
Integrating Core Selection in the SOC Test Solution Design-Flow

Erik Larsson

Embedded Systems Laboratory

Linköpings Universitet

SE-582 83 Linköping

Sweden

erila@ida.liu.se

Abstract1

We propose a technique to integrate core selection in the
SOC (system-on-chip) test solution design-flow. It can, in
contrast to previous approaches, be used in the early
design-space exploration phase (the core selection process)
to evaluate the impact on the system’s final test solution
imposed by different design decisions, i.e. the core selection
and the cores’ test characteristics. The proposed technique
includes the interdependent problems: test scheduling, TAM
(test access mechanism) design, test set selection and test
resource floor-planning, and it minimizes a weighted cost-
function based on test time and TAM routing cost while
considering test conflicts and test power limitations. An
advantage with the technique is the novel three-level power
model: system, power-grid, and core. We have implemented
and compared the proposed technique, a fast estimation
technique and a computational extensive pseudo-exhaustive
method, and the results demonstrate that our technique
produces high quality solutions at reasonable
computational cost.

1 Introduction

In a core-based design environment, cores (pre-designed

and pre-verified blocks of logic and UDL (user-defined

logic) blocks) are integrated by the core integrator to

become a system, which can be placed on a single die,

making it an SOC (System-on-Chip). The cores, provided

by core vendors, may each have different origin, such as

from various companies, reuse from previous designs, or

the cores can be completely new in-house designs. The core
test integrator is responsible for the design of the system’s

test solution, which includes decision on how and when test

data (test stimuli and test response) should be transported

and applied to each core in the system.

A SOC design flow is usually as follows. First, a design

step (core selection step) where the core integrator selects

the appropriate cores for the system, and second, as a

consecutive step, the core test integrator designs the test

solution for the system, which includes test scheduling and

the design of the infrastructure for test data transportation,

the TAM (Test Access Mechanism).

It is important to note that, the core integrator can, in the

initial design step (core selection), select among a number

different cores often from several core vendors to

implement a certain functionality in the system. The core

integrator selects, based on each core’s design

characteristics, the cores that fits the system best. Each

possible core may, not only have different design

characteristics, but can also have different test

characteristics (for instance test sets and power

consumption). For example, one core may require a large

ATE (Automatic Test Equipment) stored test set, while

another core, implementing the same functionality, requires

a combination of a limited ATE test set and a BIST (Built-

In Self-Test) test set. Note, that even if a single core is

available for a function, the partitioning (ATE size versus

BISTs size) is to be decided. Selecting the optimal core for

a possible functionality leads to local optimum, however,

not necessarily to a global optimum. In other words, the

selection of cores must be considered with a system

perspective in order to find a globally optimized solution. It

means that there is need for a test solution design tool that

can be used in the early core selection process to explore

and optimize the system’s test solution.

We have previously proposed a technique for integrated

test scheduling and TAM design where a weighted cost-

function based on test time and TAM wiring cost is

minimized while considering test conflicts and test power

consumption [11]. We have also previously proposed an

estimation-based technique for test set selection and test

resource placement [10]. In this paper we propose an

integrated technique including test set selection, test
resource floor-planning, TAM design, and test scheduling.
The test set selection, test resource floor-planning, TAM

design, and test scheduling are highly inter-dependent. The

test time can be minimized by scheduling the tests as

concurrent as possible, however, the possibility of

concurrent testing depends on the size of the TAM

connecting the test resources (test sources and test sinks).

The placement of the test resources has a direct impact on

the length of the TAM wires. And finally, the selected test

sets for each testable unit are partitioned over the test

resources and impacts the TAM design and the test

schedule.
1. The research is partially supported by the Swedish National

Program STRINGENT.

ITC INTERNATIONAL TEST CONFERENCE

0-7803-8580-2/04 $20.00 Copyright 2004 IEEE

Paper 48.1

1349

The proposed technique includes an improved power

model that consider global system-level limitations, local

limitations on power-grid level (hot spots) as well as core-

level limitations. The motivation for a more elaborate power

model is that the system is designed to operate in normal

mode, however, during testing mode the testable units are

activated in a way that would not occur during normal

operation. It can lead to (1) that the systems power budget

is exceeded, or (2) that hot spots appear and damage a

certain part in the system, or (3) that a core is activated in

such a way that the core is damaged.

We have implemented the proposed technique, the

estimation-based technique [10] as well as a pseudo-

exhaustive technique, and through experiments we

demonstrate that our proposed technique produces high

quality solutions at low computational cost.

The rest of the paper is organized as follows. A

background and an overview of prior work is in Section 2.

The problem formulation is in Section 3, and the test

problems and their modeling are in Section 4. The

algorithm is described in Section 5, and an example

illustrating the algorithm is in Section 6. The experimental

results are in Section 7, and the conclusions are in Section 8.

2 Background and Related Work

A core-based design flow a sequence that typically starts

with core selection, followed by test solution design, and

after production, the system is tested (Figure 1(a)). In the

core selection stage, the core integrator selects appropriate

cores to implement the intended functionality of the system.

