
HIGH-LEVEL AND HIERARCHICAL TEST SEQUENCE GENERATION

Gert Jervan, Zebo Peng

Linköping University
Embedded Systems Laboratory

Linköping, Sweden

Olga Goloubeva, Matteo Sonza Reorda, Massimo Violante

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy
www.cad.polito.it

Abstract

Test generation at the gate-level produces high-quality
tests but is computationally expensive in the case of large
systems. Recently, several research efforts have
investigated the possibility of devising test generation
methods and tools to work on high-level descriptions. The
goal of these methods is to provide the designers with
testability information and test sequences in the early
design stages. The cost for generating test sequences in the
high abstraction levels is often lower than that for
generating test sequences at the gate-level, with comparable
or even higher fault coverage. This paper first analyses
several high-level fault models in order to select the most
suitable one for estimating the testability of circuits by
reasoning on their behavioral descriptions and for guiding
the test generation process at the behavioral level. We
assess then the effectiveness of high-level test generation
with a simple ATPG algorithm, and present a novel high-
level hierarchical test generation approach to improve the
results obtained by a pure high-level test generator.

Introduction

In the last years, new techniques have been developed
to integrate an entire system on a single chip, called
System-on-Chip (SOC). SOC products represent a real
challenge not only from the manufacturing point of view,
but also when design issues are concerned.

To cope with the challenges faced by SOC designers,
tools and techniques dealing with design at higher levels of
abstraction are becoming an industrial reality. In particular,
behavioral-level synthesis tools and the more recently
introduced co-design environments are starting to play an
important role in the initial phases of the design process.
The major benefit stemming from these design
environments is the possibility of quickly evaluating the
costs and benefits of different architecture alternatives,
including both hardware and software components, starting
from the algorithms a SOC should implement.

While the design practice is quickly moving toward
higher levels of abstraction, test issues are still considered
only when a detailed description of the design is available,
typically at the gate level for test sequence generation and

at register transfer (RT) level for design for testability
structure insertion.

Recently intensive research efforts have been devoted
to devise solutions tackling test sequence generation in the
early design phases, mainly the RT level, and several
approaches have been proposed [14]. Most of them are able
to generate test patterns of good quality, sometimes
comparable or even better than those of gate-level ATPG
tools. However, lacking general applicability, these
approaches are still not accepted by the industry. The
different approaches are based on different assumptions and
on a wide spectrum of distinct algorithmic techniques.
Some are based on extracting from a behavioral description
the corresponding control machine [1] or the symbolic
representation based on binary decision diagrams [2], while
others also synthesize a structural description of the data
path [3]. Some approaches rely on a direct examination of
the HDL description [4], or exploit the knowledge of the
gate-level implementation [5]. Some others combine static
analysis with simulation [6].

Most of the cited approaches rely on high-level fault
models for behavioral HDL descriptions that have been
developed by the current practice of software testing [7],
and extend them to cope with hardware descriptions.
Several authors have proposed alternative fault models.
Nevertheless, a reference fault model playing, at the
behavioral level, the same role the well-known stuck-at one
is playing at the gate level, is still missing.

This paper first analyzes several high-level fault
models in order to select the most suitable one for
estimating the testability of circuits by reasoning on their
behavioral descriptions and for guiding the test generation
process at the behavioral level. We assess then the
effectiveness of high-level test generation process with a
simple ATPG algorithm, and present a novel high-level
hierarchical test generation approach for improving the
results obtained by a pure high-level test generator. The
hierarchical test generator takes into account structural
information from lower levels of abstraction while
generating test sequences on the behavioral level.

