

Linköping Studies in Science and Technology
Dissertation No. 945

Hybrid Built-In Self-Test and
Test Generation

Techniques for Digital Systems

Gert Jervan

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2005

To Liisu

Abstract

The technological development is enabling the production of in-
creasingly complex electronic systems. All such systems must be
verified and tested to guarantee their correct behavior. As the
complexity grows, testing has become one of the most significant
factors that contribute to the total development cost. In recent
years, we have also witnessed the inadequacy of the established
testing methods, most of which are based on low-level represen-
tations of the hardware circuits. Therefore, more work has to be
done at abstraction levels higher than the classical gate and reg-
ister-transfer levels. At the same time, the automatic test
equipment based solutions have failed to deliver the required
test quality. As a result, alternative testing methods have been
studied, which has led to the development of built-in self-test
(BIST) techniques.

In this thesis, we present a novel hybrid BIST technique that
addresses several areas where classical BIST methods have
shortcomings. The technique makes use of both pseudorandom
and deterministic testing methods, and is devised in particular
for testing modern systems-on-chip. One of the main contribu-
tions of this thesis is a set of optimization methods to reduce the
hybrid test cost while not sacrificing test quality. We have devel-

oped several optimization algorithms for different hybrid BIST
architectures and design constraints. In addition, we have devel-
oped hybrid BIST scheduling methods for an abort-on-first-fail
strategy, and proposed a method for energy reduction for hybrid
BIST.

Devising an efficient BIST approach requires different design
modifications, such as insertion of scan paths as well as test pat-
tern generators and signature analyzers. These modifications re-
quire careful testability analysis of the original design. In the
latter part of this thesis, we propose a novel hierarchical test
generation algorithm that can be used not only for manufactur-
ing tests but also for testability analysis. We have also investi-
gated the possibilities of generating test vectors at the early
stages of the design cycle, starting directly from the behavioral
description and with limited knowledge about the final imple-
mentation.

Experiments, based on benchmark examples and industrial
designs, have been carried out to demonstrate the usefulness and
efficiency of the proposed methodologies and techniques.

 Acknowledgments

I came to ESLAB in the spring of 1998 to work on my master
thesis. I was 100% sure that I would stay for 3 months and I had
no plans for longer residence or PhD studies at Linköping. How
wrong I was! As you see – it is 2005 and the thesis is in your
hands.

The biggest “culprit” is undoubtedly Professor Zebo Peng. He
encouraged me to take up the PhD studies at ESLAB and has
been a great support since then. Zebo’s supervision style is some-
thing that I really admire. He has always given me plenty of
freedom while making sure that the work progresses towards the
right direction. His recommendations and guidance have made
me to stand on my own feet and it is hard to underestimate this.

A special thank should go to Professor Petru Eles, who has
brought new ideas into my research and has enriched days with
interesting remarks, either about research, politics or sports.

Many thanks also to my first scientific supervisor Professor
Raimund Ubar from Tallinn University of Technology. We have
had very fruitful cooperation in the past and I am very hopeful
that the same will continue in the future. This cooperation has
produced several excellent results, some of which are presented

also in this thesis. The cooperation with Gunnar Carlsson from
Ericsson has provided invaluable insight into the industrial
practices.

During my years at IDA I have met many wonderful people
and I am really grateful for those moments. A special thank to
Gunilla for taking care of many practical issues. Not to mention
you, ESLAB guys! It has been many wonderful years at
Linköping and it would have been much more boring without
you.

This work has been supported by the Swedish Foundation for
Strategic Research (SSF) under the INTELECT and
STRINGENT programs.

Finally, I would like to thank my family. My mother, father
and sister have always been the greatest supporters. Encour-
agement and care from Liisu have been invaluable. Suur aitähh
teile: Eeve, Toomas, Getli ja Mai-Liis!

Gert Jervan

Linköping/Tallinn 2005

 IX

Table of Contents

Part I Preliminaries...1

1. Introduction..3
1.1. Digital Systems Design and Manufacturing Flow..........5
1.2. Motivation...9
1.3. Problem Formulation ...10
1.4. Contributions..11
1.5. Thesis Overview ...13

2. Testing and Design for Testability15
2.1. Introduction to Hardware Testing.................................16
2.2. Failures and Fault Models...18

2.2.1. Stuck-At Fault Model ...19
2.2.2. Other Structural Fault Models21
2.2.3. High-Level Fault Models......................................21

2.3. Automatic Test Pattern Generation23
2.4. Test Generation at Higher Levels of Abstraction26
2.5. Test Application..27

2.5.1. Off-line Test Application28
2.5.2. Abort-on-First-Fail Testing29

2.6. Design for Testability...30

X

2.6.1. Scan-Path Insertion..31
2.6.2. Built-In Self-Test ..33

2.7. Emerging Problems in System-on-Chip Testing...........44
2.7.1. Core Internal Test Knowledge Transfer48
2.7.2. Core Test Access Challenges48
2.7.3. Chip-level Test Challenges...................................49
2.7.4. Core Test Architecture ...49
2.7.5. Power Dissipation...53

2.8. Conclusions...55

Part II Hybrid Built-In Self-Test..57

3. Introduction and Related Work..59
3.1. Introduction ..60
3.2. Problems with Classical BIST61
3.3. BIST Improvement Techniques64

3.3.1. Test Point Insertion..64
3.3.2. Weighted Random Testing66
3.3.3. Test Pattern Compression....................................66
3.3.4. Mixed-Mode Schemes ...67

3.4. Conclusions...70

4. Hybrid BIST Concept...73
4.1. Introduction ..74
4.2. Basic Principle..75
4.3. Cost Calculation ...77
4.4. Architectures ..79

4.4.1. Core-Level Hybrid BIST Architecture80
4.4.2. System-Level Hybrid BIST Architectures82

4.5. Conclusions...87

5. Hybrid BIST Cost Minimization for Single Core Designs..89
5.1. Introduction ..89
5.2. Test Cost Minimization Algorithms92

 XI

5.2.1. ATPG Based Approach ...92
5.2.2. Fault Table Based Approach................................93
5.2.3. Tabu Search Based Cost Optimization................95

5.3. Experimental Results...98
5.4. Conclusions...106

6. Hybrid BIST Time Minimization for Systems-on-Chip.....109
6.1. Introduction ..109
6.2. Parallel Hybrid BIST Architecture..............................110

6.2.1. Basic Definitions and Problem Formulation112
6.2.2. Test Set Generation Based on Cost Estimates..115
6.2.3. Test Length Minimization Under Memory

Constraints..121
6.2.4. Experimental Results ...123

6.3. Broadcasting Based Hybrid BIST Architecture..........129
6.3.1. Straightforward Approach131
6.3.2. Iterative Approach..139

6.4. Conclusions...147

7. Hybrid BIST Energy Minimization.....................................151
7.1. Introduction ..151
7.2. Hybrid BIST and Possibilities for Energy Reduction .152
7.3. Basic Definitions and Problem Formulation...............154

7.3.1. Parameter Estimation ..155
7.4. Heuristic Algorithms for Hybrid BIST Energy

Minimization ..155
7.4.1. Local Gain Algorithm ...156
7.4.2. Average Gain Algorithm.....................................157

7.5. Experimental Results...159
7.6. Conclusions...162

8. Hybrid BIST in an Abort-on-First-Fail Environment163
8.1. Introduction ..163

XII

8.2. AOFF Test Scheduling ...164
8.2.1. Definitions and Problem Formulation165
8.2.2. Proposed Heuristic for Test Scheduling170
8.2.3. Experimental Results ...173

8.3. Conclusions...176

Part III Hierarchical Test Generation.............................177

9. Introduction and Modeling ..179
9.1. Modeling with Decision Diagrams...............................180

9.1.1. Introduction ..181
9.2. Modeling Digital Systems by Binary Decision

Diagrams...182
9.3. Modeling with a Single Decision Diagram on Higher

Levels ..185
9.3.1. Decision Diagrams at the Behavioral Level188
9.3.2. SICStus Prolog Representation of Decision

Diagrams...188

10. Hierarchical Test Generation with DDs191
10.1. Test Generation Algorithm193
10.2. Scanning Test ..195

10.2.1. Scanning Test in the HTG Environment.........197
10.3. Conformity Test ...199
10.4. Experimental Results..203
10.5. Conclusions ..208

Part IV Conclusions and Future Work209

11. Conclusions..211

12. Future Work ..215

References ...219

 1

PART I

PRELIMINARIES

CHAPTER 1

2

INTRODUCTION

 3

Chapter 1

Introduction

Jack S. Kilby devised the first integrated circuit (IC) almost five
decades ago in 1958. Since that day, the semiconductor industry
has distinguished itself by the rapid pace of improvement in its
products. The most frequently cited trend is related to the inte-
gration level and is usually expressed via Moore’s Law (i.e., the
number of components per chip doubles every 18 months) [124].
The minimum feature sizes used to fabricate integrated circuits
have decreased exponentially. The most significant trend from
the consumers’ point of view is the decreasing cost-per-function,
which has led to significant improvements of productivity and
quality of life through the proliferation of computers, electronic
communication, and consumer electronics.

Until recently, reliability of electronic devices was mainly a
concern in safety critical systems. In these systems, such as
automotive or medical applications, failures may lead to catas-
trophic results and any failure should obviously be avoided.
However, due to several reasons, reliability is becoming increas-
ingly important also in other application domains, such as con-

CHAPTER 1

4

sumer electronics, desktop computing, telecommunication sys-
tems and others. This is mainly because electronic systems are
omnipresent in almost every modern system and any failure
might lead to negative effects, in terms of financial loss or de-
creased comfort of life.

In order to achieve a desired level of reliability it is important
to find errors before encountering their consequences. Due to the
complexity of modern systems and multitude of problems related
to error detection, these activities are usually carried out at vari-
ous stages of the design and production flow and target different
sub-problems. For example, one has to make sure that we have
designed the correct system, as it has to satisfy certain proper-
ties or conditions, which may be either general or specific to the
particular system, directly derived from the initial specification.
In addition, we have to check whether we have designed our sys-
tem correctly, i.e. we have to obtain confidence in the designed
system’s ability to deliver the service in accordance with an
agreed-upon system specification. In general, these tasks are
called verification [108]. Similarly, we also have to certify that
the manufactured hardware system corresponds to its original
specification and no faults have been introduced during the
manufacturing phase. Such activity, commonly called testing [3],
is characterized by execution of the system while supplying it
with inputs, often using dedicated automatic test equipment
(ATE). Testing is also used to guarantee that the system contin-
ues to work according to its specifications, as it can detect many
field failures caused by aging, electromagnetic interference, envi-
ronmental extremes, wear-out and others.

This thesis addresses the problem of hardware testing, in par-
ticular we will focus on issues related to testing of digital hard-
ware.

INTRODUCTION

 5

1.1. Digital Systems Design and
Manufacturing Flow

The development of a very large scale integrated (VLSI) system
can typically be divided into three main phases: specification and
synthesis, implementation, and manufacturing, as depicted in
Figure 1.1. During the specification and synthesis phase, the
functionality of the circuit is described. This can be done at dif-
ferent levels of abstraction [47]: behavioral, register-transfer
(RT) or gate level, using VHDL, Verilog or any other hardware
description language (HDL) [48]. The transformations between
different abstraction levels are usually performed by synthesis
algorithms. Typically, the following synthesis steps can be dis-
tinguished (from the highest abstraction level downwards) [120]:

1. System-level synthesis: The specification of a system at the
highest level of abstraction is usually given by its func-
tionality and a set of implementation constraints. The
main task at this step is to decompose the system into sev-
eral subsystems (communicating processes) and to provide
a behavioral description for each of them, to be used as an
input for behavioral synthesis.

2. Behavioral synthesis starts out with a description specify-
ing the computational solution of the problem, in terms of
operations on inputs in order to produce the desired out-
puts. The basic elements that appear in such descriptions
are similar to those of programming languages, including
control structures and variables with operations applied to
them. Three major subtasks are:

− Resource allocation (selection of appropriate functional
units),

− Scheduling (assignment of operations to time slots),
and

− Resource assignment (mapping of operations to func-
tional units).

CHAPTER 1

6

Verification Test

System-Level
Synthesis

Behavioral
Description

Behavioral
Synthesis

RTL
Description

Gate-Level
Description

RTL
Synthesis

IDEA

Logic
Synthesis

Mask Data

Specification and
Synthesis Implementation Manufacturing

Technology Mapping Manufacturing

Technology Dependent
Network

Layout

 Product

 Testing

Good Product

Figure 1.1. Design and production flow.

The output of the behavioral synthesis process is a descrip-
tion at the register-transfer level (RTL), consisting of a
datapath and a controller. The datapath, which typically
consists of functional units (FUs), storage and intercon-
nected hardware, performs operations on the input data in

INTRODUCTION

 7

order to produce the required output. The controller con-
trols the type and sequence of data manipulations and is
usually represented as a state-transition table, which can
be used in the later synthesis stages for controller synthe-
sis.

3. RT-level synthesis then takes the RTL description pro-
duced by the previous step, which is divided into the
datapath and the controller, as input. For the datapath, an
improvement of resource allocation and assignment can be
done, while for the controller actual synthesis is performed
by generating the appropriate controller architecture from
the input consisting of states and state transitions.

4. Logic synthesis receives as input a technology independent
description of the system, specified by blocks of combina-
tional logic and storage elements. It deals with the optimi-
zation and logic minimization problems.

During the implementation phase, the structural netlist of
components, implementing the functions described in the specifi-
cation, is generated and the design is transformed into layout
masks. The transformation from the gate level to the physical
level is known as technology mapping. The input of this step is a
technology independent multi-level logic structure, a basic cell
library, and a set of design constraints. During this phase appro-
priate library cells of a given target technology are selected for
the network of abstract gates, produced as a result of logic syn-
thesis, concluding thus the synthesis pipeline. The resulting lay-
out gives designers possibility to extract design parameters, such
as the load resistance and capacitance that are used for timing
verification. Parameter extraction is becoming significantly im-
portant in modern deep submicron technologies.

At manufacturing stage the layout masks are used to produce
the final circuitry in terms of a die on a wafer. The wafers are
tested and all defective dies are identified. Good dies are pack-

CHAPTER 1

8

aged, tested and, finally, all good chips are shipped to the cus-
tomers.

The latest advance in microelectronics technology has enabled
the integration of an increasingly large number of transistors
into a single die. The increased complexity together with reduced
feature sizes means that errors are more likely to appear. For
improving reliability, two types of activities are normally used:
verification and testing (Figure 1.1). According to the current
state of the art, for verification, designs are usually simulated on
different abstraction levels, prior to their implementation in sili-
con [44], [140]. In some situations, verification is also performed
after the first prototype of the chip is available. As for complex
designs exhaustive simulation is practically infeasible, simula-
tion based verification gives only a certain level of assurance
about the design correctness [34]. One of the alternatives would
be formal verification that uses mathematical reasoning for prov-
ing correctness of designs [63], [100]. This approach, with few ex-
ceptional methods, such as equivalence checking [76], has not
become the mainstream, mainly due to the lack of appropriate
tools.

Testing verifies that the manufactured integrated circuit cor-
responds to the intended function of the implementation. Its
purpose is not to verify the correctness of the design; on the con-
trary, it verifies the correctness of the manufacturing process. It
is performed on actual dies or chips, using test patterns that are
generated to demonstrate that the final product is fault-free. In
addition, testing can also be used during the latter stages of the
product life cycle, in order to detect errors due to aging, envi-
ronment or other factors.

In order to ease the complexity of the test pattern generation
process specific hardware constructs, usually referred to as de-
sign-for-testability structures, are introduced into the circuits.
Testability issues are currently becoming incorporated into the
standard design-flows, although several testability techniques,

INTRODUCTION

 9

like scan-chain insertion and self-test techniques are well inves-
tigated and ready to be used.

Testing is one of the major expenses in the integrated circuit
(IC) design and manufacturing process, taking up to 35% of all
costs. Test, diagnosis and repair costs of complex electronic sys-
tems reach often 40-50% of the total product realization cost and
very soon the industry might face the challenge that the test of a
transistor is more expensive than manufacturing it [153].

1.2. Motivation

As mentioned before, hardware testing is the process to check
whether an integrated circuit is error-free. One of the reasons for
errors are defects. As the produced circuits may contain different
types of defects that are very complex, a model has to be defined
to represent these defects to ease the test generation and test
quality analysis problems. This is usually done at the logic level.
Test patterns are then generated based on a defined fault model
and applied to the manufactured circuitry. Most of the existing
hardware testing techniques work at the abstraction levels
where information about the final implementation architecture
is already available. It has been proven mathematically that the
generation of test patterns based on structural fault models is an
NP-complete problem [80] and therefore different heuristics are
usually used. Due to the increasing complexity of systems, these
established low-level methods are not sufficient and more work
has to be done at abstraction levels higher than the classical
gate- and RT-level in order to ensure that the final design is
testable and the time-to-market schedule is followed.

More and more frequently, designers also introduce special
structures, called design for testability structures, during the de-
sign phase of a digital system for improving its testability. Sev-
eral such approaches have been standardized and widely ac-
cepted. However, all those approaches entail an overhead in

CHAPTER 1

10

terms of additional silicon area and performance degradation.
Therefore it will be highly beneficial to develop DFT solutions
that not only are efficient in terms of testability but also require
minimal amount of overhead.

In addition, various researches have shown that the switching
activity, and consequently the dynamic power dissipation, during
the test mode, may be several times higher than during the func-
tional mode [32], [174]. Self-tests, regularly executed in portable
devices, can hence consume significant amounts of energy and
consequently reduce the lifetime of batteries [52]. Excessive
switching activity during the test mode can also cause problems
with circuit reliability [54]. The increased current levels can lead
to serious silicon failure mechanisms (such as electromigration
[115]) and may need expensive packages for removal of the ex-
cessive heat. Therefore, it is important to find ways for reducing
power dissipation during testing.

Most DFT techniques require external test equipment for test
application. Built-in self-test (BIST) technique, on the other
hand, implements all test resources inside the chip. This tech-
nique does not suffer from the bandwidth limitations that exist
for external testers and allows applying at-speed tests. The dis-
advantage of this approach is that it cannot guarantee suffi-
ciently high fault coverage and may lead to very long test se-
quences. Therefore, it is important to address the weakness of
the classical BIST techniques in order to utilize its potentials
completely.

1.3. Problem Formulation

The previous section has presented the motivation for our work
and given an indication of the current trends in the area of digi-
tal systems testing. The aim of the current thesis is twofold.
First, we would like to propose a BIST strategy that can be used
for reducing the testing effort for modern SOC designs and, sec-

INTRODUCTION

 11

ondly, we are interested in performing test pattern generation as
early as possible in the design process.

Since BIST structures are becoming more and more common
in modern complex electronic systems, more emphasis should be
put into minimization of costs caused by insertion of those struc-
tures. Our objective is to develop a hybrid BIST architecture that
can guarantee high test quality by combining pseudorandom and
deterministic test patterns, while keeping the requirements for
BIST overhead low. We are particularly interested in methods to
find the optimal combination of those two test sets as this can
lead to significant reductions of the total test cost. This requires
development of optimization methods that can take into account
different design constraints imposed by the process technologies,
such as tester memory, power dissipation, total energy and yield.

To deal with test pattern generation problem in early stages of
the design flow we would like to develop a method that allows
generation of test vectors starting directly from an implementa-
tion independent behavioral description. The developed method
should have an important impact on the design flow, since it al-
lows us to deal with testability issues without waiting for the
structural description of the system to be ready. For this purpose
high-level fault models and testability metrics should also be in-
vestigated in order to understand the links between high-level
and low-level testability.

1.4. Contributions

The main contributions of this thesis are as follows:

• A hybrid built-in self-test architecture and its optimi-
zation. We propose to use, for self-test of a system, a hybrid
test set which consists of a limited number of pseudorandom
and deterministic test vectors. The main idea is to apply a
limited number of pseudorandom test vectors, which is then
followed by the application of a stored deterministic test set,

CHAPTER 1

12

specially designed to shorten the pseudorandom test cycle
and to target the random resistant faults. For supporting
such a test strategy, we have developed several hybrid BIST
architectures that target different test scenarios. As the test
lengths of the two test sequences are one of the very impor-
tant parameters in the final test cost, we have to find the
most efficient combination of those two test sets, while not
sacrificing the test quality. In this thesis, we propose several
different algorithms for calculating possible combinations
between pseudorandom and deterministic test sequences
while taking into account different design constraints, such
as tester memory limitations and power dissipation. In addi-
tion, we have also developed methods where the information
about the quality of the manufacturing process can be incor-
porated into the optimization algorithms.

• A novel hierarchical test pattern generation algo-
rithm at the behavioral level. We propose a test genera-
tion algorithm that works at the implementation-
independent behavioral level and requires only limited
knowledge about the final implementation. The approach is
based on a hierarchical test generation method and uses two
different fault models. One fault model is used for modeling
errors in the system behavior and the other is related to the
failures in the final implementation. This allows us to per-
form testability evaluation of the resulting system at the
early stages of the design flow. In addition, it can identify
possible hard-to-test modules of the system without waiting
for the final implementation to be available. We perform ex-
periments to show that the generated test vectors can be
successfully used for detecting stuck-at faults and that our
algorithm, working at high levels of abstraction, allows sig-
nificant reduction of the test generation effort while keeping
the same test quality.

INTRODUCTION

 13

1.5. Thesis Overview

The rest of the thesis is structured as follows. Chapter 2 intro-
duces the topic of digital systems test and design for testability.
We cover typical failure mechanisms and methods for fault mod-
eling and introduce concepts of automatic test pattern generation
and different test application methods. Thereafter an overview of
the most common design for test methods are given, followed by
a discussion of emerging problems in the area of SOC testing.

Part II of the thesis is dedicated to the hybrid BIST tech-
niques. In Chapter 3 we discuss the problems related to classical
BIST schemes and give an overview of different methods devised
for its improvement. Chapter 4 gives an overview of the proposed
hybrid BIST approach, followed, in Chapter 5, by test cost mini-
mization methods for single core designs. In Chapter 6 different
algorithms for hybrid BIST time minimization for SOC designs
are presented. In the first part of this chapter we concentrate on
parallel hybrid BIST architectures while in the latter part of the
chapter the test pattern broadcasting based architecture is cov-
ered. Chapter 7 introduces possibilities for hybrid BIST energy
minimization and in Chapter 8 algorithm for hybrid BIST sched-
uling in an abort-on-first-fail environment is presented. In every
chapter, the proposed algorithms are described together with ex-
perimental results to demonstrate the feasibility and usefulness
of the algorithms.

The third part of this thesis covers the proposed hierarchical
test generation algorithm. It starts with a detailed discussion of
behavioral level decision diagrams used to capture a design at
several levels of abstraction. Thereafter we describe selected
fault models and present our test pattern generation algorithm.
The chapter concludes with experimental results where we dem-
onstrate the efficiency of our approach for generating manufac-
turing tests.

Part IV concludes this thesis and discusses possible directions
for future work.

TESTING AND DESIGN FOR TESTABILITY

 15

Chapter 2

Testing and
Design for Testability

The aim of this chapter is to provide background for the thesis. It
starts with an introduction to electronic systems testing. We will
go through different fault types of complementary metal-oxide
semiconductor (CMOS) integrated circuits and describe the ways
to model them. Thereafter the chapter continues with the de-
scription of different testing and design-for-testability tech-
niques. We give a short overview of the automatic test pattern
generation (ATPG) algorithms and strategies and describe some
systematic design modification techniques that are intended for
improving testability, such as scan-chain insertion and built-in
self-test (BIST).

The shift toward submicron technologies has enabled IC de-
signers to integrate entire systems into a single chip. This new
paradigm of system-on-chip (SOC) has introduced a magnitude of
new testing problems and therefore at the end of this chapter
emerging problems in SOC testing will also be described. We will

CHAPTER 2

16

in particular focus on power dissipation, test access and test
scheduling problems.

2.1. Introduction to Hardware Testing

The testing activities for hardware systems can be classified ac-
cording to many criteria. Generally speaking, we can distinguish
two different types of testing: parametric testing and functional
testing.

1. Parametric Testing measures electrical properties of pin
electronics. This is done to ensure that components meet
design specification for delays, voltages, power, etc. One of
the parametric testing methodologies that has gained re-
cently much attention is IDDq testing, a parametric tech-
nique for CMOS testing. IDDq testing monitors the cur-
rent, IDD, a circuit draws when it is in a quiescent state. It
is used to detect faults such as bridging faults, transistor
stuck-open faults, gate oxide leaks, which increase the
normally low IDD [84]. IDDq testing can detect some de-
fects that are not detectable with other testing techniques
and the results of IDDq testing can be used for reliability
estimation.

2. Functional Testing aim at finding faults which cause a
change in the functional behavior of the circuit. It is used
in conjunction with the manufacturing process in order to
ensure that only error-free chips are delivered to the cus-
tomers. Some forms of functional testing can be used also
for detecting faults that might occur during the chip life-
time, due to aging, environment and other factors.

Although highly important, this thesis will not cover aspects
related to parametric testing and will focus solely on aspects re-
lated to functional testing of hardware circuits and systems.
Therefore, also the word testing is used throughout this thesis to

TESTING AND DESIGN FOR TESTABILITY

 17

denote functional testing of manufactured hardware systems,
unless specified otherwise.

The purpose of hardware testing is to confirm that the func-
tion of each manufactured circuit corresponds to the function of
the implementation [3]. During testing, the circuitry is exercised
by applying the appropriate stimuli and its resulting responses
are analyzed to determine whether it behaved correctly. If verifi-
cation has assured that the design corresponds to its specifica-
tion, then the incorrect behavior can be caused by defects intro-
duced during the manufacturing process. There are many
different types of defects, such as aging, misalignment, holes,
contamination and others [130]. The diversity of defects leads to
the very complex testing process, as the complexity of physical
defects does not facilitate mathematical treatment of testing.
Therefore, an efficient test solution requires an approach, where
defects can be modeled by capturing the effect of the defect on
the operation of the system at certain level of abstraction. This is
called fault modeling. The most common alternative is to model
faults at the logic level, such as single stuck-at (SSA) fault model.
However, the increasing complexity of electronic systems neces-
sitates the use of fault models that are derived from descriptions
at higher abstraction levels, such as register-transfer (RT) and
behavioral level.

