns−1∏
j=0

K̃j T̃0 + WNs−1

2ÃT = −(C− 1
2 GC− 1

2 )T = −(C− 1
2 )TGT (C− 1

2 )T = Ã.



Taking into account the boundary condition given by Eq. (5),
we obtain the following system of linear equations:

(I−
Ns−1∏
j=0

K̃j) T̃0 = WNs−1 (14)

We recall that K̃i is the matrix exponential given by Eq. (9);
therefore, the following simplification holds:

Ns−1∏
j=0

K̃j = U diag
(
eτλ0 , . . . , eτλNn−1

)
UT

where τ is the application period. Substituting this product
into Eq. (14), we obtain the following system:

(I−U eτΛ UT ) T̃0 = WNs−1

The identity matrix I can be split into UUT , hence:

T̃0 = U (I− eτΛ)−1 UT WNs−1 = Z WNs−1 (15)

where:

Z = U diag

(
1

1− eτλ0
, . . . ,

1

1− eτλNn−1

)
UT

The equation gives the initial solution vector T̃0; the rest of
the vectors T̃i are successively found from Eq. (11).

Since the power profile is evenly sampled with the sam-
pling interval ∆t, the recurrence in Eq. (11) turns into:

T̃i+1 = K̃ T̃i + Qi = K̃ T̃i + B̃ Pi

where K̃ = eÃ ∆t and B̃ = Ã−1(eÃ ∆t − I)C− 1
2 . Here K̃

and B̃ are constants, since they depend only on the matrices
Ã, C, and sampling interval ∆t, which is fixed. In this case,
the block diagonal of the matrix Ã, similar to Eq. (6), is

composed of the same repeating block K̃ and the recurrent
expressions take the following form:

Wi = K̃ Wi−1 + Qi, i = 1, . . . , Ns − 1 (16)

T̃i+1 = K̃ T̃i + Qi, i = 0, . . . , Ns − 1 (17)

where Qi = B̃ Pi, W0 = Q0, and T̃0 is given by Eq. (15).
The last step of the solution is to return to temperature by

performing the backward substitution opposite to Eq. (8):

Ti = C− 1
2 T̃i, i = 0, . . . , Ns − 1

As we see, the auxiliary substitution from Sec. 6.1 allows
us to perform the single-time eigenvalue decomposition with
orthogonal eigenvectors (Eq. (7)) that later eases the com-
putational process at several stages. In Sec. 6.2 it can be ob-
served that the solution of the system in Eq. (6) has been re-
duced to two successive recurrences in Eq. (16) and Eq. (17)
over Ns steps in the power profile, which implies a linear
complexity on Ns mentioned earlier.

It should be noted that the eigenvalue decomposition along
with matrices K̃ and B̃ are computed only once for a par-
ticular RC thermal circuit and can be considered as given
together with the RC circuit. It has not to be recalculated
when a SSDTP is generated, which significantly decreases
the computation time.

7. LEAKAGE POWER
So far, we have assumed that power is independent of tem-

perature. However, due to the leakage component, the power
dissipation is a strong function of temperature that cannot
be neglected (Sec. 2). Two techniques can be applied to in-
clude in our proposed solution temperature-dependent leak-
age modeling.

7.1 Iterative Computation
In this case, we have an iterative process, depicted in

Fig. 2, where the temperature and power profiles are cal-
culated in turns. With each new temperature profile we up-
date the power profile by computing the leakage power and
adding it to the dynamic power: Pi = Pdyn + Pleak(Ti). The
process continues until the temperature converges, i.e., the
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Figure 2: SSDTP with leakage modeling.

difference between two successive temperature profiles is be-
low a predefined bound. In our experiments we used 0.5◦C
as the maximal acceptable difference and observed that the
number of required iterations to converge is 4–7.

7.2 Linear Approximation
A linear approximation of the leakage power has the fol-

lowing matrix form: Pleak(T) = A T(t) + B where A is a
Nn ×Nn diagonal matrix of the proportionality and B is a
vector with Nn elements of the intercept. Both character-
ize the leakage power for each of the Nn thermal nodes in
the system. It can be seen that the approximation keeps

Eq. (2) untouched: C dT(t)
dt

+ Ḡ (T(t) − Tamb) = P̄ where

Ḡ = G − A and P̄ = Pdyn + A Tamb + B. Therefore, all
solutions proposed in this paper are perfectly valid with the
linearized model. Moreover, in spite of its simplicity, the
model provides a good estimation, as shown in [6].