High-Level Fault Models

When test issues are addressed at an abstraction level
higher than the traditional gate-level the first problem that

must be addressed is the identification of a suitable high-
level fault model. By working on system models that
neglect the detailed information gate-level netlists have, the
high-level fault models are not able to precisely foresee the
gate-level fault coverage, which is normally used as the
reference measure to quantify a circuit’s testability.
Nevertheless, they can be exploited to rank test sequences
according to their testability value. The most common
high-level fault models proposed in literature as metrics of
the goodness of test sequences when working at higher
levels of abstraction (RT level and behavioral level) include
the following:
• Statement coverage: this is a well-known metric in

the software testing field [7] indented to measure the
percentage of statements composing a model that are
activated by a given test sequence. Further
improvements of this metric are the Branch coverage
metric, which measures the percentage of branches of a
model that are activated by a given test sequence, and
the Path coverage metric which measures the
percentage of paths that are traversed by a given test
sequence, where a path is a sequence of branches that
is traversed when going from the start of the model
description to its end.

• Bit coverage: the model is proposed in [8][10]. The
authors assume that each bit in every variable, signal or
port in the model can be stuck to zero or one. The bit
coverage measures the percentage of stuck-at bits that
are propagated to the model outputs by a given test
sequence.

• Condition coverage: the model is proposed in [8] and
is intended to represent faults located in the logic
implementing the control unit of a complex system.
The authors assume that each condition can be stuck-at
true or stuck-at false. Then, the condition coverage is
defined as the percentage of stuck-at conditions that
are propagated to the model outputs by a given test
sequence. This model is used in [8] together with bit
coverage for estimating the testability of complex
circuits.
When the quality of test sequences is considered, the

common assumption is that, given two test sequences, S1

and S2, of the same length, the better sequence is the one
that attains the higher gate-level stuck-at fault coverage. Let
us assume that it is S1. The stuck-at fault model is
commonly adopted as the reference metric for evaluating
the goodness of vectors at the gate level. When the analysis
of the two sequences S1 and S2 is moved to the high level,
the adopted fault model should provide the same result, and
thus the high-level fault coverage figure of S1 should be
higher than that of S2. If this condition is not satisfied, the
adopted high-level fault model is not suitable for
representing meaningful information about the testability
properties of test sequences.

Inspired by the above observation, we performed an
intensive analysis of the available high-level fault models
to evaluate how they compare with respect to the gate-level

stuck-at fault model. The basic idea of the analysis process
we developed is to fault simulate the same input sequence
with two different models of the same circuit, a high-level
model and the corresponding gate-level one, and then to
compare the attained gate-level and high-level fault
coverage figures. The analysis has been performed with 5
circuits from the High Level Synthesis’91 benchmarks
suite; the circuits have been selected to represent different
types, i.e., data dominated and control dominated ones. The
test sequences have been generated both randomly and
through a gate-level automatic test pattern generator
(Synopsys testgen). As a mean for measuring the
relationship between gate- and high-level coverage figures,
we adopted the following correlation function

GLHL

GLHL FCFCCov
σσ

),(

where Cov() denotes the covariance operator, while FCHL

(FCGL) is the set of high-level (gate-level) coverage figures
we recorded by varying the input sequence length. Finally,
σGL (σGL) is the standard deviation of the set of high-level
(gate-level) coverage figures.

Table 1. Fault models comparison

Circuit
type

Statement
coverage

Bit+condition
coverage

Data dominated 0.67 0.97

Control dominated 0.83 0.80

Table 1 summarizes the results we gathered during the
analysis of fault models, where bit+condition coverage
refers to the fault model obtained by combining bit
coverage and condition coverage as proposed in [8]. The
results show that, when the data-dominated circuits are
considered, the statement coverage is poorly correlated
with the gate-level fault coverage. Conversely, the
bit+condition coverage shows a higher correlation. As far
as the control-dominated circuits are concerned, we
observed a good correlation between both statement
coverage and bit+condition coverage with the gate-level
stuck-at one. These results indicate that bit+condition
coverage could be fruitfully used for evaluating the
goodness of a test set at the high level. Given two different
test sets, bit+condition coverage is able to estimate which
of the two sets could attain the higher gate-level stuck-at
fault coverage, before any synthesis step is performed.
Moreover, the prediction about the gate-level fault
coverage can be obtained independently on the optimization
parameters used for driving the synthesis step. Although
these preliminary results are promising, they pinpoint a
limitation of the available fault models as far as control
dominated circuits are considered. In this case, the
correlation between high-level and gate-level fault
coverage figures is still limited and should be improved.

