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Abstract 

The technological development is enabling the production of in-
creasingly complex electronic systems. All such systems must be 
verified and tested to guarantee their correct behavior. As the 
complexity grows, testing has become one of the most significant 
factors that contribute to the total development cost. In recent 
years, we have also witnessed the inadequacy of the established 
testing methods, most of which are based on low-level represen-
tations of the hardware circuits. Therefore, more work has to be 
done at abstraction levels higher than the classical gate and reg-
ister-transfer levels. At the same time, the automatic test 
equipment based solutions have failed to deliver the required 
test quality. As a result, alternative testing methods have been 
studied, which has led to the development of built-in self-test 
(BIST) techniques.  

In this thesis, we present a novel hybrid BIST technique that 
addresses several areas where classical BIST methods have 
shortcomings. The technique makes use of both pseudorandom 
and deterministic testing methods, and is devised in particular 
for testing modern systems-on-chip. One of the main contribu-
tions of this thesis is a set of optimization methods to reduce the 
hybrid test cost while not sacrificing test quality. We have devel-



 

oped several optimization algorithms for different hybrid BIST 
architectures and design constraints. In addition, we have devel-
oped hybrid BIST scheduling methods for an abort-on-first-fail 
strategy, and proposed a method for energy reduction for hybrid 
BIST. 

Devising an efficient BIST approach requires different design 
modifications, such as insertion of scan paths as well as test pat-
tern generators and signature analyzers. These modifications re-
quire careful testability analysis of the original design. In the 
latter part of this thesis, we propose a novel hierarchical test 
generation algorithm that can be used not only for manufactur-
ing tests but also for testability analysis. We have also investi-
gated the possibilities of generating test vectors at the early 
stages of the design cycle, starting directly from the behavioral 
description and with limited knowledge about the final imple-
mentation.  

Experiments, based on benchmark examples and industrial 
designs, have been carried out to demonstrate the usefulness and 
efficiency of the proposed methodologies and techniques.  
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Chapter 1 

Introduction 

Jack S. Kilby devised the first integrated circuit (IC) almost five 
decades ago in 1958. Since that day, the semiconductor industry 
has distinguished itself by the rapid pace of improvement in its 
products. The most frequently cited trend is related to the inte-
gration level and is usually expressed via Moore’s Law (i.e., the 
number of components per chip doubles every 18 months) [124]. 
The minimum feature sizes used to fabricate integrated circuits 
have decreased exponentially. The most significant trend from 
the consumers’ point of view is the decreasing cost-per-function, 
which has led to significant improvements of productivity and 
quality of life through the proliferation of computers, electronic 
communication, and consumer electronics. 

Until recently, reliability of electronic devices was mainly a 
concern in safety critical systems. In these systems, such as 
automotive or medical applications, failures may lead to catas-
trophic results and any failure should obviously be avoided. 
However, due to several reasons, reliability is becoming increas-
ingly important also in other application domains, such as con-



CHAPTER 1 

4 

sumer electronics, desktop computing, telecommunication sys-
tems and others. This is mainly because electronic systems are 
omnipresent in almost every modern system and any failure 
might lead to negative effects, in terms of financial loss or de-
creased comfort of life. 

In order to achieve a desired level of reliability it is important 
to find errors before encountering their consequences. Due to the 
complexity of modern systems and multitude of problems related 
to error detection, these activities are usually carried out at vari-
ous stages of the design and production flow and target different 
sub-problems. For example, one has to make sure that we have 
designed the correct system, as it has to satisfy certain proper-
ties or conditions, which may be either general or specific to the 
particular system, directly derived from the initial specification. 
In addition, we have to check whether we have designed our sys-
tem correctly, i.e. we have to obtain confidence in the designed 
system’s ability to deliver the service in accordance with an 
agreed-upon system specification. In general, these tasks are 
called verification [108]. Similarly, we also have to certify that 
the manufactured hardware system corresponds to its original 
specification and no faults have been introduced during the 
manufacturing phase. Such activity, commonly called testing [3], 
is characterized by execution of the system while supplying it 
with inputs, often using dedicated automatic test equipment 
(ATE). Testing is also used to guarantee that the system contin-
ues to work according to its specifications, as it can detect many 
field failures caused by aging, electromagnetic interference, envi-
ronmental extremes, wear-out and others. 

This thesis addresses the problem of hardware testing, in par-
ticular we will focus on issues related to testing of digital hard-
ware.  
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1.1. Digital Systems Design and  
Manufacturing Flow 

The development of a very large scale integrated (VLSI) system 
can typically be divided into three main phases: specification and 
synthesis, implementation, and manufacturing, as depicted in 
Figure 1.1. During the specification and synthesis phase, the 
functionality of the circuit is described. This can be done at dif-
ferent levels of abstraction [47]: behavioral, register-transfer 
(RT) or gate level, using VHDL, Verilog or any other hardware 
description language (HDL) [48]. The transformations between 
different abstraction levels are usually performed by synthesis 
algorithms. Typically, the following synthesis steps can be dis-
tinguished (from the highest abstraction level downwards) [120]: 

1. System-level synthesis: The specification of a system at the 
highest level of abstraction is usually given by its func-
tionality and a set of implementation constraints. The 
main task at this step is to decompose the system into sev-
eral subsystems (communicating processes) and to provide 
a behavioral description for each of them, to be used as an 
input for behavioral synthesis.  

2. Behavioral synthesis starts out with a description specify-
ing the computational solution of the problem, in terms of 
operations on inputs in order to produce the desired out-
puts. The basic elements that appear in such descriptions 
are similar to those of programming languages, including 
control structures and variables with operations applied to 
them. Three major subtasks are:  

− Resource allocation (selection of appropriate functional 
units), 

− Scheduling (assignment of operations to time slots), 
and 

− Resource assignment (mapping of operations to func-
tional units). 
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Figure 1.1. Design and production flow. 

The output of the behavioral synthesis process is a descrip-
tion at the register-transfer level (RTL), consisting of a 
datapath and a controller. The datapath, which typically 
consists of functional units (FUs), storage and intercon-
nected hardware, performs operations on the input data in 
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order to produce the required output. The controller con-
trols the type and sequence of data manipulations and is 
usually represented as a state-transition table, which can 
be used in the later synthesis stages for controller synthe-
sis.  

3. RT-level synthesis then takes the RTL description pro-
duced by the previous step, which is divided into the 
datapath and the controller, as input. For the datapath, an 
improvement of resource allocation and assignment can be 
done, while for the controller actual synthesis is performed 
by generating the appropriate controller architecture from 
the input consisting of states and state transitions.  

4. Logic synthesis receives as input a technology independent 
description of the system, specified by blocks of combina-
tional logic and storage elements. It deals with the optimi-
zation and logic minimization problems. 

During the implementation phase, the structural netlist of 
components, implementing the functions described in the specifi-
cation, is generated and the design is transformed into layout 
masks. The transformation from the gate level to the physical 
level is known as technology mapping. The input of this step is a 
technology independent multi-level logic structure, a basic cell 
library, and a set of design constraints. During this phase appro-
priate library cells of a given target technology are selected for 
the network of abstract gates, produced as a result of logic syn-
thesis, concluding thus the synthesis pipeline. The resulting lay-
out gives designers possibility to extract design parameters, such 
as the load resistance and capacitance that are used for timing 
verification. Parameter extraction is becoming significantly im-
portant in modern deep submicron technologies. 

At manufacturing stage the layout masks are used to produce 
the final circuitry in terms of a die on a wafer. The wafers are 
tested and all defective dies are identified. Good dies are pack-
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aged, tested and, finally, all good chips are shipped to the cus-
tomers.  

The latest advance in microelectronics technology has enabled 
the integration of an increasingly large number of transistors 
into a single die. The increased complexity together with reduced 
feature sizes means that errors are more likely to appear. For 
improving reliability, two types of activities are normally used: 
verification and testing (Figure 1.1). According to the current 
state of the art, for verification, designs are usually simulated on 
different abstraction levels, prior to their implementation in sili-
con [44], [140]. In some situations, verification is also performed 
after the first prototype of the chip is available. As for complex 
designs exhaustive simulation is practically infeasible, simula-
tion based verification gives only a certain level of assurance 
about the design correctness [34]. One of the alternatives would 
be formal verification that uses mathematical reasoning for prov-
ing correctness of designs [63], [100]. This approach, with few ex-
ceptional methods, such as equivalence checking [76], has not 
become the mainstream, mainly due to the lack of appropriate 
tools.  

Testing verifies that the manufactured integrated circuit cor-
responds to the intended function of the implementation. Its 
purpose is not to verify the correctness of the design; on the con-
trary, it verifies the correctness of the manufacturing process. It 
is performed on actual dies or chips, using test patterns that are 
generated to demonstrate that the final product is fault-free. In 
addition, testing can also be used during the latter stages of the 
product life cycle, in order to detect errors due to aging, envi-
ronment or other factors. 

In order to ease the complexity of the test pattern generation 
process specific hardware constructs, usually referred to as de-
sign-for-testability structures, are introduced into the circuits. 
Testability issues are currently becoming incorporated into the 
standard design-flows, although several testability techniques, 
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like scan-chain insertion and self-test techniques are well inves-
tigated and ready to be used.  

Testing is one of the major expenses in the integrated circuit 
(IC) design and manufacturing process, taking up to 35% of all 
costs. Test, diagnosis and repair costs of complex electronic sys-
tems reach often 40-50% of the total product realization cost and 
very soon the industry might face the challenge that the test of a 
transistor is more expensive than manufacturing it [153]. 

1.2. Motivation 

As mentioned before, hardware testing is the process to check 
whether an integrated circuit is error-free. One of the reasons for 
errors are defects. As the produced circuits may contain different 
types of defects that are very complex, a model has to be defined 
to represent these defects to ease the test generation and test 
quality analysis problems. This is usually done at the logic level. 
Test patterns are then generated based on a defined fault model 
and applied to the manufactured circuitry. Most of the existing 
hardware testing techniques work at the abstraction levels 
where information about the final implementation architecture 
is already available. It has been proven mathematically that the 
generation of test patterns based on structural fault models is an 
NP-complete problem [80] and therefore different heuristics are 
usually used. Due to the increasing complexity of systems, these 
established low-level methods are not sufficient and more work 
has to be done at abstraction levels higher than the classical 
gate- and RT-level in order to ensure that the final design is 
testable and the time-to-market schedule is followed.  

More and more frequently, designers also introduce special 
structures, called design for testability structures, during the de-
sign phase of a digital system for improving its testability. Sev-
eral such approaches have been standardized and widely ac-
cepted. However, all those approaches entail an overhead in 
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terms of additional silicon area and performance degradation. 
Therefore it will be highly beneficial to develop DFT solutions 
that not only are efficient in terms of testability but also require 
minimal amount of overhead.  

In addition, various researches have shown that the switching 
activity, and consequently the dynamic power dissipation, during 
the test mode, may be several times higher than during the func-
tional mode [32], [174]. Self-tests, regularly executed in portable 
devices, can hence consume significant amounts of energy and 
consequently reduce the lifetime of batteries [52]. Excessive 
switching activity during the test mode can also cause problems 
with circuit reliability [54]. The increased current levels can lead 
to serious silicon failure mechanisms (such as electromigration 
[115]) and may need expensive packages for removal of the ex-
cessive heat. Therefore, it is important to find ways for reducing 
power dissipation during testing. 

Most DFT techniques require external test equipment for test 
application. Built-in self-test (BIST) technique, on the other 
hand, implements all test resources inside the chip. This tech-
nique does not suffer from the bandwidth limitations that exist 
for external testers and allows applying at-speed tests. The dis-
advantage of this approach is that it cannot guarantee suffi-
ciently high fault coverage and may lead to very long test se-
quences. Therefore, it is important to address the weakness of 
the classical BIST techniques in order to utilize its potentials 
completely.  

1.3. Problem Formulation  

The previous section has presented the motivation for our work 
and given an indication of the current trends in the area of digi-
tal systems testing. The aim of the current thesis is twofold. 
First, we would like to propose a BIST strategy that can be used 
for reducing the testing effort for modern SOC designs and, sec-
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ondly, we are interested in performing test pattern generation as 
early as possible in the design process. 

Since BIST structures are becoming more and more common 
in modern complex electronic systems, more emphasis should be 
put into minimization of costs caused by insertion of those struc-
tures. Our objective is to develop a hybrid BIST architecture that 
can guarantee high test quality by combining pseudorandom and 
deterministic test patterns, while keeping the requirements for 
BIST overhead low. We are particularly interested in methods to 
find the optimal combination of those two test sets as this can 
lead to significant reductions of the total test cost. This requires 
development of optimization methods that can take into account 
different design constraints imposed by the process technologies, 
such as tester memory, power dissipation, total energy and yield.  

To deal with test pattern generation problem in early stages of 
the design flow we would like to develop a method that allows 
generation of test vectors starting directly from an implementa-
tion independent behavioral description. The developed method 
should have an important impact on the design flow, since it al-
lows us to deal with testability issues without waiting for the 
structural description of the system to be ready. For this purpose 
high-level fault models and testability metrics should also be in-
vestigated in order to understand the links between high-level 
and low-level testability. 

1.4. Contributions 

The main contributions of this thesis are as follows: 

• A hybrid built-in self-test architecture and its optimi-
zation. We propose to use, for self-test of a system, a hybrid 
test set which consists of a limited number of pseudorandom 
and deterministic test vectors. The main idea is to apply a 
limited number of pseudorandom test vectors, which is then 
followed by the application of a stored deterministic test set, 
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specially designed to shorten the pseudorandom test cycle 
and to target the random resistant faults. For supporting 
such a test strategy, we have developed several hybrid BIST 
architectures that target different test scenarios. As the test 
lengths of the two test sequences are one of the very impor-
tant parameters in the final test cost, we have to find the 
most efficient combination of those two test sets, while not 
sacrificing the test quality. In this thesis, we propose several 
different algorithms for calculating possible combinations 
between pseudorandom and deterministic test sequences 
while taking into account different design constraints, such 
as tester memory limitations and power dissipation. In addi-
tion, we have also developed methods where the information 
about the quality of the manufacturing process can be incor-
porated into the optimization algorithms. 

• A novel hierarchical test pattern generation algo-
rithm at the behavioral level. We propose a test genera-
tion algorithm that works at the implementation-
independent behavioral level and requires only limited 
knowledge about the final implementation. The approach is 
based on a hierarchical test generation method and uses two 
different fault models. One fault model is used for modeling 
errors in the system behavior and the other is related to the 
failures in the final implementation. This allows us to per-
form testability evaluation of the resulting system at the 
early stages of the design flow. In addition, it can identify 
possible hard-to-test modules of the system without waiting 
for the final implementation to be available. We perform ex-
periments to show that the generated test vectors can be 
successfully used for detecting stuck-at faults and that our 
algorithm, working at high levels of abstraction, allows sig-
nificant reduction of the test generation effort while keeping 
the same test quality. 



INTRODUCTION 

 13 

1.5. Thesis Overview 

The rest of the thesis is structured as follows. Chapter 2 intro-
duces the topic of digital systems test and design for testability. 
We cover typical failure mechanisms and methods for fault mod-
eling and introduce concepts of automatic test pattern generation 
and different test application methods. Thereafter an overview of 
the most common design for test methods are given, followed by 
a discussion of emerging problems in the area of SOC testing. 

Part II of the thesis is dedicated to the hybrid BIST tech-
niques. In Chapter 3 we discuss the problems related to classical 
BIST schemes and give an overview of different methods devised 
for its improvement. Chapter 4 gives an overview of the proposed 
hybrid BIST approach, followed, in Chapter 5, by test cost mini-
mization methods for single core designs. In Chapter 6 different 
algorithms for hybrid BIST time minimization for SOC designs 
are presented. In the first part of this chapter we concentrate on 
parallel hybrid BIST architectures while in the latter part of the 
chapter the test pattern broadcasting based architecture is cov-
ered. Chapter 7 introduces possibilities for hybrid BIST energy 
minimization and in Chapter 8 algorithm for hybrid BIST sched-
uling in an abort-on-first-fail environment is presented. In every 
chapter, the proposed algorithms are described together with ex-
perimental results to demonstrate the feasibility and usefulness 
of the algorithms. 

The third part of this thesis covers the proposed hierarchical 
test generation algorithm. It starts with a detailed discussion of 
behavioral level decision diagrams used to capture a design at 
several levels of abstraction. Thereafter we describe selected 
fault models and present our test pattern generation algorithm. 
The chapter concludes with experimental results where we dem-
onstrate the efficiency of our approach for generating manufac-
turing tests. 

Part IV concludes this thesis and discusses possible directions 
for future work. 
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Chapter 2 

Testing and  
Design for Testability

The aim of this chapter is to provide background for the thesis. It 
starts with an introduction to electronic systems testing. We will 
go through different fault types of complementary metal-oxide 
semiconductor (CMOS) integrated circuits and describe the ways 
to model them. Thereafter the chapter continues with the de-
scription of different testing and design-for-testability tech-
niques. We give a short overview of the automatic test pattern 
generation (ATPG) algorithms and strategies and describe some 
systematic design modification techniques that are intended for 
improving testability, such as scan-chain insertion and built-in 
self-test (BIST).  

The shift toward submicron technologies has enabled IC de-
signers to integrate entire systems into a single chip. This new 
paradigm of system-on-chip (SOC) has introduced a magnitude of 
new testing problems and therefore at the end of this chapter 
emerging problems in SOC testing will also be described. We will 
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in particular focus on power dissipation, test access and test 
scheduling problems. 

2.1. Introduction to Hardware Testing 

The testing activities for hardware systems can be classified ac-
cording to many criteria. Generally speaking, we can distinguish 
two different types of testing: parametric testing and functional 
testing.  

1. Parametric Testing measures electrical properties of pin 
electronics. This is done to ensure that components meet 
design specification for delays, voltages, power, etc. One of 
the parametric testing methodologies that has gained re-
cently much attention is IDDq testing, a parametric tech-
nique for CMOS testing. IDDq testing monitors the cur-
rent, IDD, a circuit draws when it is in a quiescent state. It 
is used to detect faults such as bridging faults, transistor 
stuck-open faults, gate oxide leaks, which increase the 
normally low IDD [84]. IDDq testing can detect some de-
fects that are not detectable with other testing techniques 
and the results of IDDq testing can be used for reliability 
estimation. 

2. Functional Testing aim at finding faults which cause a 
change in the functional behavior of the circuit. It is used 
in conjunction with the manufacturing process in order to 
ensure that only error-free chips are delivered to the cus-
tomers. Some forms of functional testing can be used also 
for detecting faults that might occur during the chip life-
time, due to aging, environment and other factors. 

Although highly important, this thesis will not cover aspects 
related to parametric testing and will focus solely on aspects re-
lated to functional testing of hardware circuits and systems. 
Therefore, also the word testing is used throughout this thesis to 



TESTING AND DESIGN FOR TESTABILITY 

 17 

denote functional testing of manufactured hardware systems, 
unless specified otherwise. 

The purpose of hardware testing is to confirm that the func-
tion of each manufactured circuit corresponds to the function of 
the implementation [3]. During testing, the circuitry is exercised 
by applying the appropriate stimuli and its resulting responses 
are analyzed to determine whether it behaved correctly. If verifi-
cation has assured that the design corresponds to its specifica-
tion, then the incorrect behavior can be caused by defects intro-
duced during the manufacturing process. There are many 
different types of defects, such as aging, misalignment, holes, 
contamination and others [130]. The diversity of defects leads to 
the very complex testing process, as the complexity of physical 
defects does not facilitate mathematical treatment of testing. 
Therefore, an efficient test solution requires an approach, where 
defects can be modeled by capturing the effect of the defect on 
the operation of the system at certain level of abstraction. This is 
called fault modeling. The most common alternative is to model 
faults at the logic level, such as single stuck-at (SSA) fault model. 
However, the increasing complexity of electronic systems neces-
sitates the use of fault models that are derived from descriptions 
at higher abstraction levels, such as register-transfer (RT) and 
behavioral level. 

After a fault model has been devised, efficient test stimuli can 
be generated by using an ATPG program that is applied to the 
circuit under test (CUT). However, this might not always be fea-
sible, mainly because of the complexity of the testing process it-
self but also due to the complexity of the CUTs. Therefore, in-
creasingly often designers introduce special structures, called 
design for testability structures, during the design phase of a 
digital system. The purpose of these structures is to make test 
pattern generation and test application easier and more efficient. 
Examples of typical DFT methods include scan-chain insertion 
and BIST. 
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In the following, we are going to describe these basic concepts 
of digital hardware testing in more detail. We will give the back-
ground needed for better understanding of the thesis and intro-
duce the state-of-the-art in the areas of the thesis contributions. 

2.2. Failures and Fault Models 

A typical 200-mm wafer in 0.25-µm CMOS technology can poten-
tially contain a million printed geometries—the typically rectan-
gular shapes that are the layout of transistors and the connec-
tions between them—in both x and y directions. This amounts to 
about 1012 possible geometries on each printed layer of a wafer. A 
few years back a chip typically had about six metal layers and a 
total number of lithography layers over 20 [130]. In 2004, we had 
already mass-market products produced in 90-nm technology, us-
ing 300-mm wafers with 7 interconnect layers [1]. Errors could 
arise in any geometry on any layer, so the possible number of de-
fects is enormous. 

Chip manufacturing is performed in multiple steps. Each of 
those steps, such as depositing, conducting, and insulating mate-
rial, oxidation, photolithography, and etching [151], may intro-
duce defects. Therefore, in an integrated circuit (IC) we can ob-
serve a wide range of possible defects. These include particles 
(small bits of material that might bridge lines, Figure 2.1), incor-
rect spacing (variations, which may short a circuit), incorrect im-
plant value (due to machine error), misalignment (of layers), 
holes (exposed etched area), weak oxides (that might cause gate 
oxide breakdown), and contamination (unwanted foreign mate-
rial) [130]. On circuit level, these defects appear as failure 
modes. Most common of them are shorts, opens and parameter 
degradations. However, at this low level of abstraction testing is 
still practically infeasible.  
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Figure 2.1. An example of a defect (© IBM) 

At the logical level, the effects of failure modes appear as in-
correct signal values and in order to device efficient testing 
methods the effects of different failures should be captured in dif-
ferent fault models. The fault model does not necessarily have to 
capture the exact effect of the defect; rather it has to be useful in 
detecting the defects. 

2.2.1. Stuck-At Fault Model 

The earliest and most well-known fault model is the single 
stuck-at (SSA) fault model [38] (also called single stuck line 
(SSL) fault model), which assumes that the defect will cause a 
line in the circuit to behave as if it is permanently stuck at a 
logic value 0 (stuck-at-0) or 1 (stuck-at-1). This means that with 
the SSA fault model it is assumed that the elementary compo-
nents are fault-free and only their interconnects are affected [3]. 
This will reduce the number of faults to 2n, where n is the num-
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ber of lines on which SSA faults can be defined. Experiments 
have shown that this fault model is useful (providing relatively 
high defect coverage, while being technology-independent) and 
can be used even for identifying the presence of multiple faults 
that can mask each other’s impact on the circuit behavior. The 
possibility to analyze the behavior of the circuit using Boolean 
algebra has contributed to research in this domain very much. 
There are several approaches to identify test vectors using 
purely Boolean-algebraic techniques, search algorithm based 
techniques or techniques based on the combination of the two. 
Nevertheless, there are also several problems related to the SSA 
fault model, which become more obvious with the growth of the 
size of an IC. The main problem lies in the fact that the compu-
tation process to identify tests can be extremely resource and 
time intensive and, additionally, the stuck-at fault model is not 
good at modeling certain failure modes of CMOS, the dominant 
IC manufacturing technology at the present time. 

The SSA fault model assumes that the design contains only 
one fault. However, with decreased device geometry and in-
creased gate density on the chip, the likelihood is greater that 
more than one SSA fault can occur simultaneously and they may 
mask each other in such a way that the SSA test vectors cannot 
detect them. Therefore, it may be necessary to assume explicitly 
multiple stuck-at faults as well. 

Despite all its shortcomings, the stuck-at fault model has been 
the dominant fault model for several decades, and continues to 
be dominant even today, for both its simplicity and its demon-
strated utility. Therefore, also in this thesis we are going to dis-
cuss testing in the context of testing for single stuck-at (SSA) 
fault model and the required fault coverage refers to stuck-at 
fault coverage. 
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2.2.2. Other Structural Fault Models 

Although the SSA fault model is widely used both in academia 
and in industry, it is evident that the SSA fault model does not 
cover all possible defects. During recent years, several other fault 
models have gained popularity, such as bridging faults, shorts 
and open faults. However, these fault models still cannot address 
all the test issues with CMOS circuits. As a solution to this prob-
lem, two technologies have been proposed: Inductive fault analy-
sis (IFA) [145] and inductive contamination analysis (ICA) [101]. 
These techniques present a closer relationship between physical 
defects and fault models. The analysis of a fault is based on ana-
lyzing the given manufacturing process and layout of a particu-
lar circuit. 

A completely different aspect of fault model based testing is 
testing for delay faults. An IC with delay faults operates cor-
rectly at sufficiently low speed, but fails at rated speed. Delay 
faults can be classified into gate delay faults (the delay fault is 
assumed to be lumped at some gate output) and path delay faults 
(the delay fault is the result of accumulation of small delays as a 
signal propagates along one or more paths in a circuit). 

2.2.3. High-Level Fault Models 

When test issues are addressed at an abstraction level higher 
than the traditional gate-level, the first problem that must be 
addressed is the identification of a suitable high-level fault 
model. Most of the cited approaches rely on high-level fault mod-
els for behavioral HDL descriptions that have been developed by 
the current practice of software testing [14], and extend them to 
cope with hardware descriptions. Several authors have proposed 
alternative fault models. Nevertheless, a reference fault model 
playing, at the behavioral level, the same role the well-known 
SSA is playing at the gate level is still missing. 

By working on system models that hide the detailed informa-
tion gate-level netlists capture, the high-level fault models are 
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not able to precisely foresee the gate-level fault coverage, which 
is normally used as the reference measure to quantify a circuit’s 
testability. Nevertheless, they can be exploited to rank test se-
quences according to their testability value. The most common 
high-level fault models proposed in literature as metrics of the 
goodness of test sequences when working at higher levels of ab-
straction (RT level and behavioral level) include the following: 

• Statement coverage: this is a well-known metric in the soft-
ware testing field [14] indented to measure the percentage 
of statements composing a model that are executed by a set 
of given test patterns. Further improvements of this metric 
are the Branch coverage metric, which measures the per-
centage of branches of a model that are executed by the 
given test patterns, and the Path coverage metric which 
measures the percentage of paths that are traversed by the 
given test patterns, where a path is a sequence of branches 
that should be traversed for going from the start of the 
model description to its end. 

• Bit coverage: in this model [42], [107] it is assumed that 
each bit in every variable, signal or port in the model can be 
stuck to zero or one. The bit coverage measures the percent-
age of stuck-at bits that are propagated to the model outputs 
by a given test sequence.  

• Condition coverage: the model is proposed in [42] and it is 
intended to represent faults located in the logic implement-
ing the control unit of a complex system. The authors as-
sume that each condition can be stuck-at true or stuck-at 
false. Then, the condition coverage is defined as the per-
centage of stuck-at conditions that are propagated to the 
model outputs by a given test sequence. This model is used 
in [42] together with bit coverage for estimating the testabil-
ity of complex circuits. 

• Mutation testing [31] concentrates on selecting test vectors 
that are capable to distinguish a program from a set of 
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faulty versions or mutants. A mutant is generated by inject-
ing a single fault into the program. For example, if we have 
the expression: 

X := (a + b) – c; 

To rule out the fault that the first “+” is changed to “–”, b 
must not be 0 (because a + 0 = a – 0 and this fault cannot be 
detected). Additionally, to rule out the fault that instead of 
“+” there is “×”, we have to assure that a + b ≠ a × b.  

All these fault models target faults in the circuit’s behavior, 
not in its structure. For targeting errors in the final implementa-
tion, it is very important to establish the relationship between 
the high-level fault models and the lower level ones. This has 
been done so far only experimentally (e.g. [90]) and there are no 
systematic methods currently available. 

2.3. Automatic Test Pattern Generation 

Digital systems are tested by applying appropriate stimuli and 
checking the responses. Generation of such stimuli together with 
calculation of their expected responses is called test pattern gen-
eration. Test patterns are in practice generated by an automatic 
test pattern generation (ATPG) tool and typically applied to the 
circuit using automatic test equipment (ATE). Due to several 
limitations of ATE, there exist approaches where the main func-
tions of the external tester have been moved onto the chip. Such 
DFT practice is generally known as BIST.  

With the evolution of test technology, various techniques have 
been developed for IC testing.  

Exhaustive test: The most straightforward approach, where all 
possible input combinations are generated and applied to the 
CUT. Exhaustive test set is easy to generate and guarantees 
100% fault coverage for combinatorial circuits. However, for an 
n-input combinational circuit the number of possible test vectors 
is 2n and therefore this approach is practically infeasible for large 
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circuits. As an example, it takes approx. 6 centuries to exhaus-
tively test a 32-bit adder at a speed of 1 GHz (264 ≈ 1,84 × 1019 test 
patterns).  

Pseudo-exhaustive test: The CUT is divided into smaller parts 
and every part is tested exhaustively [119]. This type of parti-
tioning results in much smaller number of test vectors, but 
pseudo-exhaustive testing might still be infeasible with systems 
that are more complex and the hardware implementation of the 
pseudo-exhaustive test generator is difficult. 

Pseudorandom test: A low-cost IC test solution, where test pat-
terns are generated randomly. The process however is not truly 
random, as patterns are generated by a deterministic algorithm 
such that their statistical properties are similar to a randomly se-
lected test set. The advantage of this approach is the ease of pat-
tern generation, as the approach usually does not take into ac-
count the function or the structure of the circuit to be tested. The 
clear disadvantage of pseudorandom testing is the size of the gen-
erated test set (it might be several orders of magnitude larger 
than the same quality deterministic test set). And, due to the size, 
determining the quality of a test is problematic. Another difficulty 
is due to the so-called random-pattern-resistant or hard-to-detect 
faults that require a different approach than pseudorandom test-
ing [37]. This problem will be discussed in conjunction with BIST 
later in this chapter.  

There are several methods for pseudorandom test pattern gen-
eration. It is possible to use a software program, but more wide-
spread methods are based on linear feedback shift registers 
(LFSR). An LFSR has a simple, regular structure and can be 
used for test pattern generation as well as for output response 
analysis. LFSRs are frequently used for on-chip test pattern gen-
eration in BIST environments and they will be discussed at a 
greater length later in the thesis.  

Deterministic test: Deterministic tests are generated based on 
a given fault model and the structure of the CUT. This approach 
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is sometimes also referred to as fault-oriented or structural test 
generation approach. As a first step of the test generation proc-
ess, the structure of the CUT will be analyzed and a list of all 
possible faults in the CUT will be generated. Thereafter, the 
tests are generated using an appropriate test pattern generation 
algorithm. The typical process of a structural test generation 
methodology is depicted in Figure 2.2.  

Generate a test for the fault (ATPG)

Select an uncovered fault

Define a Target Fault List (TFL)

Determine other faults covered
(Fault Simulation)

Are all TFL faults covered

Done

Yes

No

 

Figure 2.2.  Structural test generation. 

Deterministic test pattern generation belongs to a class of 
computationally difficult problems, referred to as NP-complete 
[80]. Several heuristics have been developed to handle test gen-
eration for relatively large combinational circuits in a reasonable 
time. These include the D-algorithm [139], the path-oriented de-
cision-making (PODEM) algorithm [60], and the fan-oriented test 
generation (FAN) algorithm [45]. 

Test generation for sequential circuits is more difficult than 
for combinational circuits [73], [121]. There exist methods for 
test pattern generation for relatively small sequential circuits 
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[27], [131], but for large sequential circuits test generation re-
mains basically an unsolved problem, despite rapid increase of 
computational power. A possible solution can be found by moving 
to higher levels of abstraction and using more advanced test gen-
eration methods, like hierarchical test generation. Promising re-
sults in this domain have been reported in [136]. 

2.4. Test Generation at Higher Levels of 
Abstraction 

While the design practice is quickly moving toward higher levels 
of abstraction, test issues are usually considered only when a de-
tailed description of the design is available, typically at the gate 
level for test sequence generation and at RT-level for design for 
testability structure insertion. 