In order to evaluate the linearization, we have constructed
a number of hypothetical platforms with 2–32 cores (other
parameters are given in Tab. S1) and compared temperature
profiles obtained with the linearization and the exponential
model (Sec. 2), respectively. For the later, we use the itera-
tive approach described in Sec. 7.1. For the linearization, the
power curve fitting with the least squares regression [14] has
been employed, targeted at the range between 40 and 80◦C.
From the experiments we have observed that the NRMSE is
bounded by 1–2%, indicating a good accuracy of the linear
approximation.

8. RELIABILITY OPTIMIZATION
The proposed calculation of the SSDTA can be used in a

wide range of system optimizations. One of them is reliabil-
ity optimization that we discuss in this section. We perform
a temperature-aware task mapping and scheduling in order
to address the thermal cycling fatigue.

8.1 Application Model
The periodic application is modeled as a task graph G =

(V, E, τ) where V is a set of Nt tasks (vertices of the graph),
E is a set of data dependencies between tasks (edges), and τ
is the period of the application, which we assume to be equal
to the deadline. Each pair of a task vi ∈ V and processing
element πj ∈ Π is characterized by a tuple (Nclock ij , Ceff ij),
where Nclock ij is the number of clock cycles and Ceff ij is the
effective switched capacitance.

8.2 Temperature-Aware Reliability Model
We address temperature-driven failure mechanisms with

the reliability model presented in [7, 8]. In this paper, our
particular focus is on the thermal cycling (TC) fatigue, which
is directly connected to the temperature variations. The
derivation of the model is given in the appendix (Sec. S3).

Assuming the TC fatigue, the parameters affecting reli-
ability are the amplitude and number of thermal cycles as
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Figure 3: Motivational example.
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well as the maximal temperature. A thermal cycle is a time
interval in which the temperature starts from a certain value
and, after reaching an extremum, returns back.

The mean time to failure (MTTF) of one processing ele-
ment in the system can be estimated as the following:

θ =
τ∑Nm−1

i=0
1

Nc i

(18)

where Nm is the number of thermal cycles during the appli-
cation period τ . Nc i characterizes the ith thermal cycle and
is calculated according to the following expression:

Nc = A(∆T −∆T0)−be
Ea

kTmax (19)

where ∆T is the thermal cycle excursion (the distance be-
tween the minimal and maximal temperatures) and Tmax is
the maximal temperature during the thermal cycle (more
details in Sec. S3).

It can be seen that the computation requires the identifica-
tion of the thermal cycles with their amplitudes and maximal
temperatures. All these are captured by the SSDTP, which
is needed as an input to the reliability optimization.

8.3 Motivational Example
Consider an application with six tasks, denoted“T0”–“T5”,

and a heterogeneous architecture with two cores, labeled
“PE0” and “PE1”. The task graph of the application is given
in Fig. 3a along with the execution times for both cores. The
period of the application is 0.06 s. A first alternative map-
ping and schedule, and the resulting SSDTP are shown at
the top of Fig. 3b (where the height of a task represents its
relative dynamic power consumption). It can be observed
that initially PE0 is experiencing three thermal cycles. If we
change the mapping of T5 and move it to PE1, we achieve
two thermal cycles of PE0 instead of three. Finally, if we
vary the schedule as well and change the order of T1 and
T3, the number of cycles of PE0 becomes one. Using the
reliability model from Sec. 8.2, we observe improvements in
the lifetime of 44.69% and 54.53%, respectively, relative to
the initial configuration.

8.4 Problem Formulation and Optimization
The problem formulation is the following:
Given:

◦ A multiprocessor system Π (Sec. 2).
◦ A periodic application G (Sec. 8.1).
◦ The floorplan of the chip at the desired level of details,

configuration of the thermal package, and thermal pa-
rameters.
◦ The parameters of the reliability model (Sec. 8.2), i.e.,

the constants A, ∆T0, b, Ea (see Eq. (19)).

Maximize:

F =
Np−1

min
i=0

θi (20)

s.t.

tend i ≤ τ, ∀i (21)

Tij ≤ Tmax, ∀i, j (22)

where θi is the MTTF of the ith processing element given by
Eq. (18), tend i denotes the end time of the ith task, τ is the
period of the application, and Tij are temperature values in
the SSDTP. Eq. (21) imposes the application deadline, which
we assume to be equal to the period. Eq. (22) enforces the
constraint on the maximal temperature in the temperature
profile T = {Tij}.