After a fault model has been devised, efficient test stimuli can
be generated by using an ATPG program that is applied to the
circuit under test (CUT). However, this might not always be fea-
sible, mainly because of the complexity of the testing process it-
self but also due to the complexity of the CUTs. Therefore, in-
creasingly often designers introduce special structures, called
design for testability structures, during the design phase of a
digital system. The purpose of these structures is to make test
pattern generation and test application easier and more efficient.
Examples of typical DFT methods include scan-chain insertion
and BIST.

CHAPTER 2

18

In the following, we are going to describe these basic concepts
of digital hardware testing in more detail. We will give the back-
ground needed for better understanding of the thesis and intro-
duce the state-of-the-art in the areas of the thesis contributions.

2.2. Failures and Fault Models

A typical 200-mm wafer in 0.25-µm CMOS technology can poten-
tially contain a million printed geometries—the typically rectan-
gular shapes that are the layout of transistors and the connec-
tions between them—in both x and y directions. This amounts to
about 1012 possible geometries on each printed layer of a wafer. A
few years back a chip typically had about six metal layers and a
total number of lithography layers over 20 [130]. In 2004, we had
already mass-market products produced in 90-nm technology, us-
ing 300-mm wafers with 7 interconnect layers [1]. Errors could
arise in any geometry on any layer, so the possible number of de-
fects is enormous.

Chip manufacturing is performed in multiple steps. Each of
those steps, such as depositing, conducting, and insulating mate-
rial, oxidation, photolithography, and etching [151], may intro-
duce defects. Therefore, in an integrated circuit (IC) we can ob-
serve a wide range of possible defects. These include particles
(small bits of material that might bridge lines, Figure 2.1), incor-
rect spacing (variations, which may short a circuit), incorrect im-
plant value (due to machine error), misalignment (of layers),
holes (exposed etched area), weak oxides (that might cause gate
oxide breakdown), and contamination (unwanted foreign mate-
rial) [130]. On circuit level, these defects appear as failure
modes. Most common of them are shorts, opens and parameter
degradations. However, at this low level of abstraction testing is
still practically infeasible.

TESTING AND DESIGN FOR TESTABILITY

 19

Figure 2.1. An example of a defect (© IBM)

At the logical level, the effects of failure modes appear as in-
correct signal values and in order to device efficient testing
methods the effects of different failures should be captured in dif-
ferent fault models. The fault model does not necessarily have to
capture the exact effect of the defect; rather it has to be useful in
detecting the defects.

2.2.1. Stuck-At Fault Model

The earliest and most well-known fault model is the single
stuck-at (SSA) fault model [38] (also called single stuck line
(SSL) fault model), which assumes that the defect will cause a
line in the circuit to behave as if it is permanently stuck at a
logic value 0 (stuck-at-0) or 1 (stuck-at-1). This means that with
the SSA fault model it is assumed that the elementary compo-
nents are fault-free and only their interconnects are affected [3].
This will reduce the number of faults to 2n, where n is the num-

CHAPTER 2

20

ber of lines on which SSA faults can be defined. Experiments
have shown that this fault model is useful (providing relatively
high defect coverage, while being technology-independent) and
can be used even for identifying the presence of multiple faults
that can mask each other’s impact on the circuit behavior. The
possibility to analyze the behavior of the circuit using Boolean
algebra has contributed to research in this domain very much.
There are several approaches to identify test vectors using
purely Boolean-algebraic techniques, search algorithm based
techniques or techniques based on the combination of the two.
Nevertheless, there are also several problems related to the SSA
fault model, which become more obvious with the growth of the
size of an IC. The main problem lies in the fact that the compu-
tation process to identify tests can be extremely resource and
time intensive and, additionally, the stuck-at fault model is not
good at modeling certain failure modes of CMOS, the dominant
IC manufacturing technology at the present time.

The SSA fault model assumes that the design contains only
one fault. However, with decreased device geometry and in-
creased gate density on the chip, the likelihood is greater that
more than one SSA fault can occur simultaneously and they may
mask each other in such a way that the SSA test vectors cannot
detect them. Therefore, it may be necessary to assume explicitly
multiple stuck-at faults as well.

Despite all its shortcomings, the stuck-at fault model has been
the dominant fault model for several decades, and continues to
be dominant even today, for both its simplicity and its demon-
strated utility. Therefore, also in this thesis we are going to dis-
cuss testing in the context of testing for single stuck-at (SSA)
fault model and the required fault coverage refers to stuck-at
fault coverage.

TESTING AND DESIGN FOR TESTABILITY

 21

2.2.2. Other Structural Fault Models

Although the SSA fault model is widely used both in academia
and in industry, it is evident that the SSA fault model does not
cover all possible defects. During recent years, several other fault
models have gained popularity, such as bridging faults, shorts
and open faults. However, these fault models still cannot address
all the test issues with CMOS circuits. As a solution to this prob-
lem, two technologies have been proposed: Inductive fault analy-
sis (IFA) [145] and inductive contamination analysis (ICA) [101].
These techniques present a closer relationship between physical
defects and fault models. The analysis of a fault is based on ana-
lyzing the given manufacturing process and layout of a particu-
lar circuit.

A completely different aspect of fault model based testing is
testing for delay faults. An IC with delay faults operates cor-
rectly at sufficiently low speed, but fails at rated speed. Delay
faults can be classified into gate delay faults (the delay fault is
assumed to be lumped at some gate output) and path delay faults
(the delay fault is the result of accumulation of small delays as a
signal propagates along one or more paths in a circuit).

2.2.3. High-Level Fault Models

When test issues are addressed at an abstraction level higher
than the traditional gate-level, the first problem that must be
addressed is the identification of a suitable high-level fault
model. Most of the cited approaches rely on high-level fault mod-
els for behavioral HDL descriptions that have been developed by
the current practice of software testing [14], and extend them to
cope with hardware descriptions. Several authors have proposed
alternative fault models. Nevertheless, a reference fault model
playing, at the behavioral level, the same role the well-known
SSA is playing at the gate level is still missing.

By working on system models that hide the detailed informa-
tion gate-level netlists capture, the high-level fault models are

CHAPTER 2

22

not able to precisely foresee the gate-level fault coverage, which
is normally used as the reference measure to quantify a circuit’s
testability. Nevertheless, they can be exploited to rank test se-
quences according to their testability value. The most common
high-level fault models proposed in literature as metrics of the
goodness of test sequences when working at higher levels of ab-
straction (RT level and behavioral level) include the following:

• Statement coverage: this is a well-known metric in the soft-
ware testing field [14] indented to measure the percentage
of statements composing a model that are executed by a set
of given test patterns. Further improvements of this metric
are the Branch coverage metric, which measures the per-
centage of branches of a model that are executed by the
given test patterns, and the Path coverage metric which
measures the percentage of paths that are traversed by the
given test patterns, where a path is a sequence of branches
that should be traversed for going from the start of the
model description to its end.

• Bit coverage: in this model [42], [107] it is assumed that
each bit in every variable, signal or port in the model can be
stuck to zero or one. The bit coverage measures the percent-
age of stuck-at bits that are propagated to the model outputs
by a given test sequence.

• Condition coverage: the model is proposed in [42] and it is
intended to represent faults located in the logic implement-
ing the control unit of a complex system. The authors as-
sume that each condition can be stuck-at true or stuck-at
false. Then, the condition coverage is defined as the per-
centage of stuck-at conditions that are propagated to the
model outputs by a given test sequence. This model is used
in [42] together with bit coverage for estimating the testabil-
ity of complex circuits.

• Mutation testing [31] concentrates on selecting test vectors
that are capable to distinguish a program from a set of

TESTING AND DESIGN FOR TESTABILITY

 23

faulty versions or mutants. A mutant is generated by inject-
ing a single fault into the program. For example, if we have
the expression:

X := (a + b) – c;

To rule out the fault that the first “+” is changed to “–”, b
must not be 0 (because a + 0 = a – 0 and this fault cannot be
detected). Additionally, to rule out the fault that instead of
“+” there is “×”, we have to assure that a + b ≠ a × b.

All these fault models target faults in the circuit’s behavior,
not in its structure. For targeting errors in the final implementa-
tion, it is very important to establish the relationship between
the high-level fault models and the lower level ones. This has
been done so far only experimentally (e.g. [90]) and there are no
systematic methods currently available.

2.3. Automatic Test Pattern Generation

Digital systems are tested by applying appropriate stimuli and
checking the responses. Generation of such stimuli together with
calculation of their expected responses is called test pattern gen-
eration. Test patterns are in practice generated by an automatic
test pattern generation (ATPG) tool and typically applied to the
circuit using automatic test equipment (ATE). Due to several
limitations of ATE, there exist approaches where the main func-
tions of the external tester have been moved onto the chip. Such
DFT practice is generally known as BIST.

With the evolution of test technology, various techniques have
been developed for IC testing.

Exhaustive test: The most straightforward approach, where all
possible input combinations are generated and applied to the
CUT. Exhaustive test set is easy to generate and guarantees
100% fault coverage for combinatorial circuits. However, for an
n-input combinational circuit the number of possible test vectors
is 2n and therefore this approach is practically infeasible for large

CHAPTER 2

24

circuits. As an example, it takes approx. 6 centuries to exhaus-
tively test a 32-bit adder at a speed of 1 GHz (264 ≈ 1,84 × 1019 test
patterns).

Pseudo-exhaustive test: The CUT is divided into smaller parts
and every part is tested exhaustively [119]. This type of parti-
tioning results in much smaller number of test vectors, but
pseudo-exhaustive testing might still be infeasible with systems
that are more complex and the hardware implementation of the
pseudo-exhaustive test generator is difficult.

Pseudorandom test: A low-cost IC test solution, where test pat-
terns are generated randomly. The process however is not truly
random, as patterns are generated by a deterministic algorithm
such that their statistical properties are similar to a randomly se-
lected test set. The advantage of this approach is the ease of pat-
tern generation, as the approach usually does not take into ac-
count the function or the structure of the circuit to be tested. The
clear disadvantage of pseudorandom testing is the size of the gen-
erated test set (it might be several orders of magnitude larger
than the same quality deterministic test set). And, due to the size,
determining the quality of a test is problematic. Another difficulty
is due to the so-called random-pattern-resistant or hard-to-detect
faults that require a different approach than pseudorandom test-
ing [37]. This problem will be discussed in conjunction with BIST
later in this chapter.

There are several methods for pseudorandom test pattern gen-
eration. It is possible to use a software program, but more wide-
spread methods are based on linear feedback shift registers
(LFSR). An LFSR has a simple, regular structure and can be
used for test pattern generation as well as for output response
analysis. LFSRs are frequently used for on-chip test pattern gen-
eration in BIST environments and they will be discussed at a
greater length later in the thesis.

Deterministic test: Deterministic tests are generated based on
a given fault model and the structure of the CUT. This approach

TESTING AND DESIGN FOR TESTABILITY

 25

is sometimes also referred to as fault-oriented or structural test
generation approach. As a first step of the test generation proc-
ess, the structure of the CUT will be analyzed and a list of all
possible faults in the CUT will be generated. Thereafter, the
tests are generated using an appropriate test pattern generation
algorithm. The typical process of a structural test generation
methodology is depicted in Figure 2.2.

Generate a test for the fault (ATPG)

Select an uncovered fault

Define a Target Fault List (TFL)

Determine other faults covered
(Fault Simulation)

Are all TFL faults covered

Done

Yes

No

Figure 2.2. Structural test generation.

Deterministic test pattern generation belongs to a class of
computationally difficult problems, referred to as NP-complete
[80]. Several heuristics have been developed to handle test gen-
eration for relatively large combinational circuits in a reasonable
time. These include the D-algorithm [139], the path-oriented de-
cision-making (PODEM) algorithm [60], and the fan-oriented test
generation (FAN) algorithm [45].

Test generation for sequential circuits is more difficult than
for combinational circuits [73], [121]. There exist methods for
test pattern generation for relatively small sequential circuits

CHAPTER 2

26

[27], [131], but for large sequential circuits test generation re-
mains basically an unsolved problem, despite rapid increase of
computational power. A possible solution can be found by moving
to higher levels of abstraction and using more advanced test gen-
eration methods, like hierarchical test generation. Promising re-
sults in this domain have been reported in [136].

2.4. Test Generation at Higher Levels of
Abstraction

While the design practice is quickly moving toward higher levels
of abstraction, test issues are usually considered only when a de-
tailed description of the design is available, typically at the gate
level for test sequence generation and at RT-level for design for
testability structure insertion.

Recently intensive research efforts have been devoted to devise
solutions tackling test sequence generation in the early design
phases, mainly at the RT level, and several approaches have
been proposed. Most of them are able to generate test patterns of
good quality, sometimes comparable or even better than those
produced by gate-level ATPG tools. However, lacking general ap-
plicability, these approaches are still not widely accepted by the
industry. The different approaches are based on different as-
sumptions and on a wide spectrum of distinct algorithmic tech-
niques. Some are based on extracting from a behavioral descrip-
tion the corresponding control machine [125] or the symbolic
representation based on binary decision diagrams [41], while
others also synthesize a structural description of the data path
[40]. Some approaches rely on a direct examination of the HDL
description [25], or exploit the knowledge of the gate-level im-
plementation [141]. Some others combine static analysis with
simulation [28]. In [97] the applicability of some classical soft-
ware testing methods for hardware test generation has been in-
vestigated with not very encouraging results. The applicability of

TESTING AND DESIGN FOR TESTABILITY

 27

a particular software testing technique, mutation testing [31], for
hardware testing is discussed in [7], with results that are
slightly better than those reported in [97]. However, it has been
demonstrated that high-level test pattern generation methodol-
ogy can successfully be used both for design validation and to
enhance the test effectiveness of classic, gate-level test genera-
tion [144].

An alternative to these solutions are hierarchical test genera-
tion methods. The main idea of the hierarchical test generation
(HTG) technique is to use information from different abstraction
levels while generating tests. One of the main principles is to use
a modular design style, which allows to divide a larger problem
into several smaller problems and to solve them separately. This
approach allows generating test vectors for the lower level mod-
ules based on different techniques suitable for the respective en-
tities.

In hierarchical testing, two different strategies are known:
top-down and bottom-up. In the bottom-up approach [126], tests
generated at the lower level will be assembled at the higher ab-
straction level. The top-down strategy, introduced in [113], uses
information, generated at the higher level, to derive tests for the
lower level.

2.5. Test Application

As previously mentioned, hardware testing involves test pattern
generation, discussed above, and test application. Test applica-
tion can be performed either on-line or off-line. The former de-
notes the situation where testing is performed during normal op-
erational mode and the latter when the circuit is not in normal
operation but in so-called test mode. The primary interest of this
thesis is off-line testing although some of the results can be ap-
plied in an on-line testing environment as well.

CHAPTER 2

28

2.5.1. Off-line Test Application

Off-line tests can be generated either by the system itself or out-
side the chip, using an ATPG, and applied by using Automatic
Test Equipment (ATE). In Figure 2.3 a generic structure of the
ATE is given [130]. It can be divided into 3 main modules: fix-
ture, hardware and software. The module that holds the CUT
and provides all necessary connections is usually referred to as a
fixture. The fixture is connected to the hardware module that is a
computer system with sufficient memory. The testing process is
controlled by the tester software that guarantees correct format
and timing of the test patterns.

Format
module

Timing
module

Memory Power
module

Driver ComparatorFixture

Software
Hardware

Control
CPU

CUT

Figure 2.3. Block diagram of ATE.

The ATE memory size defines the amount of test patterns the
ATE can apply in one test run, without memory reload. Such re-
loads are time consuming, thus making them undesired. There-
fore, the test set should be devised so that all test patterns fit
into the tester memory. However, with increased device density,
the volume of test data is becoming increasingly large, thus set-
ting difficult constraints for test engineers.

TESTING AND DESIGN FOR TESTABILITY

 29

With the emerging of sub-micron and deep sub-micron tech-
nologies, the ATE approach is becoming increasingly problem-
atic. There are several reasons for that:

− Very expensive test equipment: It is predicted that between
2009 and 2012 ICs will dissipate 100 to 120 W (at 0.6 V),
run at frequencies between 3.5 and 10 GHz and have micro-
processors with greater than 1 billion transistors. A tester
for such a chip will bear 1 400 pins and have a price tag
greater than 20 million USD [8], [153].

− Due to the increasing complexity and density of ICs, testing
time is continuously increasing and time to market becomes
unacceptably long.

− The test sizes and consequently memory requirements for
ATEs are continuously increasing.

− The operating frequencies of ATEs should be higher or equal
to the frequencies of CUT. This rules out testing cutting
edge ICs as the frequency of existing ATEs is always one
step behind the latest developments (it takes time until the
latest technology reaches the ATE products). This increases
inaccuracy of the testing process.

All those reasons have led to the investigation of different al-
ternatives that could make testing of complex ICs more feasible.
Several methods have been developed that reduce the signifi-
cance of external testers and reduce the cost of the testing proc-
ess, without compromising on quality. One of the alternatives is
to partition the test function into on-chip and off-chip resources
[74], [110]. By embedding different test activities on-chip makes
it possible to use an ATE with significantly reduced require-
ments. Those methods are in general known as DFT techniques
and are described in greater length later in this chapter.

2.5.2. Abort-on-First-Fail Testing

In a production test environment, where a large number of chips
have to be tested, an abort-on-first-fail (AOFF) approach is usu-

CHAPTER 2

30

ally utilized. It means that the test process is stopped as soon as
a fault is detected. This approach leads to reduced test times and
consequently to reduced production costs, as faulty chips can be
eliminated before completing the entire test flow. In such a test
environment, the likelihood of a block to fail during the test
should be considered for test scheduling in order to improve test
efficiency [78], [85], [104], [111], [122]. In [104], for example, it
was proposed to reduce the average test completion time by ap-
plying tests with short test times first. In [78] and [85], it was
proposed to use defect probabilities of individual cores for effi-
cient scheduling in an AOFF environment. Such probabilities
can be extracted from the statistical analysis of the manufactur-
ing process.

In general, these approaches reduce average test time in large-
scale manufacturing test environments. However, it should be
noted here, that this approach has especially high significance
during the early phases of the production, when the yield is low
and the defects are more likely to appear.

2.6. Design for Testability

Test generation and application can be more efficient when test-
ability is already considered and enhanced during the design
phase. The generic aim of such an enhancement is to improve
controllability and observability with small area and perform-
ance overhead. Controllability and observability together with
predictability are the most important factors that determine the
complexity of deriving a test set for a circuit. Controllability is
the ability to establish a specific signal value at each node in a
circuit by setting values on the circuit’s inputs. Observability, on
the other hand, is the ability to determine the signal value at
any node in a circuit by controlling the circuit’s inputs and ob-
serving its outputs. DFT techniques, used to improve a circuit’s

TESTING AND DESIGN FOR TESTABILITY

 31

controllability and observability, can be divided into two major
categories:

• DFT techniques that are specific to one particular design
(ad hoc techniques) and cannot be generalized to cover dif-
ferent types of designs. Typical examples are test point in-
sertion and design partitioning techniques.

• Systematic DFT techniques are techniques that are reus-
able and well defined (can be even standardized).

In the following sections some systematic DFT techniques,
that are significant in the context of this thesis, will be dis-
cussed.

2.6.1. Scan-Path Insertion

To cope with the problems caused by global feedback and com-
plex sequential circuits, several DFT techniques have been pro-
posed. One of them is scan-path insertion [169]. The general idea
behind scan-path is to break the feedback paths and to improve
the controllability and observability of the sequential elements
by introducing an over-laid shift register called scan path (or
scan chain). Despite the increase in fault coverage and reduced
ATPG complexity, there are some disadvantages with using scan
techniques, like increase in silicon area, additional pins, in-
creased power consumption, increase in test application time and
decreased clock frequency. We can distinguish two different
types of scan-based techniques — partial scan and full scan,
which are illustrated in Figure 2.4.

In case of partial scan (Figure 2.4a), only a subset of the se-
quential elements will be included in the scan path. This leads to
moderate increase in terms of silicon area while requiring more
complex ATPG. The full scan approach (Figure 2.4b), in contrast,
connects all sequential elements into one or multiple scan
chains. The main advantage of this approach is that this reduces
the ATPG problem for sequential circuits to the more computa-
tionally tractable problem of ATPG for combinatorial circuits.

CHAPTER 2

32

The scan-path insertion is illustrated in Figure 2.5 [128]. The
original circuit is given in Figure 2.5a and the modified circuit
with inserted scan-path in Figure 2.5b. Here, in the test mode,
all sequential elements will be disconnected from the circuit and
configured as a shift register. In large circuits the sequential
elements can be divided between multiple scan-paths.

a)

b)

Figure 2.4. a) Partial scan b) Full scan.

Sequential elements

Combinational blocks

Sequential elements

Combinational blocks

TESTING AND DESIGN FOR TESTABILITY

 33

Application Logic

Combinational
Logic

PI

Application Logic

Combinational
Logic

PO PO

Scan
Flip-
Flops

Flip-
Flops

a) b)

Scan_In

PI

Scan_Out

Figure 2.5. a) Original design b) Design with scan-path.

When a design does not contain any scan-paths, test patterns
can be applied to the CUT at every clock cycle and the approach
is called test-per-clock. The introduction of the scan-path requires
test pattern application in so-called scan cycles. In such a test-
per-scan approach, the test patterns are shifted into a scan chain
before the pattern at the primary inputs can be applied. Thereaf-
ter the test responses are captured in the scan flip-flops and
shifted out while a new test is being shifted in. The length of
such a cycle is defined by the length of the scan-path and there-
fore such a test-per-scan approach is much slower than test-per-
clock testing. It also makes at-speed testing impossible. The ob-
vious advantage, on the other hand, is the reduced ATPG com-
plexity. It offers also high fault coverage and enables efficient
fault diagnosis by providing the direct access to many internal
nodes of the CUT.

2.6.2. Built-In Self-Test

The main idea behind a BIST approach is to eliminate or reduce
the need for an external tester by integrating active test infra-
structure onto the chip. The test patterns are not any more gen-
erated externally, as it is done with ATE, but internally, using
special BIST circuitry. BIST techniques can be divided into off-
line and on-line techniques. On-line BIST is performed during

CHAPTER 2

34

normal functional operation of the chip, either when the system
is in idle state or not. Off-line BIST is performed when the sys-
tem is not in its normal operational mode but in special test
mode. A prime interest of this thesis is off-line BIST that will be
discussed further below. Every further reference to the BIST
technique is in the context of off-line BIST.

A typical BIST architecture consists of a test pattern generator
(TPG), a test response analyzer (TRA), and a BIST control unit
(BCU), all implemented on the chip (Figure 2.6). Examples of
TPG are a ROM with stored patterns, a counter, or a LFSR. A
typical TRA is a comparator with stored responses or an LFSR
used as a signature analyzer. A BCU is needed to activate the
test and analyze the responses. This approach eliminates virtu-
ally the need for an external tester. Furthermore, the BIST ap-
proach is also one of the most appropriate techniques for testing
complex SOCs, as every core in the system can be tested inde-
pendently from the rest of the system. Equipping the cores with
BIST features is especially preferable if the modules are not eas-
ily accessible externally, and it helps to protect intellectual prop-
erty (IP) as less information about the core has to be disclosed.

BIST
Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

Chip

Figure 2.6. A typical BIST architecture.

In the following, the basic principles of BIST will be discussed.
We are going to describe test pattern generation with LFSRs,

TESTING AND DESIGN FOR TESTABILITY

 35

problems related to such an approach and describe some more
known BIST architectures.

Test Pattern Generation with LFSRs

Typical BIST schemes rely on either exhaustive, pseudoexhaus-
tive, or pseudorandom testing and the most relevant approaches
use LFSRs for test pattern generation [5], [12], [172]. This is
mainly due to the simple and fairly regular structure of the
LFSR. Although the LFSR generated tests are much longer than
deterministic tests, they are much easier to generate and have
good pseudorandom properties.

In Figure 2.7 a generic structure of the n-stage standard LFSR
(also known as type 1 LFSR or external-XOR LFSR) and in
Figure 2.8 a generic structure of the n-stage modular LFSR (also
known as type 2 LFSR or internal-XOR LFSR) is given. An LFSR
is a shift register, composed from memory elements (latches or
flip-flops) and exclusive OR (XOR) gates, with feedback from dif-
ferent stages. It is fully autonomous, i.e. it does not have any in-
put beside the clock. Ci in Figure 2.7 and Figure 2.8 denotes a
binary constant and if Ci = 1 then there is a feedback from/to the
ith D flip-flop; otherwise, the output of this flip-flop is not tapped
and the corresponding XOR gate can be removed. The outputs of
the flip-flops (Y1, Y2, …, YN) form the test pattern. The number of
unique test patterns is equal to the number of states of the cir-
cuit, which is determined, by the number and locations of the in-
dividual feedback tabs. The configuration of the feedback tabs
can be expressed with a polynomial, called characteristic or feed-
back polynomial. For an LFSR in Figure 2.8 the characteristic
polynomial P(x) is

P(x)=1 + c1x + c2x
2 + … + cnx

n .

An LFSR goes through a cyclic or periodic sequence of states
and produces periodic output. The maximum length of this pe-
riod is 2n-1, where n is the number of stages, and the characteris-
tic polynomials that cause an LFSR to generate maximum-length

CHAPTER 2

36

sequences are called primitive polynomials [62]. A necessary
condition for a polynomial to be primitive is that the polynomial
is irreducible, i.e. it cannot be factored.

C1

. . . D Q D Q D Q

. . .

C2 CN

Y
1 2 N

Y Y

Figure 2.7. Generic standard LFSR.

D Q D Q

C1

Y
1

Y
2

C2

D Q

CN

N
Y

. . .

. . .

Figure 2.8. Generic modular LFSR.

The test vectors generated by an LFSR appear to be randomly
ordered. They satisfy most of the properties of random numbers
even though we can predict them deterministically from the
LFSR’s present state and its characteristic polynomial. Thus,
these vectors are called pseudorandom vectors and such LFSRs
can be called pseudorandom pattern generator (PRPG).