Test Generation

This section presents two test vector generation
environments we developed to evaluate the quality of test
sequence generation in the early stages of the design cycle.
The first one attacks test generation from a purely
behavioral point of view and neglects all the information
that may be available about the final implementation. The
second approach is based on a hierarchical algorithm that
takes into account also information about the modules used
to implement the tested behavior.

High-level test generation
Following the high-level fault model analysis, where

the bit+condition coverage has been selected as reference
high-level fault model, we first developed a simple
automatic test vectors generation (ATPG) algorithm whose
task is to compute, at the high level, a set of test vectors
able to attain high gate-level stuck-at fault coverage. The
ATPG program is based on a Random Mutation Hill
Climber (RMHC) algorithm that, given an initial randomly-
generated solution, evaluates neighbor solutions in a
complete random order until an improvement is found.
When an improvement is found, the process is iterated over
the new solution. Usually, a RMHC algorithm stops after a
given amount of iterations. RMHC usually selects non-
worsening solutions; however, to avoid an endless
wandering in mesas (flat regions of the solution space), the
RMHC algorithm implemented here accepts a new solution
only if it represents an improvement of the current one.

In our algorithm a solution is a sequence of test
vectors; one test vector is applied to the circuit inputs per
clock cycle. Starting from an initial solution S, a new
solution S’ is computed by apply a random mutation
operator. This operator supports two types of mutations: it
complements one randomly selected bit within a randomly
selected vector of S, or it linearly increases the number of
vectors in S. The initial number of vectors in S is set to a
user-specified value. The number of iterations the RMHC
algorithm performs is also a user-specified parameter.
During each iteration, a fault simulator supporting
bit+condition coverage is used to measure the goodness of
solutions the RMHC computes.

For the purpose of our experiments, we adopted three
benchmarks:
• BIQUAD: it is an implementation of a bi-quadratic

filter, whose equation is the following:

2211

02211

bxbx

bxayayy

kk

kkkk

⋅+⋅

+⋅+⋅+⋅=

−−

−−

• FIR: it is an implementation of Finite Impulse
Response filter, expressed by the following equation
(N=16):

∑
=

−⋅=
N

i
ikik xay

0

• TLC: the benchmark implements a simple traffic light
controller.

The above two filters represent data-dominated
applications, while TLC represents an example of control-
dominated applications. The benchmarks are available as
VHDL and SystemC models that are coded according to
the design rule of the Synopsys Behavioral Compiler tool.
We synthesized two versions of each filter, one optimized
for speed (BIQUAD 1 and FIR 1 in Table 2) and the other
optimized for area (BIQUAD 2 and FIR 2 in Table 2). Due
to the benchmark nature, only one implementation for TLC
was synthesized.

The experimental results are reported in Table 2. We
used stuck-at fault model for measuring the gate-level fault
coverage and compared our results with the gate-level
ATPG tool testgen. The results show that by reasoning
only the behavior of a circuit we can generate useful test
sequences. The fault coverage obtained by the high-level
ATPG is comparable with coverage figures obtained at the
gate-level, while test generation time is reduced
significantly.

Table 2. Results of the high-level test generation algorithm.

High-level ATPG testgen

Design FC
[%]

Len
[#]

CPU
[s]

FC
[%]

Len
[#]

CPU
[s]

BIQUAD 1 68.27 287 2,139 37.06 154 10,817

BIQUAD 2 86.94 287 2,139 70.75 245 11,060

FIR 1 91.27 2,413 1,157 94.71 8,742 12,211

FIR 2 89.77 2,413 1,157 91.38 4,621 25,038

TLC 80.88 110 225 84.09 500 1,579

The results also show that in some cases there exists a
gap between the fault coverage figures attained by test
sequences generated purely on a high-level and those by the
gate-level ones. Therefore a possibility to improve the
high-level ATPG by integrating structural information to
the test generation process has been investigated and a
novel hierarchical test generation (HTG) algorithm has
been developed.