Recently intensive research efforts have been devoted to devise 
solutions tackling test sequence generation in the early design 
phases, mainly at the RT level, and several approaches have 
been proposed. Most of them are able to generate test patterns of 
good quality, sometimes comparable or even better than those 
produced by gate-level ATPG tools. However, lacking general ap-
plicability, these approaches are still not widely accepted by the 
industry. The different approaches are based on different as-
sumptions and on a wide spectrum of distinct algorithmic tech-
niques. Some are based on extracting from a behavioral descrip-
tion the corresponding control machine [125] or the symbolic 
representation based on binary decision diagrams [41], while 
others also synthesize a structural description of the data path 
[40]. Some approaches rely on a direct examination of the HDL 
description [25], or exploit the knowledge of the gate-level im-
plementation [141]. Some others combine static analysis with 
simulation [28]. In [97] the applicability of some classical soft-
ware testing methods for hardware test generation has been in-
vestigated with not very encouraging results. The applicability of 
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a particular software testing technique, mutation testing [31], for 
hardware testing is discussed in [7], with results that are 
slightly better than those reported in [97]. However, it has been 
demonstrated that high-level test pattern generation methodol-
ogy can successfully be used both for design validation and to 
enhance the test effectiveness of classic, gate-level test genera-
tion [144]. 

An alternative to these solutions are hierarchical test genera-
tion methods. The main idea of the hierarchical test generation 
(HTG) technique is to use information from different abstraction 
levels while generating tests. One of the main principles is to use 
a modular design style, which allows to divide a larger problem 
into several smaller problems and to solve them separately. This 
approach allows generating test vectors for the lower level mod-
ules based on different techniques suitable for the respective en-
tities.  

In hierarchical testing, two different strategies are known: 
top-down and bottom-up. In the bottom-up approach [126], tests 
generated at the lower level will be assembled at the higher ab-
straction level. The top-down strategy, introduced in [113], uses 
information, generated at the higher level, to derive tests for the 
lower level.  

2.5. Test Application 

As previously mentioned, hardware testing involves test pattern 
generation, discussed above, and test application. Test applica-
tion can be performed either on-line or off-line. The former de-
notes the situation where testing is performed during normal op-
erational mode and the latter when the circuit is not in normal 
operation but in so-called test mode. The primary interest of this 
thesis is off-line testing although some of the results can be ap-
plied in an on-line testing environment as well.  
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2.5.1. Off-line Test Application 

Off-line tests can be generated either by the system itself or out-
side the chip, using an ATPG, and applied by using Automatic 
Test Equipment (ATE). In Figure 2.3 a generic structure of the 
ATE is given [130]. It can be divided into 3 main modules: fix-
ture, hardware and software. The module that holds the CUT 
and provides all necessary connections is usually referred to as a 
fixture. The fixture is connected to the hardware module that is a 
computer system with sufficient memory. The testing process is 
controlled by the tester software that guarantees correct format 
and timing of the test patterns. 

Format
module

Timing
module

Memory Power
module

Driver ComparatorFixture

Software
Hardware

Control 
CPU

CUT

 
Figure 2.3. Block diagram of ATE. 

The ATE memory size defines the amount of test patterns the 
ATE can apply in one test run, without memory reload. Such re-
loads are time consuming, thus making them undesired. There-
fore, the test set should be devised so that all test patterns fit 
into the tester memory. However, with increased device density, 
the volume of test data is becoming increasingly large, thus set-
ting difficult constraints for test engineers.  
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With the emerging of sub-micron and deep sub-micron tech-
nologies, the ATE approach is becoming increasingly problem-
atic. There are several reasons for that: 

− Very expensive test equipment: It is predicted that between 
2009 and 2012 ICs will dissipate 100 to 120 W (at 0.6 V), 
run at frequencies between 3.5 and 10 GHz and have micro-
processors with greater than 1 billion transistors. A tester 
for such a chip will bear 1 400 pins and have a price tag 
greater than 20 million USD [8], [153]. 

− Due to the increasing complexity and density of ICs, testing 
time is continuously increasing and time to market becomes 
unacceptably long. 

− The test sizes and consequently memory requirements for 
ATEs are continuously increasing. 

− The operating frequencies of ATEs should be higher or equal 
to the frequencies of CUT. This rules out testing cutting 
edge ICs as the frequency of existing ATEs is always one 
step behind the latest developments (it takes time until the 
latest technology reaches the ATE products). This increases 
inaccuracy of the testing process. 

All those reasons have led to the investigation of different al-
ternatives that could make testing of complex ICs more feasible. 
Several methods have been developed that reduce the signifi-
cance of external testers and reduce the cost of the testing proc-
ess, without compromising on quality. One of the alternatives is 
to partition the test function into on-chip and off-chip resources 
[74], [110]. By embedding different test activities on-chip makes 
it possible to use an ATE with significantly reduced require-
ments. Those methods are in general known as DFT techniques 
and are described in greater length later in this chapter. 

2.5.2. Abort-on-First-Fail Testing 

In a production test environment, where a large number of chips 
have to be tested, an abort-on-first-fail (AOFF) approach is usu-
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ally utilized. It means that the test process is stopped as soon as 
a fault is detected. This approach leads to reduced test times and 
consequently to reduced production costs, as faulty chips can be 
eliminated before completing the entire test flow. In such a test 
environment, the likelihood of a block to fail during the test 
should be considered for test scheduling in order to improve test 
efficiency [78], [85], [104], [111], [122]. In [104], for example, it 
was proposed to reduce the average test completion time by ap-
plying tests with short test times first. In [78] and [85], it was 
proposed to use defect probabilities of individual cores for effi-
cient scheduling in an AOFF environment. Such probabilities 
can be extracted from the statistical analysis of the manufactur-
ing process. 

In general, these approaches reduce average test time in large-
scale manufacturing test environments. However, it should be 
noted here, that this approach has especially high significance 
during the early phases of the production, when the yield is low 
and the defects are more likely to appear.  

2.6. Design for Testability 

Test generation and application can be more efficient when test-
ability is already considered and enhanced during the design 
phase. The generic aim of such an enhancement is to improve 
controllability and observability with small area and perform-
ance overhead. Controllability and observability together with 
predictability are the most important factors that determine the 
complexity of deriving a test set for a circuit. Controllability is 
the ability to establish a specific signal value at each node in a 
circuit by setting values on the circuit’s inputs. Observability, on 
the other hand, is the ability to determine the signal value at 
any node in a circuit by controlling the circuit’s inputs and ob-
serving its outputs. DFT techniques, used to improve a circuit’s 
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controllability and observability, can be divided into two major 
categories:  

• DFT techniques that are specific to one particular design 
(ad hoc techniques) and cannot be generalized to cover dif-
ferent types of designs. Typical examples are test point in-
sertion and design partitioning techniques. 

• Systematic DFT techniques are techniques that are reus-
able and well defined (can be even standardized).  

In the following sections some systematic DFT techniques, 
that are significant in the context of this thesis, will be dis-
cussed. 

2.6.1. Scan-Path Insertion 

To cope with the problems caused by global feedback and com-
plex sequential circuits, several DFT techniques have been pro-
posed. One of them is scan-path insertion [169]. The general idea 
behind scan-path is to break the feedback paths and to improve 
the controllability and observability of the sequential elements 
by introducing an over-laid shift register called scan path (or 
scan chain). Despite the increase in fault coverage and reduced 
ATPG complexity, there are some disadvantages with using scan 
techniques, like increase in silicon area, additional pins, in-
creased power consumption, increase in test application time and 
decreased clock frequency. We can distinguish two different 
types of scan-based techniques — partial scan and full scan, 
which are illustrated in Figure 2.4. 

In case of partial scan (Figure 2.4a), only a subset of the se-
quential elements will be included in the scan path. This leads to 
moderate increase in terms of silicon area while requiring more 
complex ATPG. The full scan approach (Figure 2.4b), in contrast, 
connects all sequential elements into one or multiple scan 
chains. The main advantage of this approach is that this reduces 
the ATPG problem for sequential circuits to the more computa-
tionally tractable problem of ATPG for combinatorial circuits. 
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The scan-path insertion is illustrated in Figure 2.5 [128]. The 
original circuit is given in Figure 2.5a and the modified circuit 
with inserted scan-path in Figure 2.5b. Here, in the test mode, 
all sequential elements will be disconnected from the circuit and 
configured as a shift register. In large circuits the sequential 
elements can be divided between multiple scan-paths.  

 
a) 

 
b) 

Figure 2.4. a) Partial scan  b) Full scan. 
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Figure 2.5. a) Original design   b) Design with scan-path.  

When a design does not contain any scan-paths, test patterns 
can be applied to the CUT at every clock cycle and the approach 
is called test-per-clock. The introduction of the scan-path requires 
test pattern application in so-called scan cycles. In such a test-
per-scan approach, the test patterns are shifted into a scan chain 
before the pattern at the primary inputs can be applied. Thereaf-
ter the test responses are captured in the scan flip-flops and 
shifted out while a new test is being shifted in. The length of 
such a cycle is defined by the length of the scan-path and there-
fore such a test-per-scan approach is much slower than test-per-
clock testing. It also makes at-speed testing impossible. The ob-
vious advantage, on the other hand, is the reduced ATPG com-
plexity. It offers also high fault coverage and enables efficient 
fault diagnosis by providing the direct access to many internal 
nodes of the CUT. 

2.6.2. Built-In Self-Test 

The main idea behind a BIST approach is to eliminate or reduce 
the need for an external tester by integrating active test infra-
structure onto the chip. The test patterns are not any more gen-
erated externally, as it is done with ATE, but internally, using 
special BIST circuitry. BIST techniques can be divided into off-
line and on-line techniques. On-line BIST is performed during 
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normal functional operation of the chip, either when the system 
is in idle state or not. Off-line BIST is performed when the sys-
tem is not in its normal operational mode but in special test 
mode. A prime interest of this thesis is off-line BIST that will be 
discussed further below. Every further reference to the BIST 
technique is in the context of off-line BIST. 

A typical BIST architecture consists of a test pattern generator 
(TPG), a test response analyzer (TRA), and a BIST control unit 
(BCU), all implemented on the chip (Figure 2.6). Examples of 
TPG are a ROM with stored patterns, a counter, or a LFSR. A 
typical TRA is a comparator with stored responses or an LFSR 
used as a signature analyzer. A BCU is needed to activate the 
test and analyze the responses. This approach eliminates virtu-
ally the need for an external tester. Furthermore, the BIST ap-
proach is also one of the most appropriate techniques for testing 
complex SOCs, as every core in the system can be tested inde-
pendently from the rest of the system. Equipping the cores with 
BIST features is especially preferable if the modules are not eas-
ily accessible externally, and it helps to protect intellectual prop-
erty (IP) as less information about the core has to be disclosed. 

BIST 
Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

Chip

 

Figure 2.6.  A typical BIST architecture. 

In the following, the basic principles of BIST will be discussed. 
We are going to describe test pattern generation with LFSRs, 
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problems related to such an approach and describe some more 
known BIST architectures. 

Test Pattern Generation with LFSRs 

Typical BIST schemes rely on either exhaustive, pseudoexhaus-
tive, or pseudorandom testing and the most relevant approaches 
use LFSRs for test pattern generation [5], [12], [172]. This is 
mainly due to the simple and fairly regular structure of the 
LFSR. Although the LFSR generated tests are much longer than 
deterministic tests, they are much easier to generate and have 
good pseudorandom properties.  

In Figure 2.7 a generic structure of the n-stage standard LFSR 
(also known as type 1 LFSR or external-XOR LFSR) and in 
Figure 2.8 a generic structure of the n-stage modular LFSR (also 
known as type 2 LFSR or internal-XOR LFSR) is given. An LFSR 
is a shift register, composed from memory elements (latches or 
flip-flops) and exclusive OR (XOR) gates, with feedback from dif-
ferent stages. It is fully autonomous, i.e. it does not have any in-
put beside the clock. Ci in Figure 2.7 and Figure 2.8 denotes a 
binary constant and if Ci = 1 then there is a feedback from/to the 
ith D flip-flop; otherwise, the output of this flip-flop is not tapped 
and the corresponding XOR gate can be removed. The outputs of 
the flip-flops (Y1, Y2, …, YN) form the test pattern. The number of 
unique test patterns is equal to the number of states of the cir-
cuit, which is determined, by the number and locations of the in-
dividual feedback tabs. The configuration of the feedback tabs 
can be expressed with a polynomial, called characteristic or feed-
back polynomial. For an LFSR in Figure 2.8 the characteristic 
polynomial P(x) is 

P(x)=1 + c1x + c2x
2 + … + cnx

n . 

An LFSR goes through a cyclic or periodic sequence of states 
and produces periodic output. The maximum length of this pe-
riod is 2n-1, where n is the number of stages, and the characteris-
tic polynomials that cause an LFSR to generate maximum-length 
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sequences are called primitive polynomials [62]. A necessary 
condition for a polynomial to be primitive is that the polynomial 
is irreducible, i.e. it cannot be factored. 
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Figure 2.7. Generic standard LFSR. 
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Figure 2.8. Generic modular LFSR. 

The test vectors generated by an LFSR appear to be randomly 
ordered. They satisfy most of the properties of random numbers 
even though we can predict them deterministically from the 
LFSR’s present state and its characteristic polynomial. Thus, 
these vectors are called pseudorandom vectors and such LFSRs 
can be called pseudorandom pattern generator (PRPG). 



TESTING AND DESIGN FOR TESTABILITY 

 37 

Test Response Analysis with LFSRs. 

As with any other testing method, also with BIST, the response 
of the circuit has to be evaluated. This requires knowledge about 
the behavior of the fault-free CUT. For a given test sequence this 
can be obtained by simulating the known-good CUT. It is how-
ever infeasible to compare all response values on chip, as the 
number of test patterns in a test sequence can be impractically 
long. Therefore a better solution is to compact the responses of a 
CUT into a relatively short binary sequence, called a signature. 
Comparison of faulty and fault-free signatures can reveal the 
presence of faults. As such a compaction is not lossless, the sig-
natures of faulty and fault-free CUT can be the same, although 
the response sequences of the two are different. This is called 
aliasing. The compression can be performed in two dimensions: 
time and space. Time compression compresses long sequences to 
a shorter signature and space compression reduces a large num-
ber of outputs to a smaller number of signals to be observed. 

There are several compaction testing techniques, like parity 
testing, one counting, transition counting, syndrome calculation 
and signature analysis. In the following one of the most common 
techniques — signature analysis — is briefly described. 

Signature analysis is a compression technique based on the 
concept of cyclic redundancy checking and implemented in hard-
ware using LFSRs [46]. The responses are fed into the LFSR and 
at the end of the test application, the content of the LFSR is used 
as a signature. The simplest form of signature analysis is based 
on serial-input signature register. This kind of “serial” signature 
analysis, based on SLFSR, is illustrated in Figure 2.9. Here the 
LFSR is modified to accept an external input in order to act as a 
polynomial divider. 
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Figure 2.9. SLFSR based signature analysis 

An extension of the serial-input signature register is the mul-
tiple-input signature register (MISR), where output signals are 
connected to the LFSR in parallel. There are several ways to 
connect the inputs (CUT outputs) to both types (standard and 
modular) of LFSRs to form an MISR. One of the possible alterna-
tives is depicted in Figure 2.10. Here a number of XOR gates are 
added to the flip-flops. The CUT outputs are then connected to 
these gates. 
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Figure 2.10. Multiple-input signature register. 

Classification of BIST Architectures 

BIST Architectures can be divided, based on test application 
methods, into two main categories: parallel BIST (a.k.a. in-situ 
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BIST) and serial BIST (a.k.a. scan BIST). A parallel BIST 
scheme uses special registers, which work in four modes. In the 
system mode they operate just as D-type flip-flops. In the pattern 
generation mode they perform autonomous state transitions, and 
the states are the test patterns. In the response evaluation mode 
the responses of the CUT are compressed, and in the shift mode 
the registers work as a scan path. In this approach, one test pat-
tern is applied at every clock cycle. Hence, such architectures are 
called test-per-clock BIST architectures. Examples of such archi-
tectures are built-in logic block observer (BILBO) and circular 
self-test path (CSTP). In contrast, serial BIST architectures as-
sume that test patterns are applied via the scan chain. Such test-
per-scan approach requires SCL+1 clock cycles to shift in and to 
apply a test pattern and the same amount of clock cycles to shift 
out the test response, where SCL is the length of the longest 
scan chain, making it thus much slower than the test-per-clock 
approach. Although slower, this approach has several advan-
tages, similar to the general scan-path based testing: 

− It takes advantage of the traditional scan-path design, mak-
ing it thus compatible with any commercial tool flow that 
supports scan chains, and requires a very small amount of 
additional design modifications. 

− It can be implemented at the chip level even when the chip 
design uses modules that do not have any BIST circuitry, 
provided that they have been made testable using scan. 

− Due to the scan path it requires simpler ATPG and has im-
proved observability.  

− Its overall hardware overhead is smaller than in test-per-
clock architectures, as it requires simpler test pattern gen-
erators for pseudorandom testing. 

− In most cases, the BIST control of a test-per-scan scheme is 
simpler than the BIST control of a test-per-clock scheme. 

The main advantage of parallel BIST is that it supports test-
ing at the normal clock rate of the circuit, i.e., at speed testing. 



CHAPTER 2 

40 

This enables detection of faults that appear only at normal op-
erational speed, such as transient faults in the power/ground 
lines caused by the switching of circuit lines. With a test-per-
clock approach also a larger number of test patterns can be ap-
plied in a given test time, consequently a higher number of ran-
dom pattern resistant faults could be detected. Therefore, test-
per-scan architectures might require more complex TPGs, thus 
eliminating any advantage of the area overhead of serial BIST.  

In the following, several BIST architectures will be described. 
We will describe architectures based on both paradigms, test-
per-clock or parallel BIST and test-per-scan or serial BIST. Ad-
ditional BIST architectures can be found in [3] and [12]. 

Parallel BIST Architectures 

One of the first parallel BIST architectures was built-in evalua-
tion and self-test (BEST). It is a simple architecture, where CUT 
inputs are driven by the PRPG and test responses are captured 
by a MISR, similar to Figure 2.6. This approach requires exten-
sive fault simulation to determine an acceptable balance between 
fault coverage and test length, and might be ineffective for some 
circuits.  

More widespread are built-in logic block observer (BILBO) and 
circular self-test path (CSTP) architectures. A BILBO register is 
a register that can operate both as a test pattern generator and 
as a signature analyzer [106] (Figure 2.11). In the test mode, the 
BILBO is configured as an LFSR or a MISR (Figure 2.12). A 
simple form of BILBO BIST architecture consists of partitioning 
a circuit into a set of registers and blocks of combinational logic, 
where the normal registers are replaced by BILBO registers.  
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Figure 2.11. n-bit BILBO register.  

The synthesis of a test-per-clock scheme is implemented in the 
easiest way by a circular BIST or a circular self-test path (CSTP) 
[105] (Figure 2.13). The scheme has two modes, the system mode 
and the test mode, where the flip-flops form the LFSR. Two arbi-
trary flip-flops may be the scan-in and scan-out inputs. In the 
test mode, the system performs signature analysis and pattern 
generation concurrently, and only a single control line is re-
quired for the basic cells of this scheme. The disadvantage of this 
scheme is low fault coverage for some circuits. 
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Figure 2.12. BIST Design with BILBO registers.  
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Figure 2.13. Circular self-test path. 

Serial BIST Architectures 

We describe two main types of scan-based BIST architectures. In 
the first type, all primary inputs are connected to the taps of a 
pseudorandom generator and all primary outputs are connected 
to a MISR. All or a subset of state flip-flops are configured as 
scan chains, while the primary input flip-flop (scan-in signal) is 
connected to another LFSR and the primary output flip-flop 
(scan-out signal) is connected to a SLFSR. Examples of this ar-
chitecture are random test socket (RTS) [11] and partial scan 
BIST (PS-BIST) [116]. 

More efficient DFT approaches are modifications of these 
methodologies, such as Self-Test Using MISR and Parallel SRSG 
(STUMPS) [11] and LSSD on-chip self-test (LOCST) [112]. The 
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acronym SRSG (Shift Register Sequence Generator) may be con-
sidered as equivalent to PRPG, mentioned above.  

The STUMPS architecture is shown in Figure 2.14. The basic 
assumption is that the memory elements of the CUT are in-
cluded into the scan path. Often, a scan path is split into several 
scan chains. The multiplicity of scan chains speeds up test appli-
cation, because the length of one test cycle is determined by the 
length of the scan path. At the same time, it equals only to the 
length of the longest scan chain for a CUT with multiple scan 
chains. However, there is always a trade-off: the more scan 
chains a core has the more scan inputs are required for it and 
thus longer LFSRs are needed.  

  

Figure 2.14. Self-Test Using MISR and Parallel SRSG  
(© Mentor Graphics). 
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The general idea of the STUMPS approach is the following. 
PRPG, MISR and scan registers are clocked simultaneously. All 
scan registers are loaded from PRPG. This takes SCL clock cy-
cles, where SCL is the length of the longest scan chain. After test 
application, the data captured by scan registers is scanned out, 
and the results are analyzed by a MISR. 

The sequences obtained from adjacent bits of a parallel LFSR 
are not linearly independent; the neighboring scan chains con-
tain test patterns that are highly correlated [24]. This can affect 
fault coverage negatively since the patterns seen by the CUT do 
not really form a random sequence.  

2.7. Emerging Problems in System-on-Chip 
Testing 

The latest advances in microelectronics manufacturing technol-
ogy have enabled integration of an increasingly large number of 
transistors. This shift toward very deep submicron technologies 
facilitates implementation of an entire system on a single chip. 
Such systems are usually composed from a large number of dif-
ferent functional blocks, usually referred as cores. This kind of 
design style allows designers to reuse previous designs, which 
will lead therefore to shorter time-to-market, and reduced cost. 
Such a system-on-chip (SOC) approach is very attractive from the 
designers’ perspective. Testing of such systems, on the other 
hand, is problematic and time consuming, mainly due to the re-
sulting IC’s complexity and the high integration density [127]. 

A typical SOC consists of many complex blocks (embedded 
cores, RAM, ROM, user-defined logic (UDL), analog blocks etc.) 
as depicted in Figure 2.15. Until recently such designs were im-
plemented using several ICs mounted together into a printed cir-
cuit board (PCB) (also called as systems on board (SOB)). Using 
the SOCs instead of the PCBs gives a possibility to produce chips 
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with better performance, lower power consumption and smaller 
geometrical dimensions [175]. 
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Figure 2.15. System-on-chip. 

To cope with the difficulties to build such complex chips, a new 
design paradigm, called design reuse, has emerged. The main 
idea here is to use predefined and preverified reusable blocks to 
build up the chip. These reusable building blocks, so-called em-
bedded cores, have several advantages. For example, in addition 
to reuse, embedded cores enable also import of an external de-
sign expertise, like high-end CPUs and DRAMs [118]. 

Embedded cores can be divided into three categories: soft, firm 
and hard [65]: 

• Soft cores 

− May be available as synthesizable, technology-independ-
ent, HDL descriptions (RTL or higher). 

− Do not provide any protection for intellectual property. 
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− Are flexible and process independent, thus allow modifi-
cations, such as optimization to the desired levels of per-
formance or area, and DFT insertion. 

• Firm cores 

− Are usually available as netlist of library cells (usually 
optimized for a target technology). 

− There is still a possibility to make some design modifica-
tions. 

• Hard cores 

− Are optimized for area and performance. Mapped into a 
specific technology. Only functional specification  together 
with a layout is available (The core will be treated as a 
“black box”). 

− Provide maximum protection of intellectual property. 

− No possibility to make any design modifications. 

Design reuse based techniques are advancing very rapidly, but 
there are still several unsolved problems. The most critical ones 
include manufacturing test and design debug [176].  

There are two separate issues in the manufacturing testing: 
go/no-go testing at the end of the manufacturing line and defect 
analysis during the diagnosis. As the complexity, performance 
and density of the ICs increase, the test community has to find 
effective methods to cope with the growing problems and chal-
lenges. 

The core-based design process has several similarities with the 
traditional SOB design process, but the manufacturing test proc-
ess is conceptually different (Figure 2.16).  

In case of the SOB, all building blocks (ICs) are manufactured 
and tested before assembly, therefore assumed fault-free. During 
the system integration, the elements will be mounted and the 
board will be tested. As components are assumed to be fault-free 
then only the interconnects between the ICs should be tested. To 
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solve this problem the IEEE 1149.1 (also referred as JTAG or 
boundary-scan) standard has been developed [81]. 

IC Design

IC Manufacturing

IC Test

ASIC Design

ASIC Manufacturing

ASIC Test

Board Design

Board Manufacturing

Board Test

UDL DesignCore Design

SoC Integration

SoC Manufacturing

SoC Test

SoC Process System-on-Board Process
 

Figure 2.16. SOC versus SOB design development. 

Cores are distributed from the core providers to the core users 
in form of a module description. There is no manufacturing test-
ing done by the core provider, because he/she has only the func-
tional description of the core and nothing is manufactured yet. 
The manufacturing test can be done only after the core is em-
bedded into a system and finally manufactured. Therefore the 
system integrator has to deal not only with interconnect testing 
but also with core testing. In most of the cases the system inte-
grator sees a core as a black box (this is especially true in case of 
the hard or encrypted cores) and has very little knowledge about 
the structural content of the core or does not have it at all. 
Therefore, the core tests should be developed by the core provider 
and provided together with the core. This task is even more com-
plicated, because the core provider usually does not know any-
thing about the final environment where the core will be imple-
mented. This situation means that there is more than one 
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person, who deals with test development. The test development 
process is distributed between different groups or even compa-
nies, and there are additional challenges due to the test knowl-
edge transfer. 

2.7.1. Core Internal Test Knowledge Transfer 

In order to perform core test two key elements are needed: the 
set of test patterns and the internal design-for-testability (DFT) 
structures. This information should be transferred from the core 
provider to the core user together with validation of provided test 
patterns. Additionally, information about the test modes and 
corresponding test protocols, information about diagnosis and 
silicon debug should be included. All this information should be 
adequately described, ported and ready for plug and play. 
Thereby in addition to the design reuse, we should talk also 
about a test reuse. However, to support properly such activity 
some commonly used format (i.e. standard) for core’s test knowl-
edge transfer should be used. Such standard is currently under 
development by IEEE and referred to as P1450.6 Core Test Lan-
guage (CTL) [26]. 

2.7.2. Core Test Access Challenges 

Typically testing is done by applying the test vectors to the input 
pins of the IC and observing the output. This is used for PCBs, as 
physical access to the IC pins is easily achievable. A core is usu-
ally embedded deep into the system IC and direct physical access 
to its periphery is not available. Therefore, the system integrator 
should provide an infrastructure between core terminals and the 
IC pins to fulfill the core’s test requirements and device the 
mechanisms for testing the user-defined logic (UDL), surround-
ing the core. 

According to [118] the test access to the cores has two aspects. 
First, the core user has to ensure the existence of the access path 
in the on-chip hardware and secondly, the core tests, given by 
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the core provider, have to be transported from the core terminals 
to the IC pins.  

2.7.3. Chip-level Test Challenges 

One of the major test challenges for the core users is the integra-
tion and coordination of the on-chip tests. This composite test 
should cover cores, UDL and interconnects, and requires ade-
quate test scheduling. Test scheduling is necessary to meet the 
requirements for the test application time, test power dissipa-
tion, area overhead, resource conflict avoidance, and so on [174]. 
Test scheduling will be discussed in greater length later in the 
thesis. 

At the same time we should not forget, that SOCs are manu-
factured using very deep submicron technologies and therefore 
share all testing challenges of such chips, such as defect/fault 
coverage, overall test cost and time-to-market. 

2.7.4. Core Test Architecture 

Large SOCs are usually tested modularly, i.e. the various mod-
ules are tested as stand-alone units [61]. The main reasons be-
hind that are the opportunities for test reuse and possibility to 
divide test problems into smaller sub-problems (“divide-and-
conquer”). To Facilitate modular test of SOCs, the following com-
ponents are required (Figure 2.17): 

• Test pattern source and sink are used for test stimuli gen-
eration and response analysis. 

• Test access mechanism is for test data transportation. 

• Core test wrapper forms the interface between the embedded 
core and the environment. 

All three elements can be implemented in various ways. Some 
basic principles will be given below. 
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Figure 2.17. SOC test architecture. 

Test Pattern Source and Sink 

The test pattern source is for test pattern generation, whereas 
the test pattern sink compares the received response with the 
expected response. There are several ways to implement the test 
pattern source and sink. One possibility is to implement both on-
chip by built-in self-test mechanisms, as depicted in Figure 2.17. 
Other possibilities include off-chip source/sink or combination of 
the previous ones. In case of the off-chip source/sink, external 
ATE is needed. On the other hand, on-chip test structures occupy 
additional silicon area, so there is no clear answer what kind of 
implementation to choose. The final implementation decision is 
influenced by three different factors: type of circuitry in the core, 
predefined test set provided by the core provider and require-
ments for test time, quality and cost. 
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Test Access Mechanism 

The test access mechanism (TAM) is used to transfer the test 
data from the test pattern source to the core under test and from 
the core under test to the test pattern sink. It is always imple-
mented on-chip. The key parameters of the TAM are the width 
and the length. A wider TAM provides faster data transfer rate 
but requires more wiring area and is therefore more expensive. 
The actual width of the TAM depends on the type of the 
source/sink and requirements to the time and cost. 

Several alternatives for TAM implementation have been pro-
posed. For example, the TAM can be based on existing chip in-
frastructure or be formed by dedicated test access hardware. A 
test access mechanism can either go through other cores or pass 
around them. It can be shared across multiple cores or every core 
can have independent access mechanism. A TAM might contain 
some intelligent test control functions or may just transport the 
signals. Well-known TAM techniques are based on Macro Test, 
transparency of cores, reusing the system bus, multiplexed ac-
cess, a dedicated test bus, Boundary Scan, test scheduler, 
TestRail and Advanced Microcontroller Bus Architecture 
(AMBA). Detailed description of these methods and appropriate 
references can be found, among others, in [96]. 

Core Test Wrapper 

The core test wrapper is the communication mechanism between 
the embedded core and the rest of the chip. It connects the core 
terminals to the test access mechanism and it should provide 
core test data access and core test isolation. The wrapper should 
contain three mandatory modes of operation: 

• Normal operation. In this mode, the core is connected to its 
environment and the wrapper is transparent. 

• Core test mode (core internal test), in which the core is con-
nected to the TAM and therefore the test stimuli can be ap-
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plied to the core’s inputs and the responses can be observed 
at the core’s outputs. 

• Interconnect test mode (core external test), in which the TAM 
is connected to the UDL and interconnect wires. In this 
mode test stimuli can be applied to the core’s outputs and 
responses can be observed at the next core’s inputs 

A core test wrapper should also provide core isolation (a.k.a. 
bypass mode), when needed (for example in case of testing 
neighboring cores or UDL). 

A considerable amount of research has been done in the core 
test wrapper area. Examples of wrappers are TestShell [117], 
and a very similar wrapper called TestCollar [165]. The IEEE 
P1500 Standard for Embedded Core Test standardizes a core test 
wrapper [30], [132], that is very similar to the TestShell and 
TestCollar (Figure 2.18). 

 

Figure 2.18. An example of an IEEE P1500 Core Test Wrapper. 
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2.7.5. Power Dissipation 

The integration of an increasingly large number of transistors 
into a single die has imposed a major production challenge, due 
to the increased density of such chips, reduced feature sizes, and 
consequently, increased power dissipation. At the same time the 
number of portable, battery operated devices (such as laptops, 
PDA-s, mobile phones) is rapidly increasing. These devices re-
quire advanced methods for reducing power consumption in or-
der to prolong the life of the batteries and thus increase the 
length of the operating periods of the system. There are several 
well-investigated techniques for handling power dissipation dur-
ing the normal operation. At the same time, various researches 
have shown that the switching activity, and consequently the 
power dissipation, during the testing phase may be several times 
higher than in normal operation mode [32], [174]. This increased 
switching activity causes increased heat dissipation and may 
therefore reduce reliability of the circuits, affect overall yield, 
and increase production cost. The self-tests, regularly executed 
in portable devices, can hence consume significant amounts of 
energy and consequently reduce the lifetime of the batteries [52]. 
Excessive switching activity during the test mode can also cause 
problems with circuit reliability [54]. And the increased current 
levels can lead to serious silicon failure mechanisms (such as 
electromigration [115]) and may need expensive packages for 
removal of the excessive heat. Therefore, it is important to find 
ways for handling circuit power dissipation during the testing. 

There are different components contributing to the power con-
sumption in case of standard CMOS technology: dynamic power 
dissipation caused by the switching activity, and static power 
dissipation caused mainly by leakage. The leaks contribute usu-
ally only marginally to the total power consumption and can 
therefore be neglected [133]. The main contributing factor is dy-
namic power dissipation caused by switching of the gate outputs. 
This activity accounts for more than 90% of the total power dis-
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sipation for current technology, even though the importance of 
static power dissipation will increase with the scaling down of 
feature sizes [22]. For every gate the dynamic power, Pd, required 
to charge and discharge the circuit nodes can be calculated as fol-
lows [33], [129]: 

GcycDDloadd NTVCP ×××= )/(5.0 2  (2.1) 

where Cload is the load capacitance, VDD is the supply voltage, Tcyc 
is the global clock period, and NG is the switching activity, i.e., 
the number of gate output transitions per clock cycle. 