TESTING AND DESIGN FOR TESTABILITY

 37

Test Response Analysis with LFSRs.

As with any other testing method, also with BIST, the response
of the circuit has to be evaluated. This requires knowledge about
the behavior of the fault-free CUT. For a given test sequence this
can be obtained by simulating the known-good CUT. It is how-
ever infeasible to compare all response values on chip, as the
number of test patterns in a test sequence can be impractically
long. Therefore a better solution is to compact the responses of a
CUT into a relatively short binary sequence, called a signature.
Comparison of faulty and fault-free signatures can reveal the
presence of faults. As such a compaction is not lossless, the sig-
natures of faulty and fault-free CUT can be the same, although
the response sequences of the two are different. This is called
aliasing. The compression can be performed in two dimensions:
time and space. Time compression compresses long sequences to
a shorter signature and space compression reduces a large num-
ber of outputs to a smaller number of signals to be observed.

There are several compaction testing techniques, like parity
testing, one counting, transition counting, syndrome calculation
and signature analysis. In the following one of the most common
techniques — signature analysis — is briefly described.

Signature analysis is a compression technique based on the
concept of cyclic redundancy checking and implemented in hard-
ware using LFSRs [46]. The responses are fed into the LFSR and
at the end of the test application, the content of the LFSR is used
as a signature. The simplest form of signature analysis is based
on serial-input signature register. This kind of “serial” signature
analysis, based on SLFSR, is illustrated in Figure 2.9. Here the
LFSR is modified to accept an external input in order to act as a
polynomial divider.

CHAPTER 2

38

C1

. . . D Q D Q D Q

. . .

C2 CN

Q

E(x)

Test
Response

Figure 2.9. SLFSR based signature analysis

An extension of the serial-input signature register is the mul-
tiple-input signature register (MISR), where output signals are
connected to the LFSR in parallel. There are several ways to
connect the inputs (CUT outputs) to both types (standard and
modular) of LFSRs to form an MISR. One of the possible alterna-
tives is depicted in Figure 2.10. Here a number of XOR gates are
added to the flip-flops. The CUT outputs are then connected to
these gates.

. . . D Q D Q D Q
Q

C2C1 CN

. . .

In[0] In[1] In[2]

Figure 2.10. Multiple-input signature register.

Classification of BIST Architectures

BIST Architectures can be divided, based on test application
methods, into two main categories: parallel BIST (a.k.a. in-situ

TESTING AND DESIGN FOR TESTABILITY

 39

BIST) and serial BIST (a.k.a. scan BIST). A parallel BIST
scheme uses special registers, which work in four modes. In the
system mode they operate just as D-type flip-flops. In the pattern
generation mode they perform autonomous state transitions, and
the states are the test patterns. In the response evaluation mode
the responses of the CUT are compressed, and in the shift mode
the registers work as a scan path. In this approach, one test pat-
tern is applied at every clock cycle. Hence, such architectures are
called test-per-clock BIST architectures. Examples of such archi-
tectures are built-in logic block observer (BILBO) and circular
self-test path (CSTP). In contrast, serial BIST architectures as-
sume that test patterns are applied via the scan chain. Such test-
per-scan approach requires SCL+1 clock cycles to shift in and to
apply a test pattern and the same amount of clock cycles to shift
out the test response, where SCL is the length of the longest
scan chain, making it thus much slower than the test-per-clock
approach. Although slower, this approach has several advan-
tages, similar to the general scan-path based testing:

− It takes advantage of the traditional scan-path design, mak-
ing it thus compatible with any commercial tool flow that
supports scan chains, and requires a very small amount of
additional design modifications.

− It can be implemented at the chip level even when the chip
design uses modules that do not have any BIST circuitry,
provided that they have been made testable using scan.

− Due to the scan path it requires simpler ATPG and has im-
proved observability.

− Its overall hardware overhead is smaller than in test-per-
clock architectures, as it requires simpler test pattern gen-
erators for pseudorandom testing.

− In most cases, the BIST control of a test-per-scan scheme is
simpler than the BIST control of a test-per-clock scheme.

The main advantage of parallel BIST is that it supports test-
ing at the normal clock rate of the circuit, i.e., at speed testing.

CHAPTER 2

40

This enables detection of faults that appear only at normal op-
erational speed, such as transient faults in the power/ground
lines caused by the switching of circuit lines. With a test-per-
clock approach also a larger number of test patterns can be ap-
plied in a given test time, consequently a higher number of ran-
dom pattern resistant faults could be detected. Therefore, test-
per-scan architectures might require more complex TPGs, thus
eliminating any advantage of the area overhead of serial BIST.

In the following, several BIST architectures will be described.
We will describe architectures based on both paradigms, test-
per-clock or parallel BIST and test-per-scan or serial BIST. Ad-
ditional BIST architectures can be found in [3] and [12].

Parallel BIST Architectures

One of the first parallel BIST architectures was built-in evalua-
tion and self-test (BEST). It is a simple architecture, where CUT
inputs are driven by the PRPG and test responses are captured
by a MISR, similar to Figure 2.6. This approach requires exten-
sive fault simulation to determine an acceptable balance between
fault coverage and test length, and might be ineffective for some
circuits.

More widespread are built-in logic block observer (BILBO) and
circular self-test path (CSTP) architectures. A BILBO register is
a register that can operate both as a test pattern generator and
as a signature analyzer [106] (Figure 2.11). In the test mode, the
BILBO is configured as an LFSR or a MISR (Figure 2.12). A
simple form of BILBO BIST architecture consists of partitioning
a circuit into a set of registers and blocks of combinational logic,
where the normal registers are replaced by BILBO registers.

TESTING AND DESIGN FOR TESTABILITY

 41

Figure 2.11. n-bit BILBO register.

The synthesis of a test-per-clock scheme is implemented in the
easiest way by a circular BIST or a circular self-test path (CSTP)
[105] (Figure 2.13). The scheme has two modes, the system mode
and the test mode, where the flip-flops form the LFSR. Two arbi-
trary flip-flops may be the scan-in and scan-out inputs. In the
test mode, the system performs signature analysis and pattern
generation concurrently, and only a single control line is re-
quired for the basic cells of this scheme. The disadvantage of this
scheme is low fault coverage for some circuits.

 FF

 FF

 FF

+

 FF

+

 FF

+

 FF

+

 FF

Combinational
Network

+

+

TPG MISR

Figure 2.12. BIST Design with BILBO registers.

CHAPTER 2

42

 FF

+

 FF

+

 FF

+

+ F
F

F
F

+

+

 FF

+

 FF

+

 FF

+

 FF

+F
F+F

F

Combinational
Network

Figure 2.13. Circular self-test path.

Serial BIST Architectures

We describe two main types of scan-based BIST architectures. In
the first type, all primary inputs are connected to the taps of a
pseudorandom generator and all primary outputs are connected
to a MISR. All or a subset of state flip-flops are configured as
scan chains, while the primary input flip-flop (scan-in signal) is
connected to another LFSR and the primary output flip-flop
(scan-out signal) is connected to a SLFSR. Examples of this ar-
chitecture are random test socket (RTS) [11] and partial scan
BIST (PS-BIST) [116].

More efficient DFT approaches are modifications of these
methodologies, such as Self-Test Using MISR and Parallel SRSG
(STUMPS) [11] and LSSD on-chip self-test (LOCST) [112]. The

TESTING AND DESIGN FOR TESTABILITY

 43

acronym SRSG (Shift Register Sequence Generator) may be con-
sidered as equivalent to PRPG, mentioned above.

The STUMPS architecture is shown in Figure 2.14. The basic
assumption is that the memory elements of the CUT are in-
cluded into the scan path. Often, a scan path is split into several
scan chains. The multiplicity of scan chains speeds up test appli-
cation, because the length of one test cycle is determined by the
length of the scan path. At the same time, it equals only to the
length of the longest scan chain for a CUT with multiple scan
chains. However, there is always a trade-off: the more scan
chains a core has the more scan inputs are required for it and
thus longer LFSRs are needed.

Figure 2.14. Self-Test Using MISR and Parallel SRSG
(© Mentor Graphics).

CHAPTER 2

44

The general idea of the STUMPS approach is the following.
PRPG, MISR and scan registers are clocked simultaneously. All
scan registers are loaded from PRPG. This takes SCL clock cy-
cles, where SCL is the length of the longest scan chain. After test
application, the data captured by scan registers is scanned out,
and the results are analyzed by a MISR.

The sequences obtained from adjacent bits of a parallel LFSR
are not linearly independent; the neighboring scan chains con-
tain test patterns that are highly correlated [24]. This can affect
fault coverage negatively since the patterns seen by the CUT do
not really form a random sequence.

2.7. Emerging Problems in System-on-Chip
Testing

The latest advances in microelectronics manufacturing technol-
ogy have enabled integration of an increasingly large number of
transistors. This shift toward very deep submicron technologies
facilitates implementation of an entire system on a single chip.
Such systems are usually composed from a large number of dif-
ferent functional blocks, usually referred as cores. This kind of
design style allows designers to reuse previous designs, which
will lead therefore to shorter time-to-market, and reduced cost.
Such a system-on-chip (SOC) approach is very attractive from the
designers’ perspective. Testing of such systems, on the other
hand, is problematic and time consuming, mainly due to the re-
sulting IC’s complexity and the high integration density [127].

A typical SOC consists of many complex blocks (embedded
cores, RAM, ROM, user-defined logic (UDL), analog blocks etc.)
as depicted in Figure 2.15. Until recently such designs were im-
plemented using several ICs mounted together into a printed cir-
cuit board (PCB) (also called as systems on board (SOB)). Using
the SOCs instead of the PCBs gives a possibility to produce chips

TESTING AND DESIGN FOR TESTABILITY

 45

with better performance, lower power consumption and smaller
geometrical dimensions [175].

SoC

Peripherial
Component
Interconnect

MPEG
core

SRAM SRAM

ROM

Embedded
DRAM

UDL

Legacy
Core

CPU
core

UDL

Figure 2.15. System-on-chip.

To cope with the difficulties to build such complex chips, a new
design paradigm, called design reuse, has emerged. The main
idea here is to use predefined and preverified reusable blocks to
build up the chip. These reusable building blocks, so-called em-
bedded cores, have several advantages. For example, in addition
to reuse, embedded cores enable also import of an external de-
sign expertise, like high-end CPUs and DRAMs [118].

Embedded cores can be divided into three categories: soft, firm
and hard [65]:

• Soft cores

− May be available as synthesizable, technology-independ-
ent, HDL descriptions (RTL or higher).

− Do not provide any protection for intellectual property.

CHAPTER 2

46

− Are flexible and process independent, thus allow modifi-
cations, such as optimization to the desired levels of per-
formance or area, and DFT insertion.

• Firm cores

− Are usually available as netlist of library cells (usually
optimized for a target technology).

− There is still a possibility to make some design modifica-
tions.

• Hard cores

− Are optimized for area and performance. Mapped into a
specific technology. Only functional specification together
with a layout is available (The core will be treated as a
“black box”).

− Provide maximum protection of intellectual property.

− No possibility to make any design modifications.

Design reuse based techniques are advancing very rapidly, but
there are still several unsolved problems. The most critical ones
include manufacturing test and design debug [176].

There are two separate issues in the manufacturing testing:
go/no-go testing at the end of the manufacturing line and defect
analysis during the diagnosis. As the complexity, performance
and density of the ICs increase, the test community has to find
effective methods to cope with the growing problems and chal-
lenges.

The core-based design process has several similarities with the
traditional SOB design process, but the manufacturing test proc-
ess is conceptually different (Figure 2.16).

In case of the SOB, all building blocks (ICs) are manufactured
and tested before assembly, therefore assumed fault-free. During
the system integration, the elements will be mounted and the
board will be tested. As components are assumed to be fault-free
then only the interconnects between the ICs should be tested. To

TESTING AND DESIGN FOR TESTABILITY

 47

solve this problem the IEEE 1149.1 (also referred as JTAG or
boundary-scan) standard has been developed [81].

IC Design

IC Manufacturing

IC Test

ASIC Design

ASIC Manufacturing

ASIC Test

Board Design

Board Manufacturing

Board Test

UDL DesignCore Design

SoC Integration

SoC Manufacturing

SoC Test

SoC Process System-on-Board Process

Figure 2.16. SOC versus SOB design development.

Cores are distributed from the core providers to the core users
in form of a module description. There is no manufacturing test-
ing done by the core provider, because he/she has only the func-
tional description of the core and nothing is manufactured yet.
The manufacturing test can be done only after the core is em-
bedded into a system and finally manufactured. Therefore the
system integrator has to deal not only with interconnect testing
but also with core testing. In most of the cases the system inte-
grator sees a core as a black box (this is especially true in case of
the hard or encrypted cores) and has very little knowledge about
the structural content of the core or does not have it at all.
Therefore, the core tests should be developed by the core provider
and provided together with the core. This task is even more com-
plicated, because the core provider usually does not know any-
thing about the final environment where the core will be imple-
mented. This situation means that there is more than one

CHAPTER 2

48

person, who deals with test development. The test development
process is distributed between different groups or even compa-
nies, and there are additional challenges due to the test knowl-
edge transfer.

2.7.1. Core Internal Test Knowledge Transfer

In order to perform core test two key elements are needed: the
set of test patterns and the internal design-for-testability (DFT)
structures. This information should be transferred from the core
provider to the core user together with validation of provided test
patterns. Additionally, information about the test modes and
corresponding test protocols, information about diagnosis and
silicon debug should be included. All this information should be
adequately described, ported and ready for plug and play.
Thereby in addition to the design reuse, we should talk also
about a test reuse. However, to support properly such activity
some commonly used format (i.e. standard) for core’s test knowl-
edge transfer should be used. Such standard is currently under
development by IEEE and referred to as P1450.6 Core Test Lan-
guage (CTL) [26].

2.7.2. Core Test Access Challenges

Typically testing is done by applying the test vectors to the input
pins of the IC and observing the output. This is used for PCBs, as
physical access to the IC pins is easily achievable. A core is usu-
ally embedded deep into the system IC and direct physical access
to its periphery is not available. Therefore, the system integrator
should provide an infrastructure between core terminals and the
IC pins to fulfill the core’s test requirements and device the
mechanisms for testing the user-defined logic (UDL), surround-
ing the core.

According to [118] the test access to the cores has two aspects.
First, the core user has to ensure the existence of the access path
in the on-chip hardware and secondly, the core tests, given by

TESTING AND DESIGN FOR TESTABILITY

 49

the core provider, have to be transported from the core terminals
to the IC pins.

2.7.3. Chip-level Test Challenges

One of the major test challenges for the core users is the integra-
tion and coordination of the on-chip tests. This composite test
should cover cores, UDL and interconnects, and requires ade-
quate test scheduling. Test scheduling is necessary to meet the
requirements for the test application time, test power dissipa-
tion, area overhead, resource conflict avoidance, and so on [174].
Test scheduling will be discussed in greater length later in the
thesis.

At the same time we should not forget, that SOCs are manu-
factured using very deep submicron technologies and therefore
share all testing challenges of such chips, such as defect/fault
coverage, overall test cost and time-to-market.

2.7.4. Core Test Architecture

Large SOCs are usually tested modularly, i.e. the various mod-
ules are tested as stand-alone units [61]. The main reasons be-
hind that are the opportunities for test reuse and possibility to
divide test problems into smaller sub-problems (“divide-and-
conquer”). To Facilitate modular test of SOCs, the following com-
ponents are required (Figure 2.17):

• Test pattern source and sink are used for test stimuli gen-
eration and response analysis.

• Test access mechanism is for test data transportation.

• Core test wrapper forms the interface between the embedded
core and the environment.

All three elements can be implemented in various ways. Some
basic principles will be given below.

CHAPTER 2

50

SRAM SRAM

CPU

Wrapper

Core
Under
Test

ROM

MPEG UDL
DRAM

Peripherial
Component
Interconnect

Test Access
Mechanism

Source

Sink

Test Access
Mechanism

Figure 2.17. SOC test architecture.

Test Pattern Source and Sink

The test pattern source is for test pattern generation, whereas
the test pattern sink compares the received response with the
expected response. There are several ways to implement the test
pattern source and sink. One possibility is to implement both on-
chip by built-in self-test mechanisms, as depicted in Figure 2.17.
Other possibilities include off-chip source/sink or combination of
the previous ones. In case of the off-chip source/sink, external
ATE is needed. On the other hand, on-chip test structures occupy
additional silicon area, so there is no clear answer what kind of
implementation to choose. The final implementation decision is
influenced by three different factors: type of circuitry in the core,
predefined test set provided by the core provider and require-
ments for test time, quality and cost.

TESTING AND DESIGN FOR TESTABILITY

 51

Test Access Mechanism

The test access mechanism (TAM) is used to transfer the test
data from the test pattern source to the core under test and from
the core under test to the test pattern sink. It is always imple-
mented on-chip. The key parameters of the TAM are the width
and the length. A wider TAM provides faster data transfer rate
but requires more wiring area and is therefore more expensive.
The actual width of the TAM depends on the type of the
source/sink and requirements to the time and cost.

Several alternatives for TAM implementation have been pro-
posed. For example, the TAM can be based on existing chip in-
frastructure or be formed by dedicated test access hardware. A
test access mechanism can either go through other cores or pass
around them. It can be shared across multiple cores or every core
can have independent access mechanism. A TAM might contain
some intelligent test control functions or may just transport the
signals. Well-known TAM techniques are based on Macro Test,
transparency of cores, reusing the system bus, multiplexed ac-
cess, a dedicated test bus, Boundary Scan, test scheduler,
TestRail and Advanced Microcontroller Bus Architecture
(AMBA). Detailed description of these methods and appropriate
references can be found, among others, in [96].

Core Test Wrapper

The core test wrapper is the communication mechanism between
the embedded core and the rest of the chip. It connects the core
terminals to the test access mechanism and it should provide
core test data access and core test isolation. The wrapper should
contain three mandatory modes of operation:

• Normal operation. In this mode, the core is connected to its
environment and the wrapper is transparent.

• Core test mode (core internal test), in which the core is con-
nected to the TAM and therefore the test stimuli can be ap-

CHAPTER 2

52

plied to the core’s inputs and the responses can be observed
at the core’s outputs.

• Interconnect test mode (core external test), in which the TAM
is connected to the UDL and interconnect wires. In this
mode test stimuli can be applied to the core’s outputs and
responses can be observed at the next core’s inputs

A core test wrapper should also provide core isolation (a.k.a.
bypass mode), when needed (for example in case of testing
neighboring cores or UDL).

A considerable amount of research has been done in the core
test wrapper area. Examples of wrappers are TestShell [117],
and a very similar wrapper called TestCollar [165]. The IEEE
P1500 Standard for Embedded Core Test standardizes a core test
wrapper [30], [132], that is very similar to the TestShell and
TestCollar (Figure 2.18).

Figure 2.18. An example of an IEEE P1500 Core Test Wrapper.

TESTING AND DESIGN FOR TESTABILITY

 53

2.7.5. Power Dissipation

The integration of an increasingly large number of transistors
into a single die has imposed a major production challenge, due
to the increased density of such chips, reduced feature sizes, and
consequently, increased power dissipation. At the same time the
number of portable, battery operated devices (such as laptops,
PDA-s, mobile phones) is rapidly increasing. These devices re-
quire advanced methods for reducing power consumption in or-
der to prolong the life of the batteries and thus increase the
length of the operating periods of the system. There are several
well-investigated techniques for handling power dissipation dur-
ing the normal operation. At the same time, various researches
have shown that the switching activity, and consequently the
power dissipation, during the testing phase may be several times
higher than in normal operation mode [32], [174]. This increased
switching activity causes increased heat dissipation and may
therefore reduce reliability of the circuits, affect overall yield,
and increase production cost. The self-tests, regularly executed
in portable devices, can hence consume significant amounts of
energy and consequently reduce the lifetime of the batteries [52].
Excessive switching activity during the test mode can also cause
problems with circuit reliability [54]. And the increased current
levels can lead to serious silicon failure mechanisms (such as
electromigration [115]) and may need expensive packages for
removal of the excessive heat. Therefore, it is important to find
ways for handling circuit power dissipation during the testing.

There are different components contributing to the power con-
sumption in case of standard CMOS technology: dynamic power
dissipation caused by the switching activity, and static power
dissipation caused mainly by leakage. The leaks contribute usu-
ally only marginally to the total power consumption and can
therefore be neglected [133]. The main contributing factor is dy-
namic power dissipation caused by switching of the gate outputs.
This activity accounts for more than 90% of the total power dis-

CHAPTER 2

54

sipation for current technology, even though the importance of
static power dissipation will increase with the scaling down of
feature sizes [22]. For every gate the dynamic power, Pd, required
to charge and discharge the circuit nodes can be calculated as fol-
lows [33], [129]:

GcycDDloadd NTVCP ×××=)/(5.0 2 (2.1)

where Cload is the load capacitance, VDD is the supply voltage, Tcyc
is the global clock period, and NG is the switching activity, i.e.,
the number of gate output transitions per clock cycle.

While assuming that the VDD as well as Tcyc remain constant
during the test and that the load capacitance for each gate is
equal to the number of fan-outs of this gate, we can define
switching activity as a quantitative measure for power dissipa-
tion. Therefore, the most straightforward way to reduce the dy-
namic power dissipation of the circuit during test is to minimize
the circuit’s switching activity.

Several approaches have been proposed to handle the power
issues during test application. They can be divided into three
categories: energy, average power and peak power reduction
techniques. Energy reduction techniques are targeting reduction
of the total switching activity generated in the circuit during the
test application and have thus impact on the battery lifetime
[52], [53], [55], [56]. Average power dissipation is the amount of
dissipated energy divided over the test time. The reduction of av-
erage power dissipation can improve the circuit’s reliability by
reducing temperature and current density. Some of the methods
to reduce average power dissipation have been proposed in [21],
[166]. The peak power corresponds to the maximum sustained
power in a circuit. The peak power determines the thermal and
electrical limits of components and the system packaging re-
quirements. If the peak power exceeds certain limits, the correct
functioning of the entire circuit is no longer guaranteed. The

TESTING AND DESIGN FOR TESTABILITY

 55

methods for peak power reduction include those described in
[13], [49], [138], [143], [168].

In a System-on-Chip testing environment, several test power
related problems are handled at the core level, with methods de-
scribed above. However, the high degree of parallelism in SOCs
facilitates parallel testing to reduce the test application time.
Consequently, this might also lead to excessive power dissipa-
tion. In such cases, the system-wide peak power values can be
limited with intelligent test scheduling. It has been shown in [20]
that test scheduling is equal to the open-shop scheduling prob-
lem, which is known to be NP-complete. Therefore, numerous
heuristics have been developed, including those reported in [29],
[77] and [83]. In [109] it was demonstrated that test scheduling
can be successfully included into the generic SOC testing frame-
work, where problems like test scheduling, test access mecha-
nism design, test sets selection, and test resource placement, are
considered simultaneously.

2.8. Conclusions

In this chapter the basic concepts of digital hardware testing
were presented. We gave an overview of several emerging prob-
lems in the area and described problems with existing test meth-
ods.

The following two parts of the thesis will present the main
contributions of our work. In the next section a novel hybrid
BIST technique together with its cost optimization methods will
be described. This will be followed by description of hybrid BIST
time minimization techniques for different SOC test architec-
tures. This thesis addresses also problems related to the power
dissipation. We will propose a method for total switching energy
minimization in our proposed hybrid BIST environment and
heuristic for intelligent scheduling of hybrid test sequences in an
abort-on-first-fail-environment.

CHAPTER 2

56

Third part of the thesis will concentrate on test generation
methods in early stages of the design flow. We will propose a
novel hierarchical test generation algorithm for generating test
sequences when only limited information about the final imple-
mentation is available. We take into account information from
different levels of abstraction and are therefore able to generate
test sequences with higher fault coverage than those of a pure
behavioral test generator.

 57

PART II

HYBRID

BUILT-IN SELF-TEST

58

INTRODUCTION AND RELATED WORK

 59

Chapter 3

Introduction and
Related Work

The second part of this thesis focuses on a novel self-test ap-
proach called hybrid BIST. As it was mentioned in the introduc-
tory part, the classical BIST approach has several shortcomings
in terms of test time and test quality, to mention a few. There-
fore, we have worked with a method that tries to address these
problems. Our hybrid BIST approach guarantees the highest
possible test quality, while providing a possibility for trade-off
between different parameters, such as test length, test memory
requirements and others. It should be noted that the main con-
tributions of this part are not related to the test generation nor
to the test architectures, instead the main contribution is a set of
optimization algorithms that can be used in conjunction with dif-
ferent hybrid BIST architectures.

In this chapter we are going to discuss some shortcomings of
the classical, pseudorandom testing based BIST and we will de-
scribe different methods that have been devised in order to

CHAPTER 3

60

tackle these problems. The following chapter introduces the basic
concept of the hybrid BIST technique, which is followed by a de-
scription of different hybrid BIST architectures. Chapter 5 pre-
sents different algorithms for hybrid BIST cost minimization for
single core designs. In Chapter 6 methods for hybrid BIST time
minimization, based on different architectural assumptions, will
be described. Chapter 7 focuses on hybrid BIST energy minimi-
zation problems, and in Chapter 8 hybrid BIST time minimiza-
tion in an abort-on-first-fail context will be presented.

3.1. Introduction

Typically, a SOC consists of microprocessor cores, digital logic
blocks, analog devices, and memory structures. These different
types of components were traditionally tested as separate chips
by dedicated automatic test equipments of different types. Now
they must be tested all together as a single chip either by a super
tester, which is capable of handling the different types of cores
and is very expensive, or by multiple testers, which is very time-
consuming due to the additional time needed for moving from
one tester to another.

Complexity of SOC testing can be reduced by introducing ap-
propriate DFT mechanisms. At a core level, this task is usually
accomplished by the core developer. Since the core developer has
no idea about the overall SOC design and test strategy to be
used, the inserted DFT mechanism may not be compatible with
the overall design and test philosophy, leading to low test quality
or high overhead. This problem needs to be solved in order to
guarantee the high quality level of SOC products.

