

High-Level and Hierarchical Test Sequence Generation

Gert Jervan, Zebo Peng

Embedded Systems Laboratory Linköping University, Sweden Olga Goloubeva, Matteo Sonza Reorda, Massimo Violante Dipartimento di Automatica e Informatica Politecnico di Torino, Italy

This work has been supported by the EC project IST-2000-29212 COTEST

Overview

- Analysis of available high-level fault models in order to select the most suitable one for estimating the testability by reasoning only on circuits behavioral descriptions.
- Assessment of the effectiveness of high-level test generation for manufacturing test based on the adopted high-level fault model.
- A novel high-level hierarchical test generation approach for improving the high-level test generation effectiveness by exploiting structural information.

High-Level Fault Models

- We analyze statement coverage, bit coverage and condition coverage in terms of the correlation they provide between high-level fault coverage and gate-level stuck at coverage.
- We fault simulate the *same* input sequence with two *different* models of the same circuit (high-level and gate-level ones) and compare the attained gate-level and high-level fault coverage figures.
- The proposed high-level fault models can be fruitfully exploited to estimate the quality of different test sets and to predict the gate-level fault coverage before synthesis.

High-Level Test Generation

- Based on purely behavioral models: no details about the circuit structure are used.
- Exploits a Simulated Annealing algorithm
 - solution \Rightarrow a sequence of vectors;
 - evaluation function ⇒ Bit Coverage + Condition Coverage + Statement Coverage;
 - neighborhood exploration ⇒ three operators: add one vector, delete one vector, complement one bit in one vector;
- Experiments gathered on a prototype:
 - SystemC descriptions
 - 1,000 lines of C code

Hierarchical Test Generation

- Improvement of pure high-level ATPG by using a hierarchical fault model targeting errors in the system behavior and in its final implementation.
- Two types of tests: Conformity test and functional unit test

A Decision Diagram example

Therarchical Design Representation

- The fault coverage attained by the hierarchical ATPG is higher than that of the pure high-level ATPG
- The generated test sequences can be efficiently used for testing stuck-at faults.

Fault Model Evaluation

Fault Models Comparison

	z want inzouch companion			
Benchmark	Statement Coverage	Bit Coverage	Condition Coverage	Bit + Condition
BIQUAD 1	0.63	0.97	0.60	0.97
BIQUAD 2	0.64	0.97	0.61	0.98
DIFFEQ 1	0.62	0.97	0.65	0.98
DIFFEQ 1	0.63	0.97	0.64	0.98
TLC	0.83	0.45	0.72	0.80

Comparison of Test Generators

High-level ATPG	Gate-level FC [%]	Test Len [#]	CPU [s]		
All O	[,0]	["]	[5]		
DIFFEQ 1	97.25	553	954		
DIFFEQ 2	94.57	553	954		
High-level Hierarchical ATPG					
DIFFEQ 1	98.05	199	468		
DIFFEQ 2	96.46	199	468		
Gate-level ATPG (testgen)					
DIFFEQ 1	99.62	1,177	4,792		
DIFFEQ 2	96.75	923	4,475		

Hierarchical Test Generation Algorithm