For each function there is usually a number of possible

cores to select from, and where each candidate core has its

specification on, for instance, performance, power

consumption, area, and test characteristics. The core

integrator explores the design space (search and combines

cores) in order to optimize the SOC. Once the system is

fixed (cores are selected) the core test integrator designs the

TAM and schedules the tests based on the test specification

for each core. In such a design flow (illustrated in

Figure 1(a)), the test solution design is a consecutive step to

core selection. And, even if each core’s specification is

highly optimized, when integrated as a system, the system’s

global test solution is most likely not highly optimized.

The design flow in Figure 1(b), on the other hand,

integrates the core selection step with the test solution

design step, making it possible to consider the impact of

core selection when designing the test solution. In such a

design flow (Figure 1(b)), the global system impact on core

selection is considered, and the advantage is that it is

possible to develop a more optimized test solution. The

design flow in Figure 1(b) can be viewed as in Figure 2,

where the core type is floor-planned in the system but there

is not yet a design decision on which core to select. For each

position, several cores are possible. For instance, for the

cpu_x core there are in Figure 2 three alternative processor

cores (cpu1, cpu2 and cpu3).

In this paper we make use of the definition of concepts

introduced by Zorian et al. [15], which we illustrate with an

example in Figure 3. The example consists of three main

blocks of logic, core A (CPU core), core B (DSP core), and

core C (UDL (user-defined logic) block). A test source is

where test stimuli is created or stored, and a test sink is

where the test response from a test is stored or analyzed.

The test resources (test source and test sink) can be placed

on-chip or off-chip. In Figure 3 the ATE serves as an off-

chip test source and off-chip test sink, while TS1, for

instance, is an on-chip test source. The TAM is the

infrastructure (1) for test stimuli transportation from a test

source to the testable unit, and (2) for test response

transportation from a testable unit to a test sink. A wrapper

is the interface between a core and the TAM, and a core with

a wrapper is wrapped while a core without wrapper is

unwrapped. Core A is a wrapped core while Core C is

unwrapped. The wrapper cells at each wrapper can be in one

of the following modes at a time: internal mode, external
mode and normal operation mode.

In addition to the definitions by Zorian et al. [15], we

assume that a testable unit is not a core, but a block at a core

and that a core can consist of a set of blocks. For example,

core A (Figure 3) consists of two blocks (A.1 and A.2).

For a fixed system where cores are selected and floor-

planned, the main task is to organize the testing and the

transportation of test stimuli and test response (as the

example design in Figure 3). Several techniques have been

proposed to solve different important problems under the

Figure 1. Design flow in a core-based design
environment (a) traditional and (b) proposed.

core selection

production

test application

test design

core selection
& test design

production

test application

(a) (b)

Figure 2. System design.

cpu1
cpu2

cpu3

ram1
ram2

ram3

cpu_x dsp_y

ram_z ram_u

dsp1
dsp2

dsp3

Paper 48.1

1350

assumption that the cores are already selected (design flow

as in Figure 1(a)).

Zorian [14] proposed a test scheduling technique for

fully BISTed system where each testable unit is tested by

one test with a fixed test time, and each testable unit has its

dedicated test source and its dedicated test sink. A fixed test

power value is attached to each test and the aim is to

organize the tests into sessions in such a way that the

summation of the power consumed in a session is not more

than the system’s power budget while minimizing the test

application time.

In a system where each testable unit has its dedicated test

source and test sink, there are no test conflicts. Chou et al.
proposed a test scheduling technique minimizing the test

time for systems where both the test time and power

consumption for each test are fixed, and to handle general

conflicts a conflict graph is used [1].

The approaches by Zorian and Chou et al. assume fixed

testing times for each testable unit. However, the test time

for scan-tested cores is often not fixed. If the scanned

elements (scan-chains, inputs, and outputs) at a core are

connected into few wrapper chains, the testing time is

higher compared to if the scan elements are connected into

a higher number of wrapper chains. Iyengar et al. proposed

a scheduling technique for systems where the testing time

for all cores is flexible and the objective is to form a set of

wrapper chains for each core in such a way that the testing

time for the system is minimized [7].

The test power for a test can also be fixed or flexible.

Bonhomme et al. [2] and Saxena et al. [12] proposed clock-

gating schemes intended to reduce the test power consumed

during the scan-shift process. The advantage is that the test

power can be reduced at a core with such a scheme. If a

wrapper chain consists of n scan-chains, the scan-chains

can be loaded one at a time, which means that only one

chain is active at a time, hence, lower power consumption.

Sugihara et al. investigated the partitioning of test sets

where one part is on-chip test (BIST) and the other part is

off-chip test using an ATE (Automatic Test Equipment)

[13]. A similar approach was proposed by Jervan et al. [8],

which later was extended to not only locally optimize the

test set for a core but to consider the complete system by

using an estimation technique to reduce the test generation

complexity [9]. Hetherington et al. discussed several

important test limitations such as ATE bandwidth and

memory limitations [5].

All the above addressed problems are important. But it

also important to consider them all from a system test

perspective.

We have previously proposed an integrated technique for

test scheduling and TAM design where the test application

time and the TAM design are minimized while considering

test conflicts and power consumption [11]. And, we have

proposed an estimation technique for the creation and

optimization of the TRS (test resource specification) [10].

The objective was to create a TRS that together with the

design specification will be the inputs to a test scheduling

and TAM design tool and hence result in an efficient test

solution, i.e. minimal test application time and minimal

routing of the TAM wires.