SOC testing requires also test access mechanisms to connect
the core peripheries to the test sources and sinks, which are the
SOC pins when testing by an external tester is assumed. The de-
sign of the test access mechanism must be considered together
with the test-scheduling problem, in order to reduce the silicon

INTRODUCTION AND RELATED WORK

 61

area used for test access and to minimize the total test applica-
tion time, which includes the time to test the individual cores
and user-defined logic as well as the time to test their intercon-
nections. The issue of power dissipation in test mode should also
be considered in order to prevent the chip being damaged by
over-heating during test.

Many of the testing problems discussed above can be overcome
by using a built-in self-test (BIST) strategy. For example, the
test access cost can be substantially reduced by putting the test
sources and sinks next to the cores to be tested. BIST can also be
used to deal with the discrepancy between the speed of the SOC,
which is increasing rapidly, and that of the tester, which will
soon be too slow to match typical SOC clock frequencies. The in-
troduction of BIST mechanisms in a SOC may also improve the
diagnosis ability and field-test capability, which are essential for
many applications where regular operation and maintenance
test is needed.

Since the introduction of BIST mechanisms into a SOC is a
complex task, we need to develop powerful automated design
methods and tools to optimize the test function together with the
other design criteria as well as to speed up the design process.
However, the classical BIST approach has several shortcomings,
as discussed below, and therefore, several methods have been
developed for its improvement, which will be presented briefly in
this chapter

3.2. Problems with Classical BIST

As described earlier, a classical BIST architecture consists of a
test pattern generator (TPG), a test response analyzer (TRA) and
a BIST control unit (BCU), all implemented on the chip. Differ-
ent implementations of such BIST architectures have been
available, and some of them have wide acceptance. Unfortu-
nately, the classical BIST approaches suffer the problems of in-

CHAPTER 3

62

ducing additional delay to the circuitry and requiring a relatively
long test application time.

In particular, one major problem with the classical BIST im-
plementation is due to that the TPG is implemented by linear
feedback shift registers (LFSR). The effectiveness of such TPG
for a given circuit depends on the appropriate choice of the
LFSRs as well as their length and configuration. The test pat-
terns generated by an LFSR are pseudorandom by nature and
have linear dependencies [62]. Such test patterns often do not
guarantee a sufficiently high fault coverage (especially in the
case of large and complex designs), and demand very long test
application times. It is not uncommon to have a pseudorandom
test sequence that is more than 10 times longer than the deter-
ministic test sequence with similar efficiency [96]. The main rea-
son behind this phenomenon is the presence of random pattern
resistant (RPR) faults in the circuit under test. The RPR faults
are the ones that are detected by very few test patterns, if not by
only one. If this pattern is not in the generated pseudorandom
test sequence, the fault will remain undetected.

In order to illustrate random pattern resistant faults let us use
a simple 16-input AND-gate, depicted in Figure 3.1. The stuck-
at-0 fault at the output of this gate is a good example of such
faults. In order to detect this fault, all inputs of the gate must be
set to 1 (this is the only test pattern that can activate this fault),
and if uniformly distributed pseudorandom patterns are applied,
the detection probability of this fault is 2-16. This obviously leads
to unacceptable test lengths.

AND

.

.

.

x1

x16

y

s-a-0

X

Figure 3.1. An example of a random pattern resistant fault.

Generally, pseudorandom test patterns can seldomly achieve
100% fault coverage. Figure 3.2 shows the fault coverage of

INTRODUCTION AND RELATED WORK

 63

pseudorandom tests as a function of the test length, for some lar-
ger ISCAS’85 [18] benchmark circuits. This figure illustrates an
inherent property of pseudorandom test: the first few test vectors
can detect a large number of faults while later test vectors detect
very few new faults, if any. Moreover, there may exist many
faults that will never be detected with pseudorandom test vec-
tors.

Therefore, several questions have to be answered while devel-
oping a LFSR-based self-test solution: What is the fault coverage
achievable with pseudorandom patterns, compared to that of de-
terministic test methods? Will the required fault coverage be
achieved by the number of pseudorandom patterns that can be
generated in some acceptable interval of time? What are the
characteristics of the LFSR that produce a test sequence with ac-
ceptable fault coverage? Such an analysis shows that in most
cases a pseudorandom test leads to either unacceptably long test
sequences or fault coverage figures that are not acceptable and
much below those achievable by deterministic test sequences.

Figure 3.2. Pseudorandom test for some ISCAS’85 circuits.

CHAPTER 3

64

Therefore, several proposals have been made to combine pseu-
dorandom test patterns, generated by LFSRs, with deterministic
patterns, to form a hybrid BIST solution [6], [23] , [69], [70], [71],
[103], [154], [155], [173], [171]. The main concern of several such
hybrid BIST approaches has been to improve the fault coverage
by mixing pseudorandom vectors with deterministic ones, while
the issue of test cost minimization has not been addressed di-
rectly. In the following sections, different classical BIST im-
provement techniques, including the hybrid BIST approaches,
will be described.

3.3. BIST Improvement Techniques

The length of a test session is usually limited. If the fault cover-
age figure, after applying the specified number of test patterns,
remains below the desired levels, some modifications to the test
strategy and/or to the circuit under test have to be made. There
are two alternatives. The first alternative is to improve the con-
trollability and observability of the circuit, thus improving the
detectability of hard-to-detect faults, for example, via test point
insertion. Another possibility is to modify the TPG in order to
generate test patterns that are more suitable for the given CUT.
These two alternatives will be discussed in the following sec-
tions.

3.3.1. Test Point Insertion

Test point insertion is a DFT technique that is very widely used
in commercial BIST tools. It can theoretically guarantee any
level of fault coverage, provided a sufficient number of test points
are used. The possible drawbacks are the area overhead and per-
formance penalty. The area overhead is introduced by the addi-
tional logic and routing needed to introduce the test points. Per-
formance degradation might come from the increased delays, if
time-critical paths are affected.

INTRODUCTION AND RELATED WORK

 65

There are two types of test points: control points and observa-
tion points. Control points are added to help control the value at
a line and there are several types of them. Two of the most com-
mon ones are depicted in Figure 3.3:

− A zero control point can be obtained by adding an additional
primary input together with an AND-gate (Figure 3.3c).

− A one control point can be obtained by adding an additional
primary input together with an OR-gate (Figure 3.3d).

Although addition of control points alters also the observabil-
ity of the remaining circuit, observability can explicitly be en-
hanced by adding dedicated observation points (Figure 3.3b) that
are taps to the extra primary outputs. These points enable ob-
servation of the value at the line. In a BIST environment, these
extra inputs and outputs introduced by test point insertion are
connected to the TPGs and TRAs.

Test point insertion increases the efficiency of pseudorandom
testing and can lead to complete or near-complete fault coverage.

.

.

.

G2

G1

.

.

.

G1
.
.
.

&
.
.
.

G2CP0

G1

G2
.
.
.

.

.

.

OP
G1

.

.

.

.

.

.
G2ORCP1

b) d)

a) c)

Figure 3.3. Test point insertion.
a) original circuit, b) an observation point,

c) a zero control point, d) a one control point.

CHAPTER 3

66

3.3.2. Weighted Random Testing

If the fault coverage for a particular CUT within a given test
length remains below a desired level, a custom TPG may be de-
signed to provide higher fault coverage for the CUT. Weighted
random testing is one such approach.

As described earlier, LFSR based vectors are pseudorandom by
nature. Therefore, the likelihood of zeros and ones in each binary
position of these vectors is equal and random resistant faults are
hard to detect. Weighted random testing uses an additional com-
binational circuit to modify the LFSR generated patterns so that
the probabilities of zeros and ones are nonuniform. Such a
weight circuit biases the test vectors so that tests targeting ran-
dom resistant faults are more likely to occur. The particular
probabilities applied are called a weight set.

For example, let us assume a 3-input CUT. A classical pseudo-
random pattern generator, such as an LFSR, produces a test set,
where the probabilities of zeros and ones are the same, i.e. logic 1
is applied to every input with probability 0.5. Therefore, we can
say that the weight set of this particular example is w = (0.5, 0.5,
0.5). When a weighted random testing is used then these weights
can be, for example, w = (1, 0, 0.5). In this case, logic 1 is applied
to the first input with probability 1, to the second with probabil-
ity 0 and to the third with probability 0.5.

In general, a circuit may require several sets of weights, and,
for each weight set, a number of random patterns will be applied.
Thus, the major objective of the weight generation process is to
reduce the number of weight sets, and the number of test pat-
terns to apply for each set. Several techniques have been pro-
posed in the literature, including those reported in [12], [15], [98]
and [170].

3.3.3. Test Pattern Compression

Another way to improve the quality of a self-test is to use deter-
ministic test patterns instead of pseudorandom ones. A straight-

INTRODUCTION AND RELATED WORK

 67

forward way involves the use of a ROM to store the precomputed
test set. This test scheme is very efficient in terms of test appli-
cation time and can provide high fault coverage. There have been
also attempts to generate compact test sets for this purpose [79],
[134]. However, this is not considered practical because of the
silicon area required to store the entire test set in a ROM.

A more practical alternative is to encode the precomputed test
set and store (or generate) only the compressed (encoded) test
set, which can then be decoded during test application. This de-
compression logic together with storage requirements for the en-
coded test set are usually less than the storage requirements for
the original deterministic test set. This method is usually called
store and generate [4], [35], [36]. It has been shown that by ap-
plying efficient statistical encoding techniques, such as Huffman
or Comma encoding, the storage requirements for testing se-
quential non-scan circuits can be reduced as well [82]. The encod-
ing can be very efficient if intelligent X assignment in partially
specified test sets (vectors with don’t care signals) is used [99].

The reported results are promising but the main disadvantage
of these approaches is the need for additional hardware to per-
form the decoding process. The encoded test set is in average 40-
60% smaller than the original set, but due to the nondeterminis-
tic nature of the encoding process, there are no guarantees about
the size of the final encoded test set. This means that the deter-
ministic set can still be too big to be stored entirely in a ROM in-
side the system.

3.3.4. Mixed-Mode Schemes

Several considerations are central for efficient self-test pattern
generator design. First, it is expected to guarantee very high
fault coverage. Second, the TPG should be inexpensive to imple-
ment in hardware. Finally, it should minimize test application
time and test data storage requirements. Therefore, mixed-mode
test generation schemes have been developed for efficient self-

CHAPTER 3

68

testing. A mixed-mode scheme uses pseudorandom patterns to
cover easy-to-detect faults and, subsequently, deterministic pat-
terns to target the remaining hard-to-detect faults. The main
strength of these approaches lays in the possibility to have a
trade-off between test data storage and test application time by
varying the ratio of pseudorandom and deterministic test pat-
terns.

As described above, several methods have been developed,
where complete deterministic test sets are stored in the ROM, ei-
ther directly or by using some encoding mechanism. Mixed-mode
schemes, on the other hand, store only a limited amount of in-
formation, thus reducing the test data storage requirements and
consequently the test cost. In the following, some well-known
mixed-mode test generation approaches are described.

LFSR Reseeding

When a sequence of test patterns is generated by an LFSR, many
of these patterns do not detect any additional faults, thus non-
useful patterns are applied to the CUT. The test application time
can hence be reduced if non-useful patterns can be replaced with
useful ones that occur much later in the sequence. This would in-
crease the frequency with which useful vectors are applied to the
circuit and hence reduce the test application time.

One of the mixed-mode approaches is based on LFSR reseed-
ing. In this approach the quality of the test sequence is improved
by generating only a limited number of test patterns from one
LFSR seed (initial state) and during the test generation process
the LFSR is reseeded with new seeds. This idea was first pro-
posed by B. Koenemann in 1991 [103]. These new seeds are used
to generate pseudorandom sequences and to encode the determi-
nistic test patterns, in order to reduce the number of non-useful
patterns. In this approach, only a set of LFSR seeds have to be
stored instead of the complete set of patterns and as a result, less
storage is needed (Figure 3.4).

INTRODUCTION AND RELATED WORK

 69

CUT

Scan pathLFSR

Seeds

Figure 3.4. LFSR reseeding.

Several heuristic approaches have been proposed to identify
multiple seeds, and the number of vectors applied starting with
each seed, to minimize the overall test application time under a
given constraint on the maximum number of seeds [69], [70],
[71], [173]. If a small LFSR is used, it may not always be possible
to find a seed that will generate a required deterministic test
pattern, hence the fault coverage may remain low. Therefore, a
different reseeding scenario based on Multiple-Polynomial
LFSRs has been proposed in [70]. There, deterministic patterns
are encoded with a number of bits specifying a seed and a poly-
nomial identifier. During testing, not only the appropriate seed,
but also the corresponding feedback polynomial, have to be
loaded into the LFSR. Another alternative is to use variable-
length seeds [173]. However, all these techniques generate test
sets of excessive length.

Pattern Mapping

Another class of mixed-mode schemes embeds deterministic test
patterns into LFSR sequences by mapping LFSR states to de-
terministic test patterns [6], [23], [154], [155], [171]. This can be
achieved by adding extra circuitry to generate control signals
that complement certain bits or fix them to either 0 or 1 [171]. A

CHAPTER 3

70

hardware used to implement the bit-flipping or bit-fixing se-
quence generation logic is the major cost of this approach, as it
has to be customized for a given CUT and LFSR. An alternative
approach transforms the LFSR generated patterns into a new set
of test patterns with higher fault coverage. The transformation is
carried out by a mapping logic, which decodes sets of ineffective
patterns and maps them into vectors that detect the hard-to-test
faults [23], [154]. The general architecture of a TPG for this ap-
proach is depicted in Figure 3.5. The outputs of an n-stage ran-
dom TPG are input to a mapping logic and the outputs of the
mapping logic drive the inputs of the CUT. Nevertheless, most of
these variations of controlling the bits of the LFSR sequence
have not yet solved the problems with random resistance.

n-stage random TPG

Mapping logic

n-input CUT

zm

xnx2x1

z1 z2

Figure 3.5. Pattern mapping.

3.4. Conclusions

In this chapter, we outlined the problems related to the classical
LFSR-based BIST, namely problems stemming from random re-

INTRODUCTION AND RELATED WORK

 71

sistance properties of the CUT. In addition, we gave an overview
of different methods that have been developed to tackle those
problems. The main objective of these methods has been test
quality improvement in terms of fault coverage, while different
aspects related to the test cost, like test length, area overhead
and tester memory requirements, were largely omitted or han-
dled in isolation.

In the following chapters an alternative approach, called hy-
brid BIST, will be described. In particular, different test optimi-
zation algorithms based on the proposed hybrid BIST architec-
ture will be presented.

CHAPTER 4

72

HYBRID BIST CONCEPT

 73

Chapter 4

Hybrid BIST Concept

In this thesis, we propose a new mixed-mode BIST approach that
is based on a combination of pseudorandom and deterministic
test patterns. Similar ideas have been exploited in different con-
texts already earlier. However, there has been no systematic
treatment of the test cost minimization problem in the above-
mentioned framework. In addition, the issues related to defect
probabilities as well as power and energy consumption have not
been touched earlier.

This chapter is devoted to describing the basic concepts of the
proposed approach. Additionally an introduction to the hybrid
BIST cost calculation principles will be given and different test
architectures that were assumed during the experimental work
will be described.

CHAPTER 4

74

4.1. Introduction

As described earlier, a typical self-test approach employs usually
some form of pseudorandom test patterns. These test sequences
are often very long and not sufficient to detect all faults. To avoid
the test quality loss due to random pattern resistant faults and
to speed up the testing process, we can apply additional determi-
nistic test patterns targeting the random resistant and difficult
to test faults. This can dramatically reduce the length of the ini-
tial pseudorandom sequence and achieve the maximum achiev-
able fault coverage.

In the introductory part, we described several existing meth-
ods based on this concept. These methods successfully increased
the quality of the test by explicitly targeting random pattern re-
sistant (RPR) faults. At the same time, most of these methods
tried to address some of the following parameters: area overhead,
tester memory (ROM size) and test length. The described ap-
proaches were able to reduce one or many of these parameters
via different heuristics but the results were very dependent of
the CUT and the chosen test scenario. Therefore, none of the ap-
proaches would be applicable if the bounds of those parameters
are specified in advance and have to be met. Yet, in a realistic
test environment, the test process is usually constrained by sev-
eral limitations, such as tester memory and test time. None of
the existing approaches would be able to device a solution under
such circumstances. At the same time, there is obvious and real-
istic need for test solutions that can guarantee high test quality
and, at the same time, fit into the existing test flow.

Our hybrid BIST approach is based on the intelligent combina-
tion of pseudorandom and deterministic test sequences that
would provide a high-quality test solution under imposed con-
straints [95]. It is important to note that the main contribution of
this thesis is not to develop a new “ideal” LFSR-based test gen-
eration approach but to develop a set of optimization methods
that can produce a required solution. Our approach does not im-

HYBRID BIST CONCEPT

 75

pose restrictions on the way any of the test sets is generated, nor
does it assume any particular way the deterministic test set is
stored in the system or outside the system. If needed, our tech-
niques can be used in conjunction with the previously proposed
ideas regarding test set generation, test set compression and en-
coding.

4.2. Basic Principle

As mentioned earlier, our hybrid BIST approach is based on an
intelligent combination of pseudorandom and deterministic test
patterns. Such a hybrid BIST approach starts usually with a
pseudorandom test sequence of length L (Figure 4.1). After ap-
plication of the pseudorandom patterns, a stored test approach
with length S will be used [88]. For the stored test approach, pre-
computed test patterns are applied to the core under test in or-
der to reach the desirable fault coverage level. For off-line gen-
eration of the deterministic test patterns, arbitrary software test
generators may be used based on deterministic, random or ge-
netic algorithms [86].

Time

Fa
ul

t C
ov

er
ag

e

100%

L

Pseudorandom test
Deterministic test

S

Figure 4.1. Hybrid BIST fault coverage curve.

CHAPTER 4

76

In a hybrid BIST technique the length of the pseudorandom
test is an important design parameter, which determines the be-
havior of the whole test process. A shorter pseudorandom test
sequence implies a larger deterministic test set. This requires
additional memory space, but at the same time, shortens the
overall test time. A longer pseudorandom test, on the other hand,
will lead to larger test application time with reduced memory re-
quirement. Therefore, it is crucial to determine the optimal
length of the pseudorandom test in order to minimize the total
testing cost.

This basic feature of hybrid BIST is illustrated in Table 4.1
with some selected ISCAS’89 benchmark designs [19] (full-scan
versions). In this table, we have illustrated the increase of the
fault coverage value after applying a small additional set of de-
terministic test patterns on top of the pseudorandom ones. As it
can be seen, only a small number of deterministic test patterns
are needed for that purpose.

Table 4.1. Illustration of the hybrid BIST concept.

Core DET FC DET % FC PR % H DET FC HYB % FC impr % DET red %
s298 105 95,29% 85,61% 40 96,46% 10,85% 61,90%
s420 161 98,11% 69,59% 104 98,45% 28,86% 35,40%
s526 1308 89,86% 75,77% 105 95,57% 19,80% 91,97%
s641 462 97,16% 81,84% 121 99,15% 17,31% 73,81%
s838 19273 94,46% 57,69% 264 98,54% 40,85% 98,63%
s1423 9014 94,19% 86,82% 143 98,52% 11,70% 98,41%
s3271 6075 99,06% 77,50% 332 99,65% 22,15% 94,53%

DET Number of deterministic patterns generated by the ATPG.
FCDET Fault coverage of the deterministic patterns.
FCPR Fault coverage of the PR patterns (1000 patterns).
HDET Number of additional deterministic patterns generated by

the ATPG, after 1000 PR patterns.
FCHYB Final fault coverage (PR + deterministic).
FCimpr Improvement of the fault coverage after adding determinis-

tic patterns, compared to FCPR.
DETred Reduction of the number of deterministic test patterns com-

pared to the original deterministic test set (DET).

HYBRID BIST CONCEPT

 77

4.3. Cost Calculation

Figure 4.2 illustrates graphically the total cost of a hybrid BIST
solution consisting of pseudorandom test patterns and stored test
patterns. The horizontal axis in Figure 4.2 denotes the fault cov-
erage achieved by the pseudorandom test sequence before
switching from the pseudorandom test to the stored test. Zero
fault coverage is the case when only stored test patterns are used
and therefore the cost of stored test is biggest in this point. The
figure illustrates the situation where 100% fault coverage is
achievable with pseudorandom vectors alone, although this can
demand a very long pseudorandom test sequence (in reality, in
particular in the case of large and complex designs, 100% fault
coverage might not be achievable at all).

Cmin

CTOTAL

Cost of stored
test CMEM

to reach 100%
fault coverage

Cost of
pseudorandom

test CGEN

100%

Test Cost

Pseudorandom test
coverage (%)

Figure 4.2. Cost calculation for hybrid BIST
(under 100% assumption).

The total test cost of the hybrid BIST, CTOTAL, can therefore be
defined as:

CTOTAL = CGEN + CMEM ≈ αL + βS (4.1)

where CGEN is the cost related to the effort for generating L pseu-
dorandom test patterns (number of clock cycles) and CMEM is re-

CHAPTER 4

78

lated to the memory cost for storing S pre-computed test pat-
terns to improve the pseudorandom test set. α and β are con-
stants to map the test length and memory space to the costs of
the two components of the test solutions.

We should note that defining the test cost as a sum of two
costs, the cost of time for the pseudorandom test generation, and
the cost of memory associated with storing the TPG produced
test, results in a rather simplified cost model for the hybrid BIST
technique. In this simplified model, neither the basic cost of sili-
con (or its equivalent) occupied by the LFSR-based generator,
nor the effort needed for generating deterministic test patterns
are taken into account. Similarly, all aspects related to test data
transportation are omitted. However, these aspects can easily be
added to the cost calculation formula after the desired hardware
architecture and deterministic test pattern generation ap-
proaches are chosen. In the following chapters, we are going to
provide the algorithms to find the best tradeoff between the
length of the pseudorandom test sequence and the number of de-
terministic patterns. For making such a tradeoff, the basic im-
plementation costs are invariant and will not influence the opti-
mal selection of the hybrid BIST parameters.

On the other hand, the attempt to add “test time” to “memory
space” (even in terms of their cost) seems rather controversial, as
it is very hard to specify which one costs more in general (or even
in particular cases) and how to estimate these costs. This was
also the reason why the total cost of a BIST solution is not con-
sidered as the research objective in this thesis. The values of pa-
rameters α and β in the cost function are left to be determined by
the designer and can be seen as one of the design decisions. If
needed, it is possible to separate these two different costs (time
and space), and consider, for example, one of them as a design
constraint.

Figure 4.2 illustrates also how the cost of pseudorandom test
is increasing when striving to higher fault coverage (the CGEN

HYBRID BIST CONCEPT

 79

curve). In general, it can be very expensive to achieve high fault
coverage with pseudorandom test patterns alone. The CMEM curve,
on the other hand, describes the cost we have to pay for storing
additional pre-computed tests to achieve the required fault cov-
erage level. The total cost CTOTAL is the sum of the above two
costs. The CTOTAL curve is illustrated in Figure 4.2, where the
minimum point is marked as Cmin.

As mentioned earlier, in many situations 100% fault coverage
is not achievable with only pseudorandom vectors. Therefore, we
have to include this assumption to the total cost calculation. This
situation is illustrated in Figure 4.3, where the horizontal axis
indicates the number of pseudorandom patterns applied, instead
of the fault coverage level. The curve of the total cost CTOTAL is
still the sum of two cost curves CGEN + CMEM with the new assump-
tion that the maximum fault coverage is achievable only by ei-
ther the hybrid BIST or pure deterministic test.

 Total Cost
CTOTAL

Cost

Cost of
pseudorandom test

patterns CGEN

Number of remaining
faults after applying k

pseudorandom test
patterns rNOT(k)

Cost of stored
test CMEM

Time/Memory

Figure 4.3. Cost calculation for hybrid BIST
(under realistic assumptions).

CHAPTER 4

80

4.4. Architectures

The previous sections have described the basic principles of hy-
brid BIST and introduced the test cost calculation formulas. In
this section, some basic concepts of hybrid BIST architectures
will be discussed. Although our optimization methods are not de-
vised for a particular test architecture and different architectural
assumptions can easily be incorporated into the algorithms, some
basic assumptions have to be made.

Our optimization methods have been devised for single core
designs as well as for system-on-chip designs. Consequently, we
have to discuss about test architectures at two different levels of
hierarchy: core-level test architectures and system-level test ar-
chitectures.

4.4.1. Core-Level Hybrid BIST Architecture

We have divided cores into two large classes. To the first class
belong the cores that are equipped with their own pseudorandom
test pattern generator and only deterministic patterns have to be
transported to the cores. The second class consists of cores with
no pre-existing BIST structures. Such cores require an alterna-
tive approach, where pseudorandom and deterministic test pat-
terns have to be transported to the core under test from external
sources. For both classes we have studied test-per-clock as well
as test-per-scan schemes.

At the core level, pseudorandom testing can be performed us-
ing many different scenarios, as described earlier. In our work
we have assumed a core-level hybrid BIST architecture that is
depicted in Figure 4.4, where the pseudorandom pattern genera-
tor (PRPG) and the Multiple Input Signature Analyzer (MISR)
are implemented inside the core under test (CUT) using LFSRs
or any other structure that provides pseudorandom test vectors
with a required degree of randomness. The deterministic test

HYBRID BIST CONCEPT

 81

patterns are precomputed off-line and stored outside the core, ei-
ther in a ROM or in an ATE.

Core test is performed in two consecutive stages. During the
first stage, pseudorandom test patterns are generated and ap-
plied. After a predetermined number of test cycles, additional
test is performed with deterministic test patterns from the mem-
ory. For combinatorial cores, where a test-per-clock scheme can
be used, each primary input of the CUT has a multiplexer at the
input that determines whether the test is coming from the PRPG
or from the memory (Figure 4.4). The response is compacted into
the MISR in both cases. The architecture can easily be modified
with no or only minor modification of the optimization algo-
rithms to be presented in the following chapters.

PRPG

. . .
. . .

. . .

MISR

B
IS

T
C

on
tro

lle
r

SoC
. . .