While assuming that the VDD as well as Tcyc remain constant 
during the test and that the load capacitance for each gate is 
equal to the number of fan-outs of this gate, we can define 
switching activity as a quantitative measure for power dissipa-
tion. Therefore, the most straightforward way to reduce the dy-
namic power dissipation of the circuit during test is to minimize 
the circuit’s switching activity. 

Several approaches have been proposed to handle the power 
issues during test application. They can be divided into three 
categories: energy, average power and peak power reduction 
techniques. Energy reduction techniques are targeting reduction 
of the total switching activity generated in the circuit during the 
test application and have thus impact on the battery lifetime 
[52], [53], [55], [56]. Average power dissipation is the amount of 
dissipated energy divided over the test time. The reduction of av-
erage power dissipation can improve the circuit’s reliability by 
reducing temperature and current density. Some of the methods 
to reduce average power dissipation have been proposed in [21], 
[166]. The peak power corresponds to the maximum sustained 
power in a circuit. The peak power determines the thermal and 
electrical limits of components and the system packaging re-
quirements. If the peak power exceeds certain limits, the correct 
functioning of the entire circuit is no longer guaranteed. The 
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methods for peak power reduction include those described in 
[13], [49], [138], [143], [168]. 

In a System-on-Chip testing environment, several test power 
related problems are handled at the core level, with methods de-
scribed above. However, the high degree of parallelism in SOCs 
facilitates parallel testing to reduce the test application time. 
Consequently, this might also lead to excessive power dissipa-
tion. In such cases, the system-wide peak power values can be 
limited with intelligent test scheduling. It has been shown in [20] 
that test scheduling is equal to the open-shop scheduling prob-
lem, which is known to be NP-complete. Therefore, numerous 
heuristics have been developed, including those reported in [29], 
[77] and [83]. In [109] it was demonstrated that test scheduling 
can be successfully included into the generic SOC testing frame-
work, where problems like test scheduling, test access mecha-
nism design, test sets selection, and test resource placement, are 
considered simultaneously. 

2.8. Conclusions 

In this chapter the basic concepts of digital hardware testing 
were presented. We gave an overview of several emerging prob-
lems in the area and described problems with existing test meth-
ods. 

The following two parts of the thesis will present the main 
contributions of our work. In the next section a novel hybrid 
BIST technique together with its cost optimization methods will 
be described. This will be followed by description of hybrid BIST 
time minimization techniques for different SOC test architec-
tures. This thesis addresses also problems related to the power 
dissipation. We will propose a method for total switching energy 
minimization in our proposed hybrid BIST environment and 
heuristic for intelligent scheduling of hybrid test sequences in an 
abort-on-first-fail-environment. 
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Third part of the thesis will concentrate on test generation 
methods in early stages of the design flow. We will propose a 
novel hierarchical test generation algorithm for generating test 
sequences when only limited information about the final imple-
mentation is available. We take into account information from 
different levels of abstraction and are therefore able to generate 
test sequences with higher fault coverage than those of a pure 
behavioral test generator. 
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Chapter 3 

Introduction and  
Related Work  

The second part of this thesis focuses on a novel self-test ap-
proach called hybrid BIST. As it was mentioned in the introduc-
tory part, the classical BIST approach has several shortcomings 
in terms of test time and test quality, to mention a few. There-
fore, we have worked with a method that tries to address these 
problems. Our hybrid BIST approach guarantees the highest 
possible test quality, while providing a possibility for trade-off 
between different parameters, such as test length, test memory 
requirements and others. It should be noted that the main con-
tributions of this part are not related to the test generation nor 
to the test architectures, instead the main contribution is a set of 
optimization algorithms that can be used in conjunction with dif-
ferent hybrid BIST architectures.  

In this chapter we are going to discuss some shortcomings of 
the classical, pseudorandom testing based BIST and we will de-
scribe different methods that have been devised in order to 
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tackle these problems. The following chapter introduces the basic 
concept of the hybrid BIST technique, which is followed by a de-
scription of different hybrid BIST architectures. Chapter 5 pre-
sents different algorithms for hybrid BIST cost minimization for 
single core designs. In Chapter 6 methods for hybrid BIST time 
minimization, based on different architectural assumptions, will 
be described. Chapter 7 focuses on hybrid BIST energy minimi-
zation problems, and in Chapter 8 hybrid BIST time minimiza-
tion in an abort-on-first-fail context will be presented. 

3.1. Introduction 

Typically, a SOC consists of microprocessor cores, digital logic 
blocks, analog devices, and memory structures. These different 
types of components were traditionally tested as separate chips 
by dedicated automatic test equipments of different types. Now 
they must be tested all together as a single chip either by a super 
tester, which is capable of handling the different types of cores 
and is very expensive, or by multiple testers, which is very time-
consuming due to the additional time needed for moving from 
one tester to another.   

Complexity of SOC testing can be reduced by introducing ap-
propriate DFT mechanisms. At a core level, this task is usually 
accomplished by the core developer. Since the core developer has 
no idea about the overall SOC design and test strategy to be 
used, the inserted DFT mechanism may not be compatible with 
the overall design and test philosophy, leading to low test quality 
or high overhead. This problem needs to be solved in order to 
guarantee the high quality level of SOC products. 

SOC testing requires also test access mechanisms to connect 
the core peripheries to the test sources and sinks, which are the 
SOC pins when testing by an external tester is assumed. The de-
sign of the test access mechanism must be considered together 
with the test-scheduling problem, in order to reduce the silicon 



INTRODUCTION AND RELATED WORK 

 61 

area used for test access and to minimize the total test applica-
tion time, which includes the time to test the individual cores 
and user-defined logic as well as the time to test their intercon-
nections. The issue of power dissipation in test mode should also 
be considered in order to prevent the chip being damaged by 
over-heating during test.  

Many of the testing problems discussed above can be overcome 
by using a built-in self-test (BIST) strategy. For example, the 
test access cost can be substantially reduced by putting the test 
sources and sinks next to the cores to be tested. BIST can also be 
used to deal with the discrepancy between the speed of the SOC, 
which is increasing rapidly, and that of the tester, which will 
soon be too slow to match typical SOC clock frequencies. The in-
troduction of BIST mechanisms in a SOC may also improve the 
diagnosis ability and field-test capability, which are essential for 
many applications where regular operation and maintenance 
test is needed. 

Since the introduction of BIST mechanisms into a SOC is a 
complex task, we need to develop powerful automated design 
methods and tools to optimize the test function together with the 
other design criteria as well as to speed up the design process. 
However, the classical BIST approach has several shortcomings, 
as discussed below, and therefore, several methods have been 
developed for its improvement, which will be presented briefly in 
this chapter 

3.2. Problems with Classical BIST 

As described earlier, a classical BIST architecture consists of a 
test pattern generator (TPG), a test response analyzer (TRA) and 
a BIST control unit (BCU), all implemented on the chip. Differ-
ent implementations of such BIST architectures have been 
available, and some of them have wide acceptance. Unfortu-
nately, the classical BIST approaches suffer the problems of in-
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ducing additional delay to the circuitry and requiring a relatively 
long test application time. 

In particular, one major problem with the classical BIST im-
plementation is due to that the TPG is implemented by linear 
feedback shift registers (LFSR). The effectiveness of such TPG 
for a given circuit depends on the appropriate choice of the 
LFSRs as well as their length and configuration. The test pat-
terns generated by an LFSR are pseudorandom by nature and 
have linear dependencies [62]. Such test patterns often do not 
guarantee a sufficiently high fault coverage (especially in the 
case of large and complex designs), and demand very long test 
application times. It is not uncommon to have a pseudorandom 
test sequence that is more than 10 times longer than the deter-
ministic test sequence with similar efficiency [96]. The main rea-
son behind this phenomenon is the presence of random pattern 
resistant (RPR) faults in the circuit under test. The RPR faults 
are the ones that are detected by very few test patterns, if not by 
only one. If this pattern is not in the generated pseudorandom 
test sequence, the fault will remain undetected.  

In order to illustrate random pattern resistant faults let us use 
a simple 16-input AND-gate, depicted in Figure 3.1. The stuck-
at-0 fault at the output of this gate is a good example of such 
faults. In order to detect this fault, all inputs of the gate must be 
set to 1 (this is the only test pattern that can activate this fault), 
and if uniformly distributed pseudorandom patterns are applied, 
the detection probability of this fault is 2-16. This obviously leads 
to unacceptable test lengths. 
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Figure 3.1. An example of a random pattern resistant fault. 

Generally, pseudorandom test patterns can seldomly achieve 
100% fault coverage. Figure 3.2 shows the fault coverage of 
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pseudorandom tests as a function of the test length, for some lar-
ger ISCAS’85 [18] benchmark circuits. This figure illustrates an 
inherent property of pseudorandom test: the first few test vectors 
can detect a large number of faults while later test vectors detect 
very few new faults, if any. Moreover, there may exist many 
faults that will never be detected with pseudorandom test vec-
tors. 

Therefore, several questions have to be answered while devel-
oping a LFSR-based self-test solution: What is the fault coverage 
achievable with pseudorandom patterns, compared to that of de-
terministic test methods? Will the required fault coverage be 
achieved by the number of pseudorandom patterns that can be 
generated in some acceptable interval of time? What are the 
characteristics of the LFSR that produce a test sequence with ac-
ceptable fault coverage? Such an analysis shows that in most 
cases a pseudorandom test leads to either unacceptably long test 
sequences or fault coverage figures that are not acceptable and 
much below those achievable by deterministic test sequences. 

 

Figure 3.2. Pseudorandom test for some ISCAS’85 circuits. 
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Therefore, several proposals have been made to combine pseu-
dorandom test patterns, generated by LFSRs, with deterministic 
patterns, to form a hybrid BIST solution [6], [23] , [69], [70], [71], 
[103], [154], [155], [173], [171]. The main concern of several such 
hybrid BIST approaches has been to improve the fault coverage 
by mixing pseudorandom vectors with deterministic ones, while 
the issue of test cost minimization has not been addressed di-
rectly. In the following sections, different classical BIST im-
provement techniques, including the hybrid BIST approaches, 
will be described. 

3.3. BIST Improvement Techniques 

The length of a test session is usually limited. If the fault cover-
age figure, after applying the specified number of test patterns, 
remains below the desired levels, some modifications to the test 
strategy and/or to the circuit under test have to be made. There 
are two alternatives. The first alternative is to improve the con-
trollability and observability of the circuit, thus improving the 
detectability of hard-to-detect faults, for example, via test point 
insertion. Another possibility is to modify the TPG in order to 
generate test patterns that are more suitable for the given CUT. 
These two alternatives will be discussed in the following sec-
tions. 

3.3.1. Test Point Insertion 

Test point insertion is a DFT technique that is very widely used 
in commercial BIST tools. It can theoretically guarantee any 
level of fault coverage, provided a sufficient number of test points 
are used. The possible drawbacks are the area overhead and per-
formance penalty. The area overhead is introduced by the addi-
tional logic and routing needed to introduce the test points. Per-
formance degradation might come from the increased delays, if 
time-critical paths are affected. 
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There are two types of test points: control points and observa-
tion points. Control points are added to help control the value at 
a line and there are several types of them. Two of the most com-
mon ones are depicted in Figure 3.3:  

− A zero control point can be obtained by adding an additional 
primary input together with an AND-gate (Figure 3.3c). 

− A one control point can be obtained by adding an additional 
primary input together with an OR-gate (Figure 3.3d).  

Although addition of control points alters also the observabil-
ity of the remaining circuit, observability can explicitly be en-
hanced by adding dedicated observation points (Figure 3.3b) that 
are taps to the extra primary outputs. These points enable ob-
servation of the value at the line. In a BIST environment, these 
extra inputs and outputs introduced by test point insertion are 
connected to the TPGs and TRAs.  

Test point insertion increases the efficiency of pseudorandom 
testing and can lead to complete or near-complete fault coverage.  
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Figure 3.3. Test point insertion.  
a) original circuit, b) an observation point,  

c) a zero control point, d) a one control point. 
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3.3.2. Weighted Random Testing 

If the fault coverage for a particular CUT within a given test 
length remains below a desired level, a custom TPG may be de-
signed to provide higher fault coverage for the CUT. Weighted 
random testing is one such approach. 

As described earlier, LFSR based vectors are pseudorandom by 
nature. Therefore, the likelihood of zeros and ones in each binary 
position of these vectors is equal and random resistant faults are 
hard to detect. Weighted random testing uses an additional com-
binational circuit to modify the LFSR generated patterns so that 
the probabilities of zeros and ones are nonuniform. Such a 
weight circuit biases the test vectors so that tests targeting ran-
dom resistant faults are more likely to occur. The particular 
probabilities applied are called a weight set. 

For example, let us assume a 3-input CUT. A classical pseudo-
random pattern generator, such as an LFSR, produces a test set, 
where the probabilities of zeros and ones are the same, i.e. logic 1 
is applied to every input with probability 0.5. Therefore, we can 
say that the weight set of this particular example is w = (0.5, 0.5, 
0.5). When a weighted random testing is used then these weights 
can be, for example, w = (1, 0, 0.5). In this case, logic 1 is applied 
to the first input with probability 1, to the second with probabil-
ity 0 and to the third with probability 0.5. 

In general, a circuit may require several sets of weights, and, 
for each weight set, a number of random patterns will be applied. 
Thus, the major objective of the weight generation process is to 
reduce the number of weight sets, and the number of test pat-
terns to apply for each set. Several techniques have been pro-
posed in the literature, including those reported in [12], [15], [98] 
and [170]. 

3.3.3. Test Pattern Compression 

Another way to improve the quality of a self-test is to use deter-
ministic test patterns instead of pseudorandom ones. A straight-



INTRODUCTION AND RELATED WORK 

 67 

forward way involves the use of a ROM to store the precomputed 
test set. This test scheme is very efficient in terms of test appli-
cation time and can provide high fault coverage. There have been 
also attempts to generate compact test sets for this purpose [79], 
[134]. However, this is not considered practical because of the 
silicon area required to store the entire test set in a ROM.  

A more practical alternative is to encode the precomputed test 
set and store (or generate) only the compressed (encoded) test 
set, which can then be decoded during test application. This de-
compression logic together with storage requirements for the en-
coded test set are usually less than the storage requirements for 
the original deterministic test set. This method is usually called 
store and generate [4], [35], [36]. It has been shown that by ap-
plying efficient statistical encoding techniques, such as Huffman 
or Comma encoding, the storage requirements for testing se-
quential non-scan circuits can be reduced as well [82]. The encod-
ing can be very efficient if intelligent X assignment in partially 
specified test sets (vectors with don’t care signals) is used [99]. 

The reported results are promising but the main disadvantage 
of these approaches is the need for additional hardware to per-
form the decoding process. The encoded test set is in average 40-
60% smaller than the original set, but due to the nondeterminis-
tic nature of the encoding process, there are no guarantees about 
the size of the final encoded test set. This means that the deter-
ministic set can still be too big to be stored entirely in a ROM in-
side the system. 

3.3.4. Mixed-Mode Schemes 

Several considerations are central for efficient self-test pattern 
generator design. First, it is expected to guarantee very high 
fault coverage. Second, the TPG should be inexpensive to imple-
ment in hardware. Finally, it should minimize test application 
time and test data storage requirements. Therefore, mixed-mode 
test generation schemes have been developed for efficient self-
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testing. A mixed-mode scheme uses pseudorandom patterns to 
cover easy-to-detect faults and, subsequently, deterministic pat-
terns to target the remaining hard-to-detect faults. The main 
strength of these approaches lays in the possibility to have a 
trade-off between test data storage and test application time by 
varying the ratio of pseudorandom and deterministic test pat-
terns.  

As described above, several methods have been developed, 
where complete deterministic test sets are stored in the ROM, ei-
ther directly or by using some encoding mechanism. Mixed-mode 
schemes, on the other hand, store only a limited amount of in-
formation, thus reducing the test data storage requirements and 
consequently the test cost. In the following, some well-known 
mixed-mode test generation approaches are described. 

LFSR Reseeding 

When a sequence of test patterns is generated by an LFSR, many 
of these patterns do not detect any additional faults, thus non-
useful patterns are applied to the CUT. The test application time 
can hence be reduced if non-useful patterns can be replaced with 
useful ones that occur much later in the sequence. This would in-
crease the frequency with which useful vectors are applied to the 
circuit and hence reduce the test application time.  

One of the mixed-mode approaches is based on LFSR reseed-
ing. In this approach the quality of the test sequence is improved 
by generating only a limited number of test patterns from one 
LFSR seed (initial state) and during the test generation process 
the LFSR is reseeded with new seeds. This idea was first pro-
posed by B. Koenemann in 1991 [103]. These new seeds are used 
to generate pseudorandom sequences and to encode the determi-
nistic test patterns, in order to reduce the number of non-useful 
patterns. In this approach, only a set of LFSR seeds have to be 
stored instead of the complete set of patterns and as a result, less 
storage is needed (Figure 3.4). 
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Figure 3.4. LFSR reseeding. 

Several heuristic approaches have been proposed to identify 
multiple seeds, and the number of vectors applied starting with 
each seed, to minimize the overall test application time under a 
given constraint on the maximum number of seeds [69], [70], 
[71], [173]. If a small LFSR is used, it may not always be possible 
to find a seed that will generate a required deterministic test 
pattern, hence the fault coverage may remain low. Therefore, a 
different reseeding scenario based on Multiple-Polynomial 
LFSRs has been proposed in [70]. There, deterministic patterns 
are encoded with a number of bits specifying a seed and a poly-
nomial identifier. During testing, not only the appropriate seed, 
but also the corresponding feedback polynomial, have to be 
loaded into the LFSR. Another alternative is to use variable-
length seeds [173]. However, all these techniques generate test 
sets of excessive length. 

Pattern Mapping 

Another class of mixed-mode schemes embeds deterministic test 
patterns into LFSR sequences by mapping LFSR states to de-
terministic test patterns [6], [23], [154], [155], [171]. This can be 
achieved by adding extra circuitry to generate control signals 
that complement certain bits or fix them to either 0 or 1 [171]. A 
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hardware used to implement the bit-flipping or bit-fixing se-
quence generation logic is the major cost of this approach, as it 
has to be customized for a given CUT and LFSR. An alternative 
approach transforms the LFSR generated patterns into a new set 
of test patterns with higher fault coverage. The transformation is 
carried out by a mapping logic, which decodes sets of ineffective 
patterns and maps them into vectors that detect the hard-to-test 
faults [23], [154]. The general architecture of a TPG for this ap-
proach is depicted in Figure 3.5. The outputs of an n-stage ran-
dom TPG are input to a mapping logic and the outputs of the 
mapping logic drive the inputs of the CUT. Nevertheless, most of 
these variations of controlling the bits of the LFSR sequence 
have not yet solved the problems with random resistance. 

n-stage random TPG

Mapping logic

n-input CUT

zm

xnx2x1

z1 z2
 

Figure 3.5. Pattern mapping. 

3.4. Conclusions 

In this chapter, we outlined the problems related to the classical 
LFSR-based BIST, namely problems stemming from random re-
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sistance properties of the CUT. In addition, we gave an overview 
of different methods that have been developed to tackle those 
problems. The main objective of these methods has been test 
quality improvement in terms of fault coverage, while different 
aspects related to the test cost, like test length, area overhead 
and tester memory requirements, were largely omitted or han-
dled in isolation.  

In the following chapters an alternative approach, called hy-
brid BIST, will be described. In particular, different test optimi-
zation algorithms based on the proposed hybrid BIST architec-
ture will be presented.
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Chapter 4 

Hybrid BIST Concept 

In this thesis, we propose a new mixed-mode BIST approach that 
is based on a combination of pseudorandom and deterministic 
test patterns. Similar ideas have been exploited in different con-
texts already earlier. However, there has been no systematic 
treatment of the test cost minimization problem in the above-
mentioned framework. In addition, the issues related to defect 
probabilities as well as power and energy consumption have not 
been touched earlier. 

This chapter is devoted to describing the basic concepts of the 
proposed approach. Additionally an introduction to the hybrid 
BIST cost calculation principles will be given and different test 
architectures that were assumed during the experimental work 
will be described.  
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4.1. Introduction 

As described earlier, a typical self-test approach employs usually 
some form of pseudorandom test patterns. These test sequences 
are often very long and not sufficient to detect all faults. To avoid 
the test quality loss due to random pattern resistant faults and 
to speed up the testing process, we can apply additional determi-
nistic test patterns targeting the random resistant and difficult 
to test faults. This can dramatically reduce the length of the ini-
tial pseudorandom sequence and achieve the maximum achiev-
able fault coverage.  

In the introductory part, we described several existing meth-
ods based on this concept. These methods successfully increased 
the quality of the test by explicitly targeting random pattern re-
sistant (RPR) faults. At the same time, most of these methods 
tried to address some of the following parameters: area overhead, 
tester memory (ROM size) and test length. The described ap-
proaches were able to reduce one or many of these parameters 
via different heuristics but the results were very dependent of 
the CUT and the chosen test scenario. Therefore, none of the ap-
proaches would be applicable if the bounds of those parameters 
are specified in advance and have to be met. Yet, in a realistic 
test environment, the test process is usually constrained by sev-
eral limitations, such as tester memory and test time. None of 
the existing approaches would be able to device a solution under 
such circumstances. At the same time, there is obvious and real-
istic need for test solutions that can guarantee high test quality 
and, at the same time, fit into the existing test flow. 

Our hybrid BIST approach is based on the intelligent combina-
tion of pseudorandom and deterministic test sequences that 
would provide a high-quality test solution under imposed con-
straints [95]. It is important to note that the main contribution of 
this thesis is not to develop a new “ideal” LFSR-based test gen-
eration approach but to develop a set of optimization methods 
that can produce a required solution. Our approach does not im-
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pose restrictions on the way any of the test sets is generated, nor 
does it assume any particular way the deterministic test set is 
stored in the system or outside the system. If needed, our tech-
niques can be used in conjunction with the previously proposed 
ideas regarding test set generation, test set compression and en-
coding.  

4.2. Basic Principle 

As mentioned earlier, our hybrid BIST approach is based on an 
intelligent combination of pseudorandom and deterministic test 
patterns. Such a hybrid BIST approach starts usually with a 
pseudorandom test sequence of length L (Figure 4.1). After ap-
plication of the pseudorandom patterns, a stored test approach 
with length S will be used [88]. For the stored test approach, pre-
computed test patterns are applied to the core under test in or-
der to reach the desirable fault coverage level. For off-line gen-
eration of the deterministic test patterns, arbitrary software test 
generators may be used based on deterministic, random or ge-
netic algorithms [86]. 
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Figure 4.1. Hybrid BIST fault coverage curve. 
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In a hybrid BIST technique the length of the pseudorandom 
test is an important design parameter, which determines the be-
havior of the whole test process. A shorter pseudorandom test 
sequence implies a larger deterministic test set. This requires 
additional memory space, but at the same time, shortens the 
overall test time. A longer pseudorandom test, on the other hand, 
will lead to larger test application time with reduced memory re-
quirement. Therefore, it is crucial to determine the optimal 
length of the pseudorandom test in order to minimize the total 
testing cost.  

This basic feature of hybrid BIST is illustrated in Table 4.1 
with some selected ISCAS’89 benchmark designs [19] (full-scan 
versions). In this table, we have illustrated the increase of the 
fault coverage value after applying a small additional set of de-
terministic test patterns on top of the pseudorandom ones. As it 
can be seen, only a small number of deterministic test patterns 
are needed for that purpose.  

Table 4.1. Illustration of the hybrid BIST concept. 

Core DET FC DET  % FC PR % H DET FC HYB % FC impr % DET red %
s298 105 95,29% 85,61% 40 96,46% 10,85% 61,90%
s420 161 98,11% 69,59% 104 98,45% 28,86% 35,40%
s526 1308 89,86% 75,77% 105 95,57% 19,80% 91,97%
s641 462 97,16% 81,84% 121 99,15% 17,31% 73,81%
s838 19273 94,46% 57,69% 264 98,54% 40,85% 98,63%
s1423 9014 94,19% 86,82% 143 98,52% 11,70% 98,41%
s3271 6075 99,06% 77,50% 332 99,65% 22,15% 94,53%
 

DET  Number of deterministic patterns generated by the ATPG. 
FCDET  Fault coverage of the deterministic patterns. 
FCPR Fault coverage of the PR patterns (1000 patterns). 
HDET Number of additional deterministic patterns generated by 

the ATPG, after 1000 PR patterns. 
FCHYB Final fault coverage (PR + deterministic). 
FCimpr Improvement of the fault coverage after adding determinis-

tic patterns, compared to FCPR. 
DETred Reduction of the number of deterministic test patterns com-

pared to the original deterministic test set (DET). 
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4.3. Cost Calculation 

Figure 4.2 illustrates graphically the total cost of a hybrid BIST 
solution consisting of pseudorandom test patterns and stored test 
patterns. The horizontal axis in Figure 4.2 denotes the fault cov-
erage achieved by the pseudorandom test sequence before 
switching from the pseudorandom test to the stored test. Zero 
fault coverage is the case when only stored test patterns are used 
and therefore the cost of stored test is biggest in this point. The 
figure illustrates the situation where 100% fault coverage is 
achievable with pseudorandom vectors alone, although this can 
demand a very long pseudorandom test sequence (in reality, in 
particular in the case of large and complex designs, 100% fault 
coverage might not be achievable at all). 
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Figure 4.2. Cost calculation for hybrid BIST  
(under 100% assumption). 

The total test cost of the hybrid BIST, CTOTAL, can therefore be 
defined as: 

CTOTAL = CGEN + CMEM ≈ αL + βS (4.1) 

where CGEN is the cost related to the effort for generating L pseu-
dorandom test patterns (number of clock cycles) and CMEM is re-
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lated to the memory cost for storing S pre-computed test pat-
terns to improve the pseudorandom test set. α and β are con-
stants to map the test length and memory space to the costs of 
the two components of the test solutions. 

We should note that defining the test cost as a sum of two 
costs, the cost of time for the pseudorandom test generation, and 
the cost of memory associated with storing the TPG produced 
test, results in a rather simplified cost model for the hybrid BIST 
technique. In this simplified model, neither the basic cost of sili-
con (or its equivalent) occupied by the LFSR-based generator, 
nor the effort needed for generating deterministic test patterns 
are taken into account. Similarly, all aspects related to test data 
transportation are omitted. However, these aspects can easily be 
added to the cost calculation formula after the desired hardware 
architecture and deterministic test pattern generation ap-
proaches are chosen. In the following chapters, we are going to 
provide the algorithms to find the best tradeoff between the 
length of the pseudorandom test sequence and the number of de-
terministic patterns. For making such a tradeoff, the basic im-
plementation costs are invariant and will not influence the opti-
mal selection of the hybrid BIST parameters. 

On the other hand, the attempt to add “test time” to “memory 
space” (even in terms of their cost) seems rather controversial, as 
it is very hard to specify which one costs more in general (or even 
in particular cases) and how to estimate these costs. This was 
also the reason why the total cost of a BIST solution is not con-
sidered as the research objective in this thesis. The values of pa-
rameters α and β in the cost function are left to be determined by 
the designer and can be seen as one of the design decisions. If 
needed, it is possible to separate these two different costs (time 
and space), and consider, for example, one of them as a design 
constraint.  

Figure 4.2 illustrates also how the cost of pseudorandom test 
is increasing when striving to higher fault coverage (the CGEN 
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curve). In general, it can be very expensive to achieve high fault 
coverage with pseudorandom test patterns alone. The CMEM curve, 
on the other hand, describes the cost we have to pay for storing 
additional pre-computed tests to achieve the required fault cov-
erage level. The total cost CTOTAL is the sum of the above two 
costs. The CTOTAL curve is illustrated in Figure 4.2, where the 
minimum point is marked as Cmin.  

As mentioned earlier, in many situations 100% fault coverage 
is not achievable with only pseudorandom vectors. Therefore, we 
have to include this assumption to the total cost calculation. This 
situation is illustrated in Figure 4.3, where the horizontal axis 
indicates the number of pseudorandom patterns applied, instead 
of the fault coverage level. The curve of the total cost CTOTAL is 
still the sum of two cost curves CGEN + CMEM with the new assump-
tion that the maximum fault coverage is achievable only by ei-
ther the hybrid BIST or pure deterministic test.  
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Figure 4.3. Cost calculation for hybrid BIST  
(under realistic assumptions). 
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4.4. Architectures 

The previous sections have described the basic principles of hy-
brid BIST and introduced the test cost calculation formulas. In 
this section, some basic concepts of hybrid BIST architectures 
will be discussed. Although our optimization methods are not de-
vised for a particular test architecture and different architectural 
assumptions can easily be incorporated into the algorithms, some 
basic assumptions have to be made.  

Our optimization methods have been devised for single core 
designs as well as for system-on-chip designs. Consequently, we 
have to discuss about test architectures at two different levels of 
hierarchy: core-level test architectures and system-level test ar-
chitectures.  

4.4.1. Core-Level Hybrid BIST Architecture 

We have divided cores into two large classes. To the first class 
belong the cores that are equipped with their own pseudorandom 
test pattern generator and only deterministic patterns have to be 
transported to the cores. The second class consists of cores with 
no pre-existing BIST structures. Such cores require an alterna-
tive approach, where pseudorandom and deterministic test pat-
terns have to be transported to the core under test from external 
sources.  For both classes we have studied test-per-clock as well 
as test-per-scan schemes.  

At the core level, pseudorandom testing can be performed us-
ing many different scenarios, as described earlier. In our work 
we have assumed a core-level hybrid BIST architecture that is 
depicted in Figure 4.4, where the pseudorandom pattern genera-
tor (PRPG) and the Multiple Input Signature Analyzer (MISR) 
are implemented inside the core under test (CUT) using LFSRs 
or any other structure that provides pseudorandom test vectors 
with a required degree of randomness. The deterministic test 
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patterns are precomputed off-line and stored outside the core, ei-
ther in a ROM or in an ATE. 

Core test is performed in two consecutive stages. During the 
first stage, pseudorandom test patterns are generated and ap-
plied. After a predetermined number of test cycles, additional 
test is performed with deterministic test patterns from the mem-
ory. For combinatorial cores, where a test-per-clock scheme can 
be used, each primary input of the CUT has a multiplexer at the 
input that determines whether the test is coming from the PRPG 
or from the memory (Figure 4.4). The response is compacted into 
the MISR in both cases. The architecture can easily be modified 
with no or only minor modification of the optimization algo-
rithms to be presented in the following chapters.  
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Figure 4.4. Hardware-based core-level hybrid BIST  
architecture. 

As testing of sequential cores is very complex and development 
of efficient test pattern generation algorithm for sequential cores 
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is outside the scope of this thesis, it is assumed here that every 
sequential core contains one or several scan paths (full scan). 
Therefore a test-per-scan scheme has to be used and, for every 
individual core, the “Self-Test Using MISR and Parallel Shift 
Register Sequence Generator” (STUMPS) [11] architecture is as-
sumed. Both internally generated pseudorandom patterns and 
externally stored deterministic test patterns are therefore ap-
plied via scan chains. 

In both situations, every core’s BIST logic is capable of produc-
ing a set of independent pseudorandom test patterns, i.e. the 
pseudorandom test sets for all the cores can be carried out simul-
taneously and independently. 

4.4.2. System-Level Hybrid BIST Architectures 

Parallel Hybrid BIST Architecture 

We start with a system-level test architecture, where every core 
has its own dedicated BIST logic. The deterministic tests are ap-
plied from the external source (either on-chip memory or ATE), 
one core at a time; and in the current approach we have assumed 
for test data transportation an AMBA-like test bus [43]. AMBA 
(Advanced Microcontroller Bus Architecture) integrates an on-
chip test access technique that reuses the basic bus infrastruc-
ture [67]. An example of a multi-core system, with such a test ar-
chitecture is given in Figure 4.5. 

Our optimization methods are not dependent of the location of 
the deterministic test patterns. These patterns can be applied ei-
ther from the external ATE or from an on-chip memory (ROM). 
As we have assumed a bus-based test architecture, the time 
needed for test data transportation from the particular test 
source to a given CUT is always the same. The corresponding 
time overhead, related to the test data transportation, can easily 
be incorporated into the proposed algorithms. 

 



HYBRID BIST CONCEPT 

 83 

 

SoC

Embedded 
Tester

Test 
Controller

Tester 
Memory

AMBA System Bus

Core 4

BIST

Core 5

BIST

Core 1

BIST

Core 2

BIST

Core 3

BIST

 

Figure 4.5. An example of a core-based system, with  
independent BIST resources. 