Hierarchical Test Generation
The main idea of a HTG technique [11] is to use

information from different abstraction levels while
generating tests. One of the main principles is to use a
modular design style, which allows to divide a larger
problem into several smaller subproblems and to solve
them separately. This approach allows generating test
vectors for the lower level modules based on different
techniques suitable for the respective entities. HTG has
been successfully used until now for hardware test
generation at the gate, logical and register-transfer levels.
Our HTG operates on the behavioral level and employs
constraint logic programming techniques with a decision
diagram (DD) based representation [12].

Figure 1 depicts an example of DD, describing the
behavior of a simple function. In this example, variable A
will be equal to IN1+2, if the system is in the state q=2
(Figure 1c). If this state is to be activated, condition IN1≥0
should be true (Figure 1.b) and in our terminology this is a
path activation constraint for activating a path to the
specified state (q=2). The DDs, extracted from a specifica-
tion, will be used as a computational model in our HTG
algorithm for symbolic path activation.

a) Specification
 (comments start with "--")

1,2

3

4

q' IN1 1

2

3

4

0

<00q

b) The control-flow DD
(q denotes the state variable
and q' is the previous state)

q
1

2

3

q
3

4

1,2

4

IN1 * 2

IN1 + 2

B*2

A'

IN1 * 29

A+43

B'

A B

c) The data-flow DD

if (IN1 < 0) then

 A := IN1 * 2; ------ q=1

else

 A := IN1 + 2; ------ q=2

endif;

B := IN1 * 29; ------ q=3
A := B * 2;
B := A + 43; ------ q=4

Figure 1. A decision diagram example

The HTG algorithm generates two types of tests, one
for testing the behavior of the system and another for
exploring information related to the final implementation of
the system. The first set is generated from pure behavioral
description based on certain code coverage metric [9],
which has also been discussed earlier. This test set targets
errors in branch selection (nonterminal nodes of the
control-flow DD). During the second test generation phase
the functional blocks (e.g., adders, multipliers and ALUs)
composing the behavioral model are identified (terminal
nodes of the data-flow DD), and suitable test vectors are
generated for the individual blocks. During the block-level
test generation phase each block is considered as an
isolated and fully controllable and observable entity; and a
gate-level test generation tool is used for this purpose. The
test vectors generated for the basic blocks are then justified
and their fault effects propagated in the behavioral model of
the circuit under test. In this way we can incorporate
accurate structural information into the high-level test
pattern generation environment while keeping propagation
and justification task still on a high abstraction level. In the
following the test pattern generation algorithm is described
in detail.

Conformity Test. For the nonterminal nodes of the
control-flow DD, conformity tests will be applied. The
conformity tests target errors in branch activation. For
example, in order to test nonterminal node IN1 (Figure 2),
one of the output branches of this node should be activated.
Activation of the output branch means activation of a
certain set of program statements. In our example,
activation of the branch IN1<0 will activate the branches in
the data-flow DD where q=1 (A:=X). For observability the
values of the variables calculated in all the other branches
of IN1 have to be distinguished from the value of the
variables calculated by the activated branch. In our
example, node IN1 is tested, in the case of IN1<0, if X≠Y.
The path from the root node of the control-flow DD to the
node IN1 has to be activated to ensure the execution of this
particular specification segment and the conditions
generated here should be justified to the primary inputs of
the module. This process will be repeated for each output
branch of the node. In the general case there will be n(n-1)
tests, for every node, where n is the number of output
branches.

q q'
0

...