ROM

. . .

CUT

Core

Figure 4.4. Hardware-based core-level hybrid BIST
architecture.

As testing of sequential cores is very complex and development
of efficient test pattern generation algorithm for sequential cores

CHAPTER 4

82

is outside the scope of this thesis, it is assumed here that every
sequential core contains one or several scan paths (full scan).
Therefore a test-per-scan scheme has to be used and, for every
individual core, the “Self-Test Using MISR and Parallel Shift
Register Sequence Generator” (STUMPS) [11] architecture is as-
sumed. Both internally generated pseudorandom patterns and
externally stored deterministic test patterns are therefore ap-
plied via scan chains.

In both situations, every core’s BIST logic is capable of produc-
ing a set of independent pseudorandom test patterns, i.e. the
pseudorandom test sets for all the cores can be carried out simul-
taneously and independently.

4.4.2. System-Level Hybrid BIST Architectures

Parallel Hybrid BIST Architecture

We start with a system-level test architecture, where every core
has its own dedicated BIST logic. The deterministic tests are ap-
plied from the external source (either on-chip memory or ATE),
one core at a time; and in the current approach we have assumed
for test data transportation an AMBA-like test bus [43]. AMBA
(Advanced Microcontroller Bus Architecture) integrates an on-
chip test access technique that reuses the basic bus infrastruc-
ture [67]. An example of a multi-core system, with such a test ar-
chitecture is given in Figure 4.5.

Our optimization methods are not dependent of the location of
the deterministic test patterns. These patterns can be applied ei-
ther from the external ATE or from an on-chip memory (ROM).
As we have assumed a bus-based test architecture, the time
needed for test data transportation from the particular test
source to a given CUT is always the same. The corresponding
time overhead, related to the test data transportation, can easily
be incorporated into the proposed algorithms.

HYBRID BIST CONCEPT

 83

SoC

Embedded
Tester

Test
Controller

Tester
Memory

AMBA System Bus

Core 4

BIST

Core 5

BIST

Core 1

BIST

Core 2

BIST

Core 3

BIST

Figure 4.5. An example of a core-based system, with
independent BIST resources.

Considering the assumed test architecture, only one determi-
nistic test set can be applied at any given time, while any num-
ber of pseudorandom test sessions can take place in parallel. To
enforce the assumption that only one deterministic test can be
applied at a time, a simple ad-hoc scheduling can be used.

The above type of architecture, however, may not always be
feasible as not all cores may be equipped with self-test struc-
tures. It may also introduce a significant area overhead and per-
formance degradation, as some cores may require excessively
large self-test structures (LFSRs).

Hybrid BIST Architecture with Test Pattern Broadcasting

In order to avoid redesign of the cores, a single pseudorandom
test pattern generator for the whole system is an alternative. It
can be implemented as a dedicated hardware block or in soft-
ware. In this thesis we propose a novel solution, where only a
single set of pseudorandom test patterns that is broadcasted to
all cores simultaneously will be used. This common pseudoran-
dom test set is followed by additional deterministic vectors ap-
plied to every individual core, if needed. These deterministic test

System Bus

CHAPTER 4

84

vectors are generated during the development process and are
stored in the system. This architecture together with the appro-
priate test access mechanism is depicted in Figure 4.6.

INP3

INP2

INP1

INP4

INP5

0

SoC
Core 2

Core 1

Core 4

Core 3
Core 5

LFSR
Emulator

Tester

Memory

Tester
Controller

Embedded
Tester

TAM

Max(INPk)

Figure 4.6. Hybrid BIST architecture with
test pattern broadcasting.

For the test architecture depicted in Figure 4.6, testing of all
cores is carried out in parallel, i.e. all pseudorandom patterns as
well as each deterministic test sequence TDk are applied to all
cores in the system. The deterministic test sequence TDk is a de-
terministic test sequence generated only by analyzing the core
Ck . For the rest of the cores this sequence can be considered as a
pseudorandom sequence. The width of the hybrid test sequence
TH is equal to MAXINP=max{INPk}, k=1, 2, …, n, where INPk is
the number of inputs of the core Ck . For each deterministic test
set TDk, where INPk < MAXINP, the not specified bits will be
completed with pseudorandom data, so that the resulting test set
TDk* can be applied in parallel to the other cores in the system
as well.

For test response analysis a MISR-based solution is assumed.

HYBRID BIST CONCEPT

 85

Software Based Hybrid BIST Architecture

Classical BIST architectures can be expensive in the case of large
and complex designs, because of the long LFSRs. Long LFSRs
can also influence the system performance by introducing addi-
tional delays. Short LFSRs on the other hand cannot be used be-
cause they are not able to produce the required level of random-
ness. To make the BIST approach more attractive, we have to
tackle the hardware overhead problem and to find solutions to
reduce the additional delay and the long test application times.
At the same time, fault coverage has to be kept at a high level.
The simplest and most straightforward solution is to replace the
hardware LFSR implementation by software, which is especially
attractive to test SOCs, because of the availability of computing
resources directly in the system (a typical SOC usually contains
at least one processor core). The software-based approach, on the
other hand, is criticized because of the large memory require-
ments, as we have to store the test program and some test pat-
terns, which are required for initialization and reconfiguration of
the self-test cycle [72]. However, some preliminary results re-
garding such an approach for PCBs have been reported in [9] and
show that a software-based approach is feasible.

In case of a software-based solution, the test program, together
with all necessary test data (LFSR polynomials, initial states,
pseudorandom test length and signatures) are kept in a ROM.
The deterministic test vectors are generated during the devel-
opment process and are stored usually in the same place. For
transporting the test patterns, we assume that some form of
TAM is available.

In the test mode, the test program will be executed by the
processor core. The test program proceeds in two successive
stages. In the first stage, the pseudorandom test pattern genera-
tor, which emulates the LFSR, is executed. In the second stage,
the test program will apply precomputed deterministic test vec-
tors to the core under test.

CHAPTER 4

86

The pseudorandom TPG software is the same for all cores in
the system and is stored as one single copy. All characteristics of
the LFSR needed for emulation are specific to each core and are
stored in the ROM. They will be loaded upon request. Such an
approach is very effective in the case of multiple cores, because
for each additional core only the BIST characteristics for this
core have to be stored. This approach, however, may lead to a
more complex test controller, as every core requires pseudoran-
dom patterns with different characteristics (polynomial, initial
state and length, for example). The general concept of the soft-
ware based pseudorandom TPG is depicted in Figure 4.7.

SoC
CPU Core ROM

Core j

LFSR1: 00101001001010110
N1: 275

LFSR2: 11010100111001100
N2: 900.
...

load (LFSR);
 for (i=0; i<Nj; i++)
 ...
end;

Core j+1 Core j+...

SoC

Figure 4.7. LFSR emulation.

As the LFSR is implemented in software, there are no hardware
constraints for the actual implementation. This allows developing
for each particular core an efficient pseudorandom scheme without
concerning about the hardware cost except the cost for the ROM. As
has been shown by experiments, the selection of the best possible
pseudorandom scheme is an important factor for such an approach
[72].

As discussed in [72], the program to emulate the LFSR can be
very simple and therefore the memory requirements for storing

HYBRID BIST CONCEPT

 87

the pseudorandom TPG program together with the LFSR pa-
rameters are relatively small. This, however, does not have any
influence on the cost calculation and optimization algorithms, to
be proposed. These algorithms are general, and can be applied to
the hardware-based as well as to the software-based hybrid BIST
optimization.

4.5. Conclusions

This chapter described the basic concepts of our hybrid BIST
methodology. We explained the cost calculation principles and
gave an overview of the architectures we have considered in our
experiments. In the first part of this chapter the problems with
classical, LFSR-based BIST were described. That was followed
by an overview of different methods for BIST improvement that
have been proposed in the literature.

The basic idea of our approach, to combine pseudorandom and
deterministic test patterns, is not itself an uncommon one. How-
ever, the main contribution of this thesis is a set of optimization
methods for test cost optimization. In the following chapter, the
total test cost minimization for single core designs will be de-
scribed. This will be followed by the time minimization algo-
rithms for multi-core designs. Finally, methods for energy mini-
mization and hybrid BIST time minimization in an abort-on-
first-fail environment will be described.

CHAPTER 5

88

HYBRID BIST COST MINIMIZATION

 89

Chapter 5

Hybrid BIST
Cost Minimization for

Single Core Designs

5.1. Introduction

In this chapter different methods for total test cost minimization,
while testing every core in isolation, will be described. The meth-
ods are based on the test cost calculation formulas, introduced in
the previous chapter. The proposed cost model is rather simpli-
fied but our goal is not to develop a complete cost function for the
whole BIST solution. The goal is to find the tradeoff between the
length of pseudorandom test sequence and the number of deter-
ministic patterns. For making such a tradeoff the basic imple-
mentation costs are invariant and will not influence the optimal
solution of the hybrid BIST.

CHAPTER 5

90

The main goal of this chapter is to develop a method to find
the global minimum of the Total Cost curve. Creating the curve
CGEN = αL is not difficult. For this purpose, only a simulation of
the behavior of the LSFR used for pseudorandom test pattern
generation is needed. A fault simulation should be carried out for
the complete test sequence generated by the LFSR. As a result of
such a simulation, we find for each clock cycle the list of faults
which are covered at this clock cycle.

As an example, in Table 5.1 a fragment of the results of BIST
simulation for the ISCAS’85 circuit c880 [18] is given, where

• k denotes the number of the clock cycle,

• rDET(k) is the number of new faults detected (covered) by the
test pattern generated at the clock signal k,

• rNOT(k) is the number of remaining faults after applying the
sequence of patterns generated by the k clock signals, and

• FC(k) is the fault coverage reached by the sequence of pat-
terns generated by the k clock signals

Table 5.1. Pseudorandom test results.

k rDET(k) rNOT(k) FC(k) k rDET(k) rNOT(k) FC(k)

0 155 839 15.59% 148 13 132 86.72%
1 76 763 23.24% 200 18 114 88.53%
2 65 698 29.78% 322 13 101 89.84%
3 90 608 38.83% 411 31 70 92.96%
4 44 564 43.26% 707 24 46 95.37%
5 39 525 47.18% 954 18 28 97.18%

10 104 421 57.65% 1535 4 24 97.58%
15 66 355 64.28% 1560 8 16 98.39%
20 44 311 68.71% 2153 11 5 99.50%
28 42 269 72.94% 3449 2 3 99.70%
50 51 218 78.07% 4519 2 1 99.89%
70 57 161 83.80% 4520 1 0 100.00%

100 16 145 85.41%

In the list of BIST simulation results not all clock cycles will
be presented. We are only interested in the clock numbers at

HYBRID BIST COST MINIMIZATION

 91

which at least one new fault will be covered, and thus the total
fault coverage for the pseudorandom test sequence up to this
clock number increases. Let us call such clock numbers and the
corresponding pseudorandom test patterns efficient clocks and ef-
ficient patterns. The rows in Table 5.1 correspond to the efficient,
not to all, clock cycles for the circuit c880.

If we decide to switch from pseudorandom mode to the deter-
ministic mode after the clock number k, then L = k.

More difficult is to find the values for CMEM = βS, the cost for
storing additional deterministic patterns in order to reach the
given fault coverage level (100% in the ideal case). Let t(k) be the
number of test patterns needed to cover the rNOT(k) not yet de-
tected faults (these patterns should be pre-computed and used as
stored test patterns in the hybrid BIST). As an example, the data
for the circuit c880 are depicted in Table 5.2. The calculation of
the data in the column t(k) of Table 5.2 is the most expensive
procedure. In the following section, the difficulties and possible
ways to solve this problem are discussed.

Table 5.2. ATPG results.

k t(k) k t(k)
0
1
2
3
4
5
10
15
20
28
50
70
100

104
104
100
101
99
99
95
92
87
81
74
58
52

148
200
322
411
707
954
1535
1560
2153
3449
4519
4520

46
41
35
26
17
12
11
7
3
2
1
0

CHAPTER 5

92

5.2. Test Cost Minimization Algorithms

There are two approaches to find the deterministic test set t(k):
ATPG based and fault table based. Let us introduce the following
notations:

• i – the current number of the entry in the tables for PRG and
ATPG (Table 5.1 and Table 5.2);

• k(i) – the number of the clock cycle of the efficient clock at en-
try i;

• RDET(i) - the set of new faults detected (covered) by the pseudo-
random test pattern which is generated at the efficient clock
signal number k(i);

• RNOT(i) - the set of not yet covered faults after applying the
pseudorandom test pattern number k(i);

• T(i) - the set of test patterns needed and found by the ATPG to
cover the faults in RNOT(i);

• N – the number of all efficient patterns in the sequence cre-
ated by the pseudorandom test;

5.2.1. ATPG Based Approach

Algorithm 5.1: ATPG based approach for finding test sets T(i)

1. Let q:=N;
2. Generate for RNOT(q) a test set T(q), T := T(q), t(q) := |T(q)|;
3. For all q= N-1, N-2, … 1:

Generate for the faults RNOT(q) not covered by test T a test set
T(q),
T := T+ T(q), t(q) := |T|.

END.

The above algorithm generates a new deterministic test set for
the not yet detected faults at every efficient clock cycle. In this
way we have the complete test set (consisting of pseudorandom
and deterministic test vectors) for every efficient clock, which can

HYBRID BIST COST MINIMIZATION

 93

reach the maximal achievable fault coverage. The number of de-
terministic test vectors at all efficient clocks is then used to cre-
ate the curve CMEM(βS). The algorithm is straightforward, how-
ever, very time consuming because of repetitive use of ATPG.

Since usage of ATPG is a very time consuming procedure, we
present in the following another algorithm based on iterative
transformations of fault tables. This algorithm allows a dramatic
reduction of computation time for the hybrid BIST cost calcula-
tion.

5.2.2. Fault Table Based Approach

The fault table FT for a general case is defined as follows: given
a set of test patterns T and a set of faults R, FT = [εij]1 where εij

= 1 if the test ti ∈ T detects the fault rj ∈ R, and εij = 0 otherwise.
We denote by R(ti) ⊂ R the subset of faults detected by the test
pattern ti ∈ T.

We start the procedure for a given circuit by generating a test
set T which gives the 100% (or as high as possible) fault cover-
age. This test set can be served as a stored test if no on-line gen-
erated pseudorandom test sequence will be used. By fault simu-
lation of the test set T for the given set of faults R of the circuit,
we create the fault table FT. Suppose now, that we use a pseudo-
random test sequence TL with a length L that detects a subset of
faults RL ⊂ R. It is obvious that when switching from the pseudo-
random test mode with a test set TL to the precomputed stored
test mode, the deterministic test set to be applied can be signifi-
cantly reduced as compared to the complete set T. At first, by the
fault subtraction operation R(ti) - R

L we can update all the con-
tributions of the test patterns ti in FT (i.e. to calculate for all ti
the remaining faults they can detect after performing the pseu-
dorandom test). After that we can use any procedure of static
test compaction to minimize the test set T.

1 FT is a i×j matrix, where i is the number of tests and j is the number of faults.

CHAPTER 5

94

The described procedure of updating the fault table FT can be
carried out iteratively for all possible breakpoints i =1, 2, …, N of
the pseudorandom test sequence by the following algorithm
[160].

Algorithm 5.2: Fault Table based approach for finding test sets
T(i)

1. Calculate the whole test T for the whole set of faults R by
an ATPG to reach as high fault coverage C as possible

2. Create for T and R the fault table FT = [εij]

3. Take i = 1; Rename: Ti = T, Ri = R, FTi = FT

4. Take i = i + 1

5. Calculate by fault simulation the fault set RDET(i)

6. Update the fault table: ∀j, tj ∈ Ti: R(tj) - RDET(i)

7. Remove from the test set Ti all the test patterns tj ∈ Ti
where R(tj) = ∅

8. Optimize the test set Ti by a test compaction algorithm;
fix the value of Si = | Ti | as the length of the stored test
for L = i;

9. If i < L, go to 4;

End.

It is easy to understand that for each value L = i (the length of
the pseudorandom test sequence) the procedure guarantees the
constant fault coverage C of the hybrid BIST. The statement
comes from the fact that the subset Ti of stored test patterns is
complementing the pseudorandom test sequence for each i = 1, 2,
…, N to reach the same fault coverage reached by T.

As the result of Algorithm 5.2, the numbers of precomputed
deterministic test patterns Si = |Ti| to be stored and the subsets of
these patterns Ti for each i =1, 2, …, N are calculated. Based on
this data the cost of stored test patterns for each i can be calcu-
lated by the formula CMEM = βSi. From the curve of the total cost

HYBRID BIST COST MINIMIZATION

 95

CTOTAL(i) = αL + βS the value of the minimum cost of the hybrid
BIST min{CTOTAL(i)} can be easily found.

As will be shown in section 5.3, for very large circuits, both al-
gorithms presented will lead to very time-consuming runs. It
would be desirable to find the global minimum of the total cost
curve by as few sampled calculations as possible. Therefore, we
introduce here an approach, based on a Tabu search heuristic, to
speed up the calculations.

5.2.3. Tabu Search Based Cost Optimization

Tabu search ([57], [58], [59]) is a form of local neighborhood
search. Each solution SO∈Ω, where Ω is the search space (the set
of all feasible solutions), has an associated set of neighbors
Ν(SO)⊆Ω. A solution SO'∈Ν(SO) can be reached from SO by an
operation called a move. At each step, the local neighborhood of
the current solution is explored and the best solution is selected
as a new current solution. Unlike local search, which stops when
no improved new solution is found in the current neighborhood,
Tabu search continues the search from the best solution in the
neighborhood even if this solution is worse than the current one.
To prevent cycling, visited solutions are kept in a list called Tabu
list. Tabu moves (moves stored in the current Tabu list) are not
allowed. However, the Tabu status of a move is overridden when
a certain criterion (aspiration criterion) is satisfied. One example
of an aspiration criterion is when the cost of the selected solution
is better than the best seen so far, which is an indication that the
search is actually not cycling back, but rather moving to a new
solution not encountered before [58]. Moves are only kept in the
Tabu list for a given number of iterations (the so called “Tabu
tenure”).

The procedure of the Tabu search starts from an initial feasi-
ble solution in the search space Ω, which becomes the first cur-
rent solution SO. A solution in our hybrid BIST cost minimiza-
tion problem is defined as the switching moment from the

CHAPTER 5

96

pseudorandom test mode to the stored test mode. The search
space Ω covers all possible switching moments. A neighborhood
Ν(SO) is defined for each SO. Based on the experimental results
it was concluded that the most efficient step size for defining the
neighborhood N(SO) in our optimization problem was 3% of the
number of efficient clocks. A larger step size, even if it can pro-
vide considerable speedup, will decrease the accuracy of the final
result. In our algorithm a sample of neighbor solutions V* ⊂
Ν(SO) is generated. These solutions can be generated by using
either the Algorithm 5.1 or Algorithm 5.2. In our current ap-
proach, Algorithm 5.2 was used. An extreme case is to generate
the entire neighborhood that is to take V* = Ν(SO). Since this is
generally impractical (computationally expensive), a small sam-
ple of neighbors is generated, and called trial solutions (⏐V*⏐= n
<< ⏐Ν(SO)⏐). In case of ISCAS’85 benchmark circuits the best
results were obtained, when the size of the sample of neighbor-
hood solutions was 4. An increase of the size of V* had no effect
on the quality of results. From these trial solutions the best solu-
tion, say SO*∈V*, is chosen for consideration as the next solu-
tion. The move to SO* is considered, even if SO* is worse than
SO, that is, Cost(SO*) > Cost(SO). This feature enables escaping
from local optima. The cost of a solution is calculated according
to Equation (4.1) for calculating the total cost of hybrid BIST
CTOTAL, presented in section 4.3. A move from SO to SO* is made
provided certain conditions are satisfied.

One of the parameters of the algorithm is the size of the Tabu
list. A Tabu list T is maintained to prevent returning to previ-
ously visited solutions. The list contains information concerning
forbidden moves. The Tabu list size should also be determined by
experimental runs, watching the occurrence of cycling when the
size is too small, and the deterioration of solution quality when
the size is too large [142]. Results have shown that the best av-
erage size for the ISCAS’85 benchmark family was 3. Larger
sizes lead to a loss of result quality.

HYBRID BIST COST MINIMIZATION

 97

For finding a good initial feasible solution in order to make
Tabu search more productive, a fast estimation method for an
optimal L proposed in [88] is used. For this estimation, the num-
ber of not yet covered faults in RNOT(i) can be used. The value of
⏐RNOT(i)⏐ can be acquired directly from the PRG simulation re-
sults and is available for every significant time moment (see
Table 5.1). Based on the value of ⏐RNOT(i)⏐ it is possible to esti-
mate the expected number of test patterns needed for covering
the faults in RNOT(i). The starting point for the Tabu search pro-
cedure can be found by considering a rough estimation of the to-
tal cost based on the value of ⏐RNOT(i)⏐. Based on statistical
analysis of the costs calculated for ISCAS’85 benchmark circuits,
in [88] the following approximation is proposed: one remaining
fault results in 0,45 test patterns needed to cover it. In this way,
a simplified cost prediction function was derived: C’TOTAL(k) =
CGEN(k) + 0,45β⋅RNOT(k). The value k*, where C’TOTAL(k*) =
min(C’TOTAL(k)) was used as the initial solution for Tabu search.

To explain the algorithm, let us have the following additional
notations: E - number of allowed empty iterations (i.e. iterations
that do not result in finding a new best solution), defined for
each circuit, and SOtrial - solution generated from the current so-
lution as a result of the move.

Algorithm 5.3: Tabu Search

Begin
 Start with initial solution SO ∈ Ω;
 BestSolution:=SO;
 Add the initial solution SO to Tabu list T, T={SO};
 While number of empty iterations < E Do

 Generate the sample of neighbor solutions V*⊂ Ν(SO);
 Find best Cost(SO*⊂V*);

 M: If (solution SO* is not in T) Or
 (aspiration criterion is satisfied) Then

SOtrial:=SO*;
Update tabu list T;

CHAPTER 5

98

Increment the iteration number;
 Else

 Find the next best Cost(SO*⊂V*);
Go to M;

 EndIf

 If Cost(SOtrial) < Cost(BestSolution) Then

BestSolution := SOtrial;
 Else

Increment number of empty iterations
 EndIf
 SO:=SOtrial;

 EndWhile
End.

5.3. Experimental Results

Experiments were carried out on the ISCAS’85 benchmark cir-
cuits for comparing Algorithm 5.1 and Algorithm 5.2, and for in-
vestigating the efficiency of the Tabu search method for optimiz-
ing the hybrid BIST technique. Experiments were carried out
using the Turbo Tester toolset [86], [156] for deterministic test
pattern generation, fault simulation, and test set compaction.
The results are presented in Table 5.3 and illustrated by several
diagrams [88], [89], [160], [161].

For calculating the total cost of hybrid BIST we used the for-
mula CTOTAL = αL + βS. For simplicity, we assume here that α = 1,
and β = B where B is the number of bytes of an input test vector
to be applied to the CUT. Hence, to carry out some experimental
work for demonstrating the feasibility and efficiency of the fol-
lowing algorithms, we use, as the cost units the number of clocks
used for pseudorandom test generation and the number of bytes
in the memory needed for storing the precomputed deterministic
test patterns.

HYBRID BIST COST MINIMIZATION

 99

In the columns of Table 5.3 the following data is depicted:
ISCAS’85 benchmark circuit name, L - length of the pseudoran-
dom test sequence, FC - fault coverage, S - number of test pat-
terns generated by deterministic ATPG to be stored, CT – total
cost of the hybrid BIST, T1 and T2 - the time (sec) needed for cal-
culating the cost curve by Algorithm 5.1 and Algorithm 5.2, T3 –
the time (sec) to find the minimal cost by using Tabu search. TS –
the number of iterations in Tabu search, Acc – accuracy of the
Tabu search solution in percentage compared to the exact solu-
tion found from the full cost curve. The initial pseudorandom se-
quence with length L was obtained by executing the LFSR until
the same fault coverage as for the ATPG-based solution was
reached or no new faults were detected after predetermined
amount of time (the number denotes the last efficient pattern).
The fault coverage of the final hybrid test set is the same as for
the pure deterministic test set.

The results given in Table 5.3 demonstrate the high efficiency
(in number of required test vectors) of the hybrid BIST solution
over pure pseudorandom or deterministic approaches. As ex-
pected, the optimal cost was found fastest with using the Tabu
search algorithm, while the accuracy was not less than 97,2% for
the whole family of ISCAS’85 benchmark circuits. In the follow-
ing, the experimental results will be explained further.

For the Tabu search method the investigation was carried out
to find the best initial solution, the step defining N(SO), the size
of V* and the size of the Tabu list for using the Tabu strategy in
a most efficent way.

The efficiency of the search depends significally on the step
size defining the neighborhood N(SO). Based on the
experimental results, the charts of dependancy of the overall
estimation accuracy and of the overall speedup on step size were
compozed and given in Figure 5.1 and Figure 5.2. Analyzing re-
sults depicted in those figures led to the conclusion that the most
favorable step size can be considered as 3% of the number of

CHAPTER 5

100

efficient clocks, where the average estimation accuracy is the
highest. Although a larger step size would result in a speedup, it
was considered impractical because of the rapid decrease in the
cost estimation accuracy.

Table 5.3. Experimental Results.

Pseudorandom
test

Deterministic
test

Hybrid
test

Circuit

L FC S FC L S CT

C432 780 93.0 80 93.0 91 21 196
C499 2036 99.3 132 99.3 78 60 438
C880 5589 100.0 77 100.0 121 48 505

C1355 1522 99.5 126 99.5 121 52 433
C1908 5803 99.5 143 99.5 105 123 720
C2670 6581 84.9 155 99.5 444 77 2754
C3540 8734 95.5 211 95.5 297 110 1067
C5315 2318 98.9 171 98.9 711 12 987
C6288 210 99.3 45 99.3 20 20 100
C7552 18704 93.7 267 97.1 583 61 2169

Calculation cost

Circuit T1 T2 T3 Ts

Acc
(%)

C432 1632 21 2.85 11 100.0
C499 74 3 0.50 19 100.0
C880 17 2 0.26 15 99.7

C1355 133 5 0.83 18 99.5
C1908 2132 25 3.83 28 100.0
C2670 230 13 0.99 9 99.1
C3540 22601 122 7.37 16 100.0
C5315 2593 38 1.81 12 97.2
C6288 200 6 1.70 15 100.0
C7552 15004 129 3.70 8 99.7

HYBRID BIST COST MINIMIZATION

 101

96,50

97,00

97,50

98,00

98,50

99,00

99,50

100,00

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Step size (% of the number of resultative clocks)

Figure 5.1. Dependency of estimation accuracy from
neighborhood step size.