3 Problem Formulation

An example of an input specification, the starting point in

our approach, is given in Figure 4. The structure of the input

specification is based on the one we used in [11] with one

major extension, namely that for each block several lists of

tests can be specified, instead of as before where it was only

possible to assign one list per block. The advantage with the

approach is that it is possible to specify several lists of tests

for each block (testable unit) where each test in a list make

use of its specified resources (test source and test sink), and

each test has its test characteristics. The test problems that

are considered in our technique and their modeling is

discussed in Section 4. The cores are floor-planned, i.e.

given (x,y) coordinates and each core consist of a set of

blocks (testable unit). For each block, several sets of tests

are available, where each set of tests is sufficient for the

testing the block. For instance, to test a block bA three

possible test sets are given:

[Blocks] name idle pwr pwr_grid {test1, t2,..., tn} {t1,..tn}

bA 0 grid1 {tA1, tA2} {tB1} {tC1 tC2 tC3}

{tA1, tA2} or {tB1} or {tC1 tC2 tC3} should be selected

where each test has its resources and characteristics.

A way to view the problem is shown in Figure 5. A set of

test resources (test sources and test sinks) are available.

Different combinations of sets of test sets for each testable

unit can be defined. If CoreA is selected {t1, t2} or {t3} can

be selected. The tests make use of test sources and test sinks

and the selection of other cores impact on the total resource

Figure 3. A system and the definition of test concepts.

wrapper

core A (CPU)
wrapper

core B (DSP)

system wrapper cell

TR1

off-chip test source
off-chip test sink

on-chip test source

on-chip test sink

block A.1

block A.2

scan chain core C
(UDL)

block C.1scan chain

ATE
test stimuli test response

scan chain

block B.1

TS1

scan chain

scan chain

TR2

TS2

Paper 48.1

1351

usage, and hence, the total cost. The problem is to select, for

each block, which set of tests to use in order to produce an

optimized test solution for the system. The cost of a test

solution is given by the test application time and the amount

of routed TAM wires:

where τtotal is the test time (end time of the test with highest

test time), TAM is the routing length of all TAM wires, and,

α and β are user-defined constants used to determine the

importance of test time in relation to TAM cost.

The produced output from our technique is (1) a test

schedule where the tests are (2) selected, (3) given a start

time, and (4) an end time in such a way that all conflicts and

constraints are not violated, and (5) a corresponding TAM

layout where the cost (Eq. 1) is minimized.

4 Test Problems and Modeling

In this section we discuss the test problems to be considered

when developing a SOC test solution and their modelling.

4.1 Test Time

The testing time for a testable unit can be fixed or non-fixed
prior to the design of the test solution. A core provider can

optimize the core and its wrapper making the testing time

fixed. On the other hand, the testing time for a scan-tested

core is often non-fixed since the scan-chains can be

connected into one or more wrapper-chains. The testing

time for a test with flexible test time depends on the number

of wrapper-chains. Important to note is that tests with fixed

and non-fixed testing times can be mixed in the system.

A core can consist of scan-chains that are few and

unbalanced (of unequal length), and the testing time might

not be linearly dependent on the number of wrapper chains.

Therefore, we have analyzed if the testing time (τ) is linear

with the number of wrapper-chains (w) (τ×w=constant) for

the scan-tested cores in one of the largest ITC’02 designs,

namely the P93791 design. We observed that the testing

time for core 11 was most non-linear (Core 11 - original in

Figure 6). We noted that the 576 scanned elements were

partitioned into 11 scan-chains (82 82 82 81 81 81 18 18 17

17 17). We re-designed core 11 into four new cores with 11,

22, 44, and 88 balanced scan-chains, respectively. We

plotted τ×w for all cores in Figure 6. As the number of scan-

chains increases, the more constant the value τ×w becomes.

The testing time at a single wrapper chain is 149381

(marked in Figure 6). For core 11 with 44 balanced scan-

chains, the value τ×w is always less than 5% from the

constant theoretical value. Important to note is that for all

cores, the value τ×w is almost constant within a certain

range. We assume that core test designers optimize the

cores, hence, the number of scan-chains at a core is

relatively high and of nearly equal length.

In our model, we specify the testing time for a testable

[Global Options]

MaxPower = 100

[Power Grid] #name power_limit

p_grid1 50

p_grid2 60

[Cores] #name x y block_list

coreA 20 10 { blockA1, blockA2 }

coreB 40 10 { blockB1, blockB2 }

coreC { blockC1 }

[Generators] #name x y max_bw memory

ATE 10 0 4 200

TG1 30 0 1 50

// the rest of the generators

TG2 30 10 1 100

[Evaluators] #name x y max_bw

ATE 50 0 4

TRE1 30 0 1

// the rest of the evaluators

TRE2 30 10 1

[Tests] #name pwr timetpg tre min_bw max_bw ict

tA1.1 60 60 TG1 TE1 1 1 no

// more tests for coreA

tB1.1 60 72 TG1 TE1 1 1 no

// more tests for coreB

tC1.1 70 80 TG1 TE2 1 4 coreB

// more tests for coreC

[Blocks] #name idle_pwr pwr_grid test_sets {}, {}, ...,{}

blkA1 0 p_grd1 { tA1.1 }{ tA1.2, tA1.3}

blkA2 0 p_grd1 { tA2.1 }{ tA2.2 }

blkB1 5 p_grd2 { tB1.1 tB1.2 } { tB1.3 }

blkB2 10 p_grd2 { tB2.1 }

blkC1 0 p_grd1 { tC1.1}

[Constraint] #name {block1, block2, ... , blockn}

tA1.1 {}

// constraints for each test

tC1.1 {blkC1 blkA1 blkA2 blkB1 blkB2}

Figure 4. Input specification for the
example system in Figure 3.

