
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005 153

Cosynthesis of Energy-Efficient Multimode
Embedded Systems With Consideration

of Mode-Execution Probabilities
Marcus T. Schmitz, Bashir M. Al-Hashimi, Senior Member, IEEE, and Petru Eles, Member, IEEE

Abstract—In this paper, we present a novel co-design method-
ology for the synthesis of energy-efficient embedded systems. In
particular, we concentrate on distributed embedded systems that
accommodate several different applications within a single device,
i.e., multimode embedded systems. Based on the key observation
that operational modes are executed with different probabilities,
that is, the system spends uneven amounts of time in the different
modes, we develop a new co-design technique that exploits this
property to significantly reduce energy dissipation. Energy and
cost savings are achieved through a suitable synthesis process
that yields better hardware-resource-sharing opportunities. We
conduct several experiments, including a realistic smart phone
example, that demonstrate the effectiveness of our approach.
Reductions in power consumption of up to 64% are reported.

Index Terms—Embedded systems, energy efficiency, multimode
systems, power minimization, system-level cosynthesis.

I. INTRODUCTION

OVER the last several years, the popularity of portable ap-
plications has explosively increased. Millions of people

use battery-powered mobile phones, digital cameras, MP3
players, and personal digital assistants (PDAs). To perform
major parts of the system’s functionality, these mass products
rely, to a great extent, on sophisticated embedded computing
systems with high performance and low-power dissipation.
One key characteristic of many current and emerging em-
bedded systems is their need to work across a set of different
interacting applications and operational modes. For instance,
modern mobile phones often contain not solely the function-
ality required for communication purpose (e.g., voice coding
and protocol handling), but additionally integrate applications
like digital cameras, games, and complex multimedia functions
(MP3 players and video decoders) into the same single device.
Throughout this article, such embedded systems are referred to
as multimode embedded systems. This paper introduces a novel
cosynthesis methodology particular suitable for the design
of energy-efficient multimode embedded systems. Starting

Manuscript received May 8, 2003; revised October 14, 2003. This work
was supported in part by the UK Engineering and Physical Sciences Research
Council (EPSRC) under Grant GR/S95770/01. This paper was recommended
by Associate Editor M. F. Jacome.

M. T. Schmitz and P. Eles are with the Department of Computer and Infor-
mation Science, Linköping University, S-58333 Linköping, Sweden (e-mail:
g-marsc@ida.liu.se; petel@ida.liu.se).

B. M. Al-Hashimi is with the School of Electronics and Computer Sci-
ence, University of Southampton, Southampton SO17 1BJ, U.K. (e-mail:
bmah@ecs.soton.ac.uk).

Digital Object Identifier 10.1109/TCAD.2004.837729

Fig. 1. Typical activation profile of a cellular phone.

from a specification model that captures both mode interaction
and functionality, the developed cosynthesis technique maps
the application under consideration of mode-execution prob-
abilities to a heterogeneous, distributed architecture with the
aim to reduce the energy consumption through an appropriate
resource sharing between tasks. Mode-execution probabilities
refer to the activation time of operational modes that are user
typical. Consider, for instance, the typical activation profile of
a mobile phone, which is shown in Fig. 1. According to this
profile, the phone stays most of the time in a radio link control
(RLC) mode, in order to maintain network connectivity. While
the network search and calling modes are only active for small
periods of the overall time. The main principle by which the
proposed cosynthesis process achieves energy-efficiency is
an implementation tradeoff between the different operational
modes. In general, modes with high execution probability
should be implemented more energy efficient (e.g., by moving
more tasks to hardware) than modes with a low execution prob-
ability. Nonetheless, the implementation of modes is heavily
interrelated, due to the fact that different modes share the same
resources (architecture). For example, mapping an energy-crit-
ical task of a highly active mode into energy-efficient hardware
might prohibit to implement a timing-critical task into fast
hardware due to the restricted area (see motivational example
in Section IV). Clearly, a well-balanced implementation of the
operational modes is vital for a good system design.

In addition, the cosynthesis approach further reduces the
energy dissipation by adapting the system performance to the
particular needs of the active mode, using dynamic voltage
scaling (DVS) as well as component shutdown. That is, instead
of wasting energy through overperformance, the computational
power is adapted according to the individual performance
requirements of each mode and each task. Furthermore, we
introduce a transformation-based method to extend existing

0278-0070/$20.00 © 2005 IEEE

154 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005

DVS approaches in order to allow the scaling of hardware-pro-
cessing elements that are capable of executing tasks in parallel,
however, which rely on a single scalable supply voltage source.

The remainder of this paper is organized as follows. Section II
introduces relevant previous work. Preliminaries, outlining a
new multimode specification and an architectural model, are
given in Section III. Motivational examples exemplify the need
for a suitable multimode synthesis approach in Section IV. The
problem at hand is formulated in Section V. Section VI describes
our multimode cosynthesis approach, and Section VII presents
experimental results. Finally, in Section VIII we draw some con-
clusions.

II. PREVIOUS WORK

In the last decade, numerous methodologies for the design of
low power-consuming embedded systems have been proposed,
including approaches that leverage power management tech-
niques, such as dynamic power management and DVS. Never-
theless, a crucial feature of many modern embedded systems is
their capability to execute several different applications (multi-
modes), which are integrated into a single device.

Approaches for the schedulability analysis of systems with
several modes of operations can be found in the real-time
research community [24], [29]. However, these approaches
solely concentrate on scheduling aspects (i.e., they investigate
if the mode change events fulfill the imposed timing con-
straints) and do not address implementation aspects. Three
recent approaches have addressed various problems involved
in the design of multimode embedded systems [19], [23], [30].
Shin et al. [30] proposed a schedulability-driven performance
analysis technique for real-time multimode systems. They
show that it is possible, through a sophisticated performance
estimation, to identify timing-critical tasks, which are active
in different operational modes. This identification allows an
improvement of the execution times of the most crucial tasks,
in order to achieve system schedulability. In their work, the
optimization of the identified tasks is up to the designer. For
example, reductions in the execution times can be made by
handcrafted code tuning and outsourcing of core routines into
hardware. Kalavade and Subrahmanyam [19] have introduced
a hardware/software-partitioning approach for systems that
perform multiple functions. Their technique classifies tasks,
found within similar applications, into groups of task types. The
implementation of frequently appearing task types is biased
toward hardware. This can be intuitively justified by the fact
that costly hardware implementations are shared across a set
of applications, hence, exploiting the allocated hardware more
cost effective. Oh and Ha [23] address the problem in a slightly
different way. Their cosynthesis framework for multimode
systems is based on a combined scheduling and mapping
technique for heterogeneous multiprocessor systems (HMP
[22]). Taking a processor-utilization criterion into account, an
allocation-controller selects the required processing elements
(PEs) such that the schedulability constraint is satisfied and
the system cost is minimized. The main principle behind all
three approaches is to consider the possibility of resource
sharing, i.e., computational tasks of the same type, which can

be found in different modes, utilize the same implementations.
Thereby, multiple hardware implementations of the same task
type are avoided, which, in turn, reduces the hardware cost.
Other noticeable approaches are the works by Chung et al.
[12] and Yang et al. [32]. In [12], energy efficiency is achieved
by leveraging information regarding the execution-time varia-
tions, which is supplied to the mobile terminal by the contents
provider. That is, the performance of the mobile terminal can be
influenced directly by the contents provider, in accordance to
the processing requirements of the sent content. The approach
presented in [32] uses a two-phase scheduling method. In the
first stage, which is performed offline (during design time), a
Pareto-optimal set of schedules is generated. These schedule
provide different execution time/energy tradeoffs. During run-
time, a runtime scheduler selects points along the Pareto set, in
order to account for the dynamic behavior of the application.
As opposed to these approaches, the work presented in this
paper addresses the design of low energy consuming multi-
mode systems that exhibit variations in the mode activation
profile; hence, it differs in several aspects from the previous
works. To the authors’ knowledge, there has been no prior work
investigating the co-design problem of energy minimization
taking into account mode-execution probabilities. This paper
makes the following contributions.

1) The consideration of mode-execution probabilities and
their effect on the energy-efficiency of multimode em-
bedded systems is analyzed and demonstrated.

2) A co-design methodology for the design of energy-ef-
ficient multimode systems is presented. The proposed
cosynthesis maps and schedules a system specification
that captures both mode interaction and mode function-
ality onto a distributed heterogeneous architecture. Four
mutation strategies are introduced that aid the GA-based
optimization process in finding solutions of high quality
by pushing the search into promising design-space re-
gions.

3) DVS is investigated in the context of multimode em-
bedded systems. A transformation-based approach is
used to tackle the problem of DVS on PEs that execute
different tasks in parallel, but offer only a single scalable
supply voltage source.

III. PRELIMINARIES

This section introduces the functional specification model
(Section III-A) and the architectural model (Section III-B),
which are fundamental to the proposed cosynthesis framework.