0

2

4

6

8

10

12

14

16

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Step size (% of the number of resultative clocks)

Figure 5.2. Dependency of average speedup from
neighborhood size.

CHAPTER 5

102

In Figure 5.3, the curves of the cost CGEN =L (denoted on Figure
5.3 as T) for on-line pseudorandom test generation, the cost CMEM
= Bk*S (denoted as M) for storing the test patterns, the number
|RNOT| of not detected faults after applying the pseudorandom test
sequence (denoted as Fr), and the total cost function CTOTAL are
depicted for selected benchmark circuits C432, C499, C880,
C1908, C3540 and C7552 (Sc = 0 is used as a constant in the cost
function formula).

C432

C499

Figure 5.3. Cost curves of hybrid BIST for some ISCAS’85
benchmark circuits.

HYBRID BIST COST MINIMIZATION

 103

C880

C1908

Figure 5.3. Cost curves of hybrid BIST for some ISCAS’85
benchmark circuits (cont.).

CHAPTER 5

104

C3540

C7552

Figure 5.3. Cost curves of hybrid BIST for some ISCAS’85
benchmark circuits (cont.).

HYBRID BIST COST MINIMIZATION

 105

C432 C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pseudorandom

Deterministic

Figure 5.4. Percentage of test patterns in the optimized
hybrid test sets compared to the original test sets.

In Figure 5.4 the amount of pseudorandom and deterministic
test patterns in the optimal hybrid BIST solution is compared to
the sizes of pseudorandom and deterministic test sets when only
either of these sets is used. In the typical cases, less than half of
the deterministic vectors and only a small fraction of pseudoran-
dom vectors are needed, while the maximum achievable fault
coverage is guaranteed and achieved.

Figure 5.5 compares the costs of different approaches using for
Hybrid BIST cost calculation Equation (4.1) with the parameters
α = 1, and β = B where B is the number of bytes of the input test
vector to be applied on the CUT. As pseudorandom test is usually
the most expensive method under this assumption of coefficient
values (α,β), it has been selected as a reference and given value
100%. The other methods give considerable reduction in terms of
cost and as it can be seen, the hybrid BIST approach has signifi-

CHAPTER 5

106

cant advantage compared to the pure pseudorandom or stored
test approach in most of the cases.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C432 C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552

Pseudorandom Test Cost

Deterministic Test Cost

Hybrid BIST Cost

Figure 5.5. Cost comparison of different methods.
Cost of pseudorandom test is taken as 100%.

5.4. Conclusions

In this chapter a hybrid BIST cost optimization for single-core
designs has been presented. For selecting the optimal switching
moment from the pseudorandom test mode to the stored test
mode two algorithms were proposed for calculating the complete
cost curve of the different hybrid BIST solutions. The first one is

HYBRID BIST COST MINIMIZATION

 107

a straightforward method based on using traditional fault simu-
lation and test pattern generation. The second one is based on
fault table manipulations and uses test compaction. A Tabu
search algorithm was also developed to reduce the number of cal-
culations in search for an efficient solution for hybrid BIST. The
experimental results demonstrate the feasibility of the approach
and the efficiency of the fault table based cost calculation method
combined with Tabu search for finding optimized cost-effective
solutions for hybrid BIST.

CHAPTER 6

108

HYBRID BIST TIME MINIMIZATION

 109

Chapter 6

Hybrid BIST Time
Minimization for
Systems-on-Chip

6.1. Introduction

In the previous sections we have described the basic principles of
hybrid BIST and discussed methods for test cost calculation and
optimization for individual cores in isolation. In this chapter, we
concentrate on hybrid BIST optimization for multi-core designs.
As total cost minimization for multi-core systems is an extremely
complex problem and is rarely used in reality, the main empha-
sis here is on test time minimization under memory constraints
with different test architectures. The memory constraints can be
seen as limitations of on-chip memory or ATE memory, where
the deterministic test set will be stored, and therefore with high
practical importance. We will concentrate on two large classes of

CHAPTER 6

110

test architectures. In one case we assume that every core is
equipped with its own pseudorandom pattern generator and only
deterministic patterns have to be transported to the cores. In the
second case we assume test pattern broadcasting, where both
pseudorandom and deterministic test patterns have to be trans-
ported to the cores under test. For both architectures we will de-
scribe test-per-clock as well as test-per-scan application schemes.

6.2. Parallel Hybrid BIST Architecture

We start with a test architecture where every core has its own
dedicated BIST logic that is capable of producing a set of inde-
pendent pseudorandom test patterns, i.e. the pseudorandom test
sets for all the cores can be carried out simultaneously. At the
system level, however, only one test access bus is assumed, thus
the deterministic tests can only be carried out for one core at a
time. Such architecture assumes that all patterns from the same
test set (pseudorandom or deterministic) for the same CUT have
the same test application time, thus simplifying test cost calcula-
tions. An example of a multi-core system, with such a test archi-
tecture is given in Figure 6.1.

In order to explain the test time minimization problem for
multi-core systems, let us use an example design, consisting of 5
cores, each core as a different ISCAS benchmark (Figure 6.1).
Using the hybrid BIST optimization methodology, described in
Chapter 5, we can find the optimal combination between pseudo-
random and deterministic test patterns for every individual core
(Figure 6.2). Considering the assumed test architecture, only one
deterministic test set can be applied at any given time, while any
number of pseudorandom test sessions can take place in parallel.
To enforce the assumption that only one deterministic test can be
applied at a time, a simple ad-hoc scheduling method can be
used. The result of this schedule defines the starting moments
for every deterministic test session, the memory requirements,

HYBRID BIST TIME MINIMIZATION

 111

and the total test length t for the whole system. This situation is
illustrated in Figure 6.2.

SoC

 C3540

 C1908 C880 C1355

Embedded Tester
 C2670

Test access
mechanismBIST BIST

BISTBISTBIST

Test
Controller

Tester
Memory

Figure 6.1. An example of a core-based system, with
independent BIST resources.

0 100 200 300 400 500

c3540

c1355

c2670

c880

c1908
Random
Idle
Deterministic

Core Random Det.
C1908 105 123
C880 121 48
C2670 444 77
C1355 121 52
C3540 297 110

clock cycles
t

Figure 6.2. Ad-hoc test schedule for hybrid BIST of the
core-based system example.

As it can be seen from Figure 6.2, the solution where every in-
dividual core has the best possible combination between pseudo-
random and deterministic patterns usually does not lead to the

CHAPTER 6

112

best system-level test solution. In this example, we have illus-
trated three potential problems:

• The total test length of the system is determined by the sin-
gle longest individual test set, while other tests may be sub-
stantially shorter;

• The resulting deterministic test sets do not take into ac-
count the memory requirements, imposed by the size of the
on-chip memory or the external test equipment;

• The proposed test schedule may introduce idle periods, due
to the scheduling conflicts between the deterministic tests of
different cores;

There are several possibilities for improvement. For example,
the ad-hoc solution in Figure 6.2 can easily be improved by using
a better scheduling strategy. This, however, does not necessarily
lead to a significantly better solution as the ratio between pseu-
dorandom and deterministic test patterns for every individual
core is not changed. Therefore, we have to explore different com-
binations between pseudorandom and deterministic test patterns
for every individual core in order to find a solution where the to-
tal test length of the system is minimized and the memory con-
straints are satisfied. In the following sections, we will define
this problem more precisely, and describe a fast iterative algo-
rithm for calculating the optimal combination between different
test sets for the whole system.

6.2.1. Basic Definitions and Problem Formulation

Let us assume that a system S consists of n cores C1, C2, …, Cn.
For every core Ck ∈ S a complete sequence of deterministic test
patterns TDF

k and a complete sequence of pseudorandom test
patterns TPF

k can be generated.

Definition 6.1: A hybrid BIST set THk = {TPk, TDk} for a core
Ck is a sequence of tests, constructed from a subset TPk ⊆ TPF

k of
the pseudorandom test sequence, and a deterministic test se-

HYBRID BIST TIME MINIMIZATION

 113

quence TDk ⊆ TDF
k . The sequences TPk and TDk complement

each other to achieve the maximum achievable fault coverage.

Definition 6.2: A pattern in a pseudorandom test sequence is
called efficient if it detects at least one new fault that is not de-
tected by the previous test patterns in the sequence. The ordered
sequence of efficient patterns form an efficient pseudorandom
test sequence TPEk = (P1, P2,…,Pn) ⊆ TPk. Each efficient pattern Pj
∈ TPEk is characterized by the length of the pseudorandom test
sequence TPk, from the start to the efficient pattern Pj, including
Pj. An efficient pseudorandom test sequence TPEk, which in-
cludes all efficient patterns of TPF

k is called full efficient pseudo-
random test sequence and denoted by TPEF

k .

Definition 6.3: The cost of a hybrid test set THk for a core Ck
is determined by the total length of its pseudorandom and de-
terministic test sequences, which can be characterized by their
costs, COSTP,k and COSTD,k respectively:

kkkkDkPkT TDTPCOSTCOSTCOST ϕσ +=+= ,,,
 (6.1)

and by the cost of recourses needed for storing the deterministic test
sequence TDk in the memory:

., kkkM TDCOST γ= (6.2)

The parameters σ and ϕk (k=1, 2, …, n) can be introduced by the
designer to align the application times of different test sequences.
For example, when a test-per-clock BIST scheme is used, a new test
pattern can be generated and applied in each clock cycle and in this
case σ = 1. The parameter ϕk for a particular core Ck is equal to the
total number of clock cycles needed for applying one deterministic
test pattern from the memory. In a special case, when deterministic
test patterns are applied by an external test equipment, application
of deterministic test patterns may be up to one order of magnitude
slower than applying BIST patterns. The coefficient γk is used to
map the number of test patterns in the deterministic test sequence
TDk into the memory recourses, measured in bits.

CHAPTER 6

114

Definition 6.4: When assuming the test architecture de-
scribed above, a hybrid test set TH = {TH1, TH2, …, THn} for a
system S = {C1, C2, …, Cn} consists of hybrid tests THk for each
individual core Ck, where the pseudorandom components of TH
can be scheduled in parallel, whereas the deterministic compo-
nents of TH must be scheduled in sequence due to the shared
test resources.

Definition 6.5: J = (j1, j2,…, jn) is called the characteristic vec-
tor of a hybrid test set TH = {TH1, TH2, …, THn}, where jk =
|TPEk| is the length of the efficient pseudorandom test sequence
TPEk ⊆ TPk ⊆ THk.

According to Definition 6.2, for each jk corresponds a pseudo-
random subsequence TPk(jk) ⊆ TPF

k, and according to Definition
6.1, any pseudorandom test sequence TPk(jk) should be comple-
mented with a deterministic test sequence, denoted with TDk(jk),
that is generated in order to achieve the maximum achievable
fault coverage. Based on this we can conclude that the character-
istic vector J determines entirely the structure of the hybrid test
set THk for all cores Ck ∈ S.

Definition 6.6: The test length of a hybrid test TH = {TH1,
TH2, …, THn} for a system S = {C1, C2, …, Cn} is given by:

}.),(max{max kk
k

kkkkT TDTDTPCOST ϕϕσ ∑+= (6.3)

The total cost of resources needed for storing the patterns from
all deterministic test sequences TDk in the memory is given by:

.,∑=
k

kMM COSTCOST (6.4)

Definition 6.7: Let us introduce a generic cost function
COSTM,k = fk(COSTT,k) for every core Ck ∈ S, and an integrated
generic cost function COSTM = fk(COSTT) for the whole system S.

The functions COSTM,k = fk(COSTT,k) will be created in the fol-
lowing way. Let us have a hybrid BIST set THk(j) = {TPk(j),
TDk(j)} for a core Ck with j efficient patterns in the pseudorandom

HYBRID BIST TIME MINIMIZATION

 115

test sequence. By calculating the costs COSTT,k and COSTM,k for
all possible hybrid test set structures THk(j), i.e. for all values j =
1, 2, …, ⏐TPEF

k⏐, we can create the cost functions COSTT,k =
fT,k(j), and COSTM,k = fM,k(j). By taking the inverse function j =
f -1

T,k(COSTT,k), and inserting it into the fM,k(j) we get the generic
cost function COSTM,k = fM,k(f

-1
T,k(COSTT,k)) = fk(COSTT,k) where the

memory costs are directly related to the lengths of all possible
hybrid test solutions.

The integrated generic cost function COSTM=f(COSTT) for the
whole system is the sum of all cost functions COSTM,k =
fk(COSTT,k) of individual cores Ck ∈ S.

From the function COSTM = f(COSTT) the value of COSTT for
every given value of COSTM can be found. The value of COSTT
determines the lower bound of the length of the hybrid test set
for the whole system. To find the component jk of the characteris-
tic vector J, i.e. to find the structure of the hybrid test set for all
cores, the equation fT,k(j)= COSTT should be solved.

The objective here is to find a shortest possible (min(COSTT))
hybrid test sequence THOPT when the memory constraints are not
violated i.e., COSTM ≤ COSTM,LIMIT.

6.2.2. Test Set Generation Based on Cost Estimates

By knowing the generic cost function COSTM = f(COSTT), the to-
tal test length COSTT at any given memory constraint COSTM ≤
COSTM,LIMIT can be found in a straightforward way. However, the
procedure to calculate the cost functions COSTD,k(j) and
COSTM,k(j) is very time consuming, since it assumes that the de-
terministic test set TDk for each j = 1, 2, …, |TPEF

k| has to be
available. This assumes that after every efficient pattern Pj ∈
TPEk ⊆ TPk, j = 1, 2, …, |TPEF

k| a set of not yet detected faults
FNOT,k(j) should be calculated. This can be done by repetitive use
of the automatic test pattern generator or by systematically ana-
lyzing and compressing the fault tables for each j (see Chapter
5). Both algorithms are time-consuming and therefore not feasi-

CHAPTER 6

116

ble for larger designs. To overcome the complexity explosion
problem we propose an iterative algorithm, where costs COSTM,k
and COSTD,k for the deterministic test sets TDk can be found
based on estimates. The estimation method is based on fault cov-
erage figures and does not require accurate calculations of the
deterministic test sets for not yet detected faults FNOT,k(j).

In the following we will use FDk(i) and FPEk(i) to denote the
fault coverage figures of the test sequences TDk(i) and TPEk(i),
respectively, where i is the length of the test sequence.

Procedure 6.1: Estimation of the length of the deterministic
test set TDk.

1. Calculate, by fault simulation, the fault coverage functions
FDk(i), i = 1, 2, …, |TDF

k|, and FPEk(i), i = 1, 2, …, |TPEF
k|.

The patterns in TDF
k are ordered in such a way that each

pattern put into the sequence contributes with maximum in-
crease in fault coverage.

2. For each i* ≤ |TPEF
k|, find the fault coverage value F* that

can be reached by a sequence of patterns (P1, P2, …, Pi*) ⊆
TPEk (see Figure 6.3).

3. By solving the equation FDk(i) = F*, find the maximum inte-
ger value j* that satisfies the condition FDk(j*) ≤ F*. The
value of j* is the length of the deterministic sequence TDk
that can achieve the same fault coverage F*.

4. Calculate the value of |TDE
k(i*)| = |TDF

k| - j* which is the
number of test patterns needed from the TDF

k to reach to the
maximum achievable fault coverage.

The value |TDE
k(i*)|=|TDF

k|- j*, calculated by Procedure 6.1, can
be used to estimate the length of the deterministic test sequence
TDk in the hybrid test set THk = {TPk, TDk} with i* efficient test
patterns in TPk, (|TPEk|= i*).

By finding |TDE
k(j)| for all j = 1, 2, …, |TPEF

k| we get the cost
function estimate COSTE

D,k(j). Using COSTE
D,k(j), other cost func-

tion estimates COSTE
M,k(j), COSTE

T,k(j) and COSTE
M,k =

HYBRID BIST TIME MINIMIZATION

 117

fk
E(COSTE

T,k) can be created according to the Definition 6.3 and
Definition 6.7.

Finally, by adding cost estimates COSTE
M,k = fk

E(COSTE
T,k) of all

cores, we get the hybrid BIST cost function estimate COSTE
M =

fE(COSTE
T) for the whole system.

i

F

F D k (i) F P E k (i)

i *

F*

| T D E
k (i*) |

100%

| T D F
k | j*

Figure 6.3. Estimation of the length of the deterministic
test sequence.

This estimation mechanism is illustrated on Figure 6.4. It de-
picts fault simulation results of both, pseudorandom (TP) and de-
terministic (TD), test sets for a given core. The length of the
pseudorandom sequence has to be only so long as potentially in-
teresting. By knowing the length of the complete deterministic
test set and fault coverage figures for every individual pattern
we can estimate the size of the additional deterministic test set
for any length of the pseudorandom test sequence, as illustrated
in the Figure 6.4. Here we can see that for a given core 60 de-
terministic test cycles are needed to obtain the same fault cover-
age as 524 pseudorandom test cycles and it requires additional
30 deterministic test cycles to reach 100% fault coverage. Based
on this information we assume, that if we will apply those 30 de-

CHAPTER 6

118

terministic test cycles on top of the 524 pseudorandom cycles, we
can obtain close to the maximum fault coverage. This assump-
tion is the basis for our cost estimation procedure. Obviously,
this cannot be used as a final solution, but as we will demon-
strate, it can be used as a good starting point for test time mini-
mization algorithms.

|TP| FC% |TD| FC%
1 21.9 1 43.3
2 34.7 2 45.6
 … …

524 97.5 60 97.5
 … …

1000 98.9 90 100

Figure 6.4. Estimation of the length of the deterministic
test sequence (core s1423).

In order to demonstrate the feasibility of the proposed estima-
tion methodology, we performed experiments with all designs
from the ISCAS85 benchmark family. Some of these results are
illustrated in Figure 6.5. More results can be found in [93]. In
these charts we have depicted the memory requirement (the size
of the deterministic test set) for every pseudorandom test length.
Obviously – the longer the pseudorandom test sequence is, the
smaller is the memory requirement. We have compared the pro-
posed estimate against the real memory cost. This has been ob-
tained by the repetitive use of the ATPG (see Chapter 5). As it
can be seen from the results, the proposed estimation methodol-
ogy gives very good estimate, mainly in the situations, when the
hybrid test set contains smaller amount of pseudorandom test
patterns.

60

524

30

476

0 200 400 600 800 1000

Pseudorandom Test Sequence

Deterministic Test Sequence

HYBRID BIST TIME MINIMIZATION

 119

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000

Number of PR Patterns

M
em

or
y

Real

Estimate

c499

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 900 1000

Number of PR Patterns

M
em

or
y

Real

Estimate

c1355

Figure 6.5. Estimation accuracy.

CHAPTER 6

120

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400
Number of PR Patterns

M
em

or
y

Real

Estimate

c1908

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800

Number of PR Patterns

M
em

or
y

Real

Estimate

c2670

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000 2500 3000

Number of PR Patterns

M
em

or
y

Real

Estimate

c3540

Figure 6.5. Estimation accuracy (cont.).

HYBRID BIST TIME MINIMIZATION

 121

6.2.3. Test Length Minimization Under Memory
Constraints

As described above, the exact calculations for finding the cost of
the deterministic test set COSTM,k = fk(COSTT,k) are very time-
consuming. Therefore, we will use the cost estimates, calculated
by Procedure 6.1 in the previous section, instead. Using esti-
mates can give us a close to minimal solution for the test length
of the hybrid test at given memory constraints. After obtaining
this solution, the cost estimates can be improved and another,
better solution can be calculated. This iterative procedure will be
continued until we reach the final solution.

Procedure 6.2: Test length minimization.

1. Given the memory constraint COSTM,LIMIT, find the estimated
total test length COSTE*

T as a solution to the equation
fE(COSTE

T) = COSTM,LIMIT.

2. Based on COSTE*
T, find a candidate solution J* = (j*1, j*2,…,

j*n) where each j*k is the maximum integer value that satis-
fies the equation COSTE

T,k(j*k) ≤ COSTE*
T.

3. To calculate the exact value of COST*M for the candidate so-
lution J*, find the set of not yet detected faults FNOT,k(j*k) and
generate the corresponding deterministic test set TD*k by us-
ing an ATPG algorithm.

4. If COST*M = COSTM,LIMIT, go to the Step 9.

5. If the difference |COST*M - COSTM,LIMIT| is bigger than that in
the earlier iteration make a correction ∆t = ∆t/2, and go to
Step 7.

6. Calculate a new test length COSTE,N
T from the equation

fE
k(COSTE

T) = COST*
M, and find the difference ∆t = COSTE,*

T -
COSTE,N

T .

7. Calculate a new cost estimate COSTE,*
T = COSTE,*

T + ∆t for
the next iteration.

8. If the value of COSTE,*
T is the same as in an earlier iteration,

go to Step 9, otherwise go to Step 2.

CHAPTER 6

122

9. END: The vector J* = (j*1, j*2,…, j*n) is the solution.

To illustrate the above procedure, in Figure 6.6 and Figure 6.7
an example of the iterative search for the shortest length of the
hybrid test is given. Figure 6.6 represents all the basic cost
curves COSTE

D,k(j), COSTE
P,k(j), and COSTE

T,k(j), as functions of
the length j of TPEk where jmin denotes the optimal solution for a
single core hybrid BIST optimization problem [88].

COST P,k

COST

 j min

COST

E*
T

j* k

Solution

COST T,k
E

COST D,k
E

j

Figure 6.6. Cost curves for a given core Ck.

Figure 6.7 represents the estimated generic cost function
COSTE

M = fE(COSTE
T) for the whole system. At first (Step 1), the

estimated COSTE*
T for the given memory constraints is found

(point 1 on Figure 6.7). Then (Step 2), based on COSTE*
T the

length j*k of TPEk for the core Ck in Figure 6.6 is found. This pro-
cedure (Step 2) is repeated for all the cores to find the character-
istic vector J* of the system as the first iterative solution. After
that the real memory cost COSTE*

M is calculated (Step 3, point 1*
in Figure 6.7). As we see in Figure 6.7 the value of COSTE*

M in
point 1* violates the memory constraints. The difference ∆t1 is
determined by the curve of the estimated cost (Step 6). After cor-

HYBRID BIST TIME MINIMIZATION

 123

rection, a new value of COSTE*
T is found (point 2 on Figure 6.7).

Based on COSTE*
T , a new J* is found (Step 2), and a new

COSTE*
M is calculated (Step 3, point 2* in Figure 6.7). An addi-

tional iteration via points 3 and 3* can be followed in Figure 6.7.

COST T

COST M

Real cost

Estimated
cost

Memory
constraint

1

1*

2
3

2*

3*

∆ t 1 Correction for ∆ t 1

∆ M

∆ t 2 Correction for ∆ t2

E

E

Figure 6.7. Minimization of the test length.

It is easy to see that Procedure 6.2 always converges. By each
iteration we get closer to the memory constraints level, and also
closer to the minimal test length at given constraints. However,
the solution may be only near-optimal, since we only evaluate so-
lutions derived from the estimated cost functions.

6.2.4. Experimental Results

We have performed experiments with several systems composed
from different ISCAS benchmarks as cores. The results are pre-
sented in Table 6.1.

CHAPTER 6

124

In Table 6.1 we compare our approach where the test length is
found based on estimates, with an approach where deterministic
test sets have been found by manipulating the fault tables for
every possible switching point between pseudorandom and de-
terministic test patterns. As it can be seen from the results, our
approach can give significant speedup (more than one order of
magnitude), while retaining acceptable accuracy (biggest devia-
tion is less than 9% from the fault table based solution, in aver-
age 2.4%).

Table 6.1. Experimental results with combinatorial cores.

Total Test
Length (clocks)

CPU Time1

(seconds)
Total Test Length

(clocks)
CPU Time
(seconds)

20 000 222 223 199.78

10 000 487 487 57.08

7 000 552 599 114.16

14 000 207 209 167.3

5 500 540 542 133.84

2 500 1017 1040 200.76

7 000 552 586 174.84

3 500 3309 3413 291.40

2 000 8549 8 556 407.96

Our approach

S1 6 3772.84

System Number of
cores

Memory
Constraint

(bits)

Fault table based approach

S2 7 3433.10

S3 5 10143.14

1 CPU time for calculating all possible hybrid BIST solutions.

In Figure 6.8 we present the estimated cost curves for the in-
dividual cores and the estimated and real cost curves for one of
the systems with 7 cores (different ISCAS85 benchmarks). We
also show in this picture a test solution point for this system un-
der given memory constraint that has been found based on our
algorithm. In this example we have used a memory constraint
MLIMIT = 5500 bits. The final test length for this memory con-
straint is 542 clock cycles and that gives us a test schedule de-
picted in Figure 6.9. In Figure 6.10 we show another test sched-
ule for the same system, when the memory constraints are
different (MLIMIT = 14 000 bits).

HYBRID BIST TIME MINIMIZATION

 125

F
ig

u
re

 6
.8

. T
h

e
fi

n
al

 t
es

t
so

lu
ti

on
 fo

r
th

e
sy

st
em

 S
2

(M
L

IM
IT

 =
 5

 5
00

).