Considering the assumed test architecture, only one determi-
nistic test set can be applied at any given time, while any num-
ber of pseudorandom test sessions can take place in parallel. To 
enforce the assumption that only one deterministic test can be 
applied at a time, a simple ad-hoc scheduling can be used.   

The above type of architecture, however, may not always be 
feasible as not all cores may be equipped with self-test struc-
tures. It may also introduce a significant area overhead and per-
formance degradation, as some cores may require excessively 
large self-test structures (LFSRs).  

Hybrid BIST Architecture with Test Pattern Broadcasting 

In order to avoid redesign of the cores, a single pseudorandom 
test pattern generator for the whole system is an alternative. It 
can be implemented as a dedicated hardware block or in soft-
ware. In this thesis we propose a novel solution, where only a 
single set of pseudorandom test patterns that is broadcasted to 
all cores simultaneously will be used. This common pseudoran-
dom test set is followed by additional deterministic vectors ap-
plied to every individual core, if needed. These deterministic test 

System Bus
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vectors are generated during the development process and are 
stored in the system. This architecture together with the appro-
priate test access mechanism is depicted in Figure 4.6. 
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Figure 4.6. Hybrid BIST architecture with  
test pattern broadcasting. 

For the test architecture depicted in Figure 4.6, testing of all 
cores is carried out in parallel, i.e. all pseudorandom patterns as 
well as each deterministic test sequence TDk are applied to all 
cores in the system. The deterministic test sequence TDk is a de-
terministic test sequence generated only by analyzing the core 
Ck . For the rest of the cores this sequence can be considered as a 
pseudorandom sequence. The width of the hybrid test sequence 
TH is equal to MAXINP=max{INPk}, k=1, 2, …, n, where INPk  is 
the number of inputs of the core Ck . For each deterministic test 
set TDk, where INPk < MAXINP, the not specified bits will be 
completed with pseudorandom data, so that the resulting test set 
TDk* can be applied in parallel to the other cores in the system 
as well.  

For test response analysis a MISR-based solution is assumed. 
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Software Based Hybrid BIST Architecture 

Classical BIST architectures can be expensive in the case of large 
and complex designs, because of the long LFSRs. Long LFSRs 
can also influence the system performance by introducing addi-
tional delays. Short LFSRs on the other hand cannot be used be-
cause they are not able to produce the required level of random-
ness.  To make the BIST approach more attractive, we have to 
tackle the hardware overhead problem and to find solutions to 
reduce the additional delay and the long test application times. 
At the same time, fault coverage has to be kept at a high level. 
The simplest and most straightforward solution is to replace the 
hardware LFSR implementation by software, which is especially 
attractive to test SOCs, because of the availability of computing 
resources directly in the system (a typical SOC usually contains 
at least one processor core). The software-based approach, on the 
other hand, is criticized because of the large memory require-
ments, as we have to store the test program and some test pat-
terns, which are required for initialization and reconfiguration of 
the self-test cycle [72]. However, some preliminary results re-
garding such an approach for PCBs have been reported in [9] and 
show that a software-based approach is feasible.  

In case of a software-based solution, the test program, together 
with all necessary test data (LFSR polynomials, initial states, 
pseudorandom test length and signatures) are kept in a ROM. 
The deterministic test vectors are generated during the devel-
opment process and are stored usually in the same place. For 
transporting the test patterns, we assume that some form of 
TAM is available.  

In the test mode, the test program will be executed by the 
processor core. The test program proceeds in two successive 
stages. In the first stage, the pseudorandom test pattern genera-
tor, which emulates the LFSR, is executed. In the second stage, 
the test program will apply precomputed deterministic test vec-
tors to the core under test. 
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The pseudorandom TPG software is the same for all cores in 
the system and is stored as one single copy. All characteristics of 
the LFSR needed for emulation are specific to each core and are 
stored in the ROM. They will be loaded upon request. Such an 
approach is very effective in the case of multiple cores, because 
for each additional core only the BIST characteristics for this 
core have to be stored. This approach, however, may lead to a 
more complex test controller, as every core requires pseudoran-
dom patterns with different characteristics (polynomial, initial 
state and length, for example). The general concept of the soft-
ware based pseudorandom TPG is depicted in Figure 4.7. 

SoC
CPU Core ROM

Core j

LFSR1: 00101001001010110
N1: 275

LFSR2: 11010100111001100
N2: 900.
...

load (LFSR);
  for (i=0; i<Nj; i++)
   ...
end;

Core j+1 Core j+...

SoC
 

Figure 4.7. LFSR emulation. 

As the LFSR is implemented in software, there are no hardware 
constraints for the actual implementation. This allows developing 
for each particular core an efficient pseudorandom scheme without 
concerning about the hardware cost except the cost for the ROM. As 
has been shown by experiments, the selection of the best possible 
pseudorandom scheme is an important factor for such an approach 
[72]. 

As discussed in [72], the program to emulate the LFSR can be 
very simple and therefore the memory requirements for storing 
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the pseudorandom TPG program together with the LFSR pa-
rameters are relatively small. This, however, does not have any 
influence on the cost calculation and optimization algorithms, to 
be proposed. These algorithms are general, and can be applied to 
the hardware-based as well as to the software-based hybrid BIST 
optimization.  

4.5. Conclusions 

This chapter described the basic concepts of our hybrid BIST 
methodology. We explained the cost calculation principles and 
gave an overview of the architectures we have considered in our 
experiments. In the first part of this chapter the problems with 
classical, LFSR-based BIST were described. That was followed 
by an overview of different methods for BIST improvement that 
have been proposed in the literature.  

The basic idea of our approach, to combine pseudorandom and 
deterministic test patterns, is not itself an uncommon one. How-
ever, the main contribution of this thesis is a set of optimization 
methods for test cost optimization. In the following chapter, the 
total test cost minimization for single core designs will be de-
scribed. This will be followed by the time minimization algo-
rithms for multi-core designs. Finally, methods for energy mini-
mization and hybrid BIST time minimization in an abort-on-
first-fail environment will be described. 
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Chapter 5  

Hybrid BIST  
Cost Minimization for  

Single Core Designs 

5.1. Introduction 

In this chapter different methods for total test cost minimization, 
while testing every core in isolation, will be described. The meth-
ods are based on the test cost calculation formulas, introduced in 
the previous chapter. The proposed cost model is rather simpli-
fied but our goal is not to develop a complete cost function for the 
whole BIST solution. The goal is to find the tradeoff between the 
length of pseudorandom test sequence and the number of deter-
ministic patterns. For making such a tradeoff the basic imple-
mentation costs are invariant and will not influence the optimal 
solution of the hybrid BIST. 
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The main goal of this chapter is to develop a method to find 
the global minimum of the Total Cost curve. Creating the curve 
CGEN = αL is not difficult. For this purpose, only a simulation of 
the behavior of the LSFR used for pseudorandom test pattern 
generation is needed. A fault simulation should be carried out for 
the complete test sequence generated by the LFSR. As a result of 
such a simulation, we find for each clock cycle the list of faults 
which are covered at this clock cycle. 

As an example, in Table 5.1 a fragment of the results of BIST 
simulation for the ISCAS’85 circuit c880 [18] is given, where 

• k denotes the number of the clock cycle,  

• rDET(k) is the number of new faults detected (covered) by the 
test pattern generated at the clock signal k, 

• rNOT(k) is the number of remaining faults after applying the 
sequence of patterns generated by the k clock signals, and 

• FC(k) is the fault coverage reached by the sequence of pat-
terns generated by the k clock signals 

Table 5.1. Pseudorandom test results. 

k rDET(k) rNOT(k) FC(k) k rDET(k) rNOT(k) FC(k) 

0 155 839 15.59% 148 13 132 86.72% 
1 76 763 23.24% 200 18 114 88.53% 
2 65 698 29.78% 322 13 101 89.84% 
3 90 608 38.83% 411 31 70 92.96% 
4 44 564 43.26% 707 24 46 95.37% 
5 39 525 47.18% 954 18 28 97.18% 

10 104 421 57.65% 1535 4 24 97.58% 
15 66 355 64.28% 1560 8 16 98.39% 
20 44 311 68.71% 2153 11 5 99.50% 
28 42 269 72.94% 3449 2 3 99.70% 
50 51 218 78.07% 4519 2 1 99.89% 
70 57 161 83.80% 4520 1 0 100.00% 

100 16 145 85.41%  

 

In the list of BIST simulation results not all clock cycles will 
be presented. We are only interested in the clock numbers at 
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which at least one new fault will be covered, and thus the total 
fault coverage for the pseudorandom test sequence up to this 
clock number increases. Let us call such clock numbers and the 
corresponding pseudorandom test patterns efficient clocks and ef-
ficient patterns. The rows in Table 5.1 correspond to the efficient, 
not to all, clock cycles for the circuit c880. 

If we decide to switch from pseudorandom mode to the deter-
ministic mode after the clock number k, then L = k.  

More difficult is to find the values for CMEM = βS, the cost for 
storing additional deterministic patterns in order to reach the 
given fault coverage level (100% in the ideal case). Let t(k) be the 
number of test patterns needed to cover the rNOT(k) not yet de-
tected faults (these patterns should be pre-computed and used as 
stored test patterns in the hybrid BIST). As an example, the data 
for the circuit c880 are depicted in Table 5.2. The calculation of 
the data in the column t(k) of Table 5.2 is the most expensive 
procedure. In the following section, the difficulties and possible 
ways to solve this problem are discussed. 

Table 5.2. ATPG results. 

k t(k) k t(k) 
0 
1 
2 
3 
4 
5 
10 
15 
20 
28 
50 
70 
100 

104 
104 
100 
101 
99 
99 
95 
92 
87 
81 
74 
58 
52 

148 
200 
322 
411 
707 
954 
1535 
1560 
2153 
3449 
4519 
4520 

46 
41 
35 
26 
17 
12 
11 
7 
3 
2 
1 
0 
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5.2. Test Cost Minimization Algorithms 

There are two approaches to find the deterministic test set t(k): 
ATPG based and fault table based. Let us introduce the following 
notations:  

• i – the current number of the entry in the tables for PRG and 
ATPG (Table 5.1 and Table 5.2); 

• k(i) – the number of the clock cycle of the efficient clock at en-
try i; 

• RDET(i) - the set of new faults detected (covered) by the pseudo-
random test pattern which is generated at the efficient clock 
signal number k(i);  

• RNOT(i) - the set of not yet covered faults after applying the 
pseudorandom test pattern number k(i); 

• T(i) - the set of test patterns needed and found by the ATPG to 
cover the faults in RNOT(i); 

• N – the number of all efficient patterns in the sequence cre-
ated by the pseudorandom test; 

5.2.1. ATPG Based Approach 

Algorithm 5.1: ATPG based approach for finding test sets T(i) 

1. Let q:=N; 
2. Generate for RNOT(q) a test set T(q), T := T(q), t(q) := |T(q)|; 
3. For all q= N-1, N-2, … 1:  

Generate for the faults RNOT(q) not covered by test T a test set 
T(q),  
T := T+ T(q), t(q) := |T|. 

END. 

The above algorithm generates a new deterministic test set for 
the not yet detected faults at every efficient clock cycle. In this 
way we have the complete test set (consisting of pseudorandom 
and deterministic test vectors) for every efficient clock, which can 
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reach the maximal achievable fault coverage. The number of de-
terministic test vectors at all efficient clocks is then used to cre-
ate the curve CMEM(βS). The algorithm is straightforward, how-
ever, very time consuming because of repetitive use of ATPG.  

Since usage of ATPG is a very time consuming procedure, we 
present in the following another algorithm based on iterative 
transformations of fault tables. This algorithm allows a dramatic 
reduction of computation time for the hybrid BIST cost calcula-
tion. 

5.2.2. Fault Table Based Approach 

The fault table FT for a general case is defined as follows: given 
a set of test patterns T and a set of faults R, FT = [ εij ]1 where εij  

= 1 if the test ti ∈ T detects the fault rj ∈ R, and εij  = 0 otherwise. 
We denote by R(ti) ⊂ R  the subset of faults detected by the test 
pattern  ti ∈ T. 

We start the procedure for a given circuit by generating a test 
set T which gives the 100% (or as high as possible) fault cover-
age. This test set can be served as a stored test if no on-line gen-
erated pseudorandom test sequence will be used. By fault simu-
lation of the test set T for the given set of faults R of the circuit, 
we create the fault table FT. Suppose now, that we use a pseudo-
random test sequence TL with a length L that detects a subset of 
faults RL ⊂ R. It is obvious that when switching from the pseudo-
random test mode with a test set TL to the precomputed stored 
test mode, the deterministic test set to be applied can be signifi-
cantly reduced as compared to the complete set T. At first, by the 
fault subtraction operation R(ti) - R

L  we can update all the con-
tributions of the test patterns ti  in FT (i.e. to calculate for all ti 
the remaining faults they can detect after performing the pseu-
dorandom test). After that we can use any procedure of static 
test compaction to minimize the test set T. 

                                                  
1 FT is a i×j matrix, where i is the number of tests and j is the number of faults. 
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The described procedure of updating the fault table FT can be 
carried out iteratively for all possible breakpoints i =1, 2, …, N of 
the pseudorandom test sequence by the following algorithm 
[160]. 

Algorithm 5.2: Fault Table based approach for finding test sets 
T(i) 

1. Calculate the whole test T for the whole set of faults R by 
an ATPG  to reach as high fault coverage C as possible 

2. Create for T and R the fault table FT = [ εij ] 

3. Take i = 1; Rename: Ti = T, Ri = R, FTi = FT  

4. Take i = i + 1 

5. Calculate by fault simulation the fault set RDET(i) 

6. Update the fault table: ∀j, tj ∈ Ti: R(tj) - RDET(i) 

7. Remove from the test set  Ti  all the test patterns  tj ∈ Ti  
where R(tj) = ∅ 

8. Optimize the test set  Ti  by a test compaction algorithm; 
fix the value of Si = | Ti | as the length of the stored test 
for L = i; 

9. If  i < L, go to 4; 

End. 

It is easy to understand that for each value L = i (the length of 
the pseudorandom test sequence) the procedure guarantees the 
constant fault coverage C of the hybrid BIST. The statement 
comes from the fact that the subset Ti of stored test patterns is 
complementing the pseudorandom test sequence for each i = 1, 2, 
…, N  to reach the same fault coverage reached by T. 

As the result of Algorithm 5.2, the numbers of precomputed 
deterministic test patterns Si = |Ti| to be stored and the subsets of 
these patterns Ti for each i =1, 2, …, N are calculated. Based on 
this data the cost of stored test patterns for each i can be calcu-
lated by the formula CMEM = βSi. From the curve of the total cost 
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CTOTAL(i) = αL + βS  the value of the minimum cost of the hybrid 
BIST min{CTOTAL(i)} can be easily found. 

As will be shown in section 5.3, for very large circuits, both al-
gorithms presented will lead to very time-consuming runs. It 
would be desirable to find the global minimum of the total cost 
curve by as few sampled calculations as possible. Therefore, we 
introduce here an approach, based on a Tabu search heuristic, to 
speed up the calculations. 

5.2.3. Tabu Search Based Cost Optimization 

Tabu search ([57], [58], [59]) is a form of local neighborhood 
search. Each solution SO∈Ω, where Ω is the search space (the set 
of all feasible solutions), has an associated set of neighbors 
Ν(SO)⊆Ω. A solution SO'∈Ν(SO) can be reached from SO by an 
operation called a move. At each step, the local neighborhood of 
the current solution is explored and the best solution is selected 
as a new current solution. Unlike local search, which stops when 
no improved new solution is found in the current neighborhood, 
Tabu search continues the search from the best solution in the 
neighborhood even if this solution is worse than the current one. 
To prevent cycling, visited solutions are kept in a list called Tabu 
list. Tabu moves (moves stored in the current Tabu list) are not 
allowed. However, the Tabu status of a move is overridden when 
a certain criterion (aspiration criterion) is satisfied. One example 
of an aspiration criterion is when the cost of the selected solution 
is better than the best seen so far, which is an indication that the 
search is actually not cycling back, but rather moving to a new 
solution not encountered before [58]. Moves are only kept in the 
Tabu list for a given number of iterations (the so called “Tabu 
tenure”). 

The procedure of the Tabu search starts from an initial feasi-
ble solution in the search space Ω, which becomes the first cur-
rent solution SO. A solution in our hybrid BIST cost minimiza-
tion problem is defined as the switching moment from the 
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pseudorandom test mode to the stored test mode. The search 
space Ω covers all possible switching moments. A neighborhood 
Ν(SO) is defined for each SO. Based on the experimental results 
it was concluded that the most efficient step size for defining the 
neighborhood N(SO) in our optimization problem was 3% of the 
number of efficient clocks. A larger step size, even if it can pro-
vide considerable speedup, will decrease the accuracy of the final 
result. In our algorithm a sample of neighbor solutions V* ⊂ 
Ν(SO) is generated. These solutions can be generated by using 
either the Algorithm 5.1 or Algorithm 5.2. In our current ap-
proach, Algorithm 5.2 was used. An extreme case is to generate 
the entire neighborhood that is to take V* = Ν(SO). Since this is 
generally impractical (computationally expensive), a small sam-
ple of neighbors is generated, and called trial solutions (⏐V*⏐= n 
<< ⏐Ν(SO)⏐). In case of ISCAS’85 benchmark circuits the best 
results were obtained, when the size of the sample of neighbor-
hood solutions was 4. An increase of the size of V* had no effect 
on the quality of results. From these trial solutions the best solu-
tion, say SO*∈V*, is chosen for consideration as the next solu-
tion. The move to SO* is considered, even if SO* is worse than 
SO, that is, Cost(SO*) > Cost(SO). This feature enables escaping 
from local optima. The cost of a solution is calculated according 
to Equation (4.1) for calculating the total cost of hybrid BIST 
CTOTAL, presented in section 4.3. A move from SO to SO* is made 
provided certain conditions are satisfied.  

One of the parameters of the algorithm is the size of the Tabu 
list. A Tabu list T is maintained to prevent returning to previ-
ously visited solutions. The list contains information concerning 
forbidden moves. The Tabu list size should also be determined by 
experimental runs, watching the occurrence of cycling when the 
size is too small, and the deterioration of solution quality when 
the size is too large [142]. Results have shown that the best av-
erage size for the ISCAS’85 benchmark family was 3. Larger 
sizes lead to a loss of result quality. 
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For finding a good initial feasible solution in order to make 
Tabu search more productive, a fast estimation method for an 
optimal L proposed in [88] is used. For this estimation, the num-
ber of not yet covered faults in RNOT(i) can be used. The value of 
⏐RNOT(i)⏐ can be acquired directly from the PRG simulation re-
sults and is available for every significant time moment (see 
Table 5.1). Based on the value of ⏐RNOT(i)⏐ it is possible to esti-
mate the expected number of test patterns needed for covering 
the faults in RNOT(i). The starting point for the Tabu search pro-
cedure can be found by considering a rough estimation of the to-
tal cost based on the value of ⏐RNOT(i)⏐. Based on statistical 
analysis of the costs calculated for ISCAS’85 benchmark circuits, 
in [88] the following approximation is proposed: one remaining 
fault results in 0,45 test patterns needed to cover it. In this way, 
a simplified cost prediction function was derived: C’TOTAL(k) = 
CGEN(k) +  0,45β⋅RNOT(k). The value k*, where C’TOTAL(k*) = 
min(C’TOTAL(k)) was used as the initial solution for Tabu search. 

To explain the algorithm, let us have the following additional 
notations: E - number of allowed empty iterations (i.e. iterations 
that do not result in finding a new best solution), defined for 
each circuit, and SOtrial - solution generated from the current so-
lution as a result of the move.  

Algorithm 5.3: Tabu Search 

Begin 
  Start with initial solution SO ∈ Ω; 
  BestSolution:=SO; 
  Add the initial solution SO to Tabu list T, T={SO}; 
  While number of empty iterations < E Do 

  Generate the sample of neighbor solutions V*⊂ Ν(SO); 
  Find best Cost(SO*⊂V*); 
 

  M:  If (solution SO* is not in T) Or  
             (aspiration criterion is satisfied) Then 

SOtrial:=SO*; 
Update tabu list T; 
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Increment the iteration number; 
     Else 

         Find the next best Cost(SO*⊂V*); 
Go to M; 

   EndIf 
 
   If Cost(SOtrial) < Cost(BestSolution) Then         

BestSolution := SOtrial;  
   Else 

Increment number of empty iterations 
   EndIf 
   SO:=SOtrial; 

   EndWhile 
End. 

5.3. Experimental Results 

Experiments were carried out on the ISCAS’85 benchmark cir-
cuits for comparing Algorithm 5.1 and Algorithm 5.2, and for in-
vestigating the efficiency of the Tabu search method for optimiz-
ing the hybrid BIST technique. Experiments were carried out 
using the Turbo Tester toolset [86], [156] for deterministic test 
pattern generation, fault simulation, and test set compaction. 
The results are presented in Table 5.3 and illustrated by several 
diagrams [88], [89], [160], [161]. 

For calculating the total cost of hybrid BIST we used the for-
mula CTOTAL = αL + βS. For simplicity, we assume here that α = 1, 
and β = B where B is the number of bytes of an input test vector 
to be applied to the CUT. Hence, to carry out some experimental 
work for demonstrating the feasibility and efficiency of the fol-
lowing algorithms, we use, as the cost units the number of clocks 
used for pseudorandom test generation and the number of bytes 
in the memory needed for storing the precomputed deterministic 
test patterns. 
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In the columns of Table 5.3 the following data is depicted: 
ISCAS’85 benchmark circuit name, L - length of the pseudoran-
dom test sequence, FC - fault coverage, S - number of test pat-
terns generated by deterministic ATPG to be stored, CT – total 
cost of the hybrid BIST, T1 and T2 - the time (sec) needed for cal-
culating the cost curve by Algorithm 5.1 and Algorithm 5.2, T3 – 
the time (sec) to find the minimal cost by using Tabu search. TS – 
the number of iterations in Tabu search, Acc – accuracy of the 
Tabu search solution in percentage compared to the exact solu-
tion found from the full cost curve. The initial pseudorandom se-
quence with length L was obtained by executing the LFSR until 
the same fault coverage as for the ATPG-based solution was 
reached or no new faults were detected after predetermined 
amount of time (the number denotes the last efficient pattern). 
The fault coverage of the final hybrid test set is the same as for 
the pure deterministic test set. 

The results given in Table 5.3 demonstrate the high efficiency 
(in number of required test vectors) of the hybrid BIST solution 
over pure pseudorandom or deterministic approaches. As ex-
pected, the optimal cost was found fastest with using the Tabu 
search algorithm, while the accuracy was not less than 97,2% for 
the whole family of ISCAS’85 benchmark circuits. In the follow-
ing, the experimental results will be explained further. 

For the Tabu search method the investigation was carried out 
to find the best initial solution, the step defining N(SO), the size 
of V* and the size of the Tabu list for using the Tabu strategy in 
a most efficent way. 

The efficiency of the search depends significally on the step 
size defining the neighborhood N(SO). Based on the 
experimental results, the charts of dependancy of the overall 
estimation accuracy and of the overall speedup on step size were 
compozed and given in Figure 5.1 and Figure 5.2. Analyzing re-
sults depicted in those figures led to the conclusion that the most 
favorable step size can be considered as 3% of the number of 
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efficient clocks, where the average estimation accuracy is the 
highest. Although a larger step size would result in a speedup, it 
was considered impractical because of the rapid decrease in the 
cost estimation accuracy. 

Table 5.3. Experimental Results. 

Pseudorandom 
test 

Deterministic 
test 

Hybrid  
test 

 
Circuit

L FC S FC L S CT 

C432 780 93.0 80 93.0 91 21 196 
C499 2036 99.3 132 99.3 78 60 438 
C880 5589 100.0 77 100.0 121 48 505 

C1355 1522 99.5 126 99.5 121 52 433 
C1908 5803 99.5 143 99.5 105 123 720 
C2670 6581 84.9 155 99.5 444 77 2754 
C3540 8734 95.5 211 95.5 297 110 1067 
C5315 2318 98.9 171 98.9 711 12 987 
C6288 210 99.3 45 99.3 20 20 100 
C7552 18704 93.7 267 97.1 583 61 2169 

 
Calculation cost  

Circuit T1 T2 T3 Ts 

Acc
(%) 

C432 1632 21 2.85 11 100.0
C499 74 3 0.50 19 100.0
C880 17 2 0.26 15 99.7

C1355 133 5 0.83 18 99.5
C1908 2132 25 3.83 28 100.0
C2670 230 13 0.99 9 99.1
C3540 22601 122 7.37 16 100.0
C5315 2593 38 1.81 12 97.2
C6288 200 6 1.70 15 100.0
C7552 15004 129 3.70 8 99.7
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Figure 5.1. Dependency of estimation accuracy from  
neighborhood step size. 
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Figure 5.2. Dependency of average speedup from  
neighborhood size. 
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In Figure 5.3, the curves of the cost CGEN =L (denoted on Figure 
5.3 as T) for on-line pseudorandom test generation, the cost CMEM 
= Bk*S (denoted as M) for storing the test patterns, the number 
|RNOT| of not detected faults after applying the pseudorandom test 
sequence (denoted as Fr), and the total cost function CTOTAL are 
depicted for selected benchmark circuits C432, C499, C880, 
C1908, C3540 and C7552 (Sc = 0 is used as a constant in the cost 
function formula). 

 

C432 

 

C499 

Figure 5.3. Cost curves of hybrid BIST for some ISCAS’85  
benchmark circuits. 
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C880 

 

 

C1908 

Figure 5.3. Cost curves of hybrid BIST for some ISCAS’85  
benchmark circuits (cont.). 
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C3540 

 

C7552 

Figure 5.3. Cost curves of hybrid BIST for some ISCAS’85  
benchmark circuits (cont.). 
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Figure 5.4. Percentage of test patterns in the optimized  
hybrid test sets compared to the original test sets. 

In Figure 5.4 the amount of pseudorandom and deterministic 
test patterns in the optimal hybrid BIST solution is compared to 
the sizes of pseudorandom and deterministic test sets when only 
either of these sets is used. In the typical cases, less than half of 
the deterministic vectors and only a small fraction of pseudoran-
dom vectors are needed, while the maximum achievable fault 
coverage is guaranteed and achieved.  

Figure 5.5 compares the costs of different approaches using for 
Hybrid BIST cost calculation Equation (4.1) with the parameters 
α = 1, and β = B where B is the number of bytes of the input test 
vector to be applied on the CUT. As pseudorandom test is usually 
the most expensive method under this assumption of coefficient 
values (α,β), it has been selected as a reference and given value 
100%. The other methods give considerable reduction in terms of 
cost and as it can be seen, the hybrid BIST approach has signifi-



CHAPTER 5 

106 

cant advantage compared to the pure pseudorandom or stored 
test approach in most of the cases. 
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Figure 5.5. Cost comparison of different methods.  
Cost of pseudorandom test is taken as 100%. 

5.4. Conclusions 

In this chapter a hybrid BIST cost optimization for single-core 
designs has been presented. For selecting the optimal switching 
moment from the pseudorandom test mode to the stored test 
mode two algorithms were proposed for calculating the complete 
cost curve of the different hybrid BIST solutions. The first one is 
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a straightforward method based on using traditional fault simu-
lation and test pattern generation. The second one is based on 
fault table manipulations and uses test compaction. A Tabu 
search algorithm was also developed to reduce the number of cal-
culations in search for an efficient solution for hybrid BIST. The 
experimental results demonstrate the feasibility of the approach 
and the efficiency of the fault table based cost calculation method 
combined with Tabu search for finding optimized cost-effective 
solutions for hybrid BIST.  
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Chapter 6 

Hybrid BIST Time 
Minimization for  
Systems-on-Chip 

6.1. Introduction 

In the previous sections we have described the basic principles of 
hybrid BIST and discussed methods for test cost calculation and 
optimization for individual cores in isolation. In this chapter, we 
concentrate on hybrid BIST optimization for multi-core designs. 
As total cost minimization for multi-core systems is an extremely 
complex problem and is rarely used in reality, the main empha-
sis here is on test time minimization under memory constraints 
with different test architectures. The memory constraints can be 
seen as limitations of on-chip memory or ATE memory, where 
the deterministic test set will be stored, and therefore with high 
practical importance. We will concentrate on two large classes of 
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test architectures. In one case we assume that every core is 
equipped with its own pseudorandom pattern generator and only 
deterministic patterns have to be transported to the cores. In the 
second case we assume test pattern broadcasting, where both 
pseudorandom and deterministic test patterns have to be trans-
ported to the cores under test. For both architectures we will de-
scribe test-per-clock as well as test-per-scan application schemes.  

6.2. Parallel Hybrid BIST Architecture 

We start with a test architecture where every core has its own 
dedicated BIST logic that is capable of producing a set of inde-
pendent pseudorandom test patterns, i.e. the pseudorandom test 
sets for all the cores can be carried out simultaneously. At the 
system level, however, only one test access bus is assumed, thus 
the deterministic tests can only be carried out for one core at a 
time. Such architecture assumes that all patterns from the same 
test set (pseudorandom or deterministic) for the same CUT have 
the same test application time, thus simplifying test cost calcula-
tions. An example of a multi-core system, with such a test archi-
tecture is given in Figure 6.1. 

In order to explain the test time minimization problem for 
multi-core systems, let us use an example design, consisting of 5 
cores, each core as a different ISCAS benchmark (Figure 6.1). 
Using the hybrid BIST optimization methodology, described in 
Chapter 5, we can find the optimal combination between pseudo-
random and deterministic test patterns for every individual core 
(Figure 6.2). Considering the assumed test architecture, only one 
deterministic test set can be applied at any given time, while any 
number of pseudorandom test sessions can take place in parallel. 
To enforce the assumption that only one deterministic test can be 
applied at a time, a simple ad-hoc scheduling method can be 
used. The result of this schedule defines the starting moments 
for every deterministic test session, the memory requirements, 
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and the total test length t for the whole system. This situation is 
illustrated in Figure 6.2.  

SoC

       C3540       

   C1908       C880        C1355   

Embedded Tester
     C2670     

Test access
mechanismBIST BIST

BISTBISTBIST

Test 
Controller

Tester
Memory

 

Figure 6.1. An example of a core-based system, with  
independent BIST resources. 
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C1908 105 123
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clock cycles
t

 

Figure 6.2. Ad-hoc test schedule for hybrid BIST of the  
core-based system example. 

As it can be seen from Figure 6.2, the solution where every in-
dividual core has the best possible combination between pseudo-
random and deterministic patterns usually does not lead to the 
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best system-level test solution. In this example, we have illus-
trated three potential problems:  

• The total test length of the system is determined by the sin-
gle longest individual test set, while other tests may be sub-
stantially shorter; 

• The resulting deterministic test sets do not take into ac-
count the memory requirements, imposed by the size of the 
on-chip memory or the external test equipment; 

• The proposed test schedule may introduce idle periods, due 
to the scheduling conflicts between the deterministic tests of 
different cores; 

There are several possibilities for improvement. For example, 
the ad-hoc solution in Figure 6.2 can easily be improved by using 
a better scheduling strategy. This, however, does not necessarily 
lead to a significantly better solution as the ratio between pseu-
dorandom and deterministic test patterns for every individual 
core is not changed. Therefore, we have to explore different com-
binations between pseudorandom and deterministic test patterns 
for every individual core in order to find a solution where the to-
tal test length of the system is minimized and the memory con-
straints are satisfied. In the following sections, we will define 
this problem more precisely, and describe a fast iterative algo-
rithm for calculating the optimal combination between different 
test sets for the whole system. 

6.2.1. Basic Definitions and Problem Formulation 

Let us assume that a system S consists of n cores C1, C2, …, Cn. 
For every core Ck ∈ S a complete sequence of deterministic test 
patterns TDF

k and a complete sequence of pseudorandom test 
patterns TPF

k can be generated.  

Definition 6.1: A hybrid BIST set THk = {TPk, TDk} for a core 
Ck is a sequence of tests, constructed from a subset TPk ⊆ TPF

k of 
the pseudorandom test sequence, and a deterministic test se-
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quence TDk ⊆ TDF
k . The sequences TPk and TDk complement 

each other to achieve the maximum achievable fault coverage. 

Definition 6.2: A pattern in a pseudorandom test sequence is 
called efficient if it detects at least one new fault that is not de-
tected by the previous test patterns in the sequence. The ordered 
sequence of efficient patterns form an efficient pseudorandom 
test sequence TPEk = (P1, P2,…,Pn) ⊆ TPk. Each efficient pattern Pj 
∈ TPEk is characterized by the length of the pseudorandom test 
sequence TPk, from the start to the efficient pattern Pj, including 
Pj. An efficient pseudorandom test sequence TPEk, which in-
cludes all efficient patterns of TPF

k is called full efficient pseudo-
random test sequence and denoted by TPEF

k . 