IN1 1

2

<0

A q
1

2

X

Y

Figure 2. Conformity test

Testing Arithmetic Operators. One of the most
important parameters guiding the synthesis process is the
technology that will be used in the final implementation.
By defining the technology, we can have information about
the implementation of functional units that will be used in
the final design. Our hierarchical test generation algorithm
employs this structural information for generating tests.
Tests are generated by cooperation of high-level and low-
level test pattern generators as depicted in Figure 3. It is
performed one by one for every arithmetic operator given
in the specification.

We start by choosing a not tested operator from the
specification and employ a gate level ATPG to generate a
test pattern targeting structural faults in the corresponding
functional unit. In our approach a PODEM like ATPG is
used but in general case any gate-level test pattern
generation algorithm can be applied. If necessary,
pseudorandom patterns can be used for this purpose as
well. The test patterns, which are generated by our current
approach, can have some undefined bits (don’t cares). As
justification and propagation are performed at the
behavioral level by using symbolic methods these

 ≠

 ≠

Control-flow DD:

Data-flow DD:

undefined bits have to be set to a defined value. Selecting
the exact values is an important procedure since not all
possible values can be propagated through the environment
and it can therefore lead to the degradation of fault
coverage. A test vector that does not have any undefined
bits is thereafter forwarded to the constraint solver, where
together with the environmental constraints it forms a test
case. Solving such a test case means that the generated low-
level test vector can be justified till the primary inputs and
the fault effect is observable at the primary outputs. If the
constraint solver can not find an input combination that
would satisfy the given constraints, another combination of
values for the undefined bits has to be chosen and the
constraint solver should be employed again. This process is
continued until a solution is found or timeout occurs. If
there is no input combination that satisfies the generated
test case, the given low-level test pattern will be abandoned
and the gate-level ATPG will be employed again to
generate a new low-level test pattern. This task is continued
until the low-level ATPG can not generate any more
patterns.

The HTG environment is depicted in Figure 3. Our
HTG environment accepts as input a behavioral VHDL
specification. The VHDL code is translated into the DD
model, which is used as a mathematical platform for test
generation, and later into a Prolog model, which is used by
the constraint solver. In our approach we use a commercial
constraint solver SICStus [13]. The HTG algorithm
generates test cases and forwards them in form of
constraints to the constraint solver, which generates the
final test vectors. Propagation and justification of the gate-
level test patterns are performed by the constraint solver as
well.

Constraint Solver Interface

DD Model

DD2Prolog

Prolog DD model

Constraint Solver
(SICStus - external tool)

Test Vectors

VHDL2DD

Behavioral VHDL

Test Cases Generator

Test Cases

FU Library

Gate-level ATPG
(external tool)

 Figure 3. Our Hierarchical Test Generation Environment

We performed experiments on the DIFFEQ circuits
taken from the High Level Synthesis’91 benchmark suite.
The results are reported in Table 3, which shows that the

test sequences the hierarchical test vector generator
provides can be fruitfully used for testing stuck-at faults.
These results show that when moving test vector generation
toward lower levels of abstractions, where more detailed
information about the tested circuits are available, the
attained results in terms of fault coverage figures are
improved. The fault coverage attained by the hierarchical
ATPG is higher than that of the pure high-level ATPG,
while the fault coverage working at the gate level is the
highest. On the other hand, moving test generation towards
the higher levels of abstraction has positive effects on the
test generation time and on the test length that are both
significantly reduced.

Conclusion

We have analyzed some high-level fault models in
terms of the correlation they provide between high-level
fault coverage and gate-level stuck-at fault coverage. In
general, these fault models are not able to precisely foresee
the gate-level fault coverage, but can be fruitfully exploited
to rank test sequences according to their testability value to
guide the generation of efficient test sequences. Thanks to
this property, these fault models are suitable to be used
within automatic test generation algorithms. Based on the
adopted fault model we have demonstrated that test
sequences generated from high-level descriptions provide
good results when compared with gate-level ATPG in
terms of required CPU time, attained fault coverage and
obtained test length.