0

20
00

40
00

60
00

80
00

M
em

or
y

us
ag

e:
 5

35
7

bi
ts

10
00

15
00

50

55
00

54
2

Memory

M
em

or
y

us
ag

e:

13
53

48
0

10
25

36
3

21
36 0 0

C
or

e:
c4

99

c8
80

c1
35

5
c1

90
8

c5
31

5
c6

28
8

c4
32

 D
et

. T
es

t
le

ng
th

:
33 8 25 11 12 0 0

To
ta

l T
es

t L
en

gh
t (

cl
oc

ks
)

E
st

im
at

ed
 C

os
t

R
ea

l C
os

t
C

os
t e

st
im

at
es

fo
r i

nd
iv

id
ua

l c
or

es

M
em

or
y

C
on

st
ra

in
t

CHAPTER 6

126

56

31

8

19

33

25

12

11

8

453

486

511

523

534

542

542

0 100 200 300 400 500

c499

c1355

c5315

c1908

c880

c6288

c432
Deterministic

Pseudorandom

Total Test Length: 542

Figure 6.9. Test Schedule for the system S2 (MLIMIT = 5 500).

136

86

40

19

48

50

46

21

13

25

6

4

4

2

73

123

169

205

203

190

0 50 100 150 200

c499

c1355

c5315

c1908

c880

c6288

c432 Deterministic

Pseudorandom

Total Test Length:
209

Figure 6.10. Test Schedule for the system S2 (MLIMIT = 14 000).

This approach can easily be extended to systems with full-scan
sequential cores. The main difference lies in the fact that in case
of a test-per-scan scheme, the test application is done via scan
chains and one test cycle takes longer than one clock cycle. This
is valid for both pseudorandom and deterministic test. As every

HYBRID BIST TIME MINIMIZATION

 127

core contains scan chains with different lengths the analysis pro-
cedure has to account for this and switching from one core to an-
other has to respect the local, core-level test cycles. In the follow-
ing, the experimental results with systems where every
individual core is equipped with Self-Test Using MISR and Par-
allel Shift Register Sequence Generator (STUMPS) [12] are pre-
sented [91].

While every core has its own STUMPS architecture, at the
system level we assume the same architecture as described ear-
lier: Every core’s BIST logic is capable of producing a set of inde-
pendent pseudorandom test patterns, i.e. the pseudorandom test
sets for all the cores can be carried out simultaneously. The de-
terministic tests, on the other hand, can only be carried out for
one core at a time, which means only one test access bus at the
system level is needed. An example of a multi-core system with
such a test architecture is given in Figure 6.11.

Embedded Tester

Test
Controller

Tester
Memory

Scan Path

Scan Path

Scan Path

Scan Path

LF
SR

LFSR

Scan Path

Scan Path

Scan Path

Scan Path

LFSR

LF
SR

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

LF
SR

LF
SR

LFSR

LFSR

s838s1423

s3271 s298

SoC

TAM

Figure 6.11. A core-based system example with the STUMPS
test architecture.

CHAPTER 6

128

Experiments have been performed with several systems com-
posed of different ISCAS’89 benchmarks as cores. All cores have
been redesigned to include full scan path (one or several). The
STUMPS architecture was simulated in software and for deter-
ministic test pattern generation a commercial ATPG tool was
used. The results are presented in Table 6.2.

Table 6.2. Experimental results with STUMPS architecture.

1 CPU time for calculating all possible hybrid BIST solutions.

In Table 6.2 we compare our approach where the test length is
found based on estimates, with an exact approach where deter-
ministic test sets have been found by a brute force method (re-
petitive use of test pattern generator) for every possible switch-
ing point between pseudorandom and deterministic test
patterns. As it can be seen from the results, our approach can
give significant speedup (several orders of magnitude), while re-
taining very high accuracy.

Exhaustive
Approach

Our
Approach

SOC
Number
of Cores

Memory
Constraint

(bits)

Total
Test

Length
(clocks)

CPU
Time
(sec.)1

Total
Test

Length
(clocks)

CPU
Time
(sec.)

25 000 5750 5775 270
22 000 7100 7150 216

J

6

19 000 9050

57540

9050 335
22 000 5225 5275 168
17 000 7075 7075 150

K

6

13 000 9475

53640

9475 427
15 000 3564 3570 164
13 500 4848 4863 294

L

6

12 200 9350

58740

9350 464

HYBRID BIST TIME MINIMIZATION

 129

6.3. Broadcasting Based Hybrid BIST
Architecture

In the previous section we analyzed systems where every core
has its own dedicated BIST logic that is capable of producing a
set of independent pseudorandom test patterns. This approach
can be extended for multi-core systems where both combinatorial
cores and sequential cores with full scan are used. This however
may lead to high area overhead and may require redesign of the
cores, as not all cores may be equipped from the beginning with
self-test structures. Therefore, we have proposed a novel self-test
architecture that is based on test pattern broadcasting [162]. In
this approach, only a single pseudorandom test pattern genera-
tor is used and all test patterns are broadcasted simultaneously
for all cores in the system. These patterns will be complemented
with dedicated deterministic patterns for every individual core, if
needed. These deterministic test vectors are generated during
the development process and are stored in the system.

The deterministic test sequence is assembled, in general, from
deterministic test sequences for each individual core TD = {TD1,
TD2,…, TDn}. Testing of all cores is carried out in parallel, i.e. all
pseudorandom patterns as well as each deterministic test se-
quence TDk is applied to all cores in the system. The determinis-
tic test sequence TDk is a deterministic test sequence generated
only by analyzing the core Ck ∈ S. For the rest of the cores Cj ∈ S,
1 ≤ j ≠ k ≤ n this sequence can be considered as a pseudorandom
sequence. This form of parallel testing is usually referred to as
test pattern broadcasting [114]. The width of the hybrid test se-
quence TH is equal to MAXINP=max{INPk}, k=1, 2, …, n, where
INPk is the number of inputs of the core Ck . For each determi-
nistic test set TDk, where INPk < MAXINP, the not specified bits
will be completed with pseudorandom data, so that the resulting
test set TDk* can be applied in parallel to the other cores in the
system as well. An example of such a hybrid test set is presented
in Figure 6.12.

CHAPTER 6

130

Pseudorandom patterns

Pseudorandom patterns

Deterministic patterns

LP LD

Test
length

M
A

X
IN

P

LDk

Figure 6.12. Hybrid test set for test pattern broadcasting.

In Figure 6.12, we denote with LP the length of the pseudo-
random test set, with LD the length of the entire deterministic
test set, and with LDk the length of the deterministic test set of
core Ck. Since some of the cores may be 100% testable by using
only the pseudorandom test sequence and the deterministic test
sequences of other cores, the deterministic test sequence TDk for
such a core Ck is not needed and LDk = 0.

The memory size for storing the deterministic part of the hy-
brid test set is given by the following formula:

∑
=

=
n

k
kkM INPLDCOST

1

)*((6.5)

The main problem is to minimize the total length

∑
=

+=
n

k
kLDLPLH

1

 (6.6)

of the hybrid test set TH = {TP, TD} under given memory con-
straint COSTM ≤ COSTM,LIMIT.

The problem of minimizing the hybrid BIST length at the
given memory constraints for parallel multi-core testing is ex-
tremely complex. The main reasons of this complexity are the fol-
lowing:

• The deterministic test patterns of one core are used as
pseudorandom test patterns for all other cores; unfortu-
nately there will be n*n relationships for n cores to analyze

HYBRID BIST TIME MINIMIZATION

 131

to find the optimal combination; on the other hand the de-
terministic test sets are not readily available (see Algorithm
6.5, later in this section) and are calculated only during the
analysis process;

• For a single core an optimal combination of pseudorandom
and deterministic patterns can be found by rather straight-
forward algorithms; but as the optimal time moment for
switching from pseudorandom to deterministic testing will
be different for different cores the existing methods cannot
be used and the parallel testing case is considerably more
complex.

• For each core the best initial state of the LFSR can be found
experimentally, but to find the best LFSR for testing all
cores in parallel is a very complex and time consuming task.

To overcome the high complexity of the problem we will pro-
pose at first a straightforward algorithm for calculating TP and
TD, where we neglect the optimal solutions for individual cores
in favor of finding a near-optimal solution for the whole system.
Thereafter we will propose a more sophisticated algorithm that
uses test cost estimates to find the appropriate initial pseudo-
random sequence TPINITIAL, and based on the fault coverage of
every individual core Ck, achieved by TP, finds an optimized
(compacted) deterministic test sequence TDk, thus reducing sig-
nificantly the length of the final hybrid test set. In the following,
the algorithms will be described in detail.

6.3.1. Straightforward Approach

To cope with the high complexity of the problem, we solve the
test time minimization problem in three consecutive steps: first,
we find an as good as possible initial state for the LFSR for all
cores; second, we generate a deterministic test sequence if the
100% fault coverage cannot be reached by a pure pseudorandom
test sequence for all cores or the required pseudorandom test se-
quence would be prohibitly long; and third, we update the test

CHAPTER 6

132

sequence by finding the quasi-optimal time moment for switch-
ing from parallel pseudorandom testing to parallel deterministic
testing at the given memory constraint.

Finding the Initial State for the LFSR.

To find the best initial state for the parallel pseudorandom test
generator, we carry out several experiments, with randomly cho-
sen initial states, for all n cores. Within each experiment j we
calculate for each core Ck the weighted length LPk,j * INPk of the
test sequence which achieves the maximal achievable fault cov-
erage for the core Ck. Then, for all the experiments, we calculate
the average weighted length

Lj = k

n

k
jk INPLP

n
*1

1
,∑

=

 (2)

The best pseudorandom sequence is the one that gives the
shortest Lj, j = 1, 2,…, m (m is the total number of experiments).
Let us call this initial pseudorandom test TP0.

Generation of the Initial Deterministic Test Set.

Suppose there are k ≤ n cores where maximal achievable fault
coverage cannot be achieved with TP0 because of the practical
constraints to the pseudorandom test length. Let us denote this
subset of cores with S´⊆ S. Let us denote with FPi

0 the fault cov-
erage of the core Ci, achieved by TP0. Let us order the cores in S´
as C1, C2, …, Ck, so that for each i < j, 1 ≤ i,j ≤ k, we have FPi ≤
FPj. The deterministic patterns can be generated by using the
following algorithm:

Algorithm 6.1:

1. Start with core Ci in S’, i=1.

2. Generate a deterministic test set TD’i to complement TP0 to
increase the fault coverage FPi

0 of the core Ci to 100%.

HYBRID BIST TIME MINIMIZATION

 133

3. Fill the unused bits of TD’i with pseudorandom data by con-
tinuing the pseudorandom test TP0. Denote this updated test
by TDi.

4. Broadcast the test TDi for other cores in S’, fault simulate it
for the cores in S’, and update the fault coverage FPj

0 for
other cores in S’.

5. Take the next core Ci in S’ for i = i + 1.

6. If i > k, END.

7. If FPi
0 = 100%, go to Step 5 else go to Step 2.

By using Algorithm 6.1 an initial hybrid BIST sequence TH0=
{TP0, TD0} can be generated. This sequence guarantees 100%
fault coverage for all cores in the system.

Definition 6.8: A pattern in a joint pseudorandom test se-
quence is called efficient if it detects at least one new fault for at
least one core that is not detected by previous test patterns in
the sequence nor by any pattern in the deterministic test se-
quence.

Optimization of the Test Sequence.

After using Algorithm 6.1 we have obtained a hybrid BIST se-
quence TH0 = {TP0, TD0} with length LH0, consisting of the pseu-
dorandom part TP0 with length LP0, and of the deterministic part
TD0 with length LD0.

In particular cases TD0 may be an empty set.

Let us denote with COSTM(TD0) the memory cost of the deter-
ministic test set TD0. We assume that the memory constraints
are satisfied: COSTM(TD0) < COSTM,LIMIT. In a opposite case, if
COSTM(TD0) > COSTM,LIMIT, the length of the pseudorandom se-
quence has to be extended and the second step of Algorithm 6.1
has to be repeated.

If COSTM(TD0) = COSTM,LIMIT the procedure is finished.

With optimization of TH0 we mean the minimization of the test
length LH0 at the given memory constraints COSTM,LIMIT.

CHAPTER 6

134

It is possible to minimize LH0 by shortening the pseudorandom
sequence, i.e. by moving step-by-step efficient patterns from the
beginning of TP0 to TD0 and by removing all other patterns be-
tween the efficient ones from TP0, until the memory constraints
will become violated, i.e., COSTM(TD0) > COSTM,LIMIT.

We cannot remove patterns with the same goal from the other
end of TP0 because the pseudorandom sequence will be extended
and merged with the deterministic part TD0 to update the free
bits of deterministic test patterns generated by Algorithm 6.1
(step 3). In other words, by removing pseudorandom patterns
from the end of the TP0 would break the continuity of the pseudo-
random test generation process on the border between TP0 and
TD0.

To find the efficient test patterns in the beginning of the TP0

we have to fault simulate the whole test sequence TH0 for all the
cores in the opposite way from the end to the beginning. As a re-
sult of the fault simulation we get for each pattern the incre-
ments of fault coverage in relation to each core ∆ = {∆1, ∆2,…, ∆n,}.
According to Definition 6.8, we call the pattern efficient if

0:,...,2,1, ≠∆=∃ knkk

The optimization procedure will be carried out by using the fol-
lowing algorithm.

Algorithm 6.2:

1. Start with the first pattern Pi from the beginning of TP0, set i
= 1.

2. If Pi is efficient, move it from TP0 to TD0.

3. Recalculate the memory cost
COSTM(TD0) = COSTM(TD0) + COSTM(Pi).

4. If COSTM(TD0) < COSTM,LIMIT go to Step 5,
else if COSTM(TD0) > COSTM,LIMIT go to Step 7,
else go to Step 8.

5. Take the next pattern Pi in TP0, i = i + 1.

HYBRID BIST TIME MINIMIZATION

 135

6. If Pi is not efficient,
 remove it from TP0, and go to Step 5;
else go to Step 2.

7. Remove Pi from TD0 back to TP0. Go to 10.

8. Take the next pattern Pi in TP0, i = i + 1.

9. If Pi is not efficient, remove it from TP0, and go to
Step 8.

10. END: take Pi as the new beginning of the pseudorandom test
sequence TP0 .

As the result of the Algorithm 6.2 we create a new hybrid
BIST sequence TH = {TP,TD} with total length LH and with
lengths LP ≤ LP0 and LD ≥ LD0 for the new pseudorandom and
deterministic parts correspondingly. Due to removal of all non-
efficient patterns LP - LP0 >> LD0 – LD. Hence, the total length
of the new hybrid BIST sequence will be considerably shorter
compared to its initial length, i.e., LH < LH0.

The memory constraints, according to the Algorithm 6.2, re-
main satisfied: COSTM(TD) < COSTM,LIMIT.

The described procedure does not guarantee an optimal test
length, however, it is rather straightforward (similar to a greedy
algorithm) and fast and therefore suitable for use in the design
exploration process. The method can be used to find a cheap
practical solution as well as for a fast reference for comparison
with more sophisticated optimization algorithms.

Experimental Results

We have performed experiments with three systems composed of
different ISCAS benchmarks as cores. The systems are presented
in Table 6.3 (the lists of used cores in each system).

To show the importance of the first step of the procedure, i.e.
the significance of the quality of the initial state of the LFSR, a
comparison of the best and worst initial states of the LFSR for
all 3 experimental systems has been carried out. The lengths of a

CHAPTER 6

136

complete pseudorandom test sequence (100% fault coverage),
starting from the best and worst initial state, are depicted in
Table 6.4. In case of system S3, the pseudorandom sequence was
unacceptably long. Therefore, the pseudorandom test generation
was interrupted and an initial set of deterministic test patterns
was generated in order to achieve 100% fault coverage.

Table 6.3. Systems used for the experiments.

System
 name

S1

6 cores

S2

7 cores

S3

5 cores
c5315 c432 c880
c880 c499 c5315
c432 c880 c3540
c499 c1355 c1908
c499 c1908 c880

c5315 c5315

List of
used
cores

 c6288

Table 6.4. Quality of different pseudorandom sequences.

The best initial state for the
pseudorandom test

The worst initial state for the
pseudorandom test

System
Name Pseudorandom

test length
(clocks)

Deterministic
test length

(clocks)

Pseudorandom
test length

(clocks)

Deterministic
test length

(clocks)

S1 2 520 0 23 482 0
S2 7 060 0 23 482 0
S3 14 524 26 25 000 33

The experimental results for three different systems are pre-
sented in Table 6.5. The lengths of the pseudorandom test se-
quence, the number of additional deterministic test patterns and
the total length of the hybrid test sequence is calculated for three
different memory constraints and for the best and worst initial
states of the LFSR for all three systems. The CPU time needed
for the analysis is presented as well.

HYBRID BIST TIME MINIMIZATION

 137

Table 6.5. Experimental results.

The best initial state for the
pseudorandom sequence System

Name
Number
of cores

Memory
Constraint

(bits)
PR test
length
(clocks)

DET test
length
(clocks)

Total test
length
(clocks)

CPU
time
(sec)

 20 000 85 181 266
S1 6 10 000 232 105 337 187, 64

 5 000 520 55 575
 20 000 92 222 314

S2 7 10 000 250 133 383 718.49
 5 000 598 71 669
 20 000 142 249 391

S3 5 10 000 465 161 626 221,48
 5 000 1 778 88 1866

The worst initial state for the

pseudorandom sequence System
Name

Number
of cores

Memory
Constraint

(bits)
PR test
length
(clocks)

DET test
length
(clocks)

Total test
length
(clocks)

CPU
time
(sec)

 20 000 2 990 138 3128
S1 6 10 000 4 446 73 4519

 5 000 5 679 40 5719
228.67

 20 000 3 015 151 3166
S2 7 10 000 4 469 82 4551

 5 000 5 886 49 5935
969.74

 20 000 3 016 200 3216
S3 5 10 000 4 521 121 4642

 5 000 8 604 72 8676
318.38

For the first two systems S1 and S2 the cost of the procedure is
determined only by the CPU time for the pseudorandom test pat-
tern generation and by subsequent simulation of the test pat-
terns for all cores in the system. For the third system, S3, the
CPU time includes also the time needed to generate the addi-
tional deterministic test patterns.

The full overview about all possible hybrid BIST solutions for
the three systems is presented in Figure 6.13, representing the

CHAPTER 6

138

memory cost as a function of the total test length. Based on these
curves for an arbitrary memory constraint the corresponding to-
tal testing time can be found. The three constraints presented in
Table 6.5 are also highlighted in Figure 6.13. It can be seen that
after some certain length the memory cost will increase very fast
when reducing the length of the test sequence further. This can
be explained by the fact that in the beginning of the pseudoran-
dom sequence nearly all test patterns are efficient, and nearly
each pattern that is excluded from the pseudorandom part
should be included into the deterministic part.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 251 501 751 1001 1251 1501 1751 2001 2251 2501

Total test length (clocks)

Memory

S1
S2
S3

Figure 6.13. Memory usage as the function of the total test
length for all three systems.

A comparison of the curves for the memory cost as a function
of the total test length for the best and for the worst initial pseu-
dorandom sequences is depicted for the system S2 in Figure 6.14.
This illustrates the importance of choosing the best possible
pseudorandom sequence for testing the system.

HYBRID BIST TIME MINIMIZATION

 139

0

10000

20000

30000

40000

50000

60000

1 2001 4001 6001 8001 10001 12001 14001

Total test length (clocks)

Memory

The best

The worst

Figure 6.14. Memory usage as the function of the total test
length for the best and the worst initial pseudorandom se-

quences.

6.3.2. Iterative Approach.

The disadvantage of the straightforward approach is that the de-
terministic test set TD is generated based on the initial test se-
quence TPINITIAL and is not minimized. Minimization of TD (test
compaction) would be extremely difficult, since TD is assembled
simultaneously for all cores in the system and individual deter-
ministic tests for different cores TDk are difficult to identify.

Therefore, we have developed a more advanced iterative algo-
rithm that is based on analysis of different cost relationships as
functions of the hybrid test structure to find the appropriate ini-
tial pseudorandom sequence and an optimized (compacted) de-
terministic test sequence [163]. The main tasks of the algorithm
are as follows:

Algorithm 6.3: Test length minimization.

1. Find the best initial state for the LFSR that can generate the
shortest common pseudorandom sequence TPINITIAL, sufficient

CHAPTER 6

140

for testing simultaneously all the cores with maximum
achievable fault coverage. Due to practical reasons the
TPINITIAL might be unacceptably long and therefore an ade-
quately long TP’INITIAL should be chosen and complemented
with an initial deterministic test set TDINITIAL in order to
achieve maximum achievable fault coverage and to satisfy
the basic requirements for the test length.

2. Based on our estimation methodology (Section 6.2.2) find the
length LDk

E of the estimated deterministic test set TDk
E

 and
calculate the first iteration of the optimized test structure
THE = {TP*, TDE}, so that the memory constraints are satis-
fied. TP* denotes here a shortened pseudorandom sequence,
found during the calculations.

3. Find the real total test length LH and the real memory cost
COSTM of the hybrid test sequence TH = {TP*, TD} for the se-
lected pseudorandom sequence TP*.

4. If the memory constraint is not satisfied, i.e., COSTM >
COSTM,LIMIT, improve the estimation, choose a new pseudo-
random sequence TP*, and repeat step 3.

5. If the memory limit has not been reached, i.e., COSTM <
COSTM,LIMIT, reduce the length of TH by moving efficient
pseudorandom patterns from the pseudorandom test set to
the deterministic test set.

The previously proposed straightforward algorithm (Algorithm
6.2), in fact, corresponds to the 5th step of this algorithm.

Test Set Generation Based on Cost Estimates

In this section we explain the first two steps of Algorithm 6.3. It
is assumed that we have found the best configuration (polyno-
mial and initial state) for the parallel pseudorandom test pattern
generator. Let us call this an initial pseudorandom test sequence
TPINITIAL.

HYBRID BIST TIME MINIMIZATION

 141

By knowing the structure of the hybrid test set TH the total
hybrid test length LH at any given memory constraint COSTM ≤
COSTM,LIMIT could be found in a straightforward way. However,
calculation of the exact hybrid test structure is a costly proce-
dure, since it assumes that for each possible length of TP the de-
terministic test sets TDk for each core should be calculated and
compressed while following the broadcasting idea. This can be
done either by repetitive use of the automatic test pattern gen-
erator or by systematically analyzing and compressing the fault
tables. Both procedures are accurate but time-consuming and
therefore not feasible for larger designs (see section 5.2).

To overcome the high complexity of the problem we propose an
iterative algorithm, where the values of LDk and COSTM,k for the
deterministic test sets TDk can be found based on estimates. The
estimation method, that is an extension of the method proposed
for sequential hybrid BIST (see section 6.2.2), is based on the
fault coverage figures of TDk only, and does not require accurate
calculations of the deterministic test sets for not yet detected
faults.

The estimation method requires the following: a complete de-
terministic test set for every individual core, TDk, together with
fault simulation results of every individual test vector FDk and
fault simulation results of the pseudorandom sequence TPINITIAL
for every individual core, FPk. Let us denote with TPINITIAL(i) a
pseudorandom sequence with length i.

The length of the deterministic test sequence LDk(i) and the
corresponding memory cost COSTM,k(i) for any length of the
pseudorandom test sequence i ≤ LP can be estimated for every
individual core with the following algorithm:

Algorithm 6.4:

For each i =1, 2, …, LDk:

1. Find fault coverage value F(i) that can be reached by a
sequence of pseudorandom patterns TPINITIAL(i).

CHAPTER 6

142

2. Find the highest integer value j, where FDk(j) ≤ F(i). The
value of j is the required length of the deterministic se-
quence TDk to achieve fault coverage F(i).

3. Calculate the estimated length of the deterministic test
subsequence TDE

k(i) as LDE
k(i) = LDk – j. This is the es-

timated number of deterministic test patterns needed to
complement the pseudorandom sequence TPINITIAL(i), so
that the maximum achievable fault coverage can be
achieved.

This algorithm enables us to estimate the memory require-
ments of the hybrid BIST solution for any length of the pseudo-
random sequence for every individual core and by adding the
memory requirements of all individual cores Ck ∈ S for the entire
system. In a similar manner, the length of the pseudorandom se-
quence LP for any memory constraint can be estimated and this
defines uniquely the structure of the entire hybrid test set.

Minimization of the Hybrid Test Sequence

The memory cost estimation function helps us to find the length
LP* of the pseudorandom test sequence TP* for the estimated
hybrid test sequence THE={TP*; TDE}. The real length LH of the
estimated hybrid test sequence THE can be found with the follow-
ing algorithm.

Algorithm 6.5:
1. Simulate the pseudorandom sequence TP* for each core

Ck ∈ S and find a set of not detected faults FNOT,k. Gener-
ate the corresponding deterministic test set TD’k by us-
ing any ATPG tool. As a result, a preliminary real hy-
brid test set will be generated: TH = {TP*; TD’}.

2. Order the deterministic test set TD’ = (TD’1, TD’2,…,
TD’n) in such the way that for each i<n, INPi ≤ INPi+1.

3. Perform the analysis of the test pattern broadcasting
impact for i = 2, 3, …, n:

HYBRID BIST TIME MINIMIZATION

 143

− Calculate a set of not detected faults FNOT,i for the test
sequence (TP*; TD’1, TD’2, …, TD’i-1) ;

− Compress the test patterns in TD’i with respect to
FNOT,k by using any test compacting tool.

As a result of Algorithm 6.5, the real hybrid test sequence TH
= {TP*; TD} = {TP*; TD1, TD2,…, TDn} will be generated. The
length of the resulting sequence LH ≤ LHE as deterministic test
patterns of one core, while broadcasted to the other cores, may
detect some additional faults. In general, LDk ≤ LDE

k for every k
= 2, 3, …, n.

The length of the deterministic test sequence, generated with
Algorithm 6.5, can be considered as a near-optimal solution for
the given TAM structure, for all the cores. Ordering of the de-
terministic test sets, according to the step 2 in Algorithm 6.5 has
the following result: the larger the number of inputs of core Ck
the more patterns will broadcasted to Ck from other cores, and
hence the chances to reduce its own deterministic test set TDk
are bigger and larger amount of memory can be reduced.

After finding the real deterministic test sequence according to
Algorithm 6.5, the following three situations may occur:

1. If COSTM > COSTM,LIMIT a new iteration of the cost esti-
mation should be carried out. The initial estimation of
the pseudorandom test sequence length LP should be
updated, and a new cost calculation, based on Algorithm
6.5, should be performed (see Iterative Procedure).