Definition 6.3: The cost of a hybrid test set THk for a core Ck 
is determined by the total length of its pseudorandom and de-
terministic test sequences, which can be characterized by their 
costs, COSTP,k and COSTD,k respectively: 

kkkkDkPkT TDTPCOSTCOSTCOST ϕσ +=+= ,,,
 (6.1) 

and by the cost of recourses needed for storing the deterministic test 
sequence TDk in the memory: 

., kkkM TDCOST γ=  (6.2) 

The parameters σ and ϕk (k=1, 2, …, n) can be introduced by the 
designer to align the application times of different test sequences. 
For example, when a test-per-clock BIST scheme is used, a new test 
pattern can be generated and applied in each clock cycle and in this 
case σ = 1. The parameter ϕk for a particular core Ck is equal to the 
total number of clock cycles needed for applying one deterministic 
test pattern from the memory. In a special case, when deterministic 
test patterns are applied by an external test equipment, application 
of deterministic test patterns may be up to one order of magnitude 
slower than applying BIST patterns. The coefficient γk is used to 
map the number of test patterns in the deterministic test sequence 
TDk  into the memory recourses, measured in bits. 
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Definition 6.4: When assuming the test architecture de-
scribed above, a hybrid test set TH = {TH1, TH2, …,  THn} for a 
system S = {C1, C2, …, Cn} consists of hybrid tests THk for each 
individual core Ck, where the pseudorandom components of TH 
can be scheduled in parallel, whereas the deterministic compo-
nents of TH must be scheduled in sequence due to the shared 
test resources.  

Definition 6.5: J = (j1, j2,…, jn) is called the characteristic vec-
tor of a hybrid test set TH = {TH1, TH2, …,  THn}, where jk = 
|TPEk| is the length of the efficient pseudorandom test sequence 
TPEk ⊆ TPk ⊆ THk. 

According to Definition 6.2, for each jk corresponds a pseudo-
random subsequence TPk(jk) ⊆ TPF

k, and according to Definition 
6.1, any pseudorandom test sequence TPk(jk) should be comple-
mented with a deterministic test sequence, denoted with TDk(jk), 
that is generated in order to achieve the maximum achievable 
fault coverage. Based on this we can conclude that the character-
istic vector J determines entirely the structure of the hybrid test 
set THk for all cores Ck ∈ S. 

Definition 6.6:  The test length of a hybrid test TH = {TH1, 
TH2, …,  THn} for a system S = {C1, C2, …, Cn} is given by:  

}.),(max{max kk
k

kkkkT TDTDTPCOST ϕϕσ ∑+=  (6.3) 

The total cost of resources needed for storing the patterns from 
all deterministic test sequences TDk in the memory is given by: 

.,∑=
k

kMM COSTCOST  (6.4) 

Definition 6.7: Let us introduce a generic cost function 
COSTM,k = fk(COSTT,k) for every core Ck ∈ S, and an integrated 
generic cost function COSTM = fk(COSTT) for the whole system S.   

The functions COSTM,k = fk(COSTT,k) will be created in the fol-
lowing way. Let us have a hybrid BIST set THk(j) = {TPk(j), 
TDk(j)} for a core Ck with j efficient patterns in the pseudorandom 
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test sequence. By calculating the costs COSTT,k and COSTM,k for 
all possible hybrid test set structures THk(j), i.e. for all values j = 
1, 2, …, ⏐TPEF

k⏐, we can create the cost functions COSTT,k = 
fT,k(j), and  COSTM,k = fM,k(j). By taking the inverse function j = 
f -1

T,k(COSTT,k), and inserting it into the fM,k(j) we get the generic 
cost function COSTM,k = fM,k(f 

-1
T,k(COSTT,k)) = fk(COSTT,k) where the 

memory costs are directly related to the lengths of all possible 
hybrid test solutions. 

The integrated generic cost function COSTM=f(COSTT) for the 
whole system is the sum of all cost functions COSTM,k = 
fk(COSTT,k) of individual cores Ck ∈ S.  

From the function COSTM = f(COSTT) the value of COSTT for 
every given value of COSTM can be found. The value of COSTT 
determines the lower bound of the length of the hybrid test set 
for the whole system. To find the component jk of the characteris-
tic vector J, i.e. to find the structure of the hybrid test set for all 
cores, the equation fT,k(j)= COSTT should be solved. 

The objective here is to find a shortest possible (min(COSTT)) 
hybrid test sequence THOPT when the memory constraints are not 
violated i.e., COSTM ≤ COSTM,LIMIT.  

6.2.2.  Test Set Generation Based on Cost Estimates 

By knowing the generic cost function COSTM = f(COSTT), the to-
tal test length COSTT at any given memory constraint COSTM ≤ 
COSTM,LIMIT can be found in a straightforward way. However, the 
procedure to calculate the cost functions COSTD,k(j) and 
COSTM,k(j) is very time consuming, since it assumes that the de-
terministic test set TDk for each  j = 1, 2, …, |TPEF

k| has to be 
available. This assumes that after every efficient pattern Pj ∈ 
TPEk ⊆ TPk, j = 1, 2, …, |TPEF

k| a set of not yet detected faults 
FNOT,k(j) should be calculated. This can be done by repetitive use 
of the automatic test pattern generator or by systematically ana-
lyzing and compressing the fault tables for each j (see Chapter 
5). Both algorithms are time-consuming and therefore not feasi-
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ble for larger designs. To overcome the complexity explosion 
problem we propose an iterative algorithm, where costs COSTM,k 
and  COSTD,k for the deterministic test sets TDk can be found 
based on estimates. The estimation method is based on fault cov-
erage figures and does not require accurate calculations of the 
deterministic test sets for not yet detected faults FNOT,k(j).  

In the following we will use FDk(i) and FPEk(i) to denote the 
fault coverage figures of the test sequences TDk(i) and TPEk(i), 
respectively, where i is the length of the test sequence. 

Procedure 6.1: Estimation of the length of the deterministic 
test set TDk. 

1. Calculate, by fault simulation, the fault coverage functions 
FDk(i), i = 1, 2, …, |TDF

k|,  and FPEk(i), i = 1, 2, …, |TPEF
k|. 

The patterns in TDF
k are ordered in such a way that each 

pattern put into the sequence contributes with maximum in-
crease in fault coverage.  

2. For each  i* ≤ |TPEF
k|, find the fault coverage value F* that 

can be reached by a sequence of patterns (P1, P2, …, Pi*) ⊆ 
TPEk (see Figure 6.3).  

3. By solving the equation FDk(i) = F*, find the maximum inte-
ger value j* that satisfies the condition FDk(j*) ≤ F*. The 
value of j* is the length of the deterministic sequence TDk 
that can achieve the same fault coverage F*.  

4. Calculate the value of |TDE
k(i*)| = |TDF

k| - j*  which is the 
number of test patterns needed from the TDF

k  to reach to the 
maximum achievable fault coverage. 

 

The value |TDE
k(i*)|=|TDF

k|- j*, calculated by Procedure 6.1, can 
be used to estimate the length of the deterministic test sequence 
TDk in the hybrid test set THk = {TPk, TDk} with i* efficient test 
patterns in TPk, (|TPEk|= i*). 

By finding |TDE
k(j)| for all j = 1, 2, …, |TPEF

k| we get the cost 
function estimate COSTE

D,k(j). Using COSTE
D,k(j), other cost func-

tion estimates COSTE
M,k(j), COSTE

T,k(j) and COSTE
M,k = 
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fk
E(COSTE

T,k) can be created according to the Definition 6.3 and 
Definition 6.7.  

Finally, by adding cost estimates COSTE
M,k = fk

E(COSTE
T,k) of all 

cores, we get the hybrid BIST cost function estimate COSTE
M = 

fE(COSTE
T) for the whole system. 

 
  

i
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F  D  k  (  i  )  F  P  E  k  (  i  )  

i  *  
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|  T  D  E  
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Figure 6.3. Estimation of the length of the deterministic  
test sequence. 

This estimation mechanism is illustrated on Figure 6.4. It de-
picts fault simulation results of both, pseudorandom (TP) and de-
terministic (TD), test sets for a given core. The length of the 
pseudorandom sequence has to be only so long as potentially in-
teresting. By knowing the length of the complete deterministic 
test set and fault coverage figures for every individual pattern 
we can estimate the size of the additional deterministic test set 
for any length of the pseudorandom test sequence, as illustrated 
in the Figure 6.4. Here we can see that for a given core 60 de-
terministic test cycles are needed to obtain the same fault cover-
age as 524 pseudorandom test cycles and it requires additional 
30 deterministic test cycles to reach 100% fault coverage. Based 
on this information we assume, that if we will apply those 30 de-
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terministic test cycles on top of the 524 pseudorandom cycles, we 
can obtain close to the maximum fault coverage. This assump-
tion is the basis for our cost estimation procedure. Obviously, 
this cannot be used as a final solution, but as we will demon-
strate, it can be used as a good starting point for test time mini-
mization algorithms. 

 
 

|TP| FC%  |TD| FC% 
1 21.9  1 43.3 
2 34.7  2 45.6 
 …  …  

524 97.5  60 97.5 
 …  …  

1000 98.9  90 100 

    

 

Figure 6.4. Estimation of the length of the deterministic  
test sequence (core s1423). 

In order to demonstrate the feasibility of the proposed estima-
tion methodology, we performed experiments with all designs 
from the ISCAS85 benchmark family. Some of these results are 
illustrated in Figure 6.5. More results can be found in [93]. In 
these charts we have depicted the memory requirement (the size 
of the deterministic test set) for every pseudorandom test length. 
Obviously – the longer the pseudorandom test sequence is, the 
smaller is the memory requirement. We have compared the pro-
posed estimate against the real memory cost. This has been ob-
tained by the repetitive use of the ATPG (see Chapter 5). As it 
can be seen from the results, the proposed estimation methodol-
ogy gives very good estimate, mainly in the situations, when the 
hybrid test set contains smaller amount of pseudorandom test 
patterns. 
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Figure 6.5. Estimation accuracy. 
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Figure 6.5. Estimation accuracy (cont.). 
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6.2.3. Test Length Minimization Under Memory 
Constraints 

As described above, the exact calculations for finding the cost of 
the deterministic test set COSTM,k = fk(COSTT,k) are very time-
consuming. Therefore, we will use the cost estimates, calculated 
by Procedure 6.1 in the previous section, instead. Using esti-
mates can give us a close to minimal solution for the test length 
of the hybrid test at given memory constraints. After obtaining 
this solution, the cost estimates can be improved and another, 
better solution can be calculated. This iterative procedure will be 
continued until we reach the final solution. 

Procedure 6.2: Test length minimization. 

1. Given the memory constraint COSTM,LIMIT, find the estimated 
total test length COSTE*

T  as a solution to the equation 
fE(COSTE

T) = COSTM,LIMIT. 

2. Based on COSTE*
T, find a candidate solution J* = (j*1, j*2,…, 

j*n) where each j*k is the maximum integer value that satis-
fies the equation COSTE

T,k(j*k) ≤ COSTE*
T. 

3. To calculate the exact value of COST*M for the candidate so-
lution J*, find the set of not yet detected faults FNOT,k(j*k) and 
generate the corresponding deterministic test set TD*k by us-
ing an ATPG algorithm.  

4. If COST*M = COSTM,LIMIT, go to the Step 9. 

5. If the difference |COST*M - COSTM,LIMIT| is bigger than that in 
the earlier iteration make a correction ∆t  = ∆t/2, and go to 
Step 7. 

6. Calculate a new test length COSTE,N
T from the equation 

fE
k(COSTE

T) = COST*
M, and find the difference ∆t = COSTE,*

T  - 
COSTE,N

T .  

7. Calculate a new cost estimate COSTE,*
T =  COSTE,*

T + ∆t for 
the next iteration.  

8. If the value of COSTE,*
T  is the same as in an earlier iteration, 

go to Step 9, otherwise go to Step 2. 
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9. END: The vector J* = (j*1, j*2,…, j*n) is the solution. 

To illustrate the above procedure, in Figure 6.6 and Figure 6.7 
an example of the iterative search for the shortest length of the 
hybrid test is given. Figure 6.6 represents all the basic cost 
curves COSTE

D,k(j), COSTE
P,k(j), and COSTE

T,k(j), as functions of 
the length j of TPEk where jmin denotes the optimal solution for a 
single core hybrid BIST optimization problem [88].  
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Figure 6.6. Cost curves for a given core Ck. 

Figure 6.7 represents the estimated generic cost function 
COSTE

M = fE(COSTE
T) for the whole system. At first (Step 1), the 

estimated COSTE*
T for the given memory constraints is found 

(point 1 on Figure 6.7). Then (Step 2), based on COSTE*
T the 

length j*k of TPEk for the core Ck in Figure 6.6 is found. This pro-
cedure (Step 2) is repeated for all the cores to find the character-
istic vector J* of the system as the first iterative solution. After 
that the real memory cost COSTE*

M is calculated (Step 3, point 1* 
in Figure 6.7). As we see in Figure 6.7 the value of COSTE*

M in 
point 1* violates the memory constraints. The difference ∆t1 is 
determined by the curve of the estimated cost (Step 6). After cor-
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rection, a new value of COSTE*
T is found (point 2 on Figure 6.7). 

Based on COSTE*
T , a new  J* is found (Step 2), and a new 

COSTE*
M is calculated (Step 3, point 2* in Figure 6.7). An addi-

tional iteration via points 3 and 3* can be followed in Figure 6.7. 
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Figure 6.7. Minimization of the test length. 

It is easy to see that Procedure 6.2 always converges. By each 
iteration we get closer to the memory constraints level, and also 
closer to the minimal test length at given constraints. However, 
the solution may be only near-optimal, since we only evaluate so-
lutions derived from the estimated cost functions. 

6.2.4. Experimental Results 

We have performed experiments with several systems composed 
from different ISCAS benchmarks as cores. The results are pre-
sented in Table 6.1. 
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In Table 6.1 we compare our approach where the test length is 
found based on estimates, with an approach where deterministic 
test sets have been found by manipulating the fault tables for 
every possible switching point between pseudorandom and de-
terministic test patterns. As it can be seen from the results, our 
approach can give significant speedup (more than one order of 
magnitude), while retaining acceptable accuracy (biggest devia-
tion is less than 9% from the fault table based solution, in aver-
age 2.4%).  

Table 6.1. Experimental results with combinatorial cores. 

Total Test 
Length (clocks)

CPU Time1 

(seconds)
Total Test Length 

(clocks)
CPU Time 
(seconds)

20 000 222 223 199.78

10 000 487 487 57.08

7 000 552 599 114.16

14 000 207 209 167.3

5 500 540 542 133.84

2 500 1017 1040 200.76

7 000 552 586 174.84

3 500 3309 3413 291.40

2 000 8549 8 556 407.96

Our approach

S1 6 3772.84

System Number of 
cores

Memory 
Constraint 

(bits)

Fault table based approach

S2 7 3433.10

S3 5 10143.14

 

1 CPU time for calculating all possible hybrid BIST solutions. 

In Figure 6.8 we present the estimated cost curves for the in-
dividual cores and the estimated and real cost curves for one of 
the systems with 7 cores (different ISCAS85 benchmarks). We 
also show in this picture a test solution point for this system un-
der given memory constraint that has been found based on our 
algorithm. In this example we have used a memory constraint 
MLIMIT = 5500 bits. The final test length for this memory con-
straint is 542 clock cycles and that gives us a test schedule de-
picted in Figure 6.9. In Figure 6.10 we show another test sched-
ule for the same system, when the memory constraints are 
different (MLIMIT = 14 000 bits).   
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Figure 6.9. Test Schedule for the system S2 (MLIMIT = 5 500). 
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Figure 6.10. Test Schedule for the system S2 (MLIMIT = 14 000). 

This approach can easily be extended to systems with full-scan 
sequential cores. The main difference lies in the fact that in case 
of a test-per-scan scheme, the test application is done via scan 
chains and one test cycle takes longer than one clock cycle. This 
is valid for both pseudorandom and deterministic test. As every 
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core contains scan chains with different lengths the analysis pro-
cedure has to account for this and switching from one core to an-
other has to respect the local, core-level test cycles. In the follow-
ing, the experimental results with systems where every 
individual core is equipped with Self-Test Using MISR and Par-
allel Shift Register Sequence Generator (STUMPS) [12] are pre-
sented [91]. 

While every core has its own STUMPS architecture, at the 
system level we assume the same architecture as described ear-
lier: Every core’s BIST logic is capable of producing a set of inde-
pendent pseudorandom test patterns, i.e. the pseudorandom test 
sets for all the cores can be carried out simultaneously. The de-
terministic tests, on the other hand, can only be carried out for 
one core at a time, which means only one test access bus at the 
system level is needed. An example of a multi-core system with 
such a test architecture is given in Figure 6.11.  
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Memory

Scan Path

Scan Path

Scan Path

Scan Path
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Scan Path

Scan Path

Scan Path
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Figure 6.11. A core-based system example with the STUMPS  
test architecture. 
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Experiments have been performed with several systems com-
posed of different ISCAS’89 benchmarks as cores. All cores have 
been redesigned to include full scan path (one or several). The 
STUMPS architecture was simulated in software and for deter-
ministic test pattern generation a commercial ATPG tool was 
used. The results are presented in Table 6.2. 

Table 6.2. Experimental results with STUMPS architecture. 

1 CPU time for calculating all possible hybrid BIST solutions. 

In Table 6.2 we compare our approach where the test length is 
found based on estimates, with an exact approach where deter-
ministic test sets have been found by a brute force method (re-
petitive use of test pattern generator) for every possible switch-
ing point between pseudorandom and deterministic test 
patterns. As it can be seen from the results, our approach can 
give significant speedup (several orders of magnitude), while re-
taining very high accuracy.  

Exhaustive  
Approach 

Our 
Approach 

SOC 
Number  
of Cores 

Memory 
Constraint 

(bits) 

Total 
Test 

Length 
(clocks) 

CPU 
Time 
(sec.)1 

Total 
Test 

Length 
(clocks) 

CPU 
Time 
(sec.) 

25 000 5750 5775 270 
22 000 7100 7150 216 

 
J 

 
6 

19 000 9050 

 
57540 

9050 335 
22 000 5225 5275 168 
17 000 7075 7075 150 

 
K 

 
6 

13 000 9475 

 
53640 

9475 427 
15 000 3564 3570 164 
13 500 4848 4863 294 

 
L 

 
6 

12 200 9350 

 
58740 

9350 464 
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6.3. Broadcasting Based Hybrid BIST 
Architecture 

In the previous section we analyzed systems where every core 
has its own dedicated BIST logic that is capable of producing a 
set of independent pseudorandom test patterns. This approach 
can be extended for multi-core systems where both combinatorial 
cores and sequential cores with full scan are used.  This however 
may lead to high area overhead and may require redesign of the 
cores, as not all cores may be equipped from the beginning with 
self-test structures. Therefore, we have proposed a novel self-test 
architecture that is based on test pattern broadcasting [162]. In 
this approach, only a single pseudorandom test pattern genera-
tor is used and all test patterns are broadcasted simultaneously 
for all cores in the system. These patterns will be complemented 
with dedicated deterministic patterns for every individual core, if 
needed. These deterministic test vectors are generated during 
the development process and are stored in the system.  

The deterministic test sequence is assembled, in general, from 
deterministic test sequences for each individual core TD = {TD1, 
TD2,…, TDn}. Testing of all cores is carried out in parallel, i.e. all 
pseudorandom patterns as well as each deterministic test se-
quence TDk is applied to all cores in the system. The determinis-
tic test sequence TDk is a deterministic test sequence generated 
only by analyzing the core Ck ∈ S. For the rest of the cores Cj ∈ S, 
1 ≤  j ≠ k ≤ n this sequence can be considered as a pseudorandom 
sequence. This form of parallel testing is usually referred to as 
test pattern broadcasting [114]. The width of the hybrid test se-
quence TH is equal to MAXINP=max{INPk}, k=1, 2, …, n, where 
INPk  is the number of inputs of the core Ck . For each determi-
nistic test set TDk, where INPk < MAXINP, the not specified bits 
will be completed with pseudorandom data, so that the resulting 
test set TDk* can be applied in parallel to the other cores in the 
system as well. An example of such a hybrid test set is presented 
in Figure 6.12. 
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Figure 6.12. Hybrid test set for test pattern broadcasting. 

In Figure 6.12, we denote with LP the length of the pseudo-
random test set, with LD the length of the entire deterministic 
test set, and with LDk the length of the deterministic test set of 
core Ck. Since some of the cores may be 100% testable by using 
only the pseudorandom test sequence and the deterministic test 
sequences of other cores, the deterministic test sequence TDk for 
such a core Ck is not needed and LDk = 0.  

The memory size for storing the deterministic part of the hy-
brid test set is given by the following formula: 

∑
=

=
n

k
kkM INPLDCOST

1

)*(  (6.5) 

The main problem is to minimize the total length  

∑
=

+=
n

k
kLDLPLH

1

 (6.6) 

of the hybrid test set TH = {TP, TD} under given memory con-
straint COSTM ≤ COSTM,LIMIT. 

The problem of minimizing the hybrid BIST length at the 
given memory constraints for parallel multi-core testing is ex-
tremely complex. The main reasons of this complexity are the fol-
lowing:  

• The deterministic test patterns of one core are used as 
pseudorandom test patterns for all other cores; unfortu-
nately there will be n*n relationships for n cores to analyze 
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to find the optimal combination; on the other hand the de-
terministic test sets are not readily available (see Algorithm 
6.5, later in this section) and are calculated only during the 
analysis process; 

• For a single core an optimal combination of pseudorandom 
and deterministic patterns can be found by rather straight-
forward algorithms; but as the optimal time moment for 
switching from pseudorandom to deterministic testing will 
be different for different cores the existing methods cannot 
be used and the parallel testing case is considerably more 
complex. 

• For each core the best initial state of the LFSR can be found 
experimentally, but to find the best LFSR for testing all 
cores in parallel is a very complex and time consuming task. 

To overcome the high complexity of the problem we will pro-
pose at first a straightforward algorithm for calculating TP and 
TD, where we neglect the optimal solutions for individual cores 
in favor of finding a near-optimal solution for the whole system. 
Thereafter we will propose a more sophisticated algorithm that 
uses test cost estimates to find the appropriate initial pseudo-
random sequence TPINITIAL, and based on the fault coverage of 
every individual core Ck, achieved by TP, finds an optimized 
(compacted) deterministic test sequence TDk, thus reducing sig-
nificantly the length of the final hybrid test set. In the following, 
the algorithms will be described in detail. 

6.3.1. Straightforward Approach 

To cope with the high complexity of the problem, we solve the 
test time minimization problem in three consecutive steps: first, 
we find an as good as possible initial state for the LFSR for all 
cores; second, we generate a deterministic test sequence if the 
100% fault coverage cannot be reached by a pure pseudorandom 
test sequence for all cores or the required pseudorandom test se-
quence would be prohibitly long; and third, we update the test 
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sequence by finding the quasi-optimal time moment for switch-
ing from parallel pseudorandom testing to parallel deterministic 
testing at the given memory constraint.  

Finding the Initial State for the LFSR.  

To find the best initial state for the parallel pseudorandom test 
generator, we carry out several experiments, with randomly cho-
sen initial states, for all n cores. Within each experiment j we 
calculate for each core Ck the weighted length LPk,j * INPk of the 
test sequence which achieves the maximal achievable fault cov-
erage for the core Ck. Then, for all the experiments, we calculate 
the average weighted length  

Lj = k

n

k
jk INPLP

n
*1

1
,∑

=

 (2) 

The best pseudorandom sequence is the one that gives the 
shortest Lj, j = 1, 2,…, m (m is the total number of experiments). 
Let us call this initial pseudorandom test TP0. 

Generation of the Initial Deterministic Test Set.  

Suppose there are k ≤ n cores where maximal achievable fault 
coverage cannot be achieved with TP0 because of the practical 
constraints to the pseudorandom test length. Let us denote this 
subset of cores with S´⊆ S. Let us denote with FPi

0 the fault cov-
erage of the core Ci, achieved by TP0. Let us order the cores in S´ 
as C1, C2, …, Ck, so that for each i < j,  1 ≤  i,j ≤  k, we have FPi ≤ 
FPj. The deterministic patterns can be generated by using the 
following algorithm: 

Algorithm 6.1: 

1. Start with core Ci in S’, i=1. 

2. Generate a deterministic test set TD’i to complement TP0 to 
increase the fault coverage FPi

0 of the core Ci to 100%. 
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3. Fill the unused bits of TD’i with pseudorandom data by con-
tinuing the pseudorandom test TP0. Denote this updated test 
by TDi.  

4. Broadcast the test TDi for other cores in S’, fault simulate it 
for the cores in S’, and update the fault coverage FPj

0 for 
other cores in S’. 

5. Take the next core Ci in S’ for i = i + 1.  

6. If  i > k, END. 

7. If  FPi
0 = 100%, go to Step 5 else go to Step 2. 

By using Algorithm 6.1 an initial hybrid BIST sequence TH0= 
{TP0, TD0} can be generated. This sequence guarantees 100% 
fault coverage for all cores in the system. 

Definition 6.8: A pattern in a joint pseudorandom test se-
quence is called efficient if it detects at least one new fault for at 
least one core that is not detected by previous test patterns in 
the sequence nor by any pattern in the deterministic test se-
quence.  

Optimization of the Test Sequence.  

After using Algorithm 6.1 we have obtained a hybrid BIST se-
quence TH0 = {TP0, TD0} with length LH0, consisting of the pseu-
dorandom part TP0 with length LP0, and of the deterministic part 
TD0 with length LD0.  

In particular cases TD0 may be an empty set.  

Let us denote with COSTM(TD0) the memory cost of the deter-
ministic test set TD0. We assume that the memory constraints 
are satisfied: COSTM(TD0) < COSTM,LIMIT. In a opposite case, if 
COSTM(TD0) > COSTM,LIMIT, the length of the pseudorandom se-
quence has to be extended and the second step of Algorithm 6.1 
has to be repeated.  

If COSTM(TD0) = COSTM,LIMIT the procedure is finished. 

With optimization of TH0 we mean the minimization of the test 
length LH0 at the given memory constraints COSTM,LIMIT.   
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It is possible to minimize LH0 by shortening the pseudorandom 
sequence, i.e. by moving step-by-step efficient patterns from the 
beginning of TP0 to TD0 and by removing all other patterns be-
tween the efficient ones from TP0, until the memory constraints 
will become violated, i.e., COSTM(TD0) > COSTM,LIMIT.  

We cannot remove patterns with the same goal from the other 
end of TP0 because the pseudorandom sequence will be extended 
and merged with the deterministic part TD0 to update the free 
bits of deterministic test patterns generated by Algorithm 6.1 
(step 3). In other words, by removing pseudorandom patterns 
from the end of the TP0 would break the continuity of the pseudo-
random test generation process on the border between TP0 and 
TD0. 

To find the efficient test patterns in the beginning of the TP0 

we have to fault simulate the whole test sequence TH0 for all the 
cores in the opposite way from the end to the beginning. As a re-
sult of the fault simulation we get for each pattern the incre-
ments of fault coverage in relation to each core ∆ = {∆1, ∆2,…, ∆n,}. 
According to Definition 6.8, we call the pattern efficient if 

0:,...,2,1, ≠∆=∃ knkk  

The optimization procedure will be carried out by using the fol-
lowing algorithm. 

Algorithm 6.2: 

1. Start with the first pattern Pi from the beginning of TP0, set i 
= 1. 

2. If Pi is efficient, move it from TP0 to TD0. 

3. Recalculate the memory cost  
COSTM(TD0) = COSTM(TD0) + COSTM(Pi). 

4. If COSTM(TD0) < COSTM,LIMIT go to Step 5, 
else if COSTM(TD0) > COSTM,LIMIT go to Step 7, 
else go to Step 8. 

5. Take the next pattern Pi in TP0, i = i + 1. 
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6. If Pi is not efficient,  
    remove it from TP0, and go to Step 5; 
else go to Step 2. 

7. Remove  Pi  from TD0 back to TP0. Go to 10. 

8. Take the next pattern Pi in TP0, i = i + 1. 

9. If Pi is not efficient, remove it from TP0, and go to  
Step 8. 

10. END: take Pi as the new beginning of the pseudorandom test 
sequence TP0 . 

As the result of the Algorithm 6.2 we create a new hybrid 
BIST sequence TH = {TP,TD} with total length LH and with 
lengths LP ≤ LP0 and LD ≥ LD0 for the new pseudorandom and 
deterministic parts correspondingly. Due to removal of all non-
efficient patterns LP - LP0 >> LD0 – LD. Hence, the total length 
of the new hybrid BIST sequence will be considerably shorter 
compared to its initial length, i.e., LH < LH0.  

The memory constraints, according to the Algorithm 6.2, re-
main satisfied:  COSTM(TD) < COSTM,LIMIT. 

The described procedure does not guarantee an optimal test 
length, however, it is rather straightforward (similar to a greedy 
algorithm) and fast and therefore suitable for use in the design 
exploration process. The method can be used to find a cheap 
practical solution as well as for a fast reference for comparison 
with more sophisticated optimization algorithms. 

Experimental Results 

We have performed experiments with three systems composed of 
different ISCAS benchmarks as cores. The systems are presented 
in Table 6.3 (the lists of used cores in each system). 

To show the importance of the first step of the procedure, i.e. 
the significance of the quality of the initial state of the LFSR, a 
comparison of the best and worst initial states of the LFSR for 
all 3 experimental systems has been carried out. The lengths of a 
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complete pseudorandom test sequence (100% fault coverage), 
starting from the best and worst initial state, are depicted in 
Table 6.4. In case of system S3, the pseudorandom sequence was 
unacceptably long. Therefore, the pseudorandom test generation 
was interrupted and an initial set of deterministic test patterns 
was generated in order to achieve 100% fault coverage.  

Table 6.3. Systems used for the experiments. 

System
 name 

S1 

6 cores 

S2  

7 cores 

S3  

5 cores 
c5315 c432 c880 
c880 c499 c5315 
c432 c880 c3540 
c499 c1355 c1908 
c499 c1908 c880 

c5315 c5315  

List of 
used 
cores 

 c6288  

Table 6.4. Quality of different pseudorandom sequences. 

The best initial state for the 
pseudorandom test 

The worst initial state for the 
pseudorandom test 

System 
Name Pseudorandom 

test length 
(clocks) 

Deterministic 
test length 

(clocks) 

Pseudorandom 
test length 

(clocks) 

Deterministic 
test length 

(clocks) 

S1 2 520 0 23 482 0 
S2 7 060 0 23 482 0 
S3 14 524 26 25 000 33 
 

The experimental results for three different systems are pre-
sented in Table 6.5. The lengths of the pseudorandom test se-
quence, the number of additional deterministic test patterns and 
the total length of the hybrid test sequence is calculated for three 
different memory constraints and for the best and worst initial 
states of the LFSR for all three systems. The CPU time needed 
for the analysis is presented as well.  
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Table 6.5. Experimental results. 

The best initial state for the  
pseudorandom sequence System 

Name 
Number 
of cores 

Memory 
Constraint 

(bits) 
PR test 
length 
(clocks) 

DET test 
length 
(clocks) 

Total test 
length 
(clocks) 

CPU 
time 
(sec) 

  20 000 85 181 266  
S1 6 10 000 232 105 337 187, 64 

  5 000 520 55 575  
  20 000 92 222 314  

S2 7 10 000 250 133 383 718.49 
  5 000 598 71 669  
  20 000 142 249 391  

S3 5 10 000 465 161 626 221,48 
  5 000 1 778 88 1866  

 
The worst initial state for the  

pseudorandom sequence System 
Name 

Number 
of cores 

Memory 
Constraint 

(bits) 
PR test 
length 
(clocks) 

DET test 
length 
(clocks) 

Total test 
length 
(clocks) 

CPU 
time 
(sec) 

  20 000 2 990 138 3128 
S1 6 10 000 4 446 73 4519 

  5 000 5 679 40 5719 
228.67 

  20 000 3 015 151 3166 
S2 7 10 000 4 469 82 4551 

  5 000 5 886 49 5935 
969.74 

  20 000 3 016 200 3216 
S3 5 10 000 4 521 121 4642 

  5 000 8 604 72 8676 
318.38 

 

For the first two systems S1 and S2 the cost of the procedure is 
determined only by the CPU time for the pseudorandom test pat-
tern generation and by subsequent simulation of the test pat-
terns for all cores in the system. For the third system, S3, the 
CPU time includes also the time needed to generate the addi-
tional deterministic test patterns. 