A. Functional Specification of Multimode Systems

The abstract specification model used for multimode em-
bedded systems consists of two parts. In précis, it is based on a
combination of finite state machines and task graphs, capturing
both the interaction between different operational modes as
well as the functionality of each individual mode. Structurally,
each node in the finite state machine represents an operational
mode and further contains the task graphs which are active
during this mode. The following two sections introduce this
model, which is henceforth referred to as operational mode

SCHMITZ et al.: COSYNTHESIS OF ENERGY-EFFICIENT MULTIMODE EMBEDDED SYSTEMS 155

Fig. 2. Relation between OMSM and individual task graph specifications. (a) Operational models. (b) Task graph of a single mode.

state machine (OMSM). A similar abstract model was men-
tioned in [16]. However, here, this model is extended toward
system-level design and includes transition time limits as well
as mode-execution probabilities. The following introduces this
model, using the smart phone example shown in Fig. 2.

1) Top-Level Finite State Machine: In this work, it is con-
sidered that an application is given as a directed cyclic graph

, which represents a finite state machine. Within this
top-level model, each node refers to an operational
mode and each edge specifies a possible transition be-
tween two different modes. If the system undergoes a change
from mode to mode , where , the transition time

associated with the transition edge has to
be met. For instance, as indicated in Fig. 2(a), upon losing the
network connection the system needs to activate the network
search mode within 30 ms. Such transition overheads can origi-
nate from the reconfiguration of field programmable gate arrays
(FPGAs) as well as from loading the application software of the
particular mode into the local PE’s memory. At any given time,
there is only one active mode, i.e., the modes execute mutually
exclusive. To exemplify the proposed model, consider Fig. 2(a).
This figure shows the OMSM for a smart phone example with
eight different modes. A possible activation scenario could look
like this. When switched on, the phone initializes into network
search mode. The system stays in this mode until a suitable net-
work has been found. Upon finding a network the phone un-
dergoes a mode change to RLC. In this mode, it maintains the
connection to the network by handling cell handovers, radio link
failure responses, and adaptive RF power control. An incoming
phone call necessitates to switch the system into GSM codec +
RLC mode. This mode is responsible for speech encoding and
decoding, while simultaneously maintaining network connec-
tivity. Similarly, the remaining modes have different function-
alities and are activated upon mode change events. Such events
originate upon user requests (e.g., MP3-player activation) or are
initiated by the system itself (e.g., loss of network connection

necessitates to switching the system into network search mode).
Furthermore, based on the key observation that many multimode
systems spend their operational time unevenly in each of the
modes, an execution probability is associated with each op-
erational mode , i.e., it is known what percentage of the op-
erational time the device spends in each mode. For instance, in
accordance with Fig. 2(a), the smart-phone stays 74% of this op-
erational time in RLC mode, 9% in GSM codec + RLC mode,
and 1% in network search mode. The remaining 16% of the op-
eration time are associated with the remaining modes. In prac-
tice the mode probabilities vary from user to user, depending
on the personal usage behavior. Nevertheless, it is possible to
derive an average activation profile based on statistical infor-
mation collected from several different users. Taking this infor-
mation into account will prove to be important when designing
systems with a prolonged battery lifetime. It is interesting to
note that different operational modes do not necessarily corre-
spond to different functionalities of the system. It is possible to
use alternative modes to model the same functionality under dif-
ferent working conditions (such as different workloads). For in-
stance, in order to account for variations in the wireless channel
quality, we could exchange the GSM voice transcoder mode

in Fig. 2(a) with three transcoder schemes, each responsible
for the coding at a specific signal-to-interference ratio (SIR) on
the channel. During runtime, the appropriate transcoder scheme
would be selectively activated, depending on the actual channel
quality.

2) Functional Specification of Individual Modes: The
functional specification of each operational mode
in the top-level finite state machine is expressed by a task
graph . This relation is shown in Fig. 2. Each node

in a task graph represents a task, i.e., a fragment of
functionality that needs to be executed without preemption.
The level of granularity is coarse, i.e., tasks refer to func-
tions such as Huffman decoder, dequantizer, FFT, IDCT, etc.
Therefore, each task is further associated with a task type

156 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005

Fig. 3. Distributed architecture model.

HD, deQ, FFT, IDCT, . A distinctive feature of
multimode systems is that task type sets of different
modes can intersect, i.e., tasks of the same type are
executed in different modes. Such modes can share the same
hardware resource (intermode sharing). Resource sharing is
also possible for multiple tasks of identical type that are found
in a single mode (intramode sharing); however, due to task
communalities among different modes, the chances to share
resources are increased. Further, tasks might be annotated
with deadlines (with) by which the execution
has to be finished, in order to guarantee correct functioning.
Similarly, the whole task graph has to be successively repeated
according to a period . Edges in the task graph refer
to precedence constraints and data dependencies between the
computational tasks, i.e., if two tasks, and , are connected
via an edge, then task must be finished and transfer data to
task before can be executed. A feasible implementation
of a certain mode needs to respect all task deadlines , task
graph period , and precedence relations.

B. Architectural Model and System Implementation

The proposed system-level synthesis approach targets dis-
tributed architectures that possibly consist of several heteroge-
neous PEs, such as general-purpose processors (GPPs), appli-
cation-specific instruction set processors (ASIPs), application-
specific integrated circuits (ASICs), and FPGAs. These com-
ponents are connected through an infrastructure of communi-
cation links (CLs). A directed graph captures
such an architecture, where nodes denote PEs and
CLs, while edges impose the connections between those
components. Fig. 3 shows an architecture example. Since each
task might have multiple implementation alternatives, it can be
potentially mapped onto several different PEs that are capable
of performing this type of task. Tasks mapped to software-pro-
grammable components (i.e., GPP or ASIP) are placed into local
memory. However, if a task is mapped to a hardware compo-
nent (i.e., ASIC or FPGA), a core for this task type needs to be
allocated. A feasible solution needs to obey the imposed area
constraints, i.e., only a restricted number of cores can be imple-
mented on hardware components. The subdivision of hardware
components (ASICs and FPGAs) into hardware cores is shown
in Fig. 3. Each core is capable of performing a single task of
type at a time. Tasks assigned to GPPs or ASIPs (soft-
ware tasks) need to be sequenced, whilst the tasks mapped onto
FPGAs and ASICs (hardware tasks) can be performed in par-

allel if the necessary resources (cores) are not already engaged.
However, contention between two or more tasks assigned to the
same hardware core requires a sequential execution order, sim-
ilar to software tasks. Cores implemented on FPGAs can be dy-
namically reconfigured during a mode change, involving a time
overhead, which needs to respect the imposed maximal mode
transition times . Further, PE’s might feature DVS to en-
able a tradeoff between power consumption and performance
that can be exploited during runtime. The relation between the
dynamic power dissipation and the circuit delay (inverse
proportional to performance) can be expressed using the fol-
lowing two equations [8], [11]:

where is the effectively switched capacitance, denotes
the circuit supply voltage, represents the clock frequency,

and are a circuit dependent constants, and denotes the
threshold voltage. As we can see from these equations, by
varying the circuit supply voltage , it is possible to trade off
between power consumption and performance. In reality, DVS
processors are often restricted to run at discrete voltage levels
[5], [6]. Therefore, a set specifies the available discrete
voltages of DVS-PE . For such PEs, a voltage schedule needs
to be derived, in addition to a timing schedule. To implement
a multimode application captured as OMSM, the tasks and
communications of all operational modes need to be mapped
onto the architecture, and a valid schedule for these activities

, where , needs to be constructed. As men-
tioned above, for tasks mapped to DVS-enabled components
an energy reducing voltage schedule has to be determined.
According to these aspects, an implementation candidate can
be expressed through four functions, which need to be derived
for each operational mode :

Task mapping:
Communication mapping:
Timing schedule:
Voltage schedule:

where and denote task and communication mapping,
respectively, assigning tasks to PEs and communications to CLs.
Activity start times are specified by the scheduling function ,
while defines the voltage schedule for all tasks
mapped to DVS-PEs, where is the set of the possible discrete
supply voltages of PE . Clearly, the mappings as well as the
corresponding schedules are defined for every mode separately,
i.e., during the change from mode to mode , the execution
of activities found in mode are finished and the activities of
mode are activated.

IV. MOTIVATIONAL EXAMPLES

The aim of this section is to motivate the key ideas behind
the new multimode cosynthesis, that is, the consideration of
mode-execution probabilities and multiple task-type implemen-
tations. First, the influence of mapping in the context of multi-
mode embedded systems with different mode-execution prob-
abilities is demonstrated. Second, it is illustrated that multiple

SCHMITZ et al.: COSYNTHESIS OF ENERGY-EFFICIENT MULTIMODE EMBEDDED SYSTEMS 157

Fig. 4. Example of mode-execution probabilities. (a) Application specified by two interacting modes. (b) Optimized without mode consideration. (c) Optimized
with mode consideration.

TABLE I
TASK EXECUTION AND IMPLEMENTATION PROPERTIES

task implementations can further reduce the energy dissipation
of multimode embedded systems.