The optimization procedure is based on a genetic algo-
rithm (GA) [16] with the fitness function F given by Eq. (20).
The algorithm is outlined in Sec. S3.2.

9. EXPERIMENTAL RESULTS
9.1 SSDTP Calculation

In this subsection we investigate the scaling properties of
the proposed solution for the SSDTP calculation and com-
pare it with the approach based on the TTA with HotSpot
(Sec. 4.1)3. We also include in the comparison two additional
techniques described in the appendix, namely the TTA with
the analytical solution (Sec. S2.1) and the fast Fourier trans-
form (FFT) (Sec. S2.2). In the cases of the TTA, the sim-
ulation over successive iterations is run until the NRMSE
relative to the SSDTP obtained with the proposed method
is less than 1%.

In the following experiments, the power sampling interval
is set to 1 ms and the thermal configuration of the die is the
same as in Tab. S1. For the experiments in this subsection,
the leakage power has not been considered. If considered
according to the linearized model (Sec. 7.2), execution times
remain unchanged; if considered according to the iterative
model (Sec. 7.1), execution times increase proportionally for
all the methods, which does not affect any of the conclusions.

First, we vary the application period τ keeping the archi-
tecture fixed, which is a quad-core platform with the core
area of 4 mm2. The comparison is depicted in Fig. 4 on
a semilogarithmic scale. It can be seen that the proposed
technique is roughly 5000 times faster than calculating the
SSDTP by running the TTA with HotSpot and from 9 to
170 times faster than the TTA with the analytical solution.

In the second experiment we evaluate the scaling of the
proposed method with regard to the number of processing el-
ements. The application period is fixed to 0.5 s. The results
are shown in Fig. 5. It can be observed that the proposed
technique provides a significant performance improvement
relative to the alternative solutions.

9.2 Reliability Optimization
In this section we evaluate the reliability optimization ap-

proach described in Sec. 8, first with a set of synthetic ap-
plications and, finally, using a real-life example.

The experimental setup is the following. Heterogeneous
platforms and periodic applications are generated randomly
[17] in such a way that the execution time of tasks is uni-
formly distributed between 1 and 10 ms and the leakage
power accounts for 30–60% of the total power dissipation4.
The linear leakage model is used in the experiments, since, as
discussed in Sec. 7.2, it provides a good approximation. The
area of one core is 4 mm2, other parameters of the die and
thermal package are given in Tab. S1. The temperature con-
straint Tmax (see Eq. (22)) is set to 100◦C. In Eq. (19) the
Coffin-Manson exponent b is set to 6, the activation energy
Ea to 0.5, and the elastic temperature region ∆T0 to zero
[13]. The coefficient of proportionality A is not significant,
since we are concerned about the relative improvement.

In each of the experiments, we compare the optimized so-
lution with an initial temperature-aware solution proposed

3All the experiments are performed on a Linux machine with
Intel R© CoreTM i7-2600 3.4GHz and 8Gb of RAM.
4The parameters of the applications and platforms (task
graphs, floorplans, HotSpot configurations, etc.) used in our
experiments are available online at [18].



Table 1: Optimization results.
(a) Different numbers of cores.

Np Nt t, s MTTF× E×

2 40 7.84 39.41 0.97
4 80 65.76 37.11 0.99
8 160 759.29 31.36 0.97

16 320 3484.59 13.51 0.98

(b) Different application sizes.

Np Nt t, s MTTF× E×

4 40 9.96 64.53 0.88
4 80 56.57 38.01 0.96
4 160 352.20 18.08 1.07
4 320 408.42 12.92 1.05

(c) Different techniques.

Np Nt MTTFPM× MTTFHS× MTTFSSA×

4 40 64.53 1.29 25.10
4 80 38.01 1.67 13.87
4 160 18.08 2.02 5.33
4 320 12.92 1.72 3.82

in [19]. This solution consists of a task mapping and sched-
ule that captures the spatial temperature behavior and tries
to minimize the peak temperature while satisfying the real-
time constraints. The deadline is set to the duration of the
initial schedule extended by 5%.