The full overview about all possible hybrid BIST solutions for 
the three systems is presented in Figure 6.13, representing the 
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memory cost as a function of the total test length. Based on these 
curves for an arbitrary memory constraint the corresponding to-
tal testing time can be found. The three constraints presented in 
Table 6.5 are also highlighted in Figure 6.13. It can be seen that 
after some certain length the memory cost will increase very fast 
when reducing the length of the test sequence further. This can 
be explained by the fact that in the beginning of the pseudoran-
dom sequence nearly all test patterns are efficient, and nearly 
each pattern that is excluded from the pseudorandom part 
should be included into the deterministic part. 

0
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15000

20000

25000

30000

35000

40000

1 251 501 751 1001 1251 1501 1751 2001 2251 2501

Total test length (clocks)

Memory 

S1 
S2
S3

 

Figure 6.13. Memory usage as the function of the total test 
length for all three systems. 

A comparison of the curves for the memory cost as a function 
of the total test length for the best and for the worst initial pseu-
dorandom sequences is depicted for the system S2 in Figure 6.14. 
This illustrates the importance of choosing the best possible 
pseudorandom sequence for testing the system. 



HYBRID BIST TIME MINIMIZATION  

 139 

0

10000

20000

30000

40000

50000

60000

1 2001 4001 6001 8001 10001 12001 14001

Total test length (clocks)

Memory 

The best 

The worst

 

Figure 6.14. Memory usage as the function of the total test 
length for the best and the worst initial pseudorandom se-

quences. 

6.3.2. Iterative Approach. 

The disadvantage of the straightforward approach is that the de-
terministic test set TD is generated based on the initial test se-
quence TPINITIAL and is not minimized. Minimization of TD (test 
compaction) would be extremely difficult, since TD is assembled 
simultaneously for all cores in the system and individual deter-
ministic tests for different cores TDk are difficult to identify.   

Therefore, we have developed a more advanced iterative algo-
rithm that is based on analysis of different cost relationships as 
functions of the hybrid test structure to find the appropriate ini-
tial pseudorandom sequence and an optimized (compacted) de-
terministic test sequence [163]. The main tasks of the algorithm 
are as follows: 

Algorithm 6.3:  Test length minimization. 

1. Find the best initial state for the LFSR that can generate the 
shortest common pseudorandom sequence TPINITIAL, sufficient 
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for testing simultaneously all the cores with maximum 
achievable fault coverage. Due to practical reasons the 
TPINITIAL might be unacceptably long and therefore an ade-
quately long TP’INITIAL should be chosen and complemented 
with an initial deterministic test set TDINITIAL in order to 
achieve maximum achievable fault coverage and to satisfy 
the basic requirements for the test length. 

2. Based on our estimation methodology (Section 6.2.2) find the 
length LDk

E of the estimated deterministic test set TDk
E

 and 
calculate the first iteration of the optimized test structure 
THE = {TP*, TDE}, so that the memory constraints are satis-
fied. TP* denotes here a shortened pseudorandom sequence, 
found during the calculations. 

3. Find the real total test length LH and the real memory cost 
COSTM of the hybrid test sequence TH = {TP*, TD} for the se-
lected pseudorandom sequence TP*.  

4. If the memory constraint is not satisfied, i.e., COSTM > 
COSTM,LIMIT, improve the estimation, choose a new  pseudo-
random sequence TP*, and repeat step 3. 

5. If the memory limit has not been reached, i.e., COSTM < 
COSTM,LIMIT, reduce the length of TH by moving efficient 
pseudorandom patterns from the pseudorandom test set to 
the deterministic test set.  

The previously proposed straightforward algorithm (Algorithm 
6.2), in fact, corresponds to the 5th step of this algorithm. 

Test Set Generation Based on Cost Estimates 

In this section we explain the first two steps of Algorithm 6.3. It 
is assumed that we have found the best configuration (polyno-
mial and initial state) for the parallel pseudorandom test pattern 
generator. Let us call this an initial pseudorandom test sequence 
TPINITIAL. 
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By knowing the structure of the hybrid test set TH the total 
hybrid test length LH at any given memory constraint COSTM ≤ 
COSTM,LIMIT could be found in a straightforward way. However, 
calculation of the exact hybrid test structure is a costly proce-
dure, since it assumes that for each possible length of TP the de-
terministic test sets TDk for each core should be calculated and 
compressed while following the broadcasting idea. This can be 
done either by repetitive use of the automatic test pattern gen-
erator or by systematically analyzing and compressing the fault 
tables. Both procedures are accurate but time-consuming and 
therefore not feasible for larger designs (see section 5.2).  

To overcome the high complexity of the problem we propose an 
iterative algorithm, where the values of LDk and COSTM,k for the 
deterministic test sets TDk can be found based on estimates. The 
estimation method, that is an extension of the method proposed 
for sequential hybrid BIST (see section 6.2.2), is based on the 
fault coverage figures of TDk only, and does not require accurate 
calculations of the deterministic test sets for not yet detected 
faults. 

The estimation method requires the following: a complete de-
terministic test set for every individual core, TDk, together with 
fault simulation results of every individual test vector FDk and 
fault simulation results of the pseudorandom sequence TPINITIAL 
for every individual core, FPk. Let us denote with TPINITIAL(i) a 
pseudorandom sequence with length i.  

The length of the deterministic test sequence LDk(i) and the 
corresponding memory cost COSTM,k(i) for any length of the 
pseudorandom test sequence i ≤ LP can be estimated for every 
individual core with the following algorithm: 

Algorithm 6.4: 

For each  i =1, 2, …, LDk: 

1. Find fault coverage value F(i) that can be reached by a 
sequence of pseudorandom patterns TPINITIAL(i). 
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2. Find the highest integer value j, where FDk(j) ≤ F(i). The 
value of j is the required length of the deterministic se-
quence TDk to achieve fault coverage F(i). 

3. Calculate the estimated length of the deterministic test 
subsequence TDE

k(i) as LDE
k(i) = LDk – j.  This is the es-

timated number of deterministic test patterns needed to 
complement the pseudorandom sequence TPINITIAL(i), so 
that the maximum achievable fault coverage can be 
achieved.  

This algorithm enables us to estimate the memory require-
ments of the hybrid BIST solution for any length of the pseudo-
random sequence for every individual core and by adding the 
memory requirements of all individual cores Ck ∈ S for the entire 
system. In a similar manner, the length of the pseudorandom se-
quence LP for any memory constraint can be estimated and this 
defines uniquely the structure of the entire hybrid test set.   

Minimization of the Hybrid Test Sequence 

The memory cost estimation function helps us to find the length 
LP* of the pseudorandom test sequence TP* for the estimated 
hybrid test sequence THE={TP*; TDE}. The real length LH of the 
estimated hybrid test sequence THE can be found with the follow-
ing algorithm.  

Algorithm 6.5: 
1. Simulate the pseudorandom sequence TP* for each core 

Ck ∈ S and find a set of not detected faults FNOT,k. Gener-
ate the corresponding deterministic test set TD’k by us-
ing any ATPG tool. As a result, a preliminary real hy-
brid test set will be generated: TH = {TP*; TD’}. 

2. Order the deterministic test set TD’ = (TD’1, TD’2,…, 
TD’n) in such the way that for each i<n, INPi ≤  INPi+1. 

3. Perform the analysis of the test pattern broadcasting 
impact for i = 2, 3, …, n:  
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− Calculate a set of not detected faults FNOT,i for the test 
sequence (TP*; TD’1, TD’2, …, TD’i-1) ; 

− Compress the test patterns in TD’i with respect to 
FNOT,k by using any test compacting tool. 

As a result of Algorithm 6.5, the real hybrid test sequence TH 
= {TP*; TD} = {TP*; TD1, TD2,…, TDn} will be generated. The 
length of the resulting sequence LH ≤ LHE as deterministic test 
patterns of one core, while broadcasted to the other cores, may 
detect some additional faults. In general, LDk ≤ LDE

k for every k 
= 2, 3,  …, n. 

The length of the deterministic test sequence, generated with 
Algorithm 6.5, can be considered as a near-optimal solution for 
the given TAM structure, for all the cores. Ordering of the de-
terministic test sets, according to the step 2 in Algorithm 6.5 has 
the following result: the larger the number of inputs of core Ck 
the more patterns will broadcasted to Ck  from other cores, and 
hence the chances to reduce its own deterministic test set TDk 
are bigger and larger amount of memory can be reduced. 

After finding the real deterministic test sequence according to 
Algorithm 6.5, the following three situations may occur: 

1. If COSTM  > COSTM,LIMIT a new iteration of the cost esti-
mation should be carried out. The initial estimation of 
the pseudorandom test sequence length LP should be 
updated, and a new cost calculation, based on Algorithm 
6.5, should be performed (see Iterative Procedure).  

2. If COSTM  = COSTM,LIMIT the best possible solution for the 
given pseudorandom sequence TP* is found. We have 
hence TH = {TP*; TD1, TD2, …, TDn}. 

3. If COSTM  < COSTM,LIMIT the test length minimization 
process should be continued by moving efficient test pat-
terns from the pseudorandom test set to the determinis-
tic sequence. 
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In the following, possible steps for further improvement are 
described in detail. 

Iterative Procedure 

Let us suppose that our first estimated solution, based on pseu-
dorandom test sequence TP, with length LP, produces a test 
structure with total memory requirement “Real COSTM” higher 
than accepted (see Figure 6.15). A correction of the estimated so-
lution should be made LPNEW = LP + ∆LP and a new solution 
“New real COSTM” should be calculated based on Algorithm 6.5. 
These iterations should be repeated until the memory constraint 
COSTM  ≤ COSTM,LIMIT  is satisfied.  

COSTM 

LP 

COSTM,LIMIT   

Real COSTM 

LP 

∆LP 

LPNEW 

Correction by ∆LP 

New real COSTM 

 

Figure 6.15. Iterative cost estimation. 

It should be mentioned that Algorithm 6.5 is the most expen-
sive procedure of the whole approach, due to repetitive use of 
ATPG and test compaction tools. Therefore, we cannot start with 
an arbitrary initial solution and an accurate estimation proce-
dure minimizes the number of iterations considerably. 

Total Test Length Reduction 

Suppose that the real cost of the found solution is below the 
memory constraint COSTM < COSTM,LIMIT. There are two alterna-
tives for further reduction of the test length: 
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1. Additional iterations by using Algorithm 6.5 to move the 
solution as close to the memory limit COSTM,LIMIT as pos-
sible. As mentioned earlier, Algorithm 6.5 is an expen-
sive procedure and therefore recommended to use as lit-
tle as possible. 

2. It is possible to minimize the length of the hybrid test 
sequence TH by shortening the pseudorandom sequence, 
i.e. by moving step-by-step efficient patterns from the 
beginning of TP to TD and by removing all other pat-
terns between the efficient ones from TP, until the 
memory constraint COSTM ≤ COSTM,LIMIT gets violated. 
This procedure is based on the algorithm used for 
straightforward optimization of the parallel hybrid 
BIST. As a result, the final hybrid test sequence is cre-
ated: THF = {TPF; TDF} = {TPF; TD1, TD2, …, TDn, ∆TD} 
where ∆TD is a set of efficient test patterns moved from 
TP to TD. This will lead to the situation where the 
length of the pseudorandom sequence has been reduced 
by ∆LP and the length of the deterministic test sequence 
has been increased by ∆LD. The total length LHF of the 
resulting hybrid test THF = {TPF; TDF} is shorter, LHF < 
LH,  because in general ∆LD << ∆LP (not every pattern 
in the pseudorandom test set is efficient). 

The final hybrid BIST test structure THF = {TPF; TDF} with the 
total length LHF is represented in Figure 6.16. 

 

Pseudorandom 
patterns 

Pseudorandom patterns 

Deterministic patterns 

LP 
LD 

Test  
length 

Bits 

LDk 

∆LD

 

Figure 6.16. Final hybrid test structure. 
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The accuracy of the solution (proximity of the total length LHF 
to the global minimum LHMIN) for the given initial pseudorandom 
sequence TPINITIAL can be estimated by the length of ∆LD, assum-
ing that the deterministic test set was optimally compacted. 
Since efficient patterns, moved from TP to TD, were not taken 
into account during the compaction procedure for TD’ (Algorithm 
6.5) the new deterministic test sequence TDF = {TD1, TD2,…, TDn, 
∆TD} is not optimal and should be compacted as well. However, 
since TD’ was compacted optimally, the upper bound of the gain 
in test length cannot be higher than ∆LD. Hence, the difference 
between the exact minimum LHMIN and the current solution LHF 
for the given pseudorandom sequence TPINITIAL cannot be higher 
than LHF - LHMIN  = ∆LH. 

Experimental Results 

We have performed experiments with three systems composed 
from different ISCAS benchmarks as cores. In Table 6.6 the ex-
perimental results for these three systems under different mem-
ory constraints are presented. In column 3 the estimated length 
of the hybrid test structure, found by using Algorithm 6.4, is 
given. For the systems S1 and S2 only a single iteration was 
needed (the estimation was rather accurate), for the system S3 
two iterations were needed. In columns 4 and 5 the real length of 
the hybrid test sequence, found by using Algorithm 6.5 with cost 
estimates from column 3, is given. In column 4 the total length of 
the pseudorandom and deterministic test sequences and the 
memory cost in bits is given without taking into account broad-
casting effect (step 1 in Algorithm 6.5), and in column 5 together 
with broadcasting (steps 2 and 3 in Algorithm 6.5). In columns 6-
8 the results of the final optimization are depicted: the final 
length of the pseudorandom sequence (column 6), the final length 
of the deterministic sequence (column 7), and the final length of 
the hybrid test set together with memory requirements in bits 
(column 8). In column 7 the first component represents the result 
of the Algorithm 6.5, and the second component represents the 
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last improvement, when efficient patterns were moved from the 
pseudorandom part to the deterministic part. 

In Table 6.7 the results are compared with the straightforward 
approach (Section 6.3.1). The length of the pseudorandom test 
sequence (columns 3, 7), deterministic test sequence (columns 4, 
8) and the hybrid test sequence (columns 5, 9) together with re-
quired CPU time (columns 6, 10) are compared. As it can be 
seen, the improved algorithm gives a noteworthy reduction of the 
test length while the analysis time is approximately the same. 

In Figure 6.17 the estimated memory cost as the function of 
the total test length for different cores in system S2 together 
with the estimated total memory cost are depicted. For compari-
son, the real costs values for 4 different test lengths are shown as 
well. As it can be seen the accuracy of the estimation procedure 
is rather good. 

6.4. Conclusions 

This chapter presented algorithms for SOC test time minimization 
with several different implementations of the hybrid BIST archi-
tecture. The algorithms are based on the analysis of different cost 
relationships as functions of the hybrid BIST structure. We have 
proposed straightforward algorithms and more sophisticated it-
erative heuristics for this purpose. Our methods can minimize test 
time under given test memory constraint for test-per-clock and 
test-per-scan schemes. The optimization algorithms have been 
presented together with experimental results to demonstrate their 
efficiency. 
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Chapter 7 

Hybrid BIST Energy 
Minimization 

7.1. Introduction 

The current trend in consumer electronics can be described with 
mobility and portability. Such devices are mostly battery-driven 
and one of the most important design parameters is thus battery 
life-time. Therefore, such systems have to be designed with care-
ful consideration of the energy dissipation.  

There are numerous methods tackling power dissipation dur-
ing the normal operation mode. However, such devices are fre-
quently undergoing periodic self-tests and we have seen an ad-
vent of low-power and low-energy testing methods. These 
methods range from pattern reordering to clocking scheme modi-
fications. At the same time, our hybrid BIST concept offers us a 
straightforward possibility for reducing the circuit’s switching 
activity and consequently for energy optimization.  
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In this chapter we propose two heuristics that try to minimize 
the total switching energy without exceeding the assumed test 
memory constraint. The solutions are obtained by modifying the 
ratio of pseudorandom and deterministic test patterns for every 
individual core such that the total energy dissipation is mini-
mized. 

7.2. Hybrid BIST and Possibilities for Energy 
Reduction 

For portable systems, one of the most important test constraints 
is the total amount of on-chip test memory. In the previous chap-
ters we introduced several methods, based on different test ar-
chitectures, for test time minimization. Those algorithms were 
able to find a shortest possible test time under given test mem-
ory constraint for test-per-clock and test-per-scan schemes. Our 
algorithms, however, do not require explicit specification, 
whether the deterministic test set has to be stored in the ATE or 
on-chip memory (ROM). In the latter case hybrid BIST solutions 
can be used not only for manufacturing test but also for periodi-
cal field maintenance tests in portable devices. 

In the following we have assumed a hybrid BIST test architec-
ture where all cores have their own dedicated BIST logic that is 
capable of producing a set of independent pseudorandom test 
patterns. The deterministic tests, on the other hand, are applied 
from an on-chip memory, one core at a time (See Section 4.4.2). 

If the objective is only test time minimization and 
power/energy is not taken into account then the shortest test 
schedule for such a test architecture, is the one where all cores 
are tested concurrently and have the same tests lengths, as was 
explained in Section 6.2 and illustrated in Figure 6.9. It is impor-
tant to note that the exact composition of pseudorandom and de-
terministic test patterns defines not only the test length and test 
memory requirements but also the energy consumption. In gen-
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eral, since a deterministic test pattern is more effective in detect-
ing faults than a pseudorandom pattern, using more determinis-
tic test patterns for a core will lead to a short test sequence, and 
consequently less energy on the average case. However, the total 
number of deterministic test patterns is constrained by the test 
memory requirements, and at the same time, the deterministic 
test patterns of different cores of a SOC have different energy 
and fault detection characteristics. Namely, some cores might 
require only few test patterns, while these patterns have large 
memory requirements, due to big number of inputs or excessively 
long scan chains. These few patterns might generate less switch-
ing activity than a long sequence of test patterns with smaller 
memory requirements. A careful trade-off between the determi-
nistic pattern lengths of the cores must therefore be made in or-
der to produce a globally optimal solution. Moreover, as determi-
nistic test patterns are stored in the memory, energy dissipation 
during memory access and test data transportation has to be 
taken into account as well. 

In a hybrid BIST approach the test set is composed of pseudo-
random and deterministic test patterns, where the ratio of these 
patterns is defined by different design constraints, such as test 
memory and test time. From a energy perspective, different cores 
have different energy dissipation while applying the same 
amount of test patterns. Furthermore, the pseudorandom and 
deterministic test sequences for the same core have different 
power characteristics. Therefore, for total energy minimization it 
is important to find, for every individual core, such a ratio of the 
pseudorandom and deterministic test patterns that leads to the 
overall reduction of switching energy. At the same time the basic 
design constraints, such as test memory, should not be violated. 
In the following some basic definitions together with the problem 
formulation are given. 
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7.3.  Basic Definitions and Problem Formulation 

Let us note that according to Definition 6.5, J = (j1, j2,…, jn) is 
called the characteristic vector of a hybrid test set TH = {TH1, 
TH2, …,  THn}, where jk ∈ J is the length of the pseudorandom 
test sequence TPk ⊆ THk. 

Definition 7.1: Let us denote with Mk(jk) and Ek(jk) respec-
tively, the memory cost and energy cost of the hybrid BIST set 
THk = {TPk, TDk} of the core Ck ∈ S as functions of its pseudoran-
dom test sequence with length jk (k=1, 2, …, n). 

Note that it is very time consuming to calculate the exact val-
ues of Mk(jk) and Ek(jk) for any arbitrary hybrid BIST set THk, 
since it requires exact calculation of the corresponding hybrid 
test set which is an expensive procedure (see Chapter 5.2). To 
overcome the problem we propose to use a power estimation 
method that is based only on a few critical point calculations. 

Definition 7.2: Let us denote with M(J) and E(J) respectively 
the memory cost and energy cost of the corresponding hybrid 
BIST set TH with characteristic vector J.  These costs can be cal-
culated using the following formulas: 

)()(
1

k

n

k
k jMJM ∑

=

=         )()(
1

k

n

k
k jEJE ∑

=

=  (3) 

A hybrid BIST set TH = {TH1, TH2, …,  THn} for a system S = 
{C1, C2, …,Cn} consists of hybrid BIST sets THk for each individ-
ual core Ck. In the proposed approach we assume that the pseu-
dorandom components of the TH are going to be scheduled in 
parallel, while the deterministic components of the TH, have to 
be scheduled in sequence.  

The objective can be thus formulated as finding a hybrid test 
set TH with a characteristic vector J for the system S, so that 
E(J) is smallest possible and the memory constraint M(J) ≤ MLIMIT 
is satisfied.  
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7.3.1. Parameter Estimation 

For hybrid BIST energy minimization at a given memory con-
straint we have to obtain values of Mk(jk) and Ek(jk) for every core 
Ck ∈ S and for any possible jk value. This would give us a possibil-
ity to compare memory and energy values of the different alter-
natives. However, the procedure to calculate the cost functions 
M(J) and E(J) is very time consuming, since it assumes that the 
deterministic test sets TDk for all possible values of the charac-
teristic vector J are available. This means that for each possible 
pseudorandom test TPk, a set of not yet detected faults FNOT (TPk) 
should be calculated, and the needed deterministic test set TDk 

has to be found. This is a time-consuming task and therefore not 
feasible for larger designs.  

To overcome the complexity explosion problem we propose an 
iterative algorithm, where the costs M(J) and E(J) for the deter-
ministic test sets TDk are calculated based on estimates in a 
similar way as described in Section 6.2.2. The estimation method 
is based on fault coverage figures and does not require accurate 
calculations of the deterministic test sets for not yet detected 
faults. For memory estimation we need fault simulation results 
of complete pseudorandom and deterministic test sequences. For 
energy estimation the energy simulation results for the same 
test sets are used and we have used the number of signal 
switches as a quantitative measure for power dissipation.  

7.4. Heuristic Algorithms for Hybrid BIST  
Energy Minimization 

To minimize the energy consumption at the given memory con-
straint we have to create a hybrid test TH with characteristic 
vector J for the system S, so that E(J) is minimal at the con-
straint M(J) ≤ MLIMIT .  

To solve this complex combinatorial task we have proposed two 
fast heuristic algorithms: Local Gain Algorithm and Average 
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Gain Algorithm [164]. Both are based on the estimation method-
ology described in Section 6.2.2 (Procedure 6.1). 

7.4.1. Local Gain Algorithm 

The main idea of this algorithm is to start with pure determinis-
tic test sets THk = {TPk = ∅, TDF

k} for all cores Ck ∈ S. Next, the 
deterministic test patterns are gradually substituted by corre-
sponding sequences of pseudorandom patterns PRi ⊆ TPF

k until 
the memory constraints are satisfied. For every deterministic 
test pattern substitution a core Ck ∈ S with maximum memory-
power ratio (∆Mk,i /∆Pk,i) is selected. Here ∆Mk,i corresponds to the 
estimated memory gain when deterministic test pattern DPi 

∈ TDF
k  is removed from the memory, and ∆Pk,i corresponds to the 

estimated increase in energy consumption by the sequence of 
pseudorandom patterns PRi ⊆ TPF

k that are substituting the de-
terministic test pattern DPi ∈ TDF

k . In other words, at any itera-
tion of the algorithm we always select a core that provides the 
best local gain in terms of ∆Mk,i/∆Pk,i and substitute in the hybrid 
test set of this core one or several deterministic test pattern with 
appropriate number of pseudorandom patterns. The number of 
inserted pseudorandom test patterns is calculated so that the 
fault coverage of the core should not be reduced. However, in 
some certain situations this might not be possible (due to ran-
dom resistant faults) and therefore different deterministic test 
pattern should be chosen for substitution.  

Let us introduce the following additional notations: M – cur-
rent memory cost, L – current pseudorandom test length and 
MLIMIT  –  memory constraint. The algorithm starts with initial 
values: L = 0, and M = M(TDF

1) + M(TDF
2) + … + M(TDF

n) where 
M(TDF

k) is memory cost of the complete deterministic test set of 
core Ck ∈ S. Initially: THk = {TPk = ∅, TDF

k}.   

Algorithm 7.1: Local Gain Algorithm 

1. Select core Ck ∈ S where ∆Mk,i/∆Pk,i  = max; 
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2. Remove  DPk,i∈ TDk  from TDk, estimate the needed PRi and 
include PRi into TPk. 

3. Update the current memory cost: M = M - ∆Mk,i 

4. If  M > MLIMIT  then go to 1 

5. END. 

The algorithm is illustrated with the example given in Figure 
7.1. We start from an all-deterministic solution. At every step we 
calculate the memory-power ratio for all cores if one determinis-
tic test pattern (denoted as white boxes in Figure 7.1a) would be 
replaced with pseudorandom patterns. Thereafter the core with 
highest ∆Mk,i/∆Pk,i value is selected and a deterministic test pat-
tern in this core’s test set is replaced with a set of pseudorandom 
patterns. In our example Core 3 was selected (Figure 7.1b). At 
the end of every step we can calculate new memory (M) and 
power (P) values for the entire system. This procedure is re-
peated until M ≤ MLIMIT .  

7.4.2. Average Gain Algorithm 

A second heuristic proposed by us is called Average Gain Algo-
rithm. The main idea of the Average Gain Algorithm is to guide 
the selection of cores based on the highest average ratio of 
∆Mk/∆Pk over all iterations of the algorithm. Here ∆Mk denotes 
the estimated memory gain from the beginning of the algorithm, 
including the selected substitution, for the core Ck ∈ S, and ∆Pk 
denotes the estimated increase of energy consumption for the 
same core from the beginning of the algorithm, including the 
current selected substitution. 

The algorithm starts again with initial values: L = 0, and M = 
M(TDF

1) + M(TDF
2) + … + M(TDF

n) where M(TDF
k) is the memory 

cost of the complete deterministic test set of the core Ck ∈ S. Ini-
tially: THk = {TPk = ∅, TDF

k}. For all cores ∆Mk = ∆Mk,1, and ∆Pk = 
∆Pk,1, and for all cores i = 1. 
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Figure 7.1. Local Gain Algorithm. 

Algorithm 7.2: Average Gain Algorithm 

1. Select the core Ck ∈ S where ∆Mk,i/∆Pk,i  = max; 

2. Remove  DPk,i∈ TDk  from TDk, and include PRi into TPk. 

3. Update the current memory cost: M = M - ∆Mk,i. 

4. Update the total memory cost for the selected core: ∆Mk = 
∆Mk - ∆Mk,i+1.  

5. Update the total power consumption for the selected core: ∆Pk 
= ∆Pk + ∆Pk,i+1.  

6. Update for the selected core i = i + 1. 

7. If  M > MLIMIT  then go to 1 

8. END 
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The main difference between Algorithm 7.1 and Algorithm 7.2 
is that Algorithm 7.1 takes into account only the immediate ef-
fect of the test pattern substitution. Algorithm 7.2, on the other 
hand, takes into account the entire history of pattern substitu-
tions.  

Both Algorithm 7.1 and Algorithm 7.2 create hybrid BIST so-
lution THk = {TPk , TDk} where energy consumption is reduced 
with respect to the given memory constraint. After obtaining a 
solution, the cost estimates can be improved and another, better, 
solution can be calculated. For this purpose the previously pro-
posed iterative procedure (see Section 6.2.3) can be used. This 
transfers a solution that was generated based on estimates to the 
solution that is calculated based on real test sets. The outcome of 
this algorithm is the final solution: amount of pseudorandom and 
deterministic test patterns for every individual core such that 
the system memory constraint is satisfied. 

7.5. Experimental Results 

We have performed experiments with different designs contain-
ing the ISCAS’89 benchmarks as cores. The complexity of these 
designs ranges from system with 6 cores to system with 20 cores. 
All cores were redesigned in order to include a scan chain. For 
simplicity we assumed that all flip-flops are connected into one 
single scan chain. For the BIST part a STUMPS architecture 
was used. 

In Table 7.1 we have listed the results for every system with 
three different memory constraints. We have listed results from 
[92], which provide shortest possible test length without consid-
ering energy consumption. Our two algorithms (Local Gain Algo-
rithm is denoted with A1 and Average Gain Algorithm with A2) 
are both considered with the iterative improvement mentioned at 
the end of the previous section. Finally, for comparison, results 
obtained with a simulated annealing (SA) based optimization are 
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also reported. In every solution, the minimized test time solution 
from [92] has been taken as a baseline (100%) and every solution 
is compared against this result.  

Simulated annealing is a generic probabilistic meta-algorithm 
for the global optimization problem, namely locating a good ap-
proximation to the global optimum of a given function in a large 
search space [102]. In the SA method, each point s of the search 
space is compared to a state of some physical system, and the 
function E(s) to be minimized is interpreted as the internal en-
ergy of the system in that state. Therefore, the goal is to bring 
the system, from an arbitrary initial state, to a state with the 
minimum possible energy. At each step, the SA heuristic consid-
ers some neighbors of the current state s, and probabilistically 
decides between moving the system to state s' or staying put in 
state s. The probabilities are chosen so that the system ulti-
mately tends to move to states of lower energy. Typically, this 
step is repeated until the system reaches a state, which is good 
enough for the application, or until a given computation budget 
has been exhausted. 

As shown in Table 7.1, both proposed algorithms lead to re-
duced energy solutions (in some cases up to with 52% reduction 
of the total switching activity) compared to the solution where 
only the test time was minimized [92]. When compared to the 
simulated annealing algorithm our heuristics have significantly 
lower execution time, while maintaining acceptable accuracy.  

To understand the impact of our algorithms on the test length 
we have also collected these figures and reported them in Table 
7.1. As can be expected in all these solutions generated by our 
techniques the test time has increased compared to the tech-
nique which targets towards test length minimization [92]. Nev-
ertheless, if the main objective is to reduce energy dissipation 
during the test mode (for example in portable devices) the rela-
tively small increase of the test length is tolerable.  

 



HYBRID BIST ENERGY MINIMIZATION 

 161 

Table 7.1. Experimental results. 

Alg. MLIMIT 
Energy 

(switches) 
Comp. to 
[92] (%) 

Test  
Length
(clocks) 

Comp. to 
[92] (%) 

CPU  
Time 
(sec) 

System 1 – 6 cores 
[92] 2588822 100.00% 24689 100.00% 8.41 
A1 1281690 49.51% 31619 128.07% 11.09 
A2 1281690 49.51% 31619 128.07% 6.64 
SA 

1500 

1240123 47.90% 31619 128.07% 5326.24 
[92] 635682 100.00% 6726 100.00% 24.61 
A1 426617 67.11% 10559 156.99% 14.23 
A2 446944 70.31% 10679 158.77% 4.84 
SA 

2500 

409576 64.43% 10529 156.54% 2944.26 
[92] 717026 100.00% 7522 100.00% 26.51 
A1 265282 37.00% 8126 108.03% 36.31 
A2 286883 40.01% 8129 108.07% 26.96 
SA 

3000 

241123 33.63% 8153 108.39% 1095.21 
System 2 – 6 cores 
[92] 6548659 100.00% 52145 100.00% 12.05 
A1 5502763 84.03% 70331 134.88% 12.49 
A2 5318781 81.22% 70331 134.88% 4.28 
SA 

1700 

4747498 72.50% 83865 160.83% 3805.23 
[92] 2315958 100.00% 19208 100.00% 20.21 
A1 1998390 86.29% 23774 123.77% 7.66 
A2 1861844 80.39% 24317 126.60% 18.79 
SA 

3000 

1845022 79.67% 28134 146.47% 5032.05 
[92] 893184 100.00% 8815 100.00% 21.47 
A1 742462 83.13% 9537 108.19% 26.45 
A2 746479 83.58% 9537 108.19% 55.09 
SA 

4700 

723817 81.04% 12596 142.89% 3654.02 
System 3 – 20 cores 
[92] 12830419 100.00% 40941 100.00% 47.49 
A1 9242890 72.04% 70331 171.79% 51.43 
A2 9839005 76.68% 70331 171.79% 40.49 
SA 

5000 

7367201 57.42% 60495 147.76% 29201.96 
[92] 6237211 100.00% 20253 100.00% 53.39 
A1 4039622 64.77% 31619 156.12% 73.58 
A2 4223263 67.71% 52145 257.47% 14.36 
SA 

7000 

3500894 56.13% 31919 157.60% 20750.03 
[92] 4686729 100.00% 15483 100.00% 45.37 
A1 1719726 36.69% 17499 113.02% 115.53 
A2 1815129 38.73% 17554 113.38% 90.52 
SA 

10000 

1606499 34.28% 17992 116.20% 14572.33 
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7.6. Conclusions 

In this chapter we have proposed two heuristics for test energy 
reduction for hybrid BIST. Both algorithms modify the ratio be-
tween pseudorandom and deterministic test patterns. We have 
also proposed a fast estimation mechanism for the modification 
of this ratio together with an iterative procedure for transform-
ing the estimated results to the real results. Experimental re-
sults have shown the efficiency of these heuristics for energy re-
duction under test memory constraints. 
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Chapter 8 

Hybrid BIST in an Abort-
on-First-Fail Environment 

8.1. Introduction 

Many different methods have been researched for test cost re-
duction. They range from test set reduction techniques to test 
scheduling heuristics. In the previous chapters we described 
some methods for hybrid test set generation, which serve the 
purpose of test cost reduction.  