1) Example: Mode-Execution Probabilities: For simplicity,
timing and communication issues are neglected in the following
example. Consider the application shown in Fig. 4(a), which
consists of two operational modes and each specified
by a task graph with three tasks. The system spends 10% of its
operational time in mode and the remaining 90% in mode

, i.e., the execution probabilities are given by and
. The specification needs to be mapped onto a target

architecture built of one general-purpose processor (PE1) and
one ASIC (PE2), linked by a bus (CL1). Depending on the task
mapping to either of the components, the execution properties of
each task are shown in Table I. In general, hardware implemen-
tations of tasks achieve a higher performance and are more en-
ergy efficient [9]. It can be observed that all tasks are of different
types, therefore, if a task is mapped to HW, a suitable core needs
to be allocated explicitly for that task. Hence, in this particular
example, no hardware sharing is considered. Each allocated core
uses area on the hardware component that offers 60 mm , i.e.,
at most two cores can be allocated at the same time without vi-
olating the area constraint (see Table I, Column 6). Note that
although the two modes execute mutually exclusive, the task
types implemented in hardware (HW cores) cannot be changed
during runtime, since their implementation is static (nonrecon-
figurable ASIC); as opposed to software-programmable com-
ponents. Consider the mapping shown in Fig. 4(b) in which

the highest energy-consuming tasks (and , when imple-
mented in software) are executed using a more energy-efficient
hardware implementation. According to the task characteris-
tics given in Table I, the energy dissipation during modes
and are mJ mJ mJ mJ
and mJ mJ mJ mJ. Ne-
glecting the mode-execution probabilities by assuming that both
modes are active for even amounts of time (50% mode and
50% mode), the energy consumption can be calculated as

mJ mJ mJ. Never-
theless, taking the real behavior into account, mode is active
for 10% of the operational time, i.e., its energy dissipation can
then be calculated as mJ mJ. Sim-
ilarly, mode is active 90% of the operational time, hence,
its energy is given by mJ mJ.
Thus, the real energy dissipation results in

mJ. Now, consider an alternative mapping, shown in
Fig. 4(c), for the same task graphs. In this configuration tasks

and , i.e., the most energy dissipating tasks of the highly
active mode , use energy-efficient hardware implementations
on PE2, while task of the less active model is shifted
into the software-programmable processor (PE1). According to
this solution, the energy consumptions of modes and
are given by mJ mJ mJ mJ and

mJ mJ mJ mJ. Consid-
ering the even execution of each mode (neglecting the execu-
tion probabilities), the energy consumption can be calculated as

mJ mJ mJ. Note that this value
is higher than the corresponding energy of the first mapping
(mJ). Thus, a cosynthesis approach that neglects
the mode-execution probabilities would optimize the system to-
ward the first mapping. However, in real-life the modes are ac-
tive for different amount of time and hence the real energy dissi-
pation is given by mJ mJ
mJ. This is 41% lower compared to the first mapping (

mJ) shown in Fig. 4(b), which is not optimized for an
uneven task execution probability. Furthermore, the second task
mapping allows to switch off PE2 and CL1 during mode ,
since all tasks of this mode are assigned to PE1. This results in a

158 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005

Fig. 5. Multiple task type implementations. (a) Application with resource sharing possibility. (b) Resource sharing, but no shutdown possible. (c) No resource
sharing, but component shutdown.

significant reduction of the static power, additionally increasing
the energy savings.

2) Example: Multiple Task-Type Implementations: An im-
portant characteristic of multimode systems is that tasks of the
same type might be found in different modes, i.e., resources
can be shared among the different modes in a time-multiplexed
fashion. To increase the possibility of component shutdown,
it might be necessary to implement the same task type mul-
tiple times, however, on different components. The following
example, shown in Fig. 5, clarifies this aspect. Here tasks
and are of type A [see Fig. 5(a)], allowing resource sharing
between these tasks. The sharing is possible without contention
due to the mutual exclusive execution of these tasks (only one
mode is active at a given time). In the first mapping, given in
Fig. 5(b), both tasks utilize the same HW core. However, im-
plementing task in software (additional task type A on PE1),
as shown in Fig. 5(c), allows to shut down PE2 and CL1 during
the execution of mode . Hence, multiple implementations of
task types can help to reduce power dissipation.

These two examples have demonstrated that it is essential to
guide the synthesis process by: 1) an energy model that takes
into account the mode-execution probability as well as 2) al-
lowing multiple task implementations.

V. PROBLEM FORMULATION

The goal of our cosynthesis approach is an energy-efficient
implementation of application , which is modeled as OMSM,
such that timing and area constraints are satisfied. This in-
volves the derivation of the mapping and schedule functions,

, and (outlined in Section III-B), under the
consideration of static and dynamic power as well as mode-ex-
ecution probabilities. Although static power consumption
is often neglected in system-level design approaches, since
until recently dynamic power has been the dominating power
dissipation, emerging submicron technologies with reduced
threshold voltage levels show increased leakage currents that
are becoming comparable to the dynamic currents [10]. In
multimode systems, this static power consumption can have a

significant impact on the overall energy efficiency. The reasons
for this are the different performance requirements of the
various operational modes. For instance, the minimal perfor-
mance requirements of the hardware architecture are imposed
by the most computational intensive mode, i.e., the minimal
allocated architecture has to provide enough computational
power to execute this performance critical mode. However, the
allocated architecture might be far more powerful than actually
needed for the execution of modes with low performance re-
quirements. Furthermore, low-performance modes, such as the
standby-mode of mobile phones (i.e., RC), often account for the
greatest portion of the system time. During such circumstances,
the static energy dissipation of unnecessarily switched-on
PEs and CLs can outweigh the dynamic energy consumption
caused by tasks of a “lightweight” mode. Thus, switching-off
the unneeded components becomes an important aspect par-
ticularly in multimode embedded systems. In accordance, an
accurate estimation of the average power consumption of an
implementation alternative should consider both static and
dynamic power, and further the mode-execution probabilities.
The average power consumption can be expressed using the
following equation:

(1)

where , and refer to the static power dissipation,
the dynamic power dissipation, and the execution probability of
mode , respectively. The static and dynamic power consump-
tions are given as

(2)

and

(3)

SCHMITZ et al.: COSYNTHESIS OF ENERGY-EFFICIENT MULTIMODE EMBEDDED SYSTEMS 159

where refers to the static power consumption of a com-
ponent , which is found in the set of all active components

of mode . Please note that this static power
consumption also includes the additional power required for the
dc/dc converter of voltage-scalable processors. Further, and

denote all activities and the hyper-period of mode , re-
spectively. With respect to the type of activities, the dynamic
energy consumption can be calculated as

(4)

where is the dynamic power consumption and is
the execution time of tasks when executed at nominal supply
voltage . Tasks mapped to DVS-PEs can exe-
cute at a scaled supply voltage , resulting in reduced energy
consumption. Further, communications consume power
over a time . If the DVS-enabled processors are restricted to a
limited set of discrete voltages, the continuous selected supply
voltage is split into its two neighboring discrete voltages

and . The corresponding execution times in each
voltage are calculated as given in [25]. The mode-execution
probabilities used in (1) are either based on approximations
or statistical information collected from several real users. In
the case that statistical information is available from a set of
different users , the average execution probabilities of a
single operational mode can be calculated.

The cosynthesis goal is to find a task mapping , a com-
munication mapping , a starting time schedule , as well
as a voltage schedule for each operational mode , such
that the total average power , given in (1), is minimized and
the deadlines are satisfied. Furthermore, a feasible implementa-
tion candidate needs to fulfill the following requirements.

1) The mapping of tasks does not violate area con-
straints in terms of memory and hardware area, i.e.,

, where is the set of all
task types implemented on PE , and and refer
to the area used by task type and the available area
on PE , respectively. Please note that for DVS-enabled
HW, represents the available area including the area
overhead required for the dc/dc converter.

2) The timing schedule and the voltage schedule ,
based on task and communication mapping, do not exceed
any task deadlines or task graph repetition periods ,
therefore, , where

and refer to task start time and task execution
time (potentially based on voltage scaling).

3) The system reconfiguration time between mode
changes does not exceed the imposed maximal mode
transition times . Hence, needs
to be respected for all mode transitions.

VI. COSYNTHESIS OF ENERGY-EFFICIENT

MULTIMODE SYSTEMS

Fig. 6 shows an overview of our cosynthesis flow for mul-
timode embedded systems. This design flow is primarily based

on two nested optimization loops. The outer loop optimizes task
mapping and core allocation, while the inner loop is responsible
for the combined optimization of communication mapping and
scheduling. Although we concentrate on task mapping and core
allocation in this paper, we will briefly outline this overall design
flow. As we can observe from Fig. 6, an initial system specifi-
cation has to be translated into the final hardware and software
implementations. In our approach, the specification includes in-
formation regarding the execution probabilities. Along the de-
sign flow we can identify five major synthesis steps.

1) An adequate target architecture needs to be allocated, i.e.,
it is necessary to determine the quantity and the types of
the different interconnected components (PEs and com-
munication links). Available components are specified in
the technology library.

2) The tasks of the system specification and the required
communications have to be uniquely mapped among the
allocated components. Based on the component to which
a task has been mapped, its execution properties are de-
termined. This is done in accordance to previously estab-
lished execution estimations and profile information. Fur-
thermore, hardware cores are allocated based on the avail-
able hardware area and the application parallelism.

3) Depending on the task mapping, the communications are
mapped onto the allocated communication links, and the
activities are scheduled with the aim to meet the imposed
task deadlines, while, at the same time, achieve a good
slack distribution in order to reduce energy via DVS.

4) DVS and component shutdown possibilities are exploited
to reduced the system energy consumption.

5) The system implementation candidates, specified by the
synthesis Steps 1–4, are evaluated in terms of power con-
sumption, performance (deadline satisfaction), and cost
(architecture and hardware area). This step is used to pro-
vide feedback to the previous synthesis steps in order to
refine the design.