In the first set of experiments, we change the number of
cores Np while keeping the number of tasks Nt per core con-
stant and equal to 20. For each problem we have generated
20 random task graphs and found the average improvement
of the MTTF over the initial solution (MTTF×). We also have
measured the change in the consumed energy (E×). The re-
sults are given in Tab. 1a (t indicates the optimization time
in seconds). It can be seen that the reliability-aware opti-
mization dramatically increases the MTTF by 13 up to 40
times. Even for large applications with, e.g., 320 tasks de-
ployed onto 16 cores, a feasible mapping and schedule that
significantly improve the lifetime of the system can be found
in an affordable time. Moreover, our optimization does not
impact the energy efficiency of the system.

For the second set of experiments, we keep the quad-core
architecture and vary the size (number of tasks Nt) of the
application. The number of randomly generated task graphs
per application size is 20. The average improvement of the
MTTF along with the change in the energy consumption are
given in Tab. 1b. The observations are similar to those for
the previous set of experiments.

The above experiments have confirmed that our proposed
approach is able to effectively increase the MTTF of the sys-
tem. The efficiency of this approach is due to the fast and
accurate SSDTP calculation, which is at the heart of the op-
timization, and which, due to its speed, allows a huge portion
of the design space to be explored. In order to prove this,
we have replaced, inside our optimization framework, the
proposed SSDTP calculation with the calculation based on
HotSpot (Sec. 4.1) and based on the SSA (Sec. 4.2), respec-
tively. The goal is to compare our results with the results
produced using HotSpot and the SSA, after the same opti-
mization time as needed with the proposed SSDTP calcula-
tion technique. The experimental setup is the same as for the
experiments in Tab. 1b. The MTTF obtained with HotSpot
and the SSA is evaluated and compared with the MTTF ob-
tained by our proposed method. The results are summarized
in Tab. 1c. For example, the lifetime of the platform running
160 tasks can be extended by more than 18 times, compared
to the initial solution, using our approach, whereas, the best
solutions found with HotSpot and the SSA, using the same
optimization time, are only 2.02 and 5.33 times better, re-
spectively. The reason for the poor results with HotSpot is
the excessively long execution time of the SSDTP calcula-
tion. This allows for a much less thorough investigation of
the solution space than with our proposed technique. In the
case of the SSA, the reason is different. The SSA is fast but
also very inaccurate (Sec. 4.2). The inaccuracy drives the
optimization towards solutions that turn out to be of low
quality.

We have seen that our reliability-targeted optimizations
have significantly increased the MTTF without affecting the
energy consumption. This is not surprising, since our op-
timization will search towards low temperature solutions,
which implicitly means low leakage. In order to further ex-
plore this aspect, we have performed a multi-objective opti-
mization5 along the dimensions of energy and reliability. An
example of the Pareto front averaged over 20 applications
with 80 tasks deployed onto a quad-core platform is given
in Fig. 6. It can be observed that the variation of energy
is less than 2%. This means that solutions optimized for
the MTTF have an energy consumption almost identical to
those optimized for energy. At the same time, the difference
along the MTTF is huge. This means that ignoring the reli-
ability aspect one may end up with a significantly decreased

5The multi-objective optimization is based on NSGA-II [20].

MTTF, without any significant gain in energy.
Finally, we have applied our optimization technique to a

real-life example, namely the MPEG2 video decoder [21] that
is deployed onto a dual-core platform. The decoder was
analyzed and split into 34 tasks. The parameters of each
task were obtained through a system-level simulation using
MPARM [22]. The deadline is set to 40 ms assuming 25
video frames per second. The solution found with the pro-
posed method improves the lifetime of the system by 23.59
times with a 5% energy saving, compared to the initial solu-
tion. The same optimization was solved using HotSpot and
the SSA. The best found solutions are only 5.37 and 11.50
times better than the initial one, respectively.

10. CONCLUSION
In this paper we have proposed an efficient and accurate

technique to calculate the SSDTP of an embedded multipro-
cessor system. Using the proposed approach, we conducted
a temperature-aware reliability optimization based on the
thermal cycling failure mechanism and have shown that tak-
ing into consideration the temperature variations within a
multicore platform can significantly prolong its lifetime with-
out affecting its energy efficiency. The improvement, com-
pared using the state of the art, is significant.
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APPENDIX
S1. RC THERMAL CIRCUIT

The equivalent circuit of a multiprocessor system with a
thermal package can be built in different ways depending on
the intended level of details. Consequently, the number of
nodes Nn and structure of the matrices C and G in Eq. (2)
depend on the particular model. Thermal nodes that belong
to the package are called inactive, in the sense that their
power dissipation is assumed to be zero.