tcos α τ total× β TAM×+= 1

Figure 5. Illustration of design alternatives.

coreA

s1 CpuX

s2

ti: a test set
{t1, ..., tn}: a set of tests
rj: test source
sk: test sink

r1

r2

r3

s3

{t1, t2}

r1

{t3}

coreB

DspY

r2 s2 r3 s3

coreC

s1 r4 s4

{t4, t5} {t6, t7} {t8, t9}

s4 r4

SoC

Paper 48.1

1352

unit at a single TAM wire and the bandwidth limitations.

For instance a testA has a test time of 100 at a single

wrapper chain and the scanned elements can be in the range

1 to 4:

[Tests] name test time minbw maxbw

testA 100 1 4

and we assume, based on the experiments, that the test time

is linear to the number of TAM wires within the bandwidth

range. It means that given the test time at a single TAM

wire, the test time can be computed:

where tam is in the range [minbw,maxbw]. If the testing

time is fixed, minbw=maxbw.

4.2 Test Power Consumption

The power dissipation during testing mode is often higher

than that during normal operation. The reason is that power

consumption is highly related to the switching activity, and

in order to detect as many faults as possible at a minimum

of time, it is desirable to activate (switch) as many fault

locations as possible in a short period of time. Furthermore,

the system is designed to operate during normal operation,

but during testing mode blocks are made active in a way that

would not occur in normal mode. It means that special care

has to be taken to the power dissipation during testing.

The testing time is reduced if a high number of cores are

activated concurrently, but it leads to higher activity, and

high power consumption can damage the system. The

system-level power budget can be exceeded in such a

scheme. Furthermore, if cores that are physically close are

activated during testing, a hot spot can be created and the

system is damaged. For instance, assume a memory

organized as a bank of four where in normal operation only

one bank is active at a time. However, during testing, in

order to shorten the test time, all banks are activated at the

same time. The system’s power limit might not be

exceeded, however, a local hot spot is created, and the

system is damaged. Another problem is that a core during

testing mode dissipates power above its specified limit due

to the nature of the test stimuli and/or the test clock

frequency. We therefore make use of a three-level power

model: system-level, power-grid-level (local hot spot), and

core-level.
For the system-level, we make use of the power model

defined by Chou et al. where a fixed power value is attached

to each test, and the tests are scheduled in such a way that at

any time point, the summation of power values executed

concurrently is below the power budget of the system [1].

As an example, we specify the system budget:

MaxPower = 100

and for each test we specify the power consumed when the

test is activated:

[Tests] name pwr time tpg tre minbw maxbw mem ict

testA 60 60 r1 s1 1 1 10 no

the idle power, the power consumed when a block is not

active is specified at each block:

[Blocks] name idle pwr pwr_grid {test1, t2,..., tn} {t1,..tn}

bA 0 grid1 {testA} {testA2}

For local hot spots, we introduce a power grid model,

which has similarities to the approach proposed by Chou et
al. [1], but in contrast to it, our model include local areas

(power grids). We assume that each block (testable unit) is

assigned to a power grid where the power grid has its power

budget. The system can contain a number of power grids.

Blocks assigned to a power grid cannot be activated in such

a way that the power grid budget is exceeded at any time.

An example to illustrate the need of power grids is as

follows, a memory can be organized as a bank of memory

blocks (see Figure 7). Assume that the memory, during

normal operation, never accesses more than a single

memory block the power grid is designed accordingly. .

As an example of a single grid is:

τ i

τ
1

tam
---------= 2

 140000

 160000

 180000

 200000

 220000

 240000

 260000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TAM width

|τ1-τ2|/τ2x100=5%
τ1=156850

τ2=149381

Core 11 - original

Core 11 - 11 balanced chains

Core 11 - 22 balanced chains

Core 11 - 44 balanced chains Core 11 - 88 balanced chains

Figure 6. Test time analysis for core 11 in design P93791.

Figure 7. A memory organized as a bank of
four blocks powered by a common grid.

Memory A Memory B

Memory C Memory D

Power grid 1

Paper 48.1

1353

[PowerGrid] pwr_grid limit

grid1 30

and for each block the used power grid is given:

[Blocks] name idle_pwr pwr_grid {test1, t2,..., tn} {t1,..tn}

bA 0 grid1 {testA} {testA2}

The motivation behind core-level adjustments is two-

fold. First, by lowering the power consumption at a core, a

higher number of cores can be activated concurrently

without violating the system power budget. Second, since

test power consumption often is higher than that during the

normal operation, the power dissipation during test at a

specific core can be higher that its own power budget, which

can damage the core.