For more information we refer the interested reader to
[25]–[27]. A major goal of this design flow is to support the
system designer with a methodology that aids to find suitable
target architectures for a given system specification.

In this paper, we concentrate on the task mapping and core al-
location step, since the scheduling and communication mapping
can be carried with standard single-mode techniques (e.g., [17]
and [26]). This is due to the fact that the modes are executing
mutually exclusive. Thus, here we present new techniques and
algorithms for task mapping, hardware core allocation, and DVS
that suit the particular problems of multimode embedded sys-
tems. However, since these approaches are targeted toward the
exploitation of mode-execution probabilities, we first discuss
how such probabilities can be obtained in practice.

A. Estimation of Mode-Execution Probabilities

As we have demonstrated in the motivational example of
Section IV, the consideration of mode-execution probabilities
during design time can help to significantly reduce the energy
consumption of the embedded system. Certainly, to achieve
a good design, it is necessary that the execution probabilities

160 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005

Fig. 6. Multimode embedded systems design flow.

(estimations) used during design time reflect the real usage
probabilities (in-field) accurately. In the following, we outline
how to obtain adequate execution probabilities using two
different design scenarios.

1) The new design is an upgrade of an existing product which
is connected to a service provider (e.g., a new version of
a mobile phone). For such product types, it is possible to
use information regarding the activation profile that has
been collected on the provider side during the operation of
the previous product generation. For instance, the cellular
network-base stations can record the activation profile of
the mobile terminals (e.g., phones with RLC and calling
mode) directly in-field. This information could then be
evaluated and used during the design of the new product.

2) The product is a completely new design. In this situation,
it is common practice to evaluate the market acceptance
before the final product is introduced, using a limited
number of prototypes that are distributed among a set of

evaluation users. During this evaluation phase, the proto-
types can gather information regarding the activation pro-
file. This information could then be used during the final
design of the product to optimize the energy consumption.
Of course, it is also possible to use application-specific
insight of the designer to estimate the execution probabil-
ities. As we will show in the experiments given in Sec-
tion VII-A, even if the estimated execution probabilities
do not reflect the user activation with absolute accuracy,
but are sufficiently close to the real values, energy savings
can be still achieved.

B. Multimode Cosynthesis Algorithm

The task-mapping approach, which simultaneously de-
termines for all modes of application , is driven by a
genetic algorithm (GA). GAs optimize a population of indi-
viduals over several generations by imitating and applying
the principles of natural selection. That is, the GA iteratively

SCHMITZ et al.: COSYNTHESIS OF ENERGY-EFFICIENT MULTIMODE EMBEDDED SYSTEMS 161

Fig. 7. Task mapping string for multimode systems.

evolves new populations by mating (crossover) the fittest in-
dividuals (highest quality) of the current population pool until
a certain convergence criterion is met. In addition to mating,
mutation, i.e., the random change of genes in the genome
(string), provides the opportunity to push the optimization into
unexplored search space regions. GA-driven task-mapping
approaches have already been shown to provide a powerful
tool in deriving mappings for single modes systems [15], [25].
Here, we enhance such approaches toward multimode aspects.
These enhancements include the consideration of resource
sharing, component shutdown, and mode transition issues. As
opposed to the single-mode task-mapping strings, such strings
for multimode specifications combine the mapping strings of
each operational mode into one larger task-mapping string, as
shown in Fig. 7. Within this string, each number represents the
PE to which the corresponding task is assigned. This encoding
enables the usage of a GA to optimize the placement of tasks
across the PEs that form the distributed architecture. Please
note that this representation supports the implementation of
multiple task types. For instance, if two tasks of the same type
are mapped onto different PEs, these tasks are implemented on
both PEs. Thereby, the possibility of multiple task implemen-
tations is mainly inherited into the genetic mapping algorithm
which is guided by a cost function that accounts for the mul-
tiple task implementations, i.e., the GA trades off between the
savings in static power consumption and the increased dynamic
power.

The goal of the cosynthesis is to find a mapping of tasks that
minimizes the total power consumption and obeys the perfor-
mance constraints. Fig. 8 outlines the pseudocode of our cosyn-
thesis algorithm. Starting from an initial random population of
multimode task mapping strings (line 1), the optimization runs
until the convergency criterion is met (line 2). The used crite-
rion is based on the diversity in the current population and the
number of elapsed iterations without producing any improved
individual. To judge the quality of mapping candidates, i.e., the

Fig. 8. Pseudocode: Multimode cosynthesis.

fitness which guides the GA, it is necessary to estimate impor-
tant design objectives, including static and dynamic power dis-
sipation, area usage, and timing behavior (lines 3–14). The fol-

162 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005

lowing explains each of the required estimations. The hardware
area depends on the allocated cores on each hardware compo-
nent (ASIC or FPGA). Of course, for each task type mapped
to hardware at least one core of this type needs to be allocated.
However, if too many cores are placed onto a single ASIC or
FPGA, the available area is exceeded and an area penalty is in-
troduced (line 6). On the other hand, if multiple tasks of the same
type are mapped to the same hardware component and the hard-
ware area is not violated, it is possible to implement cores mul-
tiple times (if helpful for the energy reduction). In the proposed
approach, additional cores (line 5) are allocated for parallel tasks
with low mobility (line 4); therefore, the chance to exploit appli-
cation parallelism is increased. The mobility of a task is the dif-
ference between its earliest and latest possible start times [31].
Clearly, from an energy point-of-view, this is also preferable,
especially in the presence of DVS, where a decreased execution
time results in more slack that can be exploited. Section VI-C
describes the core allocation in more detail. At this point it is
possible to compute the static power consumption of the im-
plementation (line 7), taking into account component shutdown
between different modes. Components can be shut down during
the execution of a certain mode whenever no tasks belonging to
that mode are mapped onto these components, i.e., the compo-
nent is vacant (for instance, PE0 during execution of mode
in Fig. 5). Another important aspect is the reconfigurability of
FPGAs, which allows to exchange the implemented cores to suit
the active mode. However, this reconfiguration during a mode
change takes time. Hence, a transition penalty is introduced if
the maximal transition times are exceeded (line 8). Having de-
termined the cores to be implemented (line 5), it is now also
possible to schedule each mode of the application and to derive
a feasible communication mapping (line 10). Since the modes
are mutually exclusive, we can employ a communication map-
ping and scheduling optimization for a single-mode system. In
our approach, we utilize the technique described in [25] for this
step. If timing constraints are violated by the found schedule, a
timing penalty is introduced (line 11). Furthermore, based on the
communication mapping and scheduling, the dynamic power
consumption of the application can be computed, taking into ac-
count DVS (line 12) if voltage-scalable components are present.
Similar to the shutdown of PEs, it is also possible to switch off
a CL when no communications are mapped to that link (line
13), therefore, further reducing the static power consumption of
the system. Based upon all estimated power consumptions and
penalties, a fitness is calculated (line 15) as

(5)

where the average power dissipation is given by (1) and
introduces a timing penalty if the schedule exceeds task dead-
lines or the repetition period. Further, an area penalty is applied
for all PEs with area violation by relating used area and
area constraint . Similarly, a transition-time penalty is ap-
plied for all transitions that exceed their maximal transition
time limit . Both area and transition penalties are weighted
(and), which allows to adjust the aggressiveness of the
penalties. Having assigned a fitness to all individuals of the pop-

ulation, they are ranked using linear scaling (line 17). A tourna-
ment selection scheme is used to pick individuals (line 18) for
mating (line 19). The produced offsprings are inserted into the
population (line 20).

In order to improve the performance of the GA, we apply
four genetic mutation strategies that add problem-specific
knowledge into the optimization process (lines 21–24). This is
achieved by introducing a small number of mutated individuals
into the current population, whenever the optimization process
occurs to be trapped. These newly injected solution candidates
provide the potential to turn into a high-quality solution by
mating with another solution. The mutation strategies are
introduced next.

1) Shutdown Improvement: To increase the chances of com-
ponent shutdown, which leads to a reduction of static power con-
sumption, the genetic task-mapping algorithm employs a simple
yet effective strategy during the optimization. Out of the current
population, randomly picked individuals (probability 2% was
found to lead to good results) are modified as follows. A single
mode and a nonessential PE are selected. Nonessential
PEs are considered to be PEs that implement task types that have
alternative implementations on other PEs, hence, they are not
fundamental for a feasible solution. Our goal is to switch off
PE during the execution of mode . Therefore, all tasks
of mode , which are mapped to , are randomly remapped
to the remaining PEs . Hence, PE can be shut down
during mode . Of course, only feasible mappings are allowed,
i.e., tasks are always mapped randomly to the PEs that are ca-
pable of executing this kind of task type.

2) Area Improvement: To avoid convergence toward
area-infeasible solutions, a second strategy is employed. If
only infeasible-area mappings have been produced for a cer-
tain number of generations, the search is pushed away from
this region by randomly remapping hardware tasks onto soft-
ware-programmable PEs.

3) Timing Improvement: In contrast to the area-improve-
ment strategy, if a certain amount of timing infeasible solutions
have been produced, software tasks are randomly mapped
to faster hardware implementations. Thereby, increasing the
chance of finding timing feasible implementations.