Without loss of generality, in this paper we use thermal
circuits where each of the Np processing elements is captured
by one thermal node. Similar to [2], in the model, three cool-
ing layers are present, namely the thermal interface material,
heat spreader, and heat sink captured by Np, Np + 4, and
Np + 8 inactive thermal nodes, respectively. Therefore, the
total number of thermal nodes Nn is 4 ×Np + 12. The pa-
rameters of the die and thermal package, used throughout
this paper, are given in Tab. S1.

A simplified example of such a thermal circuit for a dual-
core architecture is depicted in Fig. S1. It can be seen
that the inter-core thermal influence is taken into account
by modeling the heat flux between the cores (the top two
thermal nodes) with the corresponding thermal resistance.

Some or all cores can be also modeled at a finer level of
granularity, where caches, ALUs, or registers will be cap-
tured as individual thermal nodes.

S2. ANALYTICAL SOLUTION
In this section we further discuss the analytical solution

from Sec. 5, its application for the TTA, and possible solu-
tion techniques in the case of the SSDTA.

S2.1 Transient Temperature Analysis (TTA)
The recurrence obtained with the analytical solution in

Eq. (3) is the following (Eq. (4)):

Ti+1 = Ki Ti + Bi Pi

Given the initial temperature T0, it can be applied to per-
form the TTA. Our experiments show that, since intervals
∆ti have the same length and matrices Ki and Bi become
constant, this approach produces a significant performance
improvement compared to iterative solutions of ODEs, e.g.,
the fourth-order Runge-Kutta method used in HotSpot. The
same observation is made in [9].

The TTA using the analytical technique given in Eq. (4)
can be employed to approximate the SSDTP by applying
it over successive application periods, as shown in Sec. 4.1.
Since each iteration, with this approach, is much faster than
with HotSpot, it will significantly speed up the SSDTP cal-
culation. However, the number of required iterations is sim-
ilar to the case when HotSpot is used (see Fig. 1a), still
keeping the computational process slow (Sec. 9.1).

S2.2 Straight-Forward Solutions (SSDTA)
The first straight-forward way to solve the system in Eq. (6)

is to use dense solvers such as the LU decomposition [14].
However, a more advanced approach is to employ sparse
solvers since the matrix of the system is a sparse matrix.
Therefore, algorithms specially designed for such cases are
preferable, e.g., the unsymmetric multifrontal method [S1].
The computational complexity of the solution is proportional
to N3

sN
3
n [14] where Nn is the number of nodes and Ns is

the number of steps in the power profile. The problem here
is that the systems to solve can be extremely large, in par-
ticular due to Ns. Our experiments have shown that direct

Table S1: Parameters of the die and package.

Parameter Value

Ambient temperature 27 ◦C
Convection capacitance 140.4 J/K
Convection resistance 0.1 K/W
Die thickness 0.15 mm
Thermal interface material thickness 0.02 mm
Heat spreader side 20 mm
Heat spreader thickness 1 mm
Heat sink side 30 mm
Heat sink thickness 15 mm
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Thermal
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Thermal
Capacitance

Thermal
Node

Figure S1: Equivalent RC thermal circuit.

solvers are extremely slow and consume a large amount of
memory. Therefore, we do not consider them in the paper.

The overall matrix of the system in Eq. (6) is, in fact, a
block Toeplitz matrix. To be more specific, the matrix is a
block-circulant matrix where each block row vector is rotated
one block element to the right relative to the preceding block
row vector. This leads to a wide range of possible techniques
to solve the system, e.g., the fast Fourier transform (FFT)
[S2] that we include in our experiments in Sec. 9.1.

Another possible technique is iterative methods for solving
systems of linear equations (e.g., Jacobi, Gauss–Seidel, Suc-
cessive Overrelaxation) [14]. These methods are designed to
overcome problems of direct solvers and, consequently, they
are applicable for very large systems. However, the most
important issue with these methods is their convergence. In
our experiments we did not observe any advantages of us-
ing these methods compared to the others considered in this
paper. Therefore, they are excluded from the discussion.

S3. RELIABILITY OPTIMIZATION
This section contains the derivation of the reliability model

discussed in Sec. 8 and the description of the actual optimiza-
tion procedure.