In a production test environment the test process is stopped as 
soon as a fault is detected. This approach, called abort-on-first-
fail (AOFF), leads to reduced test costs as faulty dies can be 
eliminated before completing the entire test flow. Therefore, the 
likelihood of defects in different parts of the design, together 
with test set characteristics (such as efficiency and length) 
should be taken into account, because tests should be ordered 
such that defective ICs are failed early in the test process. It is 
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important to note that any test scheduling algorithm will only 
reduce the time needed to test defective dies, since the time 
needed to test good dies will be independent of the order in which 
the test are applied. However, in a production test environment, 
where a large number of dies have to be tested, such an approach 
can produce significant gain in terms of total test time. The ap-
proach is especially relevant in low-yield situations. 

In general, it is rather difficult to obtain information for defect 
probability analysis. In our work, we use probabilities of individ-
ual faults, which are usually derived from the statistical analysis 
of the production process or generated based on inductive fault 
analysis. In this chapter, a hybrid BIST scheduling algorithm in 
an AOFF environment will be described. A hybrid BIST ap-
proach gives us the opportunity not only to schedule the tests as 
black boxes, as it has been done in previous approaches, but also 
to select the best internal structure for individual test sets. This 
means choosing the best order of pseudorandom and determinis-
tic test patterns for every individual core, so that the total test 
time of the entire system can be minimized. The proposed algo-
rithm [68] assumes that all cores can be tested in parallel (hence 
the test power is not considered) and is limited to test-per-clock 
test architectures. The algorithm is based on a parallel hybrid 
BIST architecture, described in Section 4.4.2, where every core 
has its own dedicated BIST logic that is capable to produce a set 
of independent pseudorandom test patterns and the determinis-
tic tests are carried out for one core at a time, using a single test 
access bus (Figure 4.5). 

8.2. AOFF Test Scheduling 

The main idea of our algorithm is to sort the tests so, that the 
expected total test time (ETTT) is the shortest. ETTT denotes 
here the expectation of the total test application time for testing 
a die in a production test environment, where some of the dies 
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might be faulty and therefore discarded before completing the 
entire test flow. The main purpose is to reduce the total test 
time, when large volumes of dies have to be tested. 

8.2.1. Definitions and Problem Formulation 

Suppose that the system S, consisting of cores C1,C2,...,Cn, has a 
test architecture depicted in Figure 4.5. Let us denote with DTij 
and PRij, respectively, the j-th deterministic pattern and j-th 
pseudorandom pattern in the respective sequences for core Ci. di 
and ri are the total number of deterministic and pseudorandom 
test patterns for core Ci. 

We assume that from the test scheduling point of view the de-
terministic test sequence is an undividable block, i.e. the deter-
ministic test sequence cannot be divided into smaller subse-
quences. The pseudorandom test sequence, on the other hand, 
can be stopped and restarted in order to enable the application of 
the deterministic test sequence at a certain scheduled time mo-
ment. This assumption is a consequence of the assumed test ar-
chitecture, where pseudorandom patterns are generated locally 
by every core, while deterministic test patterns are applied from 
one single test source and applied to one core at a time.  

System Defect Probability 

The system defect probability DF(S) is defined as the probability 
of a system to be detected faulty during the production test. 
Similarly, the core defect probability DF(Ci) is defined as the 
probability of a core to be detected faulty during the production 
test. Given the core defect probabilities, the system defect prob-
ability can be calculated as follows: 

DF S( ) 1 1 DF Ci( )–( )
i 1=

n

∏–=

 
(8.1) 
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In order to define the ETTT, the individual fault coverage of a 
test pattern has to be defined. 

Individual Fault Coverage of a Test Pattern 

To test a core Ci we have to apply di deterministic test patterns 
and ri pseudorandom test patterns (in particular cases one of 
these sets may be empty). By calculating the number of faults 
F(DTij) or F(PRij) that are not yet detected by the previous pat-
terns before the j-th pattern and detected just by the j-th pattern 
(either pseudorandom or deterministic), the independent fault 
coverage of each test pattern can be calculated as follows: 

)1(,
)(

)( i
i

ij
ij dj

F
DTF

DTIFC ≤≤=  

)1(,
)(

)( i
i

ij
ij rj

F
PRF

PRIFC ≤≤=  

(8.2) 

where IFC(DTij) and IFC(PRij) are respectively the independent 
fault coverage of the j-th deterministic and j-th pseudorandom 
pattern for core Ci. Fi is the total number of non-redundant faults 
in core Ci. 

Expected Total Test Time 

Based on the given hybrid BIST test architecture we can gener-
ate and apply pseudorandom tests to all cores in parallel, thus 
reducing the total test time. However, a deterministic test se-
quence and a pseudorandom test sequence belonging to the same 
core cannot be scheduled in parallel due to the test conflict. This 
explains, for example, why the deterministic test pattern DT31 
cannot be applied directly after the pseudorandom test sequence 
in Figure 8.1. 

In this approach we treat deterministic test patterns and 
pseudorandom test sequences in a similar way, since pseudoran-
dom test sequence can be treated as a single test pattern with a 
length corresponding to the length of the particular pseudoran-
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dom sequence. Therefore, in the following discussion a “test pat-
tern” is used to denote both individual deterministic test pat-
terns and pseudorandom test sequences, if not mentioned other-
wise. It is important also to note that if a test-per-clock 
architecture is assumed then the length of one deterministic test 
pattern is one clock cycle. On the other hand, in a test-per-scan 
environment the length of a deterministic test pattern is defined 
by the length of the scan cycle. Correspondingly, the lengths of 
the pseudorandom sequences are also different. 

This leads us to a set of all possible test termination points: af-
ter every individual deterministic test pattern and at the end of 
every pseudorandom test sequence, as illustrated in Figure 8.1. 
The possible test termination points are marked with black dot-
ted lines. 

Note that in test-per-clock architectures many of these points 
overlap and therefore are treated as one identical possible test 
termination point. Due to the differences in scan chain lengths 
the termination points at test-per-scan architectures are not pe-
riodical. 

 

Figure 8.1. Hybrid BIST sessions for a system with 5 cores. 
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We are interested in the ETTT as the expectation of the total 
test application time in the AOFF environment. In Equation 
(8.3) below we give a generic formula for ETTT calculation.  

( ) )()( TpLAptETTT
Xx

xx ×+×= ∑
∈∀

 (8.3) 

Equation (8.3) is presented as the sum of two literals. The first 
corresponds to the situation when a test is terminated prema-
turely and the second one corresponds to the case where all tests 
are passed to the completion. At every possible test termination 
point x∈X we can calculate a test abortion probability p(Ax) to-
gether with a test length tx at this test termination point x. With 
Ax we denote the event that the test has been aborted at test 
termination point x. Similarly we can also calculate the probabil-
ity p(T) that no faults are detected and all tests (T) are exercised 
till their completion. The length of the complete test set is de-
noted with L. 

At every test termination point x∈X we can distinguish two 
different sets of tests – the tests that have failed and the tests 
that have passed. The failed set Yx consists of all test patterns y 
that have finished exactly at this point. They are supposed to de-
tect at least one fault, otherwise the test would not have been 
stopped at this point. The passed set Zx consists of all test se-
quences that have successfully finished before this point x. They 
are all supposed to be passed otherwise the test would have been 
aborted before this point. This leads us to the following formula: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∈∀∈∀
IU I

xx Zz
z

Yy
yx PFA  (8.4) 

Here Fy is an event that the test pattern y detects at least one 
fault and Pz is an event that the test sequence z is passed. Thus 
the event Ax can be described as an event at test termination 
point x, such that any of the test patterns in the failed test set Yx 
detect at least one fault, and all test sequences in the passed test 
set Zx have passed. Please note that if a test pattern is included 
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to the failed set then all other patterns testing the same core (in-
cluding both the pseudorandom patterns and deterministic pat-
terns) should be removed from the passed set, since the probabil-
ity of these patterns passing the test has been already considered 
due to the use of incremental fault coverages (see Equation (8.8) 
below). 

We assume that defect occurrences in different cores are inde-
pendent of each other. Thus, we can calculate the probability 
that the test is terminated at a possible termination point x as 
follows:  

( ) ( ) ( )( ) ( )∏∏∏
∈∀∈∀∈∀∈∀

⎟
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y
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z

Yy
yx PpFpPpFpAp 11U  (8.5) 

Similarly we can also calculate the probability p(T) that no 
faults are detected and all tests are exercised till their comple-
tion, as follows:  

;I
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where DP(C) denotes the defect probability of core C. 

This leads us to the refined version of Equation (8.3): 
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The probability of the event that at least one fault is detected 
by a test pattern y∈Yx at the test termination point x can be cal-
culated as 

( ) ( ) ( )CDPyIFCFp y ×=  (8.8) 

where the incremental fault coverage IFC(y) of a single test pat-
tern y is defined as a percentage of the faults only detected by y 
and not detected by any previous test pattern. 

Similarly, the probability of the event that no faults are de-
tected by a test sequence z∈Zx can be calculated as 
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=
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where n is the total number of test patterns in the test sequence 
z∈Zx, and vj is the j-th test pattern. 

8.2.2. Proposed Heuristic for Test Scheduling 

Based on the proposed cost function, defined in the previous sec-
tion, we developed an iterative heuristic for ETTT minimization. 
As described earlier, the test scheduling problem in the hybrid 
AOFF test environment is essentially scheduling of deterministic 
test sequences, such that the ETTT of the system is minimal.  

By changing the schedule of deterministic sequences, the set of 
passed test sequences Zx and the set of failed test sequences Yx, 
affiliated to every possible test termination point x, is also 
changed. Consequently, the individual fault coverage of each test 
pattern must be recalculated, since the passing probability of 
these patterns is changed. This will lead to the recalculation of 
the ETTT as described in the previous section. 

It would be natural to order the tests in such a way, that the 
cores with high failure probability would be tested first. How-
ever, such a naïve schedule does not necessarily lead to the 
minimal expected total test time. In addition to the defect prob-
abilities also the efficiency of test patterns and length of individ-
ual test sequences have to be taken into account. Due to the 
complexity of the problem we propose here an iterative heuristic 
that can be efficiently used. 

In our heuristic we assume that we start from a subset of m 
already scheduled deterministic sequences, m<n. The objective is 
to increase this subset to m+1 scheduled deterministic se-
quences. This is obtained by selecting a deterministic sequence 
from the remaining unscheduled n-m candidate sequences and 
inserting it into the existing sequence in such a way, that the re-
sulting ETTT is as short as possible. This procedure is repeated 
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for all cores m=0, 1, ..., n-1. For the initial solution (m=0) the test 
sequence with the lowest ETTT is chosen. 

At every iteration (n-m)(m+1) different solutions have to be 
explored since there are n-m candidate sequences and m+1 inser-
tion points for each candidate. The heuristic is illustrated in 
Figure 8.2. Here we have illustrated a situation where two de-
terministic test sequences out of five are already scheduled (m=2, 
n=5). For every candidate schedule there are three different in-
sertion points, indicated by arrows. During the iteration step, the 
ETTT for all candidate sequences for all possible insertion points 
is calculated and the candidate sequence will be finally inserted 
to the point with lowest ETTT. 

The new situation is illustrated in Figure 8.3. In this example 
the deterministic test sequence of core 4 was chosen and inserted 
into the schedule after the core 1. 
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Figure 8.2. Initial solution for the iteration. 
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Figure 8.3. The new locally optimal order after the iteration. 

In the following the pseudo-code of the algorithm is presented. 
As described earlier, the test schedule is obtained constructively 
by enlarging the subset of scheduled test sequences. During each 
iteration we add one additional sequence into the previously 
scheduled set of sequences and explore the solution space in or-
der to find the optimal insertion point for the new sequence. The 
algorithm starts with the initialization phase. Thereafter comes 
the iterative scheduling heuristic, consisting of three main loops. 
The outer loop iteratively increases the number of already 
scheduled sequences. The middle loop iteratively goes through 
all candidate sequences in the current candidate set and the in-
ner loop calculates for the chosen candidate sequence a new 
ETTT in every possible insertion point. A solution with lowest 
ETTT is chosen and the new schedule forms an initial solution 
for the next iteration. The heuristic stops when all test have been 
scheduled. 

 

 

 



HYBRID BIST IN AN ABORT-ON-FIRST-FAIL ENVIRONMENT 

 173 

Algorithm 8.1. Pseudo-code of the algorithm. 

Begin 

Initialization 

For (current_scheduled = 1 to n) Do 

    m = current_scheduled_number(Scheduled[]); 

    For (current_candidate = 1 to n-m+1) Do 

        For (current_insert_position = 0 to m) Do 

            Calculate new cost; 

             If (new_cost < min_cost)  

                  min_cost = new_cost 

                  chosen_candidate = current_candidate; 

                  chosen_insert_position = current_insert_position; 

             EndIf; 

         EndFor; 

        Insert candidate to the chosen position; 

    EndFor; 

EndFor; 

Output Schedule; 

End. 

8.2.3. Experimental Results 

We have performed experiments with 9 different designs, con-
sisting of 5 to 50 cores (Table 8.1). In order to obtain diversifica-
tion we have calculated for every experimental design 5 different 
hybrid test sets (different ratio of pseudorandom and determinis-
tic test patterns) and the experimental results illustrate the av-
erage of five experiments. The defect probabilities for individual 
cores have been given randomly, while keeping the system defect 
probability at the value 0.6.  
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Table 8.1. Experimental results. 

5 7 10 12 15 

Design Size
ETTT 

CPU 
Time 

(s) 
ETTT

CPU 
Time 

(s) 
ETTT CPU 

Time (s) ETTT CPU 
Time (s) ETTT 

CPU 
Time 

(s) 

No Optimi-
zation 248.97 1.1 261.38 64.4 366.39 311.8 415.89 346.8 427.34 371.6 

Our  
Heuristic 

228.85 0.6 232.04 1.4 312.13 6.6 353.02 12.2 383,40 25.2 

SA 228.85 1144.2 231.51 1278.5 311.68 3727.6 352.10 4266.8 381.46 5109.2 

Exhaustive 
Search 

228.70 1.2 231.51 80.0 311.68 112592.6 N/A N/A N/A N/A 

17 20 30 50 

Design Size
ETTT 

CPU 
Time 

(s) 
ETTT

CPU 
Time 

(s) 
ETTT CPU 

Time (s)
ETTT CPU 

Time (s)

No Optimi-
zation 544.37 466.6 566.13 555.4 782.88 822.4 1369.54 1378.0 

Our  
Heuristic 494.57 43.6 517.02 85.4 738.74 380.4 1326.40 3185.0 

SA 493.93 6323.8 516.89 7504.4 736.51 11642.4 1324.44 21308.8

Exhaustive 
Search 

N/A N/A N/A N/A N/A N/A N/A N/A 

 

In order to illustrate the significance of test scheduling we 
have performed another set of experiments for comparison, 
where a random schedule is assumed. As it can be seen from 
Table 8.1, by employing our heuristic the ETTT can be reduced 
in a range of 5-15%, which is very relevant for large volume pro-
duction testing.  

As our heuristic can produce only a near optimal solution, ex-
periments for estimating the accuracy of the solution were per-
formed. For this purpose a simulated annealing algorithm and 
an exhaustive search has been used, where possible. As it can be 
seen from Table 8.1 our heuristic is able to produce results simi-
lar or very close to the results obtained with simulated annealing 
and exhaustive search, while having significantly lower compu-
tation times. These comparisons are also illustrated in Figure 8.4 
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and Figure 8.5. In Figure 8.4 we have compared the ETTT val-
ues, calculated with different approaches, while in Figure 8.5 the 
CPU times with our heuristic and with simulated annealing are 
compared.   
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Figure 8.4. Comparison of expected total test times. 
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8.3. Conclusions 

In this chapter we have proposed a methodology for hybrid BIST 
scheduling in an abort-on-first-fail environment, where the test 
is terminated as soon as a defect is detected. We have developed 
a methodology for expected total test time calculation, based on 
defect probabilities and proposed a heuristic for ETTT minimiza-
tion. Experimental results have shown the efficiency of the pro-
posed method. 
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Chapter 9 

Introduction and Modeling 

As described in the previous chapters, the introduction of Sys-
tem-on-Chip (SOC) entails several challenges in respect to the 
design, test and manufacturing of such systems. To cope with the 
challenges faced by SOC designers, tools and techniques dealing 
with design at higher levels of abstraction have been developed. 
For example, behavioral-level synthesis tools and hard-
ware/software co-design techniques are starting to play an im-
portant role in the initial phases of the design process. The main 
advantages of deploying such high-level design tools is the possi-
bility to quickly evaluate the costs and benefits of different archi-
tecture alternatives, including both hardware and software com-
ponents, starting from a high-level functional specification of the 
implemented system. 

While the main design focus is quickly moving toward higher 
levels of abstraction, the test issues are usually considered only 
when a detailed description of the design is available, typically at 
the gate level for test sequence generation and at register trans-
fer (RT) level for design for testability structure insertion. 
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To address the problems associated with test generation and 
design-for-test, when performed at the later design stages, inten-
sive research efforts have been devoted to devise solutions to test 
sequence generation and DFT in the early design phases, mainly 
at the RT level. For high-level test generation, several proposed 
approaches are able to generate test patterns of good quality, 
sometimes even better than those of gate-level ATPG tools. How-
ever, due to the lack of general applicability, most of these ap-
proaches are still not used in the industry.  

This part of the thesis presents a high-level hierarchical test 
generation approach for improving the results obtained by a pure 
high-level test generator. The hierarchical test generator takes 
into account structural information from lower levels of abstrac-
tion while generating test sequences on the behavioral level [94]. 
We will start our discussion with the description of the modeling 
technique we use to model the design under test and the corre-
sponding fault modeling techniques. In the next chapter the hi-
erarchical test generation approach will be described. 

9.1. Modeling with Decision Diagrams 

Test generation for digital systems encompasses three main ac-
tivities: selecting a description method, developing a fault model, 
and generating tests to detect the faults covered by the fault 
model. The efficiency of test generation (quality and speed) is 
highly depending on the description method and fault models 
which have been chosen. In order to generate tests at the high 
abstraction levels, we need a modeling technique that can cap-
ture designs at the levels in concern. Since the hierarchical test 
generation approach takes advantages of both high-level and 
low-level design information, we need a modeling technique 
which spans several levels of abstraction. This section will de-
scribe such a model, called Decision Diagrams. 
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9.1.1. Introduction 

For high-level test generation, different high-level design and 
fault models have been introduced. The main idea of high-level 
modeling is to capture the high-level description of the system in 
a formal model, and to obtain different incorrect versions of the 
design by introducing a fault into the model. This approach is 
called model perturbation [64]. The models can be “perturbed” in 
certain ways, e.g. by truth-table modification, micro-operation 
modification, etc. In one way or the other, this idea is imple-
mented in different high-level fault models for different classes of 
digital systems.  

In the case of microprocessors, individual functional fault 
models and their corresponding test strategies have been devel-
oped for different function classes, such as register decoding, in-
struction decoding, control, data storage, data transfer, data ma-
nipulation, etc [16], [152]. The main disadvantage of this 
approach is that only microprocessors are handled and the re-
sults obtained cannot be extended to cover the general digital 
systems testing problem. When using register transfer languages 
(RTL-approach), a formal definition of an RTL statement is de-
fined, and nine categories of functional faults for components of 
RTL statements are identified [146], [149]. Recently, a lot of at-
tention has been devoted to generating tests directly from high 
level description languages [50], [51], [167]. Some attempts to 
develop special functional fault models for different data-flow 
network units like decoders, multiplexers, memories, PLAs, etc. 
are described in [2].  

The drawback of traditional multi-level and hierarchical ap-
proaches to test generation lies in the need of different languages 
and models for different levels. For example, one might use logic 
expressions for combinational circuits; state transition diagrams 
for finite state machines (FSM); abstract execution graphs, sys-
tem graphs, instruction set architecture (ISA) descriptions, flow-
charts, hardware description languages, or Petri nets for system 
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level description, etc. All these models need different manipula-
tion algorithms and fault models which are difficult to merge 
into a coherent hierarchical test method. To address this prob-
lem, Decision Diagrams (DDs) can be used [17], [123], [136], 
[157], [158], [159]. Binary DDs (BDD) have found already very 
broad applications in logic design as well as in logic test [17], 
[123]. Structurally Synthesized BDDs (SSBDD) are able to rep-
resent gate-level structural faults directly in the graph [157], 
[158]. Recent research has shown that generalization of BDDs 
for higher levels provides a uniform model for both gate and RT 
level [136], [159], and even behavioural level test generation [87], 
[90]. 

In our approach, a method for describing digital systems and 
for modeling faults is based on decision diagrams. DDs serve as a 
basis for a general theory of test design for mixed-level represen-
tations of systems, similarly as we have the Boolean algebra for 
the plain logical level. DDs can be used to represent systems uni-
formly either at logic level, high-level or simultaneously at both 
levels. The fault model defined on DDs represents a generaliza-
tion of the classical gate-level stuck-at fault model. 

9.2. Modeling Digital Systems by Binary Decision 
Diagrams 

Let us first consider binary decision diagrams in order to illus-
trate the basic notations. BDDs are a special case of DDs that 
are described later in this chapter for behavior level diagnostic 
modeling of digital systems. We will first describe logic level 
BDDs to prepare the readers for a better understanding of the 
generalization of BDDs for higher level system representation. 
We will use the graph-theoretical definitions instead of tradi-
tional logic oriented ite expressions [17], [123] because all the 
procedures defined further for DDs are based on the topological 
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reasoning rather than on graph symbolic manipulations as in the 
case of BDDs. 

Definition 9.1: A BDD that represents a Boolean function y = 
f(X), X = (x1, x2, …, xn), is a directed acyclic graph Gy = (M, Γ, X), 
with a set of nodes M and a mapping Γ from M to M. M = MN ∪ 
MT consists of two types of nodes: nonterminal MN and terminal 
MT nodes. A terminal node mT ∈ MT = {mT,0, mT,1} is labeled by a 
constant e ∈ {0, 1} and is called a leaf; while all nonterminal 
nodes m ∈ MN are labeled by variables x ∈ X, and have exactly 
two successors. Let us denote the variable associated with node 
m as x(m), then m0 is the successor of m for the value x(m) = 0 
and m1 is the successor of m for x(m) = 1.  

Definition 9.2: By the value of x(m) = e,  e ∈ {0, 1}, we say the 
edge between nodes m ∈ M  and me ∈ M is activated. Consider a 
situation where all the variables x ∈ X are assigned by a Boolean 
vector Xt ∈ {0, 1}n  to some value. The activated edges by Xt form 
an activated path l(m0, m

T) ⊆ M from the root node m0 to one of 
the terminal nodes mT∈ MT.  

Definition 9.3: We say that a BDD Gy = (M, Γ, X) represents a 
Boolean function  y = f(X), iff for all the possible vectors Xt ∈ {0, 
1}n a path l(m0, m

T) ⊆ M is activated so that y = f(Xt) = x(mT).  

Definition 9.4: Consider a BDD Gy = (M, Γ, X) where X is the 
vector of literals of a function y = P(X) represented in the equiva-
lent parenthesis form [158], the nodes m ∈ MN are labeled by 
x(m) where x ∈ X and ⎜M ⎜ = ⎜X ⎜. The BDD is called a structur-
ally synthesized BDD (SSBDD), iff there exists a one-to-one cor-
respondence between literals x ∈ X and nodes m ∈ MN given by 
the set of labels {x(m) ⎜ x ∈ X, m ∈ MN}, and for all the possible 
vectors Xt ∈ {0,1}n a path l(m0, m

T) is activated, so that y = f(Xt) = 
x(mT).  

Unlike the traditional BDDs [17], [123], SSBDDs [158] support 
structural representation of gate-level circuits in terms of signal 
paths. By superposition of DDs [158], we can create SSBDDs 
with one-to-one correspondence between graph nodes and signal 
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paths in the circuit. The whole circuit can then be represented as 
a network of tree-like subcircuits (macros), each of them repre-
sented by a SSBDD. Using SSBDDs, it is possible to ascend from 
the gate-level to a higher macro level without loosing accuracy of 
representing gate-level signal paths. 

Our intention is to make use of the SSBDDs to capture both 
the structural and functional properties of a given circuit in or-
der to generate high-quality test patterns. 

Figure 9.1 shows a representation of a tree-like combinational 
circuit by a SSBDD. For simplicity, values of variables on edges 
of the SSBDD are omitted (by convention, an edge going to the 
right corresponds to 1, and an edge going down corresponds to 0). 
Also, terminal nodes with constants 0 and 1 are omitted: leaving 
the graph to the right corresponds to y = 1, and down, to y = 0. 
The SSBDD graph contains 7 nodes, and each of them represents 
a signal path in the given subcircuit (denoted as a macro in 
Figure 9.1). By bold lines an activated path in the graph corre-
sponding to the input pattern x1x2x3x4x5x6  = 110100 is high-
lighted. The value of the function y = 1 for this pattern is deter-
mined by the value of the variable x5 = 1 in the terminal node of 
the path.  

 

Figure 9.1. A gate level circuit and its corresponding SSBDD. 

The path activation properties can efficiently used in test gen-
eration, for example. 

Procedure 9.1:  Test generation. To generate a test for a node 
m ∈ MN in Gy, the following paths have to be activated:  
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(1) l(m0, m),  

(2) l(m1,mT,1), and 

(3) l(m0,mT,0). 

To generate a test pattern for the path from x7,1 to y in the cir-
cuit by using SSBDD means to generate a test pattern for the 
corresponding node x7,1 in the graph. To test the node x7,1, accord-
ing to Procedure 1, the following paths should be activated; 
(6,¬1, 2, 71), (¬1, mT,1), and  (¬1, mT,0), which produces the test 
pattern: x1x2x3x4x5x6 = 11xx00. For example, to test a physical de-
fect of a bridge between the lines 6 and 7, which is activated on 
the line 7, additional constraint W=¬x6∧x7=1 has to be used, 
which updates the test vector to 111x00. 

9.3. Modeling with a Single Decision Diagram on 
Higher Levels 

Consider now a digital system S = (Z, F) as a network of compo-
nents (or processes), where Z is the set of variables (Boolean, 
Boolean vectors or integers) that represent connections between 
components, as well as inputs and outputs of the network. De-
note by X ⊂ Z and Y ⊂ Z, correspondingly, the subsets of input 
and output variables. V(z) denotes the set of possible values for 
z ∈ Z, which are finite.  

Let F be the set of digital functions on Z: zk = fk (zk,1, zk,2, ... , zk,p) 
= fk (Zk ) where zk ∈ Z, fk ∈ F, and Zk  ⊂ Z. Some of the functions 
fk ∈ F, for the state variables z ∈ ZSTATE ⊂ Z, are next state func-
tions. 

Definition 9.5: A decision diagram is a directed acyclic graph  
G = (M, Γ, Z) where M is a set of nodes, Γ is a relation in M, and 
Γ(m) ⊂ M denotes the set of successor nodes of m ∈ M. The nodes 
m ∈ M are marked by labels z(m). The labels can be variables 
z ∈ Z, algebraic expressions fm(Z(m)) of  Z(m) ⊆ Z, or constants.  
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For non-terminal nodes m ∈ MN, where Γ(m) ≠ ∅, an onto func-
tion exists between the values of z(m) and the successors 
me ∈ Γ(m) of m. By me we denote the successor of m for the value 
z(m) = e. The edge (m, me) which connects nodes m and me is 
called activated iff there exists an assignment z(m) = e. Activated 
edges, which connect mi and mj, make up an activated path 
l(mi, mj) ⊆ M. An activated path l(m0, mT) ⊆ M  from the initial 
node m0 to a terminal node mT is called a full activated path. 

Definition 9.6: A decision diagram Gz,k  represents a high-level 
function zk = fk (zk,1, zk,2, …, zk,p) = fk (Zk), zk ∈ Z iff for each value 
v(Zk) = v(zk,1) × v(zk,2) × ... × v(zk,p), a full path in Gz,k to a terminal 
node mT ∈MT in Gz,k is activated, so that zk = z(mT)   is valid. 

Depending on the class of the system (or its representation 
level), we may have various DDs, where nodes have different in-
terpretations and relationships to the system structure. In RTL 
descriptions, we usually partition the system into control and 
data parts. Nonterminal nodes in DDs correspond to the control 
path, and they are labelled by state and output variables of the 
control part serving as addresses or control words. Terminal 
nodes in DDs correspond to the data path, and they are labelled 
by the data words or functions of data words, which correspond 
to buses, registers, or data manipulation blocks.  

When using DDs for describing complex digital systems, we 
have to, first, represent the system by a suitable set of intercon-
nected components (combinational or sequential subcircuits). 
Then, we have to describe these components by their correspond-
ing functions which can be represented by DDs.  

Figure 9.2 depicts an example of a DD describing the behavior 
of a digital system together with its possible RTL implementa-
tion. The variables R1, R2 and R3 represent registers, IN repre-
sents the input bus, the integer variables y1, y2 , y3, y4  represent 
the control signals,  M1, M2, M3 are multiplexers, and the func-
tions R1+R2 and R1*R2 represent the adder and multiplier, corre-
spondingly. Each node in DD represents a subcircuit of the sys-
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tem (e.g. the nodes y1, y2, y3, y4 represent multiplexers and decod-
ers,). The whole DD describes the behavior of the input logic of 
the register R2. To test a node means to test the corresponding 
subcircuit. 
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Figure 9.2. Representing a data path by a decision diagram. 

For test pattern simulation, a path is traced in the graph, 
guided by the values of input variables until a terminal node is 
reached, similarly as in the case of SSBDDs.  In Figure 9.2 the 
result of simulating the vector y1, y2, y3, y4, R1, R2, IN = 
0,0,3,2,10,6,12 is R2 = R1*R2 = 60 (bold arrows mark the activated 
path). Instead of simulating by a traditional approach all the 
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components in the circuit, in the DD only 3 control variables are 
visited during simulation, and only a single data manipulation 
R2 = R1*R2 is carried out. 

9.3.1. Decision Diagrams at the Behavioral Level 

Our approach starts from a behavioral specification, given in 
VHDL. At this level the design does not include any details about 
the final implementation, however we assume that a simple fi-
nite-state machine (FSM) has already been introduced and 
therefore the design is conceptually partitioned into the data 
path and control part. For this transformation we are using the 
CAMAD high-level synthesis system [39]. 

DD synthesis from a high-level description language consists 
of several steps, where data path and control part of the design 
will be converted into the DDs. As described earlier, the entire 
system can be represented with a single DD. However, in our 
case, the design is already partitioned into the control part and 
data path, and therefore both parts will be converted into sepa-
rate DDs. 

Figure 9.3 depicts an example of a DD, describing the behavior 
of a simple function. For example, variable A will be equal to 
IN1+2, if the system is in the state q=2 (Figure 9.3c). If this state 
is to be activated, condition IN1≥0 should be true (Figure 9.3b). 
The DDs, extracted from a specification, will be used as a compu-
tational model in the hierarchical test generation environment. 

9.3.2. SICStus Prolog Representation of Decision 
Diagrams 

For each internal or primary output variable corresponds one 
data-flow DD. In a certain system state, the value of a variable is 
determined by the terminal node in the data graph. In this case, 
the relationship between the terminal node and the variable can 
be viewed as a functional constraint on the variable at the state. 



MODELING WITH DECISION DIAGRAMS 

 189 

To generate a test pattern for a fault we have to excite the 
fault (justification) and to sensitize the fault effect at the pri-
mary outputs (propagation). For example, if we want to test the 
statement that is highlighted in Figure 9.3a, we have to bring 
the system to the state q=2. This can be guaranteed only when 
q’=0 and IN1≥ 0. These requirements can be seen as justification 
constraints.  

 

 
if (IN1 < 0) then  
  A := IN1 * 2;   ------ q=1  
else  
  A := IN1 + 2;   ------ q=2 
endif; 
 
B := IN1 * 29;    ------ q=3 
A := B * A;       ------ q=4 
B := A + 43;      ------ q=5 

a)  Specification  
(comments start with “--“) 

 

q' IN1 1

0

<00q

1,2 3

2

3 4

4 5

5
 

b)  The control-flow DD  
(q denotes the state variable 
and q’ is the previous state) 
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c) The data-flow DD 

Figure 9.3. A decision diagram example. 
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For observing the fault effect at primary outputs, we have to 
distinguish between the faulty and the correct behavior of a 
variable under test (Variable “A” in our example). This requires, 
that B ≠ 0 (from the statement A:=B*A) and consequently 
IN1*29 ≠ 0 (from the statement B:=IN1*29), otherwise the vari-
able “A” will have always value 0 and the fault cannot be de-
tected. These conditions can be seen as propagation constraints.  