4) Transition Improvement: Cores implemented in FPGAs
can be dynamically reconfigured. However, this involves a time
overhead. If this overhead exceeds the imposed transition time
limits, the mapping is infeasible. Hence, after generating for a
certain number of generations solely solutions that violate the
transition times, tasks are randomly remapped away from the
FPGAs that cause the violations.

Although some of the produced genomes (strings) might be
infeasible in terms of area and timing behavior, all these strate-
gies have been found to improve the search process significantly
by introducing individuals that evolve into high-quality solu-
tions. For instance, running the synthesis process (on examples
of moderate size) without the shutdown improvement strategy
often results in implementations which do not exploit this en-
ergy-reduction possibility.

C. Hardware Core Allocation

For tasks mapped to ASICs and FPGAs, it is necessary to al-
locate hardware cores that are capable of executing the required

SCHMITZ et al.: COSYNTHESIS OF ENERGY-EFFICIENT MULTIMODE EMBEDDED SYSTEMS 163

Fig. 9. DVS transformation for HW cores considering inter-PE communication. (a) Physical implementation. (b) Virtual implementation. (c) Virtual
implementation.

task types. This is a trivial job as long as only tasks of different
types are mapped to the same hardware component, i.e., when a
single core for each task needs to be allocated. Nevertheless, if
tasks of the same type are assigned to the same PE more than
once, it is necessary to make a decision upon how many cores of
type need to be implemented. This is important because hard-
ware cores are able to execute tasks in parallel, i.e., the right
quantitative choice of cores can efficiently help to exploit ap-
plication parallelism, hence, improving the timing behavior as
well as energy dissipation. In the proposed cosynthesis, the fol-
lowing approach is employed during the schedule optimization.
Initially, each task type assigned to hardware is implemented
only once, even if multiple tasks of this type are mapped onto
the same PE. This ensures that all hardware tasks have at least
one executable core implementation. If the hardware area con-
straints are not violated through the initial allocation, additional
cores are implemented as follows. The tasks are analyzed to
identify a possibly parallel-executing task, taking into account
task dependencies. These tasks are then ordered according to
their mobility. Clearly, tasks with low mobility are more likely
to improve the timing behavior and, therefore, should be the
preferred choice when implementing additional hardware cores.
Cores for tasks with low mobility are implemented as long as
the area constraints of the hardware components are not vio-
lated. Note that this strategy potentially improves the dynamic
energy dissipation, since it is probable to result in more slack
time, which, in turn, can be exploited through DVS.

D. DVS for Multiple Parallel-Executing Tasks

DVS is a powerful technique to reduce energy consumption
by exploiting temporal performance requirements through dy-
namically adapting processing speed and supply voltage of PEs.
The applicability of DVS to distributed embedded systems was
demonstrated in [7], [17], [20], and [28]. However, these works
concentrate on dynamically changing the performance of soft-
ware PE’s only, while parallel execution of tasks on hardware
resources has been neglected. Nevertheless, in the context of en-
ergy-efficient multimode systems, where performance require-
ments of each operational mode can vary significantly, DVS

needs to be considered carefully. Consider, for instance, an in-
verse discrete cosine transformation (IDCT) algorithm imple-
mented in fast hardware, which is used during two modes: 1)
MP3 decoding and 2) JPEG image decoding. Clearly, the JPEG
decoder should restore images as quickly as possible, i.e., the
IDCT hardware is required to execute at maximal supply voltage
(equivalent to peak performance). On the other hand, the MP3
decoder works at a fixed repetition rate of 25 ms, for which the
hardware implementation operates faster than necessary, i.e., the
IDCT performance can be reduced, such that this repetition rate
is adequately met. By using DVS, it is possible to adapt the ex-
ecution speed to suit both needs and to reduce the energy con-
sumption to a minimum. Here, we consider that hardware com-
ponents might employ DVS. However, due to the area and power
overhead involved in additional DVS circuitry (dc/dc converter
[14], [21]), it is assumed that all cores allocated to the same
hardware component are fed by a single voltage supply, i.e., dy-
namically scaling the supply voltage simultaneously affects the
performance of all cores on that hardware component.

The proposed technique enables an efficient usage of existing
DVS approaches [7], [17], [20], [28] to handle the case of DVS
on hardware components that execute tasks in parallel. To cope
with this problem, the potentially parallel executing tasks on a
single voltage-scalable hardware resource are transformed into
an equivalent set of sequentially executing tasks, taking into ac-
count the dynamic power dissipation on each core. Note that
this is done to calculate the scaled supply voltages only, i.e., this
virtual transformation does not affect the real implementation.
In this section, we highlight solely our transformation-based ap-
proach, while we refer the interested reader to [7], [17], [20], and
[28], where different voltage scaling techniques are described in
detail.

The following example illustratively outlines the proposed
transformation approach. Fig. 9 shows the transformation of five
hardware tasks, executing on two cores (both cores are imple-
mented within the same hardware component), to four sequen-
tial tasks on a single core. The given schedules do not only re-
veal the activation times of the individual tasks, but further in-
dicate their power dissipation over time (given by the height of
the tasks). Such a power annotated schedule is referred to as

164 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005

TABLE II
CONSIDERING MODE-EXECUTION PROBABILITIES (EXCLUDING DVS)

power-profile. The main advantage of the shown transformation
lies within the fact that it results in sequentially executing tasks
on a single component, which is equivalent to the behavior of
software tasks. Hence, a voltage-scaling technique for software
processors can be applied after the transformation, in order to
exploit system idle times. The transformation is carried out in
two main steps.

1) A single power profile is derived by adding the power
profiles of both hardware cores and by splitting this power
profile into individual tasks whenever the power values
change. In Fig. 9(b), these points are (the start time
of task) and (the end time of task). The power
dissipation of tasks and are equivalent to the power
of core 1, while task dissipates a power which is the
sum of the power consumptions on core 0 and core 1.

2) Further, for each outside-data dependency (indicated as
a dashed arrow in Fig. 9), the virtual power profile is
split and additional tasks are introduced. For the given ex-
ample, task communicates to an outside task. Since the
execution of this task lies within the virtual task , task
is split into and . In this way, the outside communi-
cation can be correctly included. Tasks with deadlines are
handled in a similar fashion, in order to avoid that tasks
are extended beyond their timing constraints.

VII. EXPERIMENTAL RESULTS

Based on the techniques and algorithms presented in this
work, a multimode synthesis approach has been implemented
on a Pentium III 1.2-GHz Linux PC. In order to evaluate its ca-
pability of producing high-quality solutions in terms of energy
consumption, timing behavior, and hardware area requirements,
a set of experiments has been carried out on 15 automatically
generated multimode examples (mul1-mul151) and one
real-life benchmark example (smart-phone).2 All reported

1The examples were generated with the publicly available tool TGFF [13].
2The used benchmarks, including the realistic smart phone example, can be

found at: http://www.ida.liu.se/~g-marsc/benchmarks/.

results were obtained by running the optimization processes 40
times and averaging the outcomes. The average power dissipa-
tions as well as the energy consumptions have been calculated
according to (1)–(4).

A. Automatically Generated Examples

Each of the 15 generated examples (mul1-mul15) is
specified by three to five operational modes, each consisting
of 8 to 32 tasks (required execution cycles vary between
500–350 000). The used target architectures contain two to four
heterogeneous PEs (clock frequencies are given in the range
of 25–50 MHz), some of which are DVS-enabled. These PEs
are interconnected through one to three communication links.
The active power consumption of programmable processors
was randomly chosen between 5 and 500 mW, depending on
the executed task. The power dissipation of hardware compo-
nents are selected to be one to two orders of magnitude lower.
Further, the static power dissipation was set to be 5%–15%
of the maximal active power. The execution probabilities of
individual modes were randomly chosen and vary between 1%
and 85%. Timing constraints have been assigned in the form
of individual task deadlines as well as repetition periods to
the modes (hyperperiods). The timing constraints were varied
between 15 and 500 ms, such that schedulable implementations
with up to 50% deadline slack could be found.

To illustrate the importance of taking mode-execution proba-
bilities into account during the synthesis process, an execution
probability neglecting approach is compared with the proposed
synthesis technique, which considers the mode probabilities.
The first two sets of experiments demonstrate the energy savings
achievable through the consideration of mode-execution proba-
bilities, either with or without the exploration of DVS. The third
set examines the influence of the actual activation profile on the
energy savings.