S3.1 Temperature-Aware Reliability Model
In our analysis, we use the reliability model presented in

[7, 8]. The model is based on the assumption that the time to
failure T has a Weibull distribution, i.e., T ∼Weibull(η, β)
where η and β are the scaling and shape parameters, respec-
tively. The expectation of the distribution is the following:

E [T ] = η Γ(1 +
1

β
) (23)

where Γ is the gamma function. E [T ] is the mean time to
failure (MTTF) that we denote by θ.

The shape parameter β is independent of the temperature
variation [S3], which, however, is not the case with the scal-
ing parameter η. Therefore, the distribution varies with the
temperature. We can split the overall period of the applica-
tion τ into Nm time intervals ∆ti, so that during each time
interval ∆ti the corresponding ηi is a constant:

ηi =
θi

Γ(1 + 1
β

)
(24)

where θi is the MTTF in the ith time interval as if we had the
failure distribution of this interval all the time. For now the
values θi are unknown and depend on the particular failure
mechanism. As it is shown in [8], the reliability function
R(t), i.e., the probability of survival until an arbitrary time
t ≥ 0, can be approximated as the following:

R(t) = e
−( t

τ

∑Nm−1
i=0

∆ti
ηi

)β

The formula keeps the form of the Weibull distribution with
the scaling parameter equal to:

η =
τ∑Nm−1

i=0
∆ti
ηi

(25)



The MTTF with respect to the whole application period can
be obtained by combining Eq. (23), Eq. (24), and Eq. (25).

As mentioned previously, in order to compute the MTTF,
we need to consider the particular failure mechanism and
determine the values θi needed in Eq. (24). We focus on
the thermal cycling fatigue (Sec. 8.2). Assuming this con-
crete failure model, the duration ∆ti, during which the corre-
sponding scaling parameter ηi is constant Eq. (24), is exactly
a thermal cycle.

When the system is exposed to identical thermal cycles,
the number of such cycles to failure can be estimated using a
modified version of the well-known Coffin-Manson equation
with the Arrhenius term [8, 13]:

Nc = A(∆T −∆T0)−be
Ea

kTmax

where A is an empirically determined constant, ∆T is the
thermal cycle excursion, ∆T0 is the portion of the tempera-
ture range in the elastic region which does not cause damage,
b is the Coffin-Manson exponent, which is also empirically
determined, Ea is the activation energy, k is the Boltzmann
constant, and Tmax is the maximal temperature during the
thermal cycle. Over the application period, the system un-
dergoes a number of different thermal cycles each with its
own duration ∆ti and each cycle causes its own damage.
Therefore, having Nm thermal cycles characterized by the
number of cycles to failure Nc i and duration ∆ti, we can
compute θi:

θi = Nc i ∆ti (26)

Taking equations (23), (24), (25), and (26) together, we ob-
tain the following expression to estimate the MTTF of one
component in the system:

θ =
τ∑Nm−1

i=0
1

Nc i

(27)

In order to identify thermal cycles in the temperature curve,
we follow the approach given in [8] where the rainflow count-
ing method is employed.

S3.2 Optimization Procedure
The optimization procedure is based on a genetic algo-

rithm [16] with the fitness function F given by Eq. (20).
Each chromosome is a vector of 2×Nt elements, where the
first half encodes priorities of the tasks and the second rep-
resents a mapping. The population contains 4 × Nt indi-
viduals that are initialized partially randomly and partially
based on the initial temperature-aware solution [19]. In each
generation, a number of individuals, called parents, are cho-
sen for breeding by the tournament selection with the num-
ber of competitors proportional to the population size. The
parents undergo the 2-point crossover with 0.8 probability
and uniform mutation with 0.01 probability. The evolution
mechanism follows the elitism model where the best individ-
ual always survives. The stopping condition is an absence of
improvement within 200 successive generations.

The fitness of a chromosome, Eq. (20), is evaluated in a
number of steps. First, the decoded priorities and mapping
are given to a list scheduler that produces schedules for each
of the cores. If the application schedule does not satisfy the
deadline, the solution is penalized proportionally to the delay
and is not further evaluated; otherwise, based on the param-
eters of the architecture and tasks, a power profile is obtained
and the corresponding SSDTP is computed by our proposed
method. If the SSDTP violates the temperature constraint
given by Eq. (22), the solution is penalized proportionally
to the amount of violation and not further processed; oth-
erwise, the MTTF of each core is estimated according to
Eq. (18) and the fitness function F is computed.
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