As discussed above, some tests have a fixed testing time

while other tests allow flexible testing times. Regarding test

power consumption, we have some tests where the power is

fixed regardless of the number of assigned TAM wires,

while other tests allow the power to be adjusted. The power

can be adjusted by using clock-gating [12]. Clock-gating

can be used to reduce the power consumption so that a

higher number of tests can be executed concurrently, but

more importantly, it can be use for testable units where its

own power dissipation is higher than its allowed power

consumption due to for instance a too high test clock

frequency.

The power consumption for a test is given as a single

value, for instance as in the following example:

[Tests] name pwr time minbw maxbw flexible_pwr

testA 50 60 1 4 yes

testB 60 30 1 4 no

Note that we include the possibility to specify if clock-

gating can be used by setting flexible_pwr to yes or no. If

power can be modified, we assume a linear dependency:

where p1 is the power at a single tam wire, and tam is the

number of TAM wires, which has to be in the specified

range [minbw:maxbw].

4.3 Test Conflicts

During the test solution design there are a number of

conflicts that have to be considered and modelled. For

general conflicts we make use of the following notation:

[Constraints] test{block1, block2, ..., block n}

tA {bA bB}

It means that when testing tA both block bA and bB must

be available since they are used by test tA or tA might

interfere with one of the blocks. This modelling support

general conflicts, which can be given from hierarchy where

cores are embedded in cores or from interference during

testing.

A test source ([Generators]) may have limited bandwidth

and memory. We model bandwidth limitation as an integer

stating the highest allowed bandwidth for the test source.

For memory limitations an integer is used as the upper

memory limit. A test sink ([Evaluators]) can also have a

limited bandwidth and in a similar way as with test sources,

we model it as an integer. For each test we give a number of

its memory requirement. An example with testA using test

source r1 and test sink s1:

[Generators] name x y maxbw memory

r1 10 20 1 100

[Evaluators] name x y maxbw

s1 20 20 2

[Tests] name tg tre mem

testA r1 s1 10

The wrapper conflicts are slightly different compared to

general conflicts because of the TAM routing. The testing of

a wrapped core is different from the testing of an

unwrapped. The testing of the wrapped core A (Figure 3) is

performed by placing the wrapper in internal test mode and

test stimuli is transported from the required test source

using a set of TAM wires to the core and the test response is

transported from the core using a set of TAM wires to the

test sink. In the case of an unwrapped testable unit such as

the UDL block, the wrappers at core A and B are placed in

external test mode. The test stimuli is transported from the

required test source on the TAM via core A to the UDL

block and the test response is transported via core B to the

TAM and to the test sink.

We model the wrapper conflict as in the following

example with two blocks (bA and bB) and one test per block

(tA and tB):

[Blocks] name {test1, test2,..., test m} {test1, ..., test n}

bA {tA}

bB {tB}

[Tests] name tg tre ict

tA r1 s1 bB

tB r1 s1 no

Test tB is not an interconnection test, hence, itc is marked

as no. It means that there will be a connection between r1 to

bB and from bB to s1. Test tA, on the other hand, is an

interconnection test with bB. It means that r1 is connected

to bA and bB is connected to s1.

4.4 Resource Utilization

We make use of a machine-oriented Gantt chart to track

bottlenecks (the resource that limits the solution) [3]. We let

the resources be the machines, and the tests the jobs to show

the allocation of jobs on machines. For example, a Gantt

chart as in Figure 8 where for instance, test B2 needs TG:r2

pi p
1

tam×= 3

Paper 48.1

1354

and TRE:s2. An inspection of Figure 8 shows that TG:r2

and TRE:s2 are not limiting the solution. On the other hand,

test source TG:r1 is the most critical one. It means that

testA, testB, and testC are the obvious candidates for

modification. The Gantt chart pin-points bottle-necks and

therefore reduces the search for candidates for modification.

Note that the Gantt chart does not show a schedule, only the

usage of resources in the system.

5 Algorithm

In this section we describe the proposed algorithm (outlined

in Figure 9, and detailed in Figure 10 and Figure 11).

In order to evaluate the cost of a test solution, we make

use of (Eq. 1). At a design modifications, the cost change

before and after modification, is given by:

where ∆τ (∆TAM) is the difference in test time (TAM cost),

before and after the modification.

The TAM cost is given by the length l and its width w
(TAM=l×w), and by combining the cost function (Eq. 1)

considering only one testable unit, and the test time versus

TAM cost (Eq. 2), the optimal TAM bandwidth is given by

[11]:

A detailed description of the algorithm (Figure 9) is in

Figure 10 (test set selection outline) and Figure 11 (test

scheduling and TAM design). The algorithm starts by the

part given in Figure 10, where the list of test sets for each

testable unit is sorted based on the cost function (Eq. 1). The

cost for each testable unit is locally optimized, however,

there is at this point no global consideration on sharing of

TAM wires or conflicts. For each testable unit, the first set

of tests for each testable unit is selected, and the set is

scheduled and the TAM is designed (Figure 11). From the

test schedule, the test application time is given and from the

TAM layout, the TAM cost for the solution is given. The

algorithm checks the use of resources from a Gantt-chart for

the solution. For example, assume the a test solution

generates a Gantt-chart as in Figure 8, where TG:r1 is the

critical resource. For all tests that are using the critical

(limiting) resource, we try to find alternative tests. We make

use of Eq. 4 to evaluate the change in cost for each possible

alternative (at the critical resource). Instead of trying all

possible alternatives, we try a limited number of design

modifications. And to reduce the TAM cost we try to make

use of existing TAMs (a test can be delayed and applied

later). We make use of Eq. 4 where the difference in test

time and TAM cost are given.