1) Comparisons Excluding DVS: To highlight the in-
fluence of mode-execution probabilities on the achievable
energy saving, consider Table II which shows the multimode

SCHMITZ et al.: COSYNTHESIS OF ENERGY-EFFICIENT MULTIMODE EMBEDDED SYSTEMS 165

TABLE III
CONSIDERING MODE-EXECUTION PROBABILITIES (INCLUDING DVS)

cosynthesis results for the 15 automatically generated bench-
marks. The first three columns give the benchmark names,
the hyperperiod (repetition period) of each mode, and the
mode-execution probabilities. The fourth and the fifth columns
present the dissipated average power and optimization time
for the execution probability neglecting synthesis approach.
Note that the execution probabilities are neglected during the
synthesis only, while the computed power dissipations at the
end of the synthesis incorporate the execution probabilities,
in order to ensure a meaningful comparison. The sixth and
seventh columns show the same for the proposed approach,
which considers the execution probabilities throughout the
synthesis process. Take, for instance, example mul6. When
ignoring the execution probabilities during the optimization, an
average power dissipation of 1.677 mW is achieved. However,
optimizing the same benchmark example under the consid-
eration that modes execute with uneven probabilities (e.g.,
15:10:10:65—i.e., mode 1 is active for 15%, mode 2 is active
of 10%, and so on), the average power can be reduced by an
appropriate task mapping and core allocation to 1.301 mW.
This is a significant reduction of 22.46%. Furthermore, it can
be observed that the proposed technique was able to reduce
the energy consumption of all examples with up to 62.18%
(mul7). Note that these reductions are achieved without any
modification of the underlying hardware architectures, i.e.,
the system costs are not increased. It is also important to note
that the achieved energy reductions are solely introduced by
taking the mode-execution probabilities into account during
the cosynthesis process, i.e., both compared approaches allow
the same resource sharing and rely on the same scheduling
technique. When comparing the optimization times for both
approaches, it can be observed that the proposed technique
shows a slightly increased CPU time for most examples, which
is mainly due to the more complex design space structure.

2) Comparisons Including DVS: The next experiments were
conducted to see how the proposed technique compares to DVS
and if further savings can be achieved by taking the mode prob-

abilities and DVS simultaneously into account. Table III reports
on the findings. The DVS technique that was used here is based
on PV-DVS [28], which has been extended to enable the con-
sideration of DVS not only for software processors, but also for
parallel executing cores on hardware PEs (see Section VI-D).
As in the first experiments, two approaches are compared here.
The first approach disregards the mode-execution probabilities
during optimization, while the second takes them into account
throughout the cosynthesis. Similar to Table II, the fourth and
fifth columns of Table III show the results without considera-
tion of execution probabilities, while the sixth and the seventh
columns present the results achieved by taking execution prob-
abilities into account. Let us consider again benchmark mul6.
Although the execution probabilities are neglected in the fourth
column, a reduced average power consumption (0.689 mW) can
be observed, when compared to the results given in Table II. This
clearly demonstrates the high energy reduction capabilities of
DVS. Nevertheless, it is possible to further minimize the power
consumption to 0.465 mW by considering the execution proba-
bilities together with DVS. This is an improvement of 32.53%,
solely due to the synthesis for the particular execution probabil-
ities. For all other benchmarks savings of up to 64.02% (mul7)
were achieved. Due to the computation of scaled supply voltages
and the influence of scheduling on the energy consumption, the
optimization times are higher when DVS is considered.

3) Influence of Real Activation Probabilities: The next ex-
periment is conducted to highlight the influence of the real user
behavior on the energy efficiency of a system that has been
synthesized under the consideration of certain mode-execution
probabilities. Certainly, the mode-execution probabilities which
are used during the synthesis represent an “imaginative” user
and the activation probabilities of a real user will differ from
those. In accordance, our experiments try to answer the fol-
lowing question: How is the energy efficiency affected by the
different activation profiles during application runtime? For ex-
perimental purposes, a simple specification with two modes is
used, which contains 14 and 24 tasks (modes 1 and 2). The un-

166 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005

Fig. 10. System specification consisting of two operational modes optimized for different execution probabilities (solid line: 0.1:0.9, dashed: 0.9:0.1, dotted:
0.5:0.5).

derlying architecture consists of two programmable processors
and a single ASIC, all connected via a shared bus. This con-
figuration was synthesised for three different pairs of execution
probabilities (0.1:0.9, 0.9:0.1, and 0.5:0.5). These three imple-
mentation possibilities correspond to the three lines shown in
Fig. 10. All implementations are based on the same hardware
architecture; yet, each has a different task and communication
mapping, core allocation, as well as schedule. The first solu-
tion (solid line) was synthesized under the consideration of ex-
ecution probabilities 0.1:0.9, that is, it is assumed that modes
1 and 2 are active for 10% and 90% of the operational time,
respectively. Similarly, the second (dashed line) and the third
(dotted line) lines represent solutions that have been synthesized
using execution probabilities 0.9:0.1 and 0.5:0.5, respectively.
According to the real execution probabilities during runtime,
i.e., the activation behavior of the user, the average power dissi-
pations of the implemented systems vary. Consider the system
optimized for execution probabilities 0.1:0.9 (solid line). If the
user behavior corresponds to these probabilities (User A), the
system dissipates an average power of approximately 5.5 mW
(point I). However, if a different user (User B), for instance, uses
mode 1 for 90% and mode 2 for 10% of the time (0.9:0.1), the
system will dissipate approximately 12.5 mW (point II). Never-
theless, if the system would be optimized for this activation pro-
file (0.9:0.1), as indicated by the dashed line in Fig. 10, a lower
power dissipation of around 2.6 mW (point III) can be achieved.
Similarly, if the system is optimized for execution probabilities
0.9:0.1 (dashed line) and the user runs the application 10% in
mode 1 and 90% in mode 2 (User A), then a power dissipa-
tion of 12.5 mW (point IV) is given. While an optimization to-
ward this usage profile can achieve a system implementation
which dissipates only 5.5 mW (point I), i.e., extending the bat-
tery-lifetime by a factor of 2.83 times. The dotted plot in Fig. 10
represents the solution when the execution probabilities are ne-
glected during the optimization, that is, the execution probabil-
ities are considered to be equal for both modes. Of course, if

modes 1 and 2 are active for equal amounts of time, this solution
achieves a lower power dissipation (6.5 mW, point V) than the
systems optimized for execution probabilities 0.1:0.9 (9 mW,
point VI) and 0.9:0.1 (7.6 mW, point VII). The figure reveals
that the design for 0.1:0.9 (solid line) achieves the lowest power
dissipation when the user complies to an activation profile be-
tween 0:1 and 0.21:0.79. While the designs for 0.5:0.5 (dotted
line) and for 0.9:0.1 (dashed line) lead to the lowest energy dis-
sipation in the ranges from 0.21:0.79 to 0.57:0.43 and 0.57:0.43
to 1:0, respectively. In summary, Fig. 10 clearly shows that the
execution probabilities substantially influence the energy dissi-
pation of the system. Certainly, the system should be optimized
as close as possible toward the real behavior in order to achieve
low energy consumptions, which, in turn, result in longer bat-
tery lifetimes.

B. Smart Phone Benchmark

To further validate the cosynthesis technique in terms of
real-world applicability, the introduced approach was applied
to a smart-phone example. This benchmark is based on three
publicly available applications: a GSM codec [3], a JPEG codec
[4], and an MP3 decoder [18]. Accordingly, the smart-phone
offers three different services to the user, namely, a GSM
cellular phone, a digital camera, and an MP3-player. Of course,
the used applications do not specify the whole smart phone
device, however, a major digital part of it. The specification for
this example, given as OMSM, has already been introduced
in Fig. 2. For each of the eight operational modes, the corre-
sponding task graphs have been extracted from the above given
references. The individual applications have been software pro-
filed to gather the necessary execution characteristics of each
task. This was carried out by compiling profile information
into the application [1], [2] and running the produced software
on real-life input streams. On the other hand, the hardware
estimations are not based on direct measurements, but have
been based on typical values, such that hardware tasks execute

SCHMITZ et al.: COSYNTHESIS OF ENERGY-EFFICIENT MULTIMODE EMBEDDED SYSTEMS 167

TABLE IV
SMART PHONE EXPERIMENTS WITHOUT DVS

TABLE V
SMART PHONE EXPERIMENTS WITH DVS

one to two orders of magnitude faster and dissipated one to two
orders of magnitude less power than their software counterparts
[9]. Depending on the operational mode, the number of tasks
and communications varies between five and 88 nodes and
zero and 137 edges, respectively. The hardware architecture
of the embedded system within the smart phone consists of
one DVS-enabled processor (execution properties are based on
values given for the ARM8 developed in [8]) and two ASICs.
These components are connected via a single bus. Tables IV and
V give the results of the conducted experiments, distinguishing
between optimizations without and with the consideration of
DVS.

Similar to the previous experiments, approaches which ne-
glect the execution probabilities are compared with the intro-
duced cosynthesis technique that considers the uneven activa-
tion times of different modes. Table IV shows this comparison
for a fixed voltage system, i.e., no DVS is applied. The table pro-
vides information regarding all eight modes of the smart phone.
This mode information includes benchmark properties such as
complexity, execution probability, and hyper-period. Further-
more, the table gives the achieve energy dissipation for the mode
hyperperiod and average power consumption of each mode. The
average power consumption can be calculated from the energy
values by dividing the energy by the hyperperiod and multi-
plying the result with the execution probability. Synthesizing the
system without consideration of execution probabilities results
in an overall average power consumption of 2.6022 mW, when
running the system after the synthesis according to the activa-
tion profile. Nevertheless, taking into account the mode usage

profile during the cosynthesis this can be reduced by 30.76% to
1.8011 mW. Please note that the given overall average power
consumption is calculated based on (1)–(4); hence, these values
are directly proportional to the battery-lifetime. The saving is
achieved without the modification of the allocated hardware ar-
chitecture, therefore, the system cost is the same for both solu-
tions.