By solving the extracted constraints we will have a test pat-
tern (combination of input values) which can excite the fault and 
propagate the fault effect to the primary outputs. For solving 
these constraints we employ a commercial constraint solver 
SICStus [147] and have developed a framework for representing 
a DD model in the form of constraints. First, we translate the 
control-flow DD into a set of state transition predicates and path 
activation constraints are extracted along the activated path. 
Then all the data-flow DDs are parsed as functional constraints 
at different states by using predicates. Finally, a DD model is 
represented as a single Prolog module. See [150] for technical de-
tails about the translation process. 



HIERARCHICAL TEST GENERATION WITH DDS 

 191 

Chapter 10 

Hierarchical Test 
Generation with DDs 

One possible approach to deal with test generation complexity is 
to raise up the level of design abstractions at which the basic test 
generation procedure is performed. In the following we will de-
scribe an approach that performs the test generation procedure 
using the high-level behavioral description captured by DDs, but 
at the same time, takes into account some detailed information 
of the basic components at the lower levels. 

At the behavioral level we can represent digital system with a 
single DD or to partition the system into the control-flow DD and 
data-flow DDs. For illustrative purposes we will use hereby the 
latter approach. The control-flow DD carries two types of infor-
mation: state transition information and path activation infor-
mation. The state transition information captures the state tran-
sitions that are given in the FSM corresponding to the specified 
system. The path activation information holds conditions associ-
ated to state transitions. 
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Depending on the partition of a system into a network of sub-
systems we can represent the whole DD-model as a set of DDs, 
so that for every output of a subsystem a DD will be associated 
with it.  

A test for a system represented by DDs can be created in two 
parts [157]: 

• A scanning test, which makes sure that the different func-
tional blocks are working correctly; and 

• A conformity test, which makes sure that the different work-
ing modes chosen by control signals are properly carried out. 

In [90] it has been shown that in some cases there exists a gap 
between the fault coverage figures attained by test sequences 
generated purely on a high-level and those by the gate-level 
ones. This gap can be reduced by integrating structural informa-
tion to the test generation process by employing the hierarchical 
test generation (HTG) approach to be discussed here. 

The main idea of a HTG technique [126] is to use information 
from different abstraction levels while generating tests. One of 
the main principles is to use a modular design style, which al-
lows us to divide a larger problem into several smaller subprob-
lems and to solve them separately. This approach allows generat-
ing test vectors for the lower level modules based on different 
techniques suitable for the respective entities.  

The HTG algorithm of interest to us generates conformity 
tests from pure behavioral descriptions. This test set targets er-
rors in branch selection (nonterminal nodes of the DDs). During 
the second test generation phase the functional blocks (e.g., ad-
ders, multipliers and ALUs) composing the behavioral model are 
identified (terminal nodes of the data-flow DDs), and suitable 
test vectors are generated for the individual blocks. During the 
block-level test generation phase each block is considered as an 
isolated and fully controllable and observable entity; and a gate-
level test generation tool is used for this purpose. The test vec-
tors generated for the basic blocks are then justified and their 
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fault effects propagated in the behavioral model of the circuit 
under test. In this way we can incorporate accurate structural in-
formation into the high-level test pattern generation environ-
ment while keeping propagation and justification task still on a 
high abstraction level.  

10.1. Test Generation Algorithm  

The test generation task is performed in the following way 
(Figure 10.1). Tests are generated sequentially for each nonter-
minal node of the control-flow DD. Symbolic path activation is 
performed and functional constraints are extracted. Solving the 
constraints gives us the path activation conditions to reach a 
particular segment of the specification. In order to test the op-
erations, presented in the terminal nodes of the data-flow DD, 
different approaches can be used. In our approach we employ a 
gate level test pattern generator. In this way we can incorporate 
accurate structural information into the high-level test pattern 
generation environment while keeping the propagation and justi-
fication task still on a high abstraction level. If the constraint 
solver is not able to find a solution, a new test case should be 
generated, if possible. This cycle should be continued until a so-
lution is found or a timeout occurs.  

The HTG environment is depicted in Figure 10.2. Our HTG 
environment accepts as input a behavioral VHDL specification. 
The VHDL code is translated into the DD model, which is used 
as a formal platform for test generation, and later into a Prolog 
model, which is used by the constraint solver. In our approach 
we use a commercial constraint solver SICStus [147]. The HTG 
algorithm generates test cases and forwards them in form of con-
straints to the constraint solver, which generates the final test 
vectors. Propagation and justification of the gate level test pat-
terns are performed by the constraint solver as well. 
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No

Generate a test case
(Conformity test or gate-level ATPG)

Yes

BEGIN

Success?

Yes

No

Extract functional and path activation 
constraints for justification

Extract funtional and path activation 
constraints for fault effect propagation

Solve constraints

A solution?
No No

Yes

Yes
Timeout?

Any 
unprocessed nodes 

in the  DD?

Select an unprocessed node

END

 

Figure 10.1. The general flow for hierarchical  
test generation algorithm. 
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Figure 10.2. Our hierarchical test generation environment. 

In the following, the test pattern generation algorithm is de-
scribed in more detail. 

10.2. Scanning Test 

Consider a terminal node mT ∈ MT  in Gz,k, labeled by a functional 
expression fm(Z(mT)). To generate a test for the node mT means to 
generate a test for the function fm(Z(mT)).  

For generating a test for  fm(Z(mT)) we have to solve two tasks: 
1. to activate a path l(m0, m

T) ⊆ M, from the root node m0 of 
the DD up to mT by choosing proper values z(m) * for all 
the control variables z(m)  in the nodes m  ∈  l(m0, m

T)\ mT; 
and 

2. to find the proper sets of data values D = (D1, D2,…, Dp) for 
the variables Z(mT) to test the function fm(Z(mT)). 
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For executing these two tasks, we can use the following test 
program: 

Algorithm 10.1: 

FOR all the values of  t = 1, 2, …, p 

BEGIN 

Load the data registers Z(mT) with Dt ; 

Carry out the tested working mode at the control values 
z(m)*  for all  z(m),  m  ∈  l(m0, m

T)\ mT; 

Read the value of zk
 and compare it to the reference value 

fm(Dt). 

END. 

The task of the scanning test is to detect the faults in regis-
ters, buses and data manipulation blocks. In terms of DDs the 
terminal nodes are tested by the scanning test.  

Example 10.1: We illustrate how a test can be generated for 
testing the multiplier in Figure 9.2. In the DD of Figure 9.2 we 
have two terminal nodes with the multiplier function. Let us 
choose the node R1*R2 for testing. By activating the path to this 
node (shown by bold in Figure 9.2) we generate a control word y2, 
y3, y4 = 0,3,2. To find the proper values of R1 and R2 we need to 
descend to the lower level (e.g., gate level) and generate test pat-
terns by a low level ATPG for the implementation of the multi-
plier. Let us have a test set of n test patterns (D11, D21; D12, D22; … 
D1p, D2p) generated for the multiplier with inputs R1 and R2.  

Based on the above information, the following test program 
can be used: 

Algorithm 10.2: 

FOR all the values of  i = 1, 2, …, p 

BEGIN 
Load the data registers R1 = D1i, R2 = D2i; 
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Carry out the tested working mode at the control values  
y2,y3 y4 = 0,3,2; 
Read the value of R2 and compare to the reference D1i * D2i. 

END. 

10.2.1. Scanning Test in the HTG Environment 

One of the most important parameters guiding the design syn-
thesis process is the technology and module library that will be 
used in the final implementation. By defining the technology and 
module library, we can have information about the implementa-
tion of functional units that will be used in the final design. The 
hierarchical test generation algorithm can employ this structural 
information for generating tests. Tests are generated by coopera-
tion of high-level and low-level test pattern generators. It is usu-
ally performed one by one for every arithmetic operator given in 
the specification (Figure 10.3).  

if (IN1 > 0)
    X=IN2+3;      --- q=1
else {
    if (IN2 >= 0)
        X=IN1+IN2; -- q=2
    else
        X=IN1*5;  --- q=3
}

Y=X-10;      -------- q=4
X=Y*2;       -------- q=5
OUT=X+Y;     -------- q=6

Behavioral description

OUT q’

X+Y

OUT’
0,1,2,3,4,5

6

 

Figure 10.3. Testing functional units 

In the HTG environment we describe here, the algorithm 
starts by choosing an operator not yet tested from the specifica-
tion, and uses a gate level ATPG to generate a test pattern tar-

     

     

1
X

X
0

0
X  
Fragment of a gate level netlist 
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geting structural faults in the corresponding functional unit. In 
this approach a PODEM like ATPG is used, but in the general 
case any gate-level test pattern generation algorithm can be ap-
plied. If necessary, pseudorandom patterns can be used for this 
purpose as well.  

The test patterns, which are generated by this approach, can 
have some undefined bits (don’t cares). As justification and 
propagation are performed at the behavioral level by using sym-
bolic methods, these undefined bits have to be set to a given 
value. Selecting the exact values is an important procedure since 
not all possible values can be propagated through the environ-
ment and it can therefore lead to the degradation of fault cover-
age.  

A test vector that does not have any undefined bits is thereaf-
ter forwarded to a constraint solver, where together with the en-
vironmental constraints it forms a test case. Solving such a test 
case means that the generated low-level test vector can be justi-
fied till the primary inputs and the fault effect is observable at 
the primary outputs. If the constraint solver cannot find an input 
combination that would satisfy the given constraints, another 
combination of values for the undefined bits has to be chosen and 
the constraint solver should be employed again. This process is 
continued until a solution is found or timeout occurs.  

If there is no input combination that satisfies the generated 
test case, the given low-level test pattern will be abandoned and 
the gate-level ATPG will be employed again to generate a new 
low-level test pattern. This task is continued until the low-level 
ATPG cannot generate any more patterns. 

This can be illustrated with the following example (Figure 
10.4). Let us assume that we want to test the FU which is in the 
statement Y=X+IN2. For this purpose the gate-level ATPG is 
employed and it returns a test vector X=0X0X and IN2=1X11. 
From the environment we know that variable X can hold only a 
very limited range of values. Either X=1 or X has a value which 
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is a multiple of 5 (0, 5, 10, 15, …). Therefore, if we replace the 
undefined bits so that X=0001, the justification process will be 
successful, but if X=0100 (decimal value 4), the justification will 
fail. 

We generate tests for every FU one by one and finally the fault 
coverage for every individual FU under the given environmental 
constraints can be reported, which gives the possibility to rank 
all modules according to their testability. 

if (IN1>0) 

  X=IN1*5; 

else 

  X=1; 

   Y=X+IN2; 

Behavioral description 

     

     

X

IN2
Y+

 

 

FU under test 
 X IN2  

ATPG:  0X0X 1X11  
 0001 (1) 1011 (11) SUCCESS 
 0100 (4) 1011 (11) FAILURE 
 0101 (5) 1011 (11) SUCCESS 

Test vectors 

Figure 10.4. Selection of a test vector. 

10.3. Conformity Test 

Consider a nonterminal node m labeled by a control variable 
z(m) in a given DD Gz,k, representing a digital system with a 
function zk  = fk (Zk). Let Z = (ZC, ZD), where ZC is the vector of 
control variables and ZD is the vector of data variables. To gener-
ate a test for the node m means to generate a test for the control 
variable z(m) ∈ ZC.  Suppose that the variable z(m) may have n = 
|z(m)| different values. For testing z(m), we have to activate and 
exercise all the proper working modes controlled at least once by 
each value of  z(m). At the same time, for each of such a working 
mode, a current state of the system should be generated, so that 
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every possible faulty change of z(m) should produce a faulty next 
state different compared to the expected next state for the given 
working mode.  

Let us denote by me the successor node of the node m for the 
value z(m) = e, where e = 1, 2, …, n. For generating a test for m 
we have to solve the following tasks on the DD: 

1. to activate a path l(m0, m)\m ⊆ M from the root node of 
the DD up to the node m by choosing proper values z(m’)*  
for all the control variables z(m’) ∈ ZC in the nodes m’  ∈  
l(m0, m)\ m; 

2. to activate for all neighbors me of m nonoverlapping paths 
l(me,me,T) from me up to the nonoverlapping terminal nodes 
me,T by choosing proper values  z(m’)*  for all the control 
variables z(m’) ∈ ZC 

  in the nodes of m’  ∈  l(me,me,T); and 
3. to find the proper set of data (the values z* of the vari-

ables z ∈ ZD), by solving the inequality z(mT,1) ≠ z(mT,2) ≠ … 
≠ z(mT,n) where n = | v(z(m))|. 

Consider the resulting test as a set of symbolic test patterns T 
= {(z(m) = e, ZC*, ZD*, z(mT,e)) ⎪ e ∈ v(z(m))}, where e is the sym-
bolic value of the tested variable z(m); ZC*  is the constant vector 
of the other control signals corresponding to the set of variables 
ZC ⊆ Z, and generated by the first two steps of the algorithm; ZD* 
is the constant vector of the data values corresponding to the set 
of variables ZD ⊆ Z, and generated by the third step of the algo-
rithm; and, finally, z(mT,e)  is the expected output value of the sys-
tem corresponding to the value e of the tested control variable 
z(m). The final conformity test of the control variable z(m) cre-
ated from the symbolic test pattern T  consists of the following 
program: 

FOR each value of e = 1, 2, …, |z(m)| 
BEGIN 

Load the data registers with ZD*;  

Carry out the tested working mode at the control signals 
z(m) = e, and ZC*;  
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Read the value of zk, and compare with the reference 
value z(mT,e). 

END. 

The task of the conformity test is to detect the control faults 
and the faults in multiplexers. In terms of DDs the nonterminal 
nodes are tested by the conformity test.  

For example, in order to test nonterminal node IN1 in Figure 
10.5, one of the output branches of this node should be activated. 
Activation of the output branch means activation of a certain set 
of program statements. In our example, activation of the branch 
IN1<0 will activate the branches in the data-flow DD where q=1 
(A:=X). For observability the values of the variables calculated in 
all the other branches of IN1 have to be distinguished from the 
value of the variables calculated by the activated branch. In our 
example, node IN1 is tested, in the case of IN1<0, if X≠Y. The 
path from the root node of the control-flow DD to the node IN1 
has to be activated to ensure the execution of this particular 
specification segment and the conditions generated here should 
be justified to the primary inputs of the module. This process will 
be repeated for each output branch of the node. In the general 
case there will be n(n-1) tests, for every node, where n is the 
number of output branches. 

 

q q'
0

...

IN1 1

2

<0

 
 

A q
1

2

X

Y

 

Figure 10.5. Conformity test example 

 ≠ 
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Control-flow DD: 

Data-flow DD: 
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Example 10.2: Let us consider how to generate a test program 
for testing the node m labeled by y3 in Figure 9.2.  First, we acti-
vate the path l(m0, m)\m, which results in  y3 = 2.  Then we acti-
vate 4 paths l(m,me,T) for each value e = 1, 2, 3, 4 of y3, which re-
sults in y1 = 0 and  y2 = 0. Two of the 4 paths for values y3 = 1 and 
y3 = 2 are “automatically” activated since the successors of the 
node y3 for these values are terminal nodes. The test data R1 = 
D1, R2 = D2, IN = D3 are found by solving the inequality: 

R1 + R2 ≠ IN ≠ R1 ≠ R1 * R2 (10.1) 

From the procedure described above, the following conformity 
test for the control variable y3 is generated: 

Algorithm 10.3: 

FOR e = 1, 2, 3, and 4 

BEGIN 

Load the data registers R1 = D1, R2 = D2; 

Carry out the tested working mode at  
y3 = e, y1 = 0, y2 = 0, y4 = 2 and IN = D3;  

Read the value of R2, and compare it to the reference 
value z(mT,e). 

END. 

In the case when the control values are data dependent then 
the algorithms become more complicated, since the data found 
for nonterminal nodes by activating the paths in the DD should 
be consistent with data found in processing the terminal nodes. 

In the general case, a digital system cannot be represented by 
a single DD. In this case a system will be represented as a net-
work of components or subsystems where each subsystem is 
modelled by its own DD. The test sequences generated for a sub-
system with its DD by the procedures described above are to be 
treated as local test sequences. To generate the whole test se-
quence in a global sense, the classical fault propagating and line 
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justification tasks should be solved on the system level. For solv-
ing these tasks, DDs can also be used.  

To justify a value D for a variable zk represented by a DD Gz,k, 
a path should be activated  in Gz,k  from the root node to a termi-
nal node mT labelled by a register, bus or input variable z, and 
the value D is assigned to z. If z corresponds to an input or any 
other directly controllable point, the line justification task is fin-
ished. Otherwise, if z is a register or a bus represented by its own 
DD Gz, the line justification tasks will be iteratively solved for z 
using the graph Gz,. 

To propagate the fault from the point represented by a vari-
able z through a subsystem which is represented by a DD Gz,k, a 
test generation procedure described above should be carried out 
in Gz,k for the node m labeled by z. The test generated for the 
node m is propagating any erroneous value of z(m) to the output 
variable zk of the subsystem. 

10.4. Experimental Results 

In this section we present our experimental results. We demon-
strate that test sequences generated from high-level descriptions 
provide fault coverage figures comparable with figures obtained 
at the gate level, while the test generation time is reduced sig-
nificantly. We will also demonstrate that our approach can suc-
cessfully be used for testability evaluation. 

We performed experiments on the DIFFEQ circuits taken from 
the High-Level Synthesis’91 benchmark suite. We have synthe-
sized two gate level implementations of the same circuit: one op-
timized for speed (DIFFEQ 1) and the other optimized for area 
(DIFFEQ 2). Generated test patterns are applied to the gate 
level implementations of the circuit and the fault coverage is 
measured based on the SSA model. The results are reported in 
Table 10.1, where for every approach we have presented the ob-
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tained stuck-at fault coverage (FC), number of generated test 
vectors (Len) and CPU time spent (CPU) for test generation.  

Table 10.1. Results for the DIFFEQ benchmark circuit. 

 Pure High-level 
ATPG 

Our Hierarchical 
ATPG 

Gate-level ATPG 
testgen 

 FC 
[%] 

Len
[#] 

CPU
[s] 

FC
[%] 

Len
[#] 

CPU
[s] 

FC
[%] 

Len
[#] 

CPU 
[s] 

DIFFEQ 1 97.25 553 954 98.05 199 468 99.62 1,177 4,792 
DIFFEQ 2 94.57 553 954 96.46 199 468 96.75 923 4,475 

 

We compare our results with pure high-level ATPG [90] and 
pure gate level ATPG (testgen from Synopsys). The pure high-
level ATPG works at the behavioral level and generates tests 
based on different code coverage metrics. The gate-level ATPG, 
on the other hand, uses only gate-level information and can 
therefore be used only at the latter stages of the design cycle. 
The results show that the test sequences provided with our HTG 
approach can be successfully used for detecting stuck-at faults. 
These results also show that when moving test vector generation 
toward lower levels of abstractions, where more detailed infor-
mation about the tested circuits are available, the obtained re-
sults in terms of fault coverage figures are improved. The fault 
coverage obtained by the hierarchical ATPG is higher than that 
of the pure high-level ATPG, while the fault coverage working at 
the gate level is the highest. However, all three different ap-
proaches can obtain very high and comparable fault coverage 
figures. On the other hand, moving test generation towards the 
higher levels of abstraction has positive effects on the test gen-
eration time and on the test length that are both significantly 
reduced.  

We can also note that our HTG approach can generate test se-
quences faster and with higher quality than pure high-level 
ATPG. This can be partially explained with the very simple test 
generation algorithm employed in the pure high-level ATPG ap-
proach reported here.  
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We have also investigated possibilities to apply our ATPG ap-
proach to an industrial design F4 [148], which is part of the 
F4/F5 layer of the ATM protocol, covering the main functionality 
as specified by standard references. The F4/F5 layer covers the 
Operation and Maintenance (OAM) functionality of the ATM 
switches. The F4 level handles the OAM functionality concerning 
virtual paths and the F5 level handles the OAM functionality 
concerning virtual channels. We have extracted two blocks from 
the specification: F4_InputHandler_1 and F4_OutputHandler_1. 
Experimental results of these two examples are compared with 
those obtained using the commercial gate level ATPG tool from 
Mentor Graphics (FlexTest) and are presented in Table 10.2: 

Table 10.2. ATPG results with F4 design. 

Our Hierarchical 
ATPG 

Gate level ATPG Flex-
Test 

Design 
VHDL 
Lines 

[#] 

Stuck-at  
faults 

[#] Len
[#] 

CPU
[s] 

FC 
[%] 

Len
[#] 

CPU 
[s] 

FC 
[%] 

F4_Input 
Handler_1 

175 4872 62 228 64.22% 219 811 38.22% 

F4_Output 
Handler_1 

54 872 26 1.52 76.26% 170 5 81.30% 

 

As it can be seen, HTG can produce results that are compara-
ble with results obtained at the gate level, while having shorter 
test generation time and reduced test length. In case of the 
F4_InputHandler_1 block, our HTG approach obtains even 
higher fault coverage figure than that of the gate-level ATPG. 
This illustrates very well the situation when a gate-level ATPG 
cannot produce high quality test vectors due to the higher com-
plexity of descriptions at lower levels of abstraction, and a high-
level ATPG tool can outperform a gate-level ATPG tool by pro-
ducing test patterns with higher fault coverage. 

In order to investigate the possibility of using the HTG ap-
proach for testability evaluation we have also performed a more 
thorough analysis using the DIFFEQ design. The results are 
presented in Figure 10.6. We have annotated the VHDL behav-
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ioral description of the design with the test generation results. 
We use the instruction y_var := y_var + t7; in order to explain the 
attached information:  
 
y_var := y_var + t7; 
    -- Tested 389 faults  

Total number of detected stuck-at faults in the FU, 
when implemented in the target technology. 

     -- Untestable 0 
Total number of untestable faults in the FU, when 
implemented in the target technology. 

    -- Aborted 39 
Total number of aborted faults (the faults that cannot 
be detected due to different reasons. For example, the 
generated gate-level test pattern could not be propa-
gated and/or justified till primary inputs/outputs).  

    -- Fault coverage: 90.89  
Final stuck-at fault coverage. 

    -- 11 Vectors 
Number of test vectors that were generated by a gate 
level ATPG and successfully justified till primary in-
puts and propagated till primary outputs. 

As it can be seen, fault coverage of functional units differs sig-
nificantly, depending of the location and type of every individual 
FU. This information can be successfully exploited at the latter 
stage of the DFT flow, when selecting modules for DFT modifica-
tions. 
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ENTITY diff IS  
  PORT   
      ( x_in     : IN integer;      
        y_in     : IN integer;       
        u_in     : IN integer;      
        a_in     : IN integer;       
        dx_in    : IN integer;       
        x_out    : OUT integer; 
        y_out    : OUT integer; 
        u_out    : OUT integer 
     ) ; 
END diff ; 
 

ARCHITECTURE behavior OF diff IS 
BEGIN 
  PROCESS 
  variable x_var, y_var, u_var,  
     a_var, dx_var  : integer; 
  variable t1,t2,t3,t4,t5, 
             t6,t7: integer ; 
  BEGIN 
    x_var := x_in;   
    y_var := y_in;   
    a_var := a_in; 
    dx_var := dx_in;   
    u_var := u_in; 
    while x_var < a_var loop 
      t1 := u_var * dx_var;  
        -- Tested 5634 faults          
        -- Untestable 0 
        -- Aborted 14 
        -- Fault coverage: 99.75  
        -- Fault efficiency: 99.75  
        -- 52 Vectors 
 

      t2 := x_var * 3; 
        -- Tested 4911 faults  
        -- Untestable 0 
        -- Aborted 737 
        -- Fault coverage: 86.95  
        -- Fault efficiency: 86.95  
        -- 11 Vectors 
 

      t3 := y_var * 3; 
        -- Tested 4780 faults  
        -- Untestable 0 
        -- Aborted 868 
        -- Fault coverage: 84.63 
        -- Fault efficiency: 84.63  
        -- 10 Vectors 
 

      t4 := t1 * t2; 
        -- Tested 5621 faults  
        -- Untestable 0 
        -- Aborted 27 
        -- Fault coverage: 99.52 
        -- Fault efficiency: 99.52  
        -- 38 Vectors 
 

    
 t5 := dx_var * t3; 
    -- Tested 5616 faults  
    -- Untestable 0 
    -- Aborted 32 
    -- Fault coverage: 99.43 
    -- Fault efficiency: 99.43  
    -- 35 Vectors 
 
    t6 := u_var - t4; 
    -- Tested 368 faults  
    -- Untestable 0 
    -- Aborted 60 
    -- Fault coverage: 85.98  
    -- Fault efficiency: 85.98  
    -- 9 Vectors 
 
    u_var := t6 - t5; 
    -- Tested 424 faults  
    -- Untestable 0 
    -- Aborted 4 
    -- Fault coverage: 99.06  
    -- Fault efficiency: 99.06 
    -- 15 Vectors 
 
    t7 := u_var * dx_var; 
    -- Tested 1123 faults  
    -- Untestable 0 
    -- Aborted 4525 
    -- Fault coverage: 19.88  
    -- Fault efficiency: 19.88 
    -- 1 Vectors 
 
    y_var := y_var + t7; 
    -- Tested 389 faults  
    -- Untestable 0 
    -- Aborted 39 
    -- Fault coverage: 90.88  
    -- Fault efficiency: 90.88  
    -- 11 Vectors 
 
    x_var := x_var + dx_var; 
    -- Tested 414 faults  
    -- Untestable 0 
    -- Aborted 14 
    -- Fault coverage: 96.72  
    -- Fault efficiency: 96.72  
    -- 15 Vectors 
       
  end loop ; 
   
  x_out <= x_var; 
  y_out <= y_var; 
  u_out <= u_var; 
  END PROCESS ; 
END behavior; 

 

Figure 10.6. DIFFEQ benchmark with testability figures for 
every individual functional unit. 
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10.5. Conclusions 

This part of the thesis described a modeling technique, the Deci-
sion Diagrams, which is used to capture a digital design at sev-
eral levels of abstraction. We illustrate first how DDs can be 
used to capture a gate-level design, with respect of both func-
tional and structural information. The use of DDs to capture de-
signs at the register-transfer and behavioral levels were then de-
scribed. 

With the help of the Decision Diagrams, a hierarchical test 
generation approach could be developed to generate efficiently 
test patterns based on information from several abstraction lev-
els. The described hierarchical test pattern generation technique 
generates test sequences with higher fault coverage than those of 
a pure behavioral test generator. This improvement in fault cov-
erage has been obtained by integrating structural information 
coming from lower-level design. The algorithms maintain effi-
ciency in terms of execution speed by mainly working at the be-
havioral level for test vector justification and propagation. In the 
particular hierarchical test generation implementation, a con-
straint solving algorithm is used to solve the vector justification 
and propagation problems.
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Chapter 11 

Conclusions 

The aim of this thesis is to develop a built-in self-test methodol-
ogy with the corresponding optimization methods and to propose 
a technique for test pattern generation at high abstraction level. 
In this chapter we summarize the thesis and underline the main 
contributions. Possible directions for the future work will be 
given in the next chapter. 

Integrated circuits have been one of the most rapidly develop-
ing research domains during the last twenty years. Such circuits 
have evolved from few-hundred-transistor controllers to the 
modern systems-on-chip with hundreds of millions of transistors. 
The introduction of new EDA tools has allowed designers to work 
on higher abstraction levels, leaving the task of generating lower 
level designs to automatic synthesis tools. Despite this trend, 
test-related activities are still mainly performed at the gate level, 
and the risk of reiterating through the design flow due to test 
problems is high. Due to the increased complexity, the test gen-
eration process is also one of the most expensive and time-
consuming steps of the entire design flow. Therefore, new meth-
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ods for test pattern generation and testability analysis at the 
early stages of the design flow are highly beneficial. The design 
flow can be further improved by different design-for-testability 
techniques. In this way, significant improvement could be 
achieved in terms of design cost (especially by reducing the time 
for designing a testable system) and design quality (by identify-
ing the optimal solution in terms not only of area, time, and 
power constraints, but also of testing). 

The contribution of this thesis is twofold: 

Hybrid BIST technique and its optimization methods. In 
the second part of the thesis an approach for improving classical 
BIST, called hybrid BIST, was described. The method is based on 
a hybrid test set that is composed of a limited number of pseudo-
random test vectors and some additional deterministic test pat-
terns that are specially designed to shorten the pseudorandom 
test cycle and to target random resistant faults.  

The main contribution of the thesis is a set of algorithms for 
hybrid BIST optimization. We have analyzed hybrid BIST in 
both environments: single-core designs and multi-core designs. 
For single core designs, algorithms for total test cost calculation 
and test cost minimization were devised. For multi-core systems, 
algorithms for test time minimization, based on different test ar-
chitectures were proposed. Due to the complexity of optimizing 
several SOC test parameters simultaneously, we have devised a 
solution, where one of the parameters is constrained (test mem-
ory) and we try to minimize the second one (test time). This ap-
proach has high significance, for example, in handheld devices 
where available memory is usually very limited. In addition, we 
have developed several algorithms for hybrid BIST energy reduc-
tion and hybrid BIST test scheduling in an abort-on-first-fail test 
environment.  

High-level hierarchical test pattern generation. In the 
third part of the thesis a novel high-level hierarchical test pat-
tern generation algorithm was proposed. It works at an imple-
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mentation independent behavioral level but also takes into ac-
count information from lower abstraction levels and is therefore 
able to generate test sequences with higher fault coverage than 
those test generation algorithms that are working purely on a 
behavioral level.  
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Chapter 12 

Future Work 

The thesis covers several aspects related to hybrid BIST and 
high-level test generation. In both domains we foresee several di-
rections for future research. 

Hybrid BIST: 

• Complex optimization. In this thesis we have proposed a 
method for total test cost minimization only for single-
core designs. The proposed algorithms for multi-core de-
signs can minimize only one of the test parameters. 
Therefore, a possible future development is an optimiza-
tion algorithm that can minimize several test parame-
ters concurrently. Consequently a method that can lead 
to a highly efficient test solution in the general case 
could be developed. This task is, however, very depend-
ant on the selected test strategy and the defined priori-
ties. For this reason, this work should be carried out in 
close cooperation with chip manufacturers. 
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• Hybrid BIST for sequential circuits. In this thesis we 
have proposed a hybrid BIST approach for combinational 
circuits and sequential circuits with full scan. A more 
complex problem is to propose an architecture and opti-
mization mechanisms for sequential circuits without any 
scan (or with partial scan). The difficulty of developing 
such an architecture and optimization mechanisms is not 
only due to the complex nature of sequential circuits, but 
also related to pseudorandom testability. In case of com-
binatorial circuits, pseudorandom patterns have rela-
tively high fault detection capabilities. This is not valid 
for sequential circuits and alternative methods for reduc-
ing the test data amount have to be developed. One of 
the possibilities is to apply pseudorandom patterns only 
for a combinatorial section of the design while the rest of 
the design is tested with deterministic patterns. 

• Self test methods for other fault models. Most of the exist-
ing work in the area of BIST is targeting the classical 
SSA fault model. At the same time it has been demon-
strated that the SSA fault model can only cover some 
failure modes in CMOS technology. Thus, the impor-
tance of other fault models (like transition and path de-
lay) is increasing rapidly. Therefore, it would be very in-
teresting to analyze the quality of hybrid test sets in 
terms of defect detection capabilities and to develop a 
methodology to support the detection of other failures 
than the stuck-at ones. 

• Power constrained test scheduling. In this thesis we have 
proposed different heuristics for test time minimization 
and test scheduling. Any of these approaches, however, 
did not take into account power consumption of the tests. 
Scheduling too many tests concurrently might unfortu-
nately simply burn the circuit. Therefore, the current 
work should be extended by incorporating also the peak 
power constraint into the test scheduling process.  
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High-level hierarchical test pattern generation: 

• Testability of hardware/software systems. The testing of 
the hardware and software parts of a system is, at this 
moment, considered usually as separate problems and 
solved with very different methods. It would be very in-
novative to develop a test generation technique that is 
both applicable to the hardware and the software do-
mains. As an example, the early generated test se-
quences could be effective in testing hardware compo-
nents against manufacturing defects, but could also be 
useful for debugging the code implementing the same 
component, if the designer decides to choose a software 
solution. Future work should also investigate whether it 
is possible that, to some extent, the concept of testability 
is independent of the adopted implementation in hard-
ware or software. 

• High-level fault models. The problem with existing high-
level fault models is that their efficiency has been so far 
demonstrated only experimentally. Therefore, it would 
be highly beneficial to develop a theoretical framework 
concerning high-level testability. Such a theoretical 
foundation is crucial for generation of efficient test se-
quences, testability analysis and DFT insertion at the 
high level of abstraction. This may lead to the develop-
ment of new fault models that are able to represent the 
physical defects or software bugs and to map them on 
high-level descriptions. 
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