6 Example

We use the example design in Figure 12 to illustrate the

algorithm in Section 5. The example (Figure 12), simplified

by removing power grids, memory limitations and the list of

general constraints, consists of two cores each with a single

block (testable unit). Each block can be tested in two ways;

there are two alternative test sets for each block. For

instance, blockA can be tested by testA1 or by testA2.

The algorithm proceeds as follows. Initial step: For each

block, the test sets are ordered ascending according to the

cost function (Eq. 1 assuming α=β=1):

Figure 8. A machine-oriented Gantt chart [3].

time

resources

TG: r1 testA testB1

test B2

τtotal

TG: r2

TRE: s1

TRE: s2

testC

testA testB1

test B2 testC

Figure 9. The algorithm.

1. Select tests for initial solution
2. Do {
3. Create test schedule and TAM
4. Find limiting resource with Gantt chart
5. Modify tests (select alternative tests or modify

TAM width) at limiting resource
6. Select best modification
7. } Until no improvement is found
8. Return best solution.

∆τ α× ∆TAM β×+= 4

w α τ×() β l×()⁄= 5

Figure 11. Test scheduling and TAM design algorithm.

1. sort the list of tests descending according to the cost function.
2. repeat until the list is empty {
3. select the first test in the list
4. repeat until a test is scheduled or at end of list {
5. repeat until selected test is scheduled or

bandwidth cannot be decreased {
6. try to schedule the test at current time
7. if fail to schedule {
8. if the bandwidth>1 then reduce bandwidth with 1
9. }
10. }
11. if the selected test could not be scheduled {
12. select the following test in the list
13. }
14. }
15. if the test was scheduled {
16. allocate TAM and remove the selected from the list
17. } else {
18. update current time to the nearest time in the future

where there is available power to schedule the first test
in the list

19. }
20. }

Paper 48.1

1355

test time TAM total cost

testA1: 60 40 100

testA2: 100 20 120

testB1: 72 40 112

testB2: 120 20 140

The evaluation results in the following sorted lists per block

(first in the list is the best candidate):

BlockA: {{testA1}, {testA2}}

BlockB: {{testB1}, {testB2}}

The first set of tests are selected as active, that is for

BlockA {testA1} and for BlockB {testB1}. The test

scheduling algorithm sorts the tests based on test time, and

starts with the longest test, making the test schedule: testB

starting at time 0 followed by testA starting at time 72. The

resulting total test application time is 132. The TAM design

algorithm connects TG1, coreB, coreA, and TA1, and the

Manhattan length is 20+20+20=60. The total cost (at

α=β=1) for the test solution is then: 132 (test time)+60

(TAM cost)=192.

From the Gantt chart for this test solution, we observe

that TG1 and TA1 both are used for 132 time units, while

TG2 and TA2 are not used at all, and we note that TG1 and

TA1 limits the solution. Based on the Gantt-chart, the

algorithm tries to find an alternative that is not using TG1

and TA1. For each test that uses the limiting resources in the

Gantt chart, in our example TG1 and TA1, the algorithm

computes the alternative cost of using other resources. It is

important to note, that in order to limit the number of

possible options, we only try with the tests that are the

resources that limits the solution (Gantt chart).

First alternative modification, we try using testA2 to test

BlockA instead of using testA1. It means that testA1 will

not be executed (one of the set of tests for each block is only

required). We evaluate the impact of the test modification

on the TAM layout, and we observe that we do not have to

include coreA in the layout. Taking coreA out of the bus

layout means that TAM corresponding to 20 units can be

removed (testA2 is making use of different test resources

compared to testA1). However, in order to execute testA2

we have to include wires from TG2 to coreA and from

coreA to TA2. The additional required wiring corresponds

to 20 units.

The difference in test time between testA1 and testA2 is

(100-60=) 40. It means that the total cost difference is

estimated to: -20 (what we gain by not including coreA for

testA1)+20 (what we have to add to include TAM for TG2-

>coreA->TA2)+40=40.

Second alternative modification, we try testB2 instead of

testB1. It means that a TAM (length and width)

corresponding to 20 units can be removed. The additional

TAM cost of adding testB2 (its resources) is 20, and the

difference in test time between testB2 and testB1 is 48 (120-

72). The cost difference for this alternative is -

20+20+48=48.

In this example we have two tests using the resources that

limits the solution (Gantt chart), and we also had only one

possible alternative per test. And, since the first alternative

is better than the second (40 is less than 48), the first is

Figure 10. Test set selection algorithm.