Also, DVS has been applied to this benchmark, considering
that the GPP of the given architecture supports DVS function-
ality. The results are shown in Table V. It can be observed that
the overall average power consumption of the smart phone drops
to 1.2176 mW, even when neglecting mode-execution proba-
bilities. However, the combination of applying DVS and taking
execution probabilities into account results in the lowest power
consumption of 0.8587 mW, a 29.5% reduction, when compared
to the activation profile neglecting approach. That is, solely by
considering the activation profile during the synthesis, the bat-
tery-lifetime could be extended by one third, even when using
a system that employs DVS components. Overall, the average
power is decreased from 2.602 to 0.859 mW, which represents
a significant reduction of nearly 67%. Regarding the required
cosynthesis times, the four implementations could be found in
80.1 s (without probabilities and DVS) to 4344.8 s (with proba-
bilities and DVS). Clearly, considering DVS requires longer op-
timization times due to the voltage-scaling problem that needs
to be solved repetitively within the innermost optimization loop
of the cosynthesis algorithm. For instance, the optimization for
DVS increases the runtime from 80.1 to 3754.1 s for the case
without consideration of execution probabilities, and from 96.9

168 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2005

to 4344.8 s when execution probabilities are taken into account.
On the other hand, the consideration of mode-execution prob-
abilities increases the optimization time only moderately form
80.1 to 96.9 s in the case of no DVS, and from 3754.5 to 4344.8
s if DVS is considered.

VIII. CONCLUDING REMARKS

We have introduced new techniques and algorithms for the
energy minimization of multimode embedded systems. An ab-
stract specification model called OMSM has been proposed.
This model allows for the specification of mode interaction (top-
level finite state machine) as well as mode functionality (task
graph). The advantage of such a representation is the capability
to express the complete functionality of the system within a
single model, containing both control and data flow.

The presented cosynthesis technique not only optimizes map-
ping and scheduling toward hardware cost and timing behavior,
but also aims at the reduction of power consumption at the same
time. A key contribution has been the development of an ef-
fective mapping strategy that considers uneven mode-execu-
tion probabilities as well as important power reduction aspects,
such as multiple task implementations and core allocation. For
this purpose, a GA-based mapping approach has been proposed
along with four improvement strategies to effectively handle
the optimization of component shutdown, transition time, area
usage, and timing behavior. These improvement strategies guide
the mapping optimization of multimode specifications toward
high quality solutions in terms of power consumption, timing
feasibility, and area usage. A newly introduced transformation-
based algorithm for DVS-enabled hardware components, which
handles parallel task execution, allows to leverage the efficiency
of existing voltage scaling algorithms. This algorithm trans-
forms a set of potentially parallel executing tasks on a single
HW component into a set of sequential executing tasks, taking
into account imposed deadlines and inter-PE communications.

The proposed techniques and algorithms have been vali-
dated through extensive experiments, including a smart phone
real-life example. These experiments have demonstrated that
taking into account mode-execution probabilities throughout
the system synthesis leads to substantial energy savings com-
pared to conventional approaches which neglect this issue.
Furthermore, DVS has been considered in the context of mul-
timode embedded systems and it was shown that considerably
high energy reductions can be achieved by combining both the
consideration of execution probabilities and DVS.

ACKNOWLEDGMENT

The authors are thankful to the anonymous reviewers for their
valuable comments and suggestions that helped to improve this
manuscript.

REFERENCES

[1] GNU CC Manual [Online]. Available: http://gcc.gnu.org/
[2] GNU Gprof Manual [Online]. Available: http://www.gnu.org/manual/

gprof-2.9.1/gprof.html
[3] GSM 06.10, Technical University of Berlin [Online]. Available:

http://kbs.cs.tu-berlin.de/~jutta/toast.html

[4] Independent JPEG Group: jpeg-6b [Online]. Available: ftp://ftp.uu.net/
graphics/jpeg/jpegsrc.v6b.tar.gz

[5] Intel XScale Core, Developer’s Manual, Dec. 2000.
[6] Mobile AMD Athlon 4, Processor Model 6 CPGA Data Sheet, Nov. 2000.

Publication No 24 319 Rev E.
[7] A. Andrei, M. T. Schmitz, P. Eles, Z. Peng, and B. M. Al-Hashimi,

“Overhead-conscious voltage selection for dynamic and leakage power
reduction of time-constraint systems,” in Proc. Design, Automation, Test
Eur. Conf., Feb. 2004, pp. 518–523.

[8] T. D. Burd, “Energy-efficient processor system design,” Ph.D. disserta-
tion, Univ. California, Berkeley, 2001.

[9] T. D. Burd and R. W. Brodersen, “Processor design for portable sys-
tems,” J. VLSI Signal Process., vol. 13, no. 2, pp. 203–222, Aug. 1996.

[10] A. Chandrakasan, W. J. Bowhill, and F. Fox, Design of High-Per-
formance Microprocessor Circuits. New York/Piscataway, NJ:
Wiley/IEEE Press, 2001.

[11] A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS
Design. Norwell, MA: Kluwer, 1995.

[12] E.-Y. Chung, L. Benini, and G. De Micheli, “Contents provider-assisted
dynamic voltage scaling for low energy multimedia applications,” in
Proc. Int. Symp. Low-Power Electron. Design, Aug. 2002, pp. 42–47.

[13] R. Dick, D. Rhodes, and W. Wolf, “TGFF: Task graphs for free,” in
Proc. 5th Int. Workshop Hardware/Software Co-Design, Mar. 1998, pp.
97–101.

[14] J. Goodman, A. Chandrakasan, and A. P. Dancy, “Design and imple-
mentation of a scalable encryption procesoor with embedded variable
dc/dc converter,” in Proc. IEEE 36th Design Automation Conf., 1999,
pp. 855–860.

[15] M. Grajcar, “Genetic list scheduling algorithm for scheduling and allo-
cation on a loosely coupled heterogeneous multiprocessor system,” in
Proc. IEEE 36th Design Automation Conf., 1999, pp. 280–285.

[16] T. Grötker, R. Schoenen, and H. Meyr, “PCC: A modeling technique
for mixed control/data flow systems,” presented at the IEEE Eur. Design
Test Conf., Mar. 1997.

[17] F. Gruian and K. Kuchcinski, “LEneS: Task scheduling for low-energy
systems using variable supply voltage processors,” in Proc. Asia South
Pacific—Design Automation Conf., Jan. 2001, pp. 449–455.

[18] Mpeg3Play-0.9.6., by J. Hagman. [Online]. Available: http://home.
swipnet.se/~w-10 694/tars/mpeg3play-0.9.6-x86.tar.gz

[19] A. Kalavade and P. A. Subrahmanyam, “Hardware/software partitiong
for multifunction systems,” IEEE Trans. Computer-Aided Design Integr.
Circuits Syst., vol. 17, no. 9, pp. 819–836, Sep. 1998.

[20] J. Luo and N. K. Jha, “Battery-aware static scheduling for distributed
real-time embedded systems,” in Proc. IEEE 38th Design Automation
Conf., 2001, pp. 444–449.

[21] W. Namgoong, M. Yu, and T. Meng, “A high-efficiency variable-voltage
CMOS dynamic dc-dc switching regulator,” in Proc. Int. Solid-State Cir-
cuits Conf., 1997, pp. 380–381.

[22] H. Oh and S. Ha, “A static scheduling heuristic for heterogeneous pro-
cessors,” presented at the 2nd Int. EuroPar Conf., vol. II, Aug. 1996.

[23] , “Hardware-software cosynthesis of multimode multi-task em-
bedded systems with real-time constraints,” in Proc. 2nd Int. Symp.
Hardware/Software Co-Design, May 2002, pp. 133–138.

[24] P. Pedro and A. Burns, “Schedulability anaysis for mode changes in flex-
ible real-time systems,” in Proc. Euromicro Workshop Real-Time Syst.,
Jun. 1998, pp. 17–19.

[25] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, “Energy-efficient map-
ping and scheduling for DVS enabled distributed embedded systems,”
in Proc. Design, Automation Test Eur. Conf., Mar. 2002, pp. 514–521.

[26] , “Synthesizing energy-efficient embedded systems with
LOPOCOS,” J. Design Automation Embedded Syst., vol. 6, no. 4,
pp. 401–424, 2002.

[27] , “Iterative schedule optimization for voltage scalable distributed
embedded systems,” ACM Trans. Embedded Comput. Syst., vol. 3, no.
1, pp. 182–217, 2004.

[28] , “Iterative schedule optimization for voltage scalable distributed
embedded systems,” ACM Trans. Embedded Syst. Design, vol. 3, no. 1,
pp. 182–217, 2004.

[29] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham, “Mode change
protocols for priority-driven preemptive scheduling,” Real-Time Syst.,
vol. 1, pp. 243–265, 1989.

[30] Y. Shin, D. Kim, and K. Choi, “Schedulability-driven performance anal-
ysis of multiple mode embedded real-time systems,” in Proc. IEEE 37th
Design Automation Conf., Jun. 2000, pp. 495–500.

[31] M. Wu and D. Gajski, “Hypertool: A programming aid for message-
passing systems,” IEEE Trans. Parallel Distrib. Syst., vol. 1, no. 3, pp.
330–343, Jul. 1990.