When moving from higher to lower levels of
abstraction information will become available to the ATPG
tool. A hierarchical test generation approach that takes into
account information from several abstraction levels will
therefore be able to generate test sequences with higher
fault coverage than those of a pure behavioral test
generator. Improvements in fault coverage can be obtained
by integrating structural information coming from lower
levels of abstractions, while still mainly working at the
behavioral level for test vector justification and
propagation. We have presented and demonstrated the
efficiency of such a hierarchical test generation technique,
which makes use of a constraint solving algorithm.

References

1 Moundanos, D., Abraham, J. A., Hoskote, Y. V., “A
Unified Framework for Design Validation and
Manifacturing Test”, Proc. IEEE International Test
Conference, 1996, pp. 875-884.

2. Ferrandi, F., Fummi, F., Sciuto, D., “Implicit Test
Generation for Behavioral VHDL Models”, Proc. IEEE
International Test Conference, 1998, pp. 587-596.

3. Fallah, F., Ashar, P., Devadas, S., “Simulation Vector
Generation from HDL Descriptions for Observability-
Enhanced Statement Coverage”, Proc. Design
Automation Conference, 1999, pp. 666-671.

4. Chiusano, S., Corno, F., Prinetto, P., “Exploiting
Behavioral Information in Gate level ATPG”, JETTA:

The Journal of Electronic Testing: Theory and
Applications, Kluwer Academic Publishers, No. 14,
1999, pp. 141-148.

5. Rudnick, E.M., Vietti, R., Ellis, A., Corno, F., Prinetto,
P., Sonza Reorda, M., “Fast Sequential Circuit Test
Generation Using High level and Gate level
Techniques”, Proceedings IEEE European Design
Automation and Test Conference, 1998, pp. 570-576.

6. Corno, F., Sonza Reorda, M., Squillero, G., “High level
Observability for Effective High level ATPG”, Proc.
18th IEEE VLSI Test Symposium, 2000, pp. 411-416.

7. Beizer B., “Software Testing Techniques”, (2nd ed.).
Van Nostrand Rheinold, New York, 1990.

8. Ferrandi, F., Ferrara, G., Scuito, D., Fin, A., Fummi, F.,
“Functional Test Generation for Behaviorally
Sequential Models”, Proc. Design, Automation and Test
in Europe, 2001, pp. 403-410.

9. Jervan, G., Eles, P., Peng, Z., “A Hierarchical Test
Generation Technique for Embedded Systems”, Proc.
Electronic Circuits and Systems Conference, 1999,
pages 21-24.

10. Lajolo, M., Lavagno, L., Rebaudengo, M., Sonza
Reorda, M., Violante, M., “Behavioral level Test Vector
Generation for System-on-Chip Designs”, Proc. High
level Design Validation and Test Workshop, 2000, pp.
21-26.

11. Murray, B. T., Hayes J. P., “Hierarchical Test
Generation Using Precomputed Tests for Modules”,
Proc. International Test Conference, 1988, pp. 221-229.

12. Ubar R., ”Test Synthesis with Alternative Graphs,”
IEEE Design and Test of Computers, Vol. 13, No. 1,
1996, pp. 48-57.

13. SICStus Prolog User’s Manual, Swedish Institute of
Computer Science, 2001.

14. Santos, M.B.; Goncalves, F.M.; Teixeira, I.C.; Teixeira,
J.P., "RTL-based functional test generation for high
defects coverage in digital SOCs", Proc. IEEE European
Test Workshop, 2000, pp. 99-104.

Table 3. Comparing high-level, hierarchical and gate-level ATPGs

High-level ATPG
High-level

Hierarchical ATPG
Gate-level ATPG

testgen

Gate-level
FC
[%]

Test
Len
[#]

CPU

[s]

Gate-level
FC
[%]

Test
Len
[#]

CPU

[s]

Gate-
level FC

[%]

Test Len
[#]

CPU

[s]

DIFFEQ 1 97.25 553 954 98.05 199 468 99.62 1,177 4,792

DIFFEQ 2 94.57 553 954 96.46 199 468 96.75 923 4,475