1. for each block (testable unit) {
2. for each test set at a block {
3. compute optimal bandwidth for each test (Eq. 5);
4. compute cost for the full test set (Eq. 1);
5. }
6. place the test sets sorted descending on the cost (step 4.);
7. select the first test set in the list as the active test set
8. }
9. repeat until no modification can be performed {
10. create test schedule and TAM layout (see Figure 11)
11. if the total cost for schedule and TAM layout is best so far{
12. remember this test schedule and the TAM layout
13. }else {
14. if last modification was a TAM width modification {
15. undo the TAM width modification
16. }
17. if last modification was a test set modification {
18. remove the test set from the blocks list of test sets
19. }
20. }
21. for each block {
22. if the active test set has a test resource limiting

the solution {
23. compute cost for increasing the TAM width with 1
24. for every other test set for the block{
25. compute the cost of changing this test set

based on Eq. 4
26. if the cost is lower than lowest cost {

remember this test set
27. }
28. }
29. if lowest cost for the block is lower than the total cost{
30. remember block, TAM width and test set modification
31. }
32. }
33. if any alternatives exists {
34. perform TAM width modification or

test set modification
35. } else {
36. for each block {
37. for each test set after the active test set for the block{
38. compute the cost of selecting it (Eq. 4)
39. if cost is lowest then remember this test set
40. }
41. if lowest cost for the block is lower than lowest total

cost then {
42. remember block change and test set change
43. }
44. }
45. if lowest cost difference <0 {
46. do the test set change
47. }
48. }
49. }

Paper 48.1

1356

selected. A new test schedule and a TAM layout is created

where both testA1 and testB1 are scheduled to start at time

0, and there are two TAMs, one from TG2->coreA->TA2 at

length 20, and one from TG1->coreB->TA1 at length 40.

The total cost is 60+72=132 (an improvement from 192 to

132).

7 Experimental Results

The objective with the experiments is to check that the

proposed technique produces high quality solutions at

reasonable computational cost (CPU time). We have

therefore implemented the proposed technique (described

above), the estimation-based technique proposed by

Larsson and Fujiwara [10] and a pseudo-exhaustive

technique. The motivation for having an estimation-based

technique is to demonstrate that finding a high quality test

solution is not trivial, and the idea of having a pseudo-

exhaustive technique, that basically tries all possible

solutions, is to demonstrate that the search space is

enormous in size.

We have created three designs, which in increasing size

are: design_small, design_medium and design_large.

Design_small contains 4 cores each with one testable unit

and for each testable unit there are two alternative tests.

Design_medium contains 13 cores also with one testable

unit per core and for each testable unit there are 5 alternative

tests. Design_large consists of 122 testable units distributed

over 18 cores and 186 tests.

The experimental results using the three techniques on

the three designs are collected in Table 1, Table 2, Table 3,

and Table 4. Table 1 reports the computational cost (CPU

time) for each of the three techniques. The estimation-based

technique produces results very quickly (less than one

second) while the pseudo-exhaustive approach is

terminated for the two larger designs, i.e. no results were

produced within reasonable time. The proposed technique

used CPU time that is in between the estimation-based and

the pseudo-exhaustive approach, and results were produced

for all designs at acceptable CPU times. For the largest

design the computational cost was 4 seconds.

For the quality of the solutions we have collected the test

application time, the TAM cost, and the total cost of the test

solution for each of the three techniques at each of the three

designs (reported in Table 2, Table 3, Table 4, respectively).

The test application time for design_small of the solution

produced by the estimation-based technique is 400, for the

solution produced by both the pseudo-exhaustive technique

and the proposed technique the test time is 320 (Table 2).

The solution from the estimation-based technique is 25%

worse than the solutions from the pseudo-exhaustive and

the proposed techniques. The experiment indicates that the

proposed technique finds a solution of high quality (the

same test time as the pseudo-exhaustive technique).

The TAM cost for the three techniques at the three

designs are collected in Table 3. The proposed technique

finds for design_small a test solution with the same TAM

cost (120) as the pseudo-exhaustive technique. The results

from estimation-based technique is 140, which 17% from

the pseudo-exhaustive and the proposed techniques.

The total cost is computed with α=β=1 making the total

cost = test time + TAM cost (Eq. 1). For instance, the total

cost for the proposed technique at design_small is 440 and

it comes from the summation of the test time 320 (Table 2)

and the TAM cost 120 (Table 3). The proposed technique

produces a solution at the same cost as the pseudo

exhaustive technique for design_small, while the solution

from the estimation-based technique is 23% worse. The

proposed technique produces results for all three designs

that are better than the results from the estimation-based

technique.

Figure 12. An illustrative example with a simplified
input where power grids, memory limitations, and

constraint list (general constraints) are not considered.

[Global Options]

MaxPower = 100

[Cores] #name x y block_list

coreA 20 10 { blockA }

coreB 40 10 { blockB }

[Generators] #name x y max_bw

TG1 30 0 1

TG2 30 10 1

[Evaluators] #name x y max_bw

TA1 30 0 1

TA2 30 10 1

[Tests] #name pwr timeTPGTRE min_bw max_bw ict

testA1 60 60 TG1 TA1 1 1 no

testB1 60 72 TG1 TA1 1 1 no

testA2 40 100 TG1 TA1 1 1 no

testB2 40 120 TG1 TA1 1 1 no

[Blocks] #name idle_power test_sets

bA 0 { testA1 }{ testA2 }

bB 0 { testB1 }{ testB2 }

CoreA
(20,10)

CoreB
(40,10)

TG1/TA1
(30,0)

TG2/TA2
(30,10)

BlockBBlockA

Design
Estimation

[10]
Pseudo-

exhaustive
Proposed
technique

Design_small <1 <1 <1

Design_medium <1 N.A <1

Design_large <1 N.A 4

 Table 1. Computational cost (seconds).