SCHMITZ et al.: COSYNTHESIS OF ENERGY-EFFICIENT MULTIMODE EMBEDDED SYSTEMS 169

[32] P. Yang, P. Marchal, C. Wong, S. Himpe, F. Catthoor, P. David, J.
Vounckx, and R. Lauwereins, “Managing dynamic concurrent tasks
in embedded real-time multimedia systems,” in Proc. Int. Symp. Syst.
Synthesis, Oct. 2002, pp. 112–119.

Marcus T. Schmitz received the Dipl.-Ing. (FH) degree in electrical engi-
neering from the University of Applied Science Koblenz, Koblenz,Germany, in
1999 and the Ph.D. degree in electronics from the University of Southampton,
Southampton, UK, in 2003.

Since April 2003, he has been a Postdoctoral Researcher in the Embedded
Systems Laboratory, Department of Computer and Information Science,
Linköping University, Linköping, Sweden, where he is working on the de-
velopment of offline and online voltage scaling techniques for embedded
systems. He has published several papers in the area of dynamic voltage
scaling for heterogeneous embedded systems and he has co-authored the
book System-Level Design Techniques for Energy-Efficient Embedded Systems
(Norwell, MA: Kluwer, 2004). His research interests include system-level
co-design, application-driven design methodologies, energy-efficient system
design, and reconfigurable architectures.

Bashir M. Al-Hashimi (M’99–SM’01) received the B.Sc. degree (with first-
class classification) in electrical and electronics engineering from the University
of Bath, Bath, UK, in 1984 and the Ph.D. degree from York University, York,
UK, in 1989.

He worked in industry for six years designing high-performance chips for
analog- and digital-signal processing applications, developing computer-aided
design tools for simulation and synthesis of analog and digital circuits. In 1995,
he joined Staffordshire University, Staffordshire, UK, where he formed the
VLSI Signal Processing research group with funding from the industry and the
government. In 1999, he joined the Department of Electronics and Computer
Science, Southampton University, Southampton, UK, where he is currently
a Professor of Computer Engineering. He has authored one book on SPICE
simulation and coauthored two books, Power Constrained Testing of VLSI
Circuits (Norwell, MA: Kluwer, 2002) and System-Level Design Techniques
for Energy-Efficient Embedded Systems (Norwell, MA: Kluwer, 2004). He has
authored and coauthored over 125 technical papers. His research and teaching
interests include low-power hardware/software co-design, system-on-chip test,
and VLSI computer-aided design.

Dr. Al-Hashimi is the Editor-in-Chief of the IEE Proceedings: Computers
and Digital Techniques and is a Member of the Editorial Board of the Embedded
Computing Journal. He has served on the IEEE/ACM Design Automation and
Test in Europe (DATE) Conference in various capacities, including: Topic Chair
(Simulation and Emulation, 2001), and as a Member of the Executive Com-
mittee for 2005. He is a Member of the Technical Program Committee of the
IEEE European Test Symposium and the IEEE VLSI Test Symposium. He has
served as the Guest Editor for a number of journal special issues, including most
recently: Design Automation for Embedded Systems Journal and the IEE Pro-
ceedings: Computers and Digital Techniques. He was a corecipient of a Best
Paper Award at the 2000 IEEE International Test Conference relating to low
power built-in self-test for register transfer level data paths.

Petru Eles (M’99) received the M.Sc. degree in computer science from the “Po-
litehnica” University of Timisoara, Timisoara, Romania, in 1979 and the Ph.D.
degree in computer science from the “Politehnica” University of Bucharest,
Bucharest, Romania, in 1993.

He is currently a Professor with the Department of Computer and Informa-
tion Science, Linköping University, Linköping, Sweden. He has published ex-
tensively, including having coauthored System Synthesis with VHDL (Norwell,
MA: Kluwer, 1997) and System-Level Design Techniques for Energy-Efficient
Embedded Systems (Norwell, MA: Kluwer, 2004). His research interests include
the design of embedded systems, hardware/software co-design, real-time sys-
tems, system specification and testing, computer-aided design for digital sys-
tems.

Prof. Eles is an Associate Editor of the IEE Proceedings—Computers and
Digital Techniques. He has served as a Program Committee Member for nu-
merous International Conferences such as DATE, ICCAD, ECRTS, CASES,
EMSOFT, RTSS, and as Technical Program Chair of the IEEE/ACM/IFIP In-
ternational Conference on Hardware/Software Co-design and System Synthesis.
He was a corecipient of the Best Paper Awards at the 1992 and 1994 Euro-
pean Design Automation Conference, and a corecipient of the Best Presen-
tation Award at the 2003 IEEE/ACM/IFIP International Conference on Hard-
ware/Software Co-design and System Synthesis.

	toc
	Cosynthesis of Energy-Efficient Multimode Embedded Systems With
	Marcus T. Schmitz, Bashir M. Al-Hashimi, Senior Member, IEEE, an
	I. I NTRODUCTION

	Fig.€1. Typical activation profile of a cellular phone.
	II. P REVIOUS W ORK
	III. P RELIMINARIES
	A. Functional Specification of Multimode Systems

	Fig.€2. Relation between OMSM and individual task graph specific
	1) Top-Level Finite State Machine: In this work, it is considere
	2) Functional Specification of Individual Modes: The functional

	Fig.€3. Distributed architecture model.
	B. Architectural Model and System Implementation
	IV. M OTIVATIONAL E XAMPLES

	Fig.€4. Example of mode-execution probabilities. (a) Application
	TABLE I T ASK E XECUTION AND I MPLEMENTATION P ROPERTIES
	1) Example: Mode-Execution Probabilities: For simplicity, timing

	Fig.€5. Multiple task type implementations. (a) Application with
	2) Example: Multiple Task-Type Implementations: An important cha
	V. P ROBLEM F ORMULATION
	VI. C OSYNTHESIS OF E NERGY -E FFICIENT M ULTIMODE S YSTEMS
	A. Estimation of Mode-Execution Probabilities
	Fig.€6. Multimode embedded systems design flow.

	B. Multimode Cosynthesis Algorithm

	Fig.€7. Task mapping string for multimode systems.
	Fig.€8. Pseudocode: Multimode cosynthesis.
	1) Shutdown Improvement: To increase the chances of component sh
	2) Area Improvement: To avoid convergence toward area-infeasible
	3) Timing Improvement: In contrast to the area-improvement strat
	4) Transition Improvement: Cores implemented in FPGAs can be dyn
	C. Hardware Core Allocation

	Fig.€9. DVS transformation for HW cores considering inter-PE com
	D. DVS for Multiple Parallel-Executing Tasks

	TABLE II C ONSIDERING M ODE -E XECUTION P ROBABILITIES (E XCLUDI
	VII. E XPERIMENTAL R ESULTS
	A. Automatically Generated Examples
	1) Comparisons Excluding DVS: To highlight the influence of mode

	TABLE III C ONSIDERING M ODE -E XECUTION P ROBABILITIES (I NCLUD
	2) Comparisons Including DVS: The next experiments were conducte
	3) Influence of Real Activation Probabilities: The next experime

	Fig.€10. System specification consisting of two operational mode
	B. Smart Phone Benchmark

	TABLE IV S MART P HONE E XPERIMENTS W ITHOUT DVS
	TABLE V S MART P HONE E XPERIMENTS W ITH DVS
	VIII. C ONCLUDING R EMARKS

	GNU CC Manual [Online] . Available: http://gcc.gnu.org/
	GNU Gprof Manual [Online] . Available: http://www.gnu.org/manual
	GSM 06.10, Technical University of Berlin [Online] . Available:
	Independent JPEG Group: jpeg-6b [Online] . Available: ftp://ftp.
	Intel XScale Core, Developer's Manual, Dec. 2000.
	Mobile AMD Athlon 4, Processor Model 6 CPGA Data Sheet, Nov. 200
	A. Andrei, M. T. Schmitz, P. Eles, Z. Peng, and B. M. Al-Hashimi
	T. D. Burd, Energy-efficient processor system design, Ph.D. diss
	T. D. Burd and R. W. Brodersen, Processor design for portable sy
	A. Chandrakasan, W. J. Bowhill, and F. Fox, Design of High-Perfo
	A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS D
	E.-Y. Chung, L. Benini, and G. De Micheli, Contents provider-ass
	R. Dick, D. Rhodes, and W. Wolf, TGFF: Task graphs for free, in
	J. Goodman, A. Chandrakasan, and A. P. Dancy, Design and impleme
	M. Grajcar, Genetic list scheduling algorithm for scheduling and
	T. Grötker, R. Schoenen, and H. Meyr, PCC: A modeling technique
	F. Gruian and K. Kuchcinski, LEneS: Task scheduling for low-ener
	Mpeg3Play-0.9.6., by J. Hagman . [Online] . Available: http://ho
	A. Kalavade and P. A. Subrahmanyam, Hardware/software partitiong
	J. Luo and N. K. Jha, Battery-aware static scheduling for distri
	W. Namgoong, M. Yu, and T. Meng, A high-efficiency variable-volt
	H. Oh and S. Ha, A static scheduling heuristic for heterogeneous
	P. Pedro and A. Burns, Schedulability anaysis for mode changes i
	M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, Energy-efficient m
	L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham, Mode chang
	Y. Shin, D. Kim, and K. Choi, Schedulability-driven performance
	M. Wu and D. Gajski, Hypertool: A programming aid for message-pa
	P. Yang, P. Marchal, C. Wong, S. Himpe, F. Catthoor, P. David, J