Paper 48.1

1357

8 Conclusions

In the paper we have proposed a technique where the design

of the test solution is included as early as in the core

selection phase. The advantage with the technique is that it

makes it possible to explore the impact of different core

alternatives when searching for a final test solution. In

contrast to prior work, our approach, does not only include

test scheduling and TAM design, but also test set selection

and test resource placement, which are highly dependent on

the test schedule and the TAM layout.

Our technique can, for instance, be used to explore the

placement of test resources (test sources and test sinks) in

the system. Also, the technique can be used to explore the

partitioning between tests can be explored (the ATE size

versus the BIST size). And finally, the approach makes it

possible to explore the impact of different cores and their

different test characteristics (test sets, test resource use, test

time, test power etc.) on the final test solution. The search

space is large for a technique that include test scheduling,

TAM design, test set selection, and test resource placement.

In order to limit the search in the design space, we make use

of Gantt charts to find limiting resources (bottle-necks).

We have also improved the test power to a three level

power budget model; system-level, power-grid (local hot-

spot) level, and clock-gating at core-level. The advantage is

higher control on where the power is consumed.

For validation of the technique, we have implemented

and compared the proposed technique, an estimation-based

technique and a pseudo-exhaustive technique. The

experimental results indicate that our approach produces

good results at reasonable computational cost.

References
[1] R. M. Chou, K. K. Saluja and V. D. Agrawal, “Scheduling

Tests for VLSI Systems Under Power Constraints”,

Transactions on VLSI Systems, Vol. 5, No. 2, pp. 175-185,

June 1997.

[2] Y. Bonhomme, P. Girard, L. Guiller, C. Landrault, and S.

Pravossoudovitch, “A Gated Clock Scheme for Low Power

Scan Testing of Logic ICs or Embedded Cores”, Proceedings
of Asian Test Symposium (ATS), pp. 253-258, November

2001.

[3] P. Brucker, “Scheduling Algorithms”, Springer-Verlag,

ISBN 3-540-64105-X, 1998.

[4] A. L. Crouch, “Design For Test”, Prentice Hall PTR, 1999.

[5] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A.

Hassan, and J. Rajski, “Logic BIST for Large Industrial

Designs: Real Issues and Case Studies”, Proceedings of
International Test Conference (ITC), pp. 358-367,

September 1999.

[6] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test

Access Mechanism Optimization, Test Scheduling, and

Tester Data Volume Reduction for System-on-Chip”,

Transactions on Computers, December 2003 (Vol. 52, No.

12), pp. 1619-1632.

[7] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Co-

Optimization of Test Wrapper and Test Access Architecture

for Embedded Cores”, Journal of Electronic Testing; Theory
and Applications (JETTA), pp 213-230, April 2002.

[8] G. Jervan, Z. Peng, R. Ubar, and H. Kruus, “A Hybrid BIST

Architecture and its Optimization for SoC Testing”,

Proceedings of International Symposium on Quality
Electronic Design (ISQED'02), pp. 273-279, March 2002.

[9] G. Jervan, P. Eles, Z. Peng, R. Ubar, and M. Jenihhin, “Test

Time Minimization for Hybrid BIST of Core-Based

Systems”, Asian Test Symposium (ATS’03), Xian, China,

November 17-19, 2003, pp. 318-323.

[10] E. Larsson and H. Fujiwara, “Test Resource Partitioning and

Optimization for SOC Designs”, Proceedings of VLSI Test
Symposium (VTS’03), Napa, USA, 27 April - 1 May 2003,

pp. 319-324.

[11] E. Larsson, K. Arvidsson, H. Fujiwara, and Z. Peng,

“Efficient Test Solutions for Core-based Designs”,

Transactions on CAD of Integrated Circuits and Systems, pp.

758-775, May 2004.

[12] J. Saxena, K. M. Butler, and L. Whetsel, “An Analysis of

Power Reduction Techniques in Scan Testing”, Proc. of
International Test Conference (ITC), pp. 670-677, Oct. 2001.

[13] M. Sugihara, H. Date, and H. Yasuura, “Analysis and

Minimization of Test Time in a Combined BIST and External

Test Approach”, Proceedings of Design and Test in Europe
(DATE), pp. 134-140, March 2000.

[14] Y. Zorian, “A distributed BIST control scheme for complex

VLSI devices”, Proceedings of VLSI Test Symposium (VTS),
pp. 4-9, April 1993.

[15] Y. Zorian, E. J. Marinissen, and S. Dey, S., “Testing

Embedded-Core Based System Chips”, Proceedings of
International Test Conference (ITC), 1998, pp. 130 - 143,

October 1998.

Design
Estimation

[10]
Pseudo-

exhaustive
Proposed
technique

Design_small 400 320 320

Design_medium 240 N.A 193

Design_large 215 N.A 220

 Table 2. Test application time.

Design
Estimation

[10]
Pseudo-

exhaustive
Proposed
technique

Design_small 140 120 120

Design_medium 810 N.A 690

Design_large 1072 N.A 962

 Table 3. TAM routing cost.

Design
Estimation

[10]
Pseudo-

exhaustive
Proposed
technique

Design_small 540 440 440

Design_medium 1050 N.A 883

Design_large 1287 N.A 1182

 Table 4. Total cost (α=β=1).

Paper 48.1

1358

	ITC04
	Table of Contents
	Author Index