2. If COSTM = COSTM,LIMIT the best possible solution for the
given pseudorandom sequence TP* is found. We have
hence TH = {TP*; TD1, TD2, …, TDn}.

3. If COSTM < COSTM,LIMIT the test length minimization
process should be continued by moving efficient test pat-
terns from the pseudorandom test set to the determinis-
tic sequence.

CHAPTER 6

144

In the following, possible steps for further improvement are
described in detail.

Iterative Procedure

Let us suppose that our first estimated solution, based on pseu-
dorandom test sequence TP, with length LP, produces a test
structure with total memory requirement “Real COSTM” higher
than accepted (see Figure 6.15). A correction of the estimated so-
lution should be made LPNEW = LP + ∆LP and a new solution
“New real COSTM” should be calculated based on Algorithm 6.5.
These iterations should be repeated until the memory constraint
COSTM ≤ COSTM,LIMIT is satisfied.

COSTM

LP

COSTM,LIMIT

Real COSTM

LP

∆LP

LPNEW

Correction by ∆LP

New real COSTM

Figure 6.15. Iterative cost estimation.

It should be mentioned that Algorithm 6.5 is the most expen-
sive procedure of the whole approach, due to repetitive use of
ATPG and test compaction tools. Therefore, we cannot start with
an arbitrary initial solution and an accurate estimation proce-
dure minimizes the number of iterations considerably.

Total Test Length Reduction

Suppose that the real cost of the found solution is below the
memory constraint COSTM < COSTM,LIMIT. There are two alterna-
tives for further reduction of the test length:

HYBRID BIST TIME MINIMIZATION

 145

1. Additional iterations by using Algorithm 6.5 to move the
solution as close to the memory limit COSTM,LIMIT as pos-
sible. As mentioned earlier, Algorithm 6.5 is an expen-
sive procedure and therefore recommended to use as lit-
tle as possible.

2. It is possible to minimize the length of the hybrid test
sequence TH by shortening the pseudorandom sequence,
i.e. by moving step-by-step efficient patterns from the
beginning of TP to TD and by removing all other pat-
terns between the efficient ones from TP, until the
memory constraint COSTM ≤ COSTM,LIMIT gets violated.
This procedure is based on the algorithm used for
straightforward optimization of the parallel hybrid
BIST. As a result, the final hybrid test sequence is cre-
ated: THF = {TPF; TDF} = {TPF; TD1, TD2, …, TDn, ∆TD}
where ∆TD is a set of efficient test patterns moved from
TP to TD. This will lead to the situation where the
length of the pseudorandom sequence has been reduced
by ∆LP and the length of the deterministic test sequence
has been increased by ∆LD. The total length LHF of the
resulting hybrid test THF = {TPF; TDF} is shorter, LHF <
LH, because in general ∆LD << ∆LP (not every pattern
in the pseudorandom test set is efficient).

The final hybrid BIST test structure THF = {TPF; TDF} with the
total length LHF is represented in Figure 6.16.

Pseudorandom
patterns

Pseudorandom patterns

Deterministic patterns

LP
LD

Test
length

Bits

LDk

∆LD

Figure 6.16. Final hybrid test structure.

CHAPTER 6

146

The accuracy of the solution (proximity of the total length LHF
to the global minimum LHMIN) for the given initial pseudorandom
sequence TPINITIAL can be estimated by the length of ∆LD, assum-
ing that the deterministic test set was optimally compacted.
Since efficient patterns, moved from TP to TD, were not taken
into account during the compaction procedure for TD’ (Algorithm
6.5) the new deterministic test sequence TDF = {TD1, TD2,…, TDn,
∆TD} is not optimal and should be compacted as well. However,
since TD’ was compacted optimally, the upper bound of the gain
in test length cannot be higher than ∆LD. Hence, the difference
between the exact minimum LHMIN and the current solution LHF
for the given pseudorandom sequence TPINITIAL cannot be higher
than LHF - LHMIN = ∆LH.

Experimental Results

We have performed experiments with three systems composed
from different ISCAS benchmarks as cores. In Table 6.6 the ex-
perimental results for these three systems under different mem-
ory constraints are presented. In column 3 the estimated length
of the hybrid test structure, found by using Algorithm 6.4, is
given. For the systems S1 and S2 only a single iteration was
needed (the estimation was rather accurate), for the system S3
two iterations were needed. In columns 4 and 5 the real length of
the hybrid test sequence, found by using Algorithm 6.5 with cost
estimates from column 3, is given. In column 4 the total length of
the pseudorandom and deterministic test sequences and the
memory cost in bits is given without taking into account broad-
casting effect (step 1 in Algorithm 6.5), and in column 5 together
with broadcasting (steps 2 and 3 in Algorithm 6.5). In columns 6-
8 the results of the final optimization are depicted: the final
length of the pseudorandom sequence (column 6), the final length
of the deterministic sequence (column 7), and the final length of
the hybrid test set together with memory requirements in bits
(column 8). In column 7 the first component represents the result
of the Algorithm 6.5, and the second component represents the

HYBRID BIST TIME MINIMIZATION

 147

last improvement, when efficient patterns were moved from the
pseudorandom part to the deterministic part.

In Table 6.7 the results are compared with the straightforward
approach (Section 6.3.1). The length of the pseudorandom test
sequence (columns 3, 7), deterministic test sequence (columns 4,
8) and the hybrid test sequence (columns 5, 9) together with re-
quired CPU time (columns 6, 10) are compared. As it can be
seen, the improved algorithm gives a noteworthy reduction of the
test length while the analysis time is approximately the same.

In Figure 6.17 the estimated memory cost as the function of
the total test length for different cores in system S2 together
with the estimated total memory cost are depicted. For compari-
son, the real costs values for 4 different test lengths are shown as
well. As it can be seen the accuracy of the estimation procedure
is rather good.

6.4. Conclusions

This chapter presented algorithms for SOC test time minimization
with several different implementations of the hybrid BIST archi-
tecture. The algorithms are based on the analysis of different cost
relationships as functions of the hybrid BIST structure. We have
proposed straightforward algorithms and more sophisticated it-
erative heuristics for this purpose. Our methods can minimize test
time under given test memory constraint for test-per-clock and
test-per-scan schemes. The optimization algorithms have been
presented together with experimental results to demonstrate their
efficiency.

CHAPTER 6

148

F
igu

re 6.17. C
om

parison
 of estim

ated an
d real test costs.

0

2000

4000

6000

8000

10000

12000

14000

1
251

501
751

1001
1251

1501
1751

2001
2251

2501
2751

Total test length (clocks)

Memory requirements (bits)

Test cost estim
ate for

the entire system

R
eal test cost for

different test lengths

C
ost estim

ates for
individual cores

C

al
cu

la
te

d
 t

es
t

st
ru

ct
u

re

F
in

al
 t

es
t

st
ru

ct
u

re

S
ys

te
m

M

em
or

y
co

n
st

ra
in

t
(b

it
s)

E
st

im
at

ed

in
it

ia
l

te

st
 l

en
gt

h

(c
lo

ck
s)

In
it

ia
l

(w

it
h

ou
t

b
ro

ad
ca

st
in

g)

W
it

h

b
ro

ad
ca

st
in

g
P

R
 l

en
gt

h

(c
lo

ck
s)

D

E
T

 l
en

gt
h

(c

lo
ck

s)

T
ot

al

le
n

gt
h

S
1

(6

 c
or

es
)

10
00

0
60

4
59

6
cl

oc
ks

86

60
 b

it
s

54
8

cl
oc

ks

45
00

 b
it

s
14

5
58

+4
9

=
10

7
25

2
cl

oc
ks

98

91
 b

it
s

10
00

0
37

4
39

9
cl

oc
ks

12

34
5

bi
ts

33

5
cl

oc
ks

82

94
 b

it
s

16
3

11
0+

14
 =

 1
24

28
7

cl
oc

ks

98
52

 b
it

s

50
00

74

1
74

0
cl

oc
ks

41

97
 b

it
s

71
7

cl
oc

ks

31
17

 b
it

s
46

9
51

+1
8

=
69

53

8
cl

oc
ks

49

79
 b

it
s

S
2

(7

 c
or

es
)

30
00

12

51

12
45

 c
lo

ck
s

15
47

 b
it

s
12

40
 c

lo
ck

s
13

42
 b

it
s

78
3

23
+1

9
=

42

82
5

cl
oc

ks

29
95

 b
it

s
1s

t

it
er

at
io

n

36
7

41
2

cl
oc

ks

13
28

5
bi

ts

37
9

cl
oc

ks

10
04

7
bi

ts

N
ee

d
to

 m
ak

e
an

ot
h

er
 it

er
at

io
n

S

3

(5
 c

or
es

)
10

00
0

2n
d

it

er
at

io
n

45

7
48

9
cl

oc
ks

10

95
2

bi
ts

46

6
cl

oc
ks

87

56
 b

it
s

26
2

13
0+

10
 =

 1
40

40
2

cl
oc

ks

99
19

 b
it

s

!

HYBRID BIST TIME MINIMIZATION

 149

T
ab

le
 6

.6
. E

xp
er

im
en

ta
l d

at
a

fr
om

 t
h

re
e

sy
st

em
s.

S
traigh

tforw
ard

 ap
p

roach

O
u

r ap
p

roach

C
om

p
arison

S
ystem

M

em
ory

con
strain

t
(b

its)
P

R

len
gth

(clock

s)

D
E

T

len
gth

(clock

s)

T
otal

len
gth

(clock

s)

C
P

U

tim
e

(sec)

P
R

len

gth

(clock
s)

D
E

T

len
gth

(clock

s)

T
otal

len
gth

(clock

s)

C
P

U

tim
e

(sec)

T
otal

test
len

gth

C
P

U

tim
e

S
1

(6 cores)
10000

232
105

337
187,64

145
58+49
= 107

252
289,73

-25.2%
+54.5%

10000
250

133
383

163
110+14
= 124

287
1093,5

-25.1%
+52.2%

5000
598

71
669

469
51+18
= 69

538
1124,4

-19.6%
+56.5%

S
2

(7 cores)

3000
819

48
867

718,49

783
23+19
= 42

825
1109,4

-4.8%

+54.4%

S
3

(5 cores)
10000

465
161

626
221,48

262
130+10
= 140

402
334,28

-35.8%
+51.1%

CHAPTER 6

150

T
ab

le 6.7. C
om

parison w
ith

 straigh
tforw

ard approach
.

HYBRID BIST ENERGY MINIMIZATION

 151

Chapter 7

Hybrid BIST Energy
Minimization

7.1. Introduction

The current trend in consumer electronics can be described with
mobility and portability. Such devices are mostly battery-driven
and one of the most important design parameters is thus battery
life-time. Therefore, such systems have to be designed with care-
ful consideration of the energy dissipation.

There are numerous methods tackling power dissipation dur-
ing the normal operation mode. However, such devices are fre-
quently undergoing periodic self-tests and we have seen an ad-
vent of low-power and low-energy testing methods. These
methods range from pattern reordering to clocking scheme modi-
fications. At the same time, our hybrid BIST concept offers us a
straightforward possibility for reducing the circuit’s switching
activity and consequently for energy optimization.

CHAPTER 7

152

In this chapter we propose two heuristics that try to minimize
the total switching energy without exceeding the assumed test
memory constraint. The solutions are obtained by modifying the
ratio of pseudorandom and deterministic test patterns for every
individual core such that the total energy dissipation is mini-
mized.

7.2. Hybrid BIST and Possibilities for Energy
Reduction

For portable systems, one of the most important test constraints
is the total amount of on-chip test memory. In the previous chap-
ters we introduced several methods, based on different test ar-
chitectures, for test time minimization. Those algorithms were
able to find a shortest possible test time under given test mem-
ory constraint for test-per-clock and test-per-scan schemes. Our
algorithms, however, do not require explicit specification,
whether the deterministic test set has to be stored in the ATE or
on-chip memory (ROM). In the latter case hybrid BIST solutions
can be used not only for manufacturing test but also for periodi-
cal field maintenance tests in portable devices.

In the following we have assumed a hybrid BIST test architec-
ture where all cores have their own dedicated BIST logic that is
capable of producing a set of independent pseudorandom test
patterns. The deterministic tests, on the other hand, are applied
from an on-chip memory, one core at a time (See Section 4.4.2).

If the objective is only test time minimization and
power/energy is not taken into account then the shortest test
schedule for such a test architecture, is the one where all cores
are tested concurrently and have the same tests lengths, as was
explained in Section 6.2 and illustrated in Figure 6.9. It is impor-
tant to note that the exact composition of pseudorandom and de-
terministic test patterns defines not only the test length and test
memory requirements but also the energy consumption. In gen-

HYBRID BIST ENERGY MINIMIZATION

 153

eral, since a deterministic test pattern is more effective in detect-
ing faults than a pseudorandom pattern, using more determinis-
tic test patterns for a core will lead to a short test sequence, and
consequently less energy on the average case. However, the total
number of deterministic test patterns is constrained by the test
memory requirements, and at the same time, the deterministic
test patterns of different cores of a SOC have different energy
and fault detection characteristics. Namely, some cores might
require only few test patterns, while these patterns have large
memory requirements, due to big number of inputs or excessively
long scan chains. These few patterns might generate less switch-
ing activity than a long sequence of test patterns with smaller
memory requirements. A careful trade-off between the determi-
nistic pattern lengths of the cores must therefore be made in or-
der to produce a globally optimal solution. Moreover, as determi-
nistic test patterns are stored in the memory, energy dissipation
during memory access and test data transportation has to be
taken into account as well.

In a hybrid BIST approach the test set is composed of pseudo-
random and deterministic test patterns, where the ratio of these
patterns is defined by different design constraints, such as test
memory and test time. From a energy perspective, different cores
have different energy dissipation while applying the same
amount of test patterns. Furthermore, the pseudorandom and
deterministic test sequences for the same core have different
power characteristics. Therefore, for total energy minimization it
is important to find, for every individual core, such a ratio of the
pseudorandom and deterministic test patterns that leads to the
overall reduction of switching energy. At the same time the basic
design constraints, such as test memory, should not be violated.
In the following some basic definitions together with the problem
formulation are given.

CHAPTER 7

154

7.3. Basic Definitions and Problem Formulation

Let us note that according to Definition 6.5, J = (j1, j2,…, jn) is
called the characteristic vector of a hybrid test set TH = {TH1,
TH2, …, THn}, where jk ∈ J is the length of the pseudorandom
test sequence TPk ⊆ THk.

Definition 7.1: Let us denote with Mk(jk) and Ek(jk) respec-
tively, the memory cost and energy cost of the hybrid BIST set
THk = {TPk, TDk} of the core Ck ∈ S as functions of its pseudoran-
dom test sequence with length jk (k=1, 2, …, n).

Note that it is very time consuming to calculate the exact val-
ues of Mk(jk) and Ek(jk) for any arbitrary hybrid BIST set THk,
since it requires exact calculation of the corresponding hybrid
test set which is an expensive procedure (see Chapter 5.2). To
overcome the problem we propose to use a power estimation
method that is based only on a few critical point calculations.

Definition 7.2: Let us denote with M(J) and E(J) respectively
the memory cost and energy cost of the corresponding hybrid
BIST set TH with characteristic vector J. These costs can be cal-
culated using the following formulas:

)()(
1

k

n

k
k jMJM ∑

=

=)()(
1

k

n

k
k jEJE ∑

=

= (3)

A hybrid BIST set TH = {TH1, TH2, …, THn} for a system S =
{C1, C2, …,Cn} consists of hybrid BIST sets THk for each individ-
ual core Ck. In the proposed approach we assume that the pseu-
dorandom components of the TH are going to be scheduled in
parallel, while the deterministic components of the TH, have to
be scheduled in sequence.

The objective can be thus formulated as finding a hybrid test
set TH with a characteristic vector J for the system S, so that
E(J) is smallest possible and the memory constraint M(J) ≤ MLIMIT
is satisfied.

HYBRID BIST ENERGY MINIMIZATION

 155

7.3.1. Parameter Estimation

For hybrid BIST energy minimization at a given memory con-
straint we have to obtain values of Mk(jk) and Ek(jk) for every core
Ck ∈ S and for any possible jk value. This would give us a possibil-
ity to compare memory and energy values of the different alter-
natives. However, the procedure to calculate the cost functions
M(J) and E(J) is very time consuming, since it assumes that the
deterministic test sets TDk for all possible values of the charac-
teristic vector J are available. This means that for each possible
pseudorandom test TPk, a set of not yet detected faults FNOT (TPk)
should be calculated, and the needed deterministic test set TDk

has to be found. This is a time-consuming task and therefore not
feasible for larger designs.

To overcome the complexity explosion problem we propose an
iterative algorithm, where the costs M(J) and E(J) for the deter-
ministic test sets TDk are calculated based on estimates in a
similar way as described in Section 6.2.2. The estimation method
is based on fault coverage figures and does not require accurate
calculations of the deterministic test sets for not yet detected
faults. For memory estimation we need fault simulation results
of complete pseudorandom and deterministic test sequences. For
energy estimation the energy simulation results for the same
test sets are used and we have used the number of signal
switches as a quantitative measure for power dissipation.

7.4. Heuristic Algorithms for Hybrid BIST
Energy Minimization

To minimize the energy consumption at the given memory con-
straint we have to create a hybrid test TH with characteristic
vector J for the system S, so that E(J) is minimal at the con-
straint M(J) ≤ MLIMIT .

To solve this complex combinatorial task we have proposed two
fast heuristic algorithms: Local Gain Algorithm and Average

CHAPTER 7

156

Gain Algorithm [164]. Both are based on the estimation method-
ology described in Section 6.2.2 (Procedure 6.1).

7.4.1. Local Gain Algorithm

The main idea of this algorithm is to start with pure determinis-
tic test sets THk = {TPk = ∅, TDF

k} for all cores Ck ∈ S. Next, the
deterministic test patterns are gradually substituted by corre-
sponding sequences of pseudorandom patterns PRi ⊆ TPF

k until
the memory constraints are satisfied. For every deterministic
test pattern substitution a core Ck ∈ S with maximum memory-
power ratio (∆Mk,i /∆Pk,i) is selected. Here ∆Mk,i corresponds to the
estimated memory gain when deterministic test pattern DPi

∈ TDF
k is removed from the memory, and ∆Pk,i corresponds to the

estimated increase in energy consumption by the sequence of
pseudorandom patterns PRi ⊆ TPF

k that are substituting the de-
terministic test pattern DPi ∈ TDF

k . In other words, at any itera-
tion of the algorithm we always select a core that provides the
best local gain in terms of ∆Mk,i/∆Pk,i and substitute in the hybrid
test set of this core one or several deterministic test pattern with
appropriate number of pseudorandom patterns. The number of
inserted pseudorandom test patterns is calculated so that the
fault coverage of the core should not be reduced. However, in
some certain situations this might not be possible (due to ran-
dom resistant faults) and therefore different deterministic test
pattern should be chosen for substitution.

Let us introduce the following additional notations: M – cur-
rent memory cost, L – current pseudorandom test length and
MLIMIT – memory constraint. The algorithm starts with initial
values: L = 0, and M = M(TDF

1) + M(TDF
2) + … + M(TDF

n) where
M(TDF

k) is memory cost of the complete deterministic test set of
core Ck ∈ S. Initially: THk = {TPk = ∅, TDF

k}.

Algorithm 7.1: Local Gain Algorithm

1. Select core Ck ∈ S where ∆Mk,i/∆Pk,i = max;

HYBRID BIST ENERGY MINIMIZATION

 157

2. Remove DPk,i∈ TDk from TDk, estimate the needed PRi and
include PRi into TPk.

3. Update the current memory cost: M = M - ∆Mk,i

4. If M > MLIMIT then go to 1

5. END.

The algorithm is illustrated with the example given in Figure
7.1. We start from an all-deterministic solution. At every step we
calculate the memory-power ratio for all cores if one determinis-
tic test pattern (denoted as white boxes in Figure 7.1a) would be
replaced with pseudorandom patterns. Thereafter the core with
highest ∆Mk,i/∆Pk,i value is selected and a deterministic test pat-
tern in this core’s test set is replaced with a set of pseudorandom
patterns. In our example Core 3 was selected (Figure 7.1b). At
the end of every step we can calculate new memory (M) and
power (P) values for the entire system. This procedure is re-
peated until M ≤ MLIMIT .

7.4.2. Average Gain Algorithm

A second heuristic proposed by us is called Average Gain Algo-
rithm. The main idea of the Average Gain Algorithm is to guide
the selection of cores based on the highest average ratio of
∆Mk/∆Pk over all iterations of the algorithm. Here ∆Mk denotes
the estimated memory gain from the beginning of the algorithm,
including the selected substitution, for the core Ck ∈ S, and ∆Pk
denotes the estimated increase of energy consumption for the
same core from the beginning of the algorithm, including the
current selected substitution.

The algorithm starts again with initial values: L = 0, and M =
M(TDF

1) + M(TDF
2) + … + M(TDF

n) where M(TDF
k) is the memory

cost of the complete deterministic test set of the core Ck ∈ S. Ini-
tially: THk = {TPk = ∅, TDF

k}. For all cores ∆Mk = ∆Mk,1, and ∆Pk =
∆Pk,1, and for all cores i = 1.

CHAPTER 7

158

Core 1 DET

Core 2

Core 3

Core 4

DET

DET

DET

DET
20

150

PR

PR

PR

Test Length

Core 1

Core 2

Core 3

Core 4

DET PR

Test Length

DET
20
90

DET
30
60

PR

DET
10
150

DET

DET

DET
20
150

PR
DET
20
90

PR

DET PR
DET
10
150

DET
20
150

∆Mk,i

∆Pk,i

a) M=1450 P=20500

b) M=1420 P=20560

Figure 7.1. Local Gain Algorithm.

Algorithm 7.2: Average Gain Algorithm

1. Select the core Ck ∈ S where ∆Mk,i/∆Pk,i = max;

2. Remove DPk,i∈ TDk from TDk, and include PRi into TPk.

3. Update the current memory cost: M = M - ∆Mk,i.

4. Update the total memory cost for the selected core: ∆Mk =
∆Mk - ∆Mk,i+1.

5. Update the total power consumption for the selected core: ∆Pk
= ∆Pk + ∆Pk,i+1.

6. Update for the selected core i = i + 1.

7. If M > MLIMIT then go to 1

8. END

HYBRID BIST ENERGY MINIMIZATION

 159

The main difference between Algorithm 7.1 and Algorithm 7.2
is that Algorithm 7.1 takes into account only the immediate ef-
fect of the test pattern substitution. Algorithm 7.2, on the other
hand, takes into account the entire history of pattern substitu-
tions.

Both Algorithm 7.1 and Algorithm 7.2 create hybrid BIST so-
lution THk = {TPk , TDk} where energy consumption is reduced
with respect to the given memory constraint. After obtaining a
solution, the cost estimates can be improved and another, better,
solution can be calculated. For this purpose the previously pro-
posed iterative procedure (see Section 6.2.3) can be used. This
transfers a solution that was generated based on estimates to the
solution that is calculated based on real test sets. The outcome of
this algorithm is the final solution: amount of pseudorandom and
deterministic test patterns for every individual core such that
the system memory constraint is satisfied.

7.5. Experimental Results

We have performed experiments with different designs contain-
ing the ISCAS’89 benchmarks as cores. The complexity of these
designs ranges from system with 6 cores to system with 20 cores.
All cores were redesigned in order to include a scan chain. For
simplicity we assumed that all flip-flops are connected into one
single scan chain. For the BIST part a STUMPS architecture
was used.

In Table 7.1 we have listed the results for every system with
three different memory constraints. We have listed results from
[92], which provide shortest possible test length without consid-
ering energy consumption. Our two algorithms (Local Gain Algo-
rithm is denoted with A1 and Average Gain Algorithm with A2)
are both considered with the iterative improvement mentioned at
the end of the previous section. Finally, for comparison, results
obtained with a simulated annealing (SA) based optimization are

CHAPTER 7

160

also reported. In every solution, the minimized test time solution
from [92] has been taken as a baseline (100%) and every solution
is compared against this result.

Simulated annealing is a generic probabilistic meta-algorithm
for the global optimization problem, namely locating a good ap-
proximation to the global optimum of a given function in a large
search space [102]. In the SA method, each point s of the search
space is compared to a state of some physical system, and the
function E(s) to be minimized is interpreted as the internal en-
ergy of the system in that state. Therefore, the goal is to bring
the system, from an arbitrary initial state, to a state with the
minimum possible energy. At each step, the SA heuristic consid-
ers some neighbors of the current state s, and probabilistically
decides between moving the system to state s' or staying put in
state s. The probabilities are chosen so that the system ulti-
mately tends to move to states of lower energy. Typically, this
step is repeated until the system reaches a state, which is good
enough for the application, or until a given computation budget
has been exhausted.

As shown in Table 7.1, both proposed algorithms lead to re-
duced energy solutions (in some cases up to with 52% reduction
of the total switching activity) compared to the solution where
only the test time was minimized [92]. When compared to the
simulated annealing algorithm our heuristics have significantly
lower execution time, while maintaining acceptable accuracy.

To understand the impact of our algorithms on the test length
we have also collected these figures and reported them in Table
7.1. As can be expected in all these solutions generated by our
techniques the test time has increased compared to the tech-
nique which targets towards test length minimization [92]. Nev-
ertheless, if the main objective is to reduce energy dissipation
during the test mode (for example in portable devices) the rela-
tively small increase of the test length is tolerable.

HYBRID BIST ENERGY MINIMIZATION

 161

Table 7.1. Experimental results.

Alg. MLIMIT
Energy

(switches)
Comp. to
[92] (%)

Test
Length
(clocks)

Comp. to
[92] (%)

CPU
Time
(sec)

System 1 – 6 cores
[92] 2588822 100.00% 24689 100.00% 8.41
A1 1281690 49.51% 31619 128.07% 11.09
A2 1281690 49.51% 31619 128.07% 6.64
SA

1500

1240123 47.90% 31619 128.07% 5326.24
[92] 635682 100.00% 6726 100.00% 24.61
A1 426617 67.11% 10559 156.99% 14.23
A2 446944 70.31% 10679 158.77% 4.84
SA

2500

409576 64.43% 10529 156.54% 2944.26
[92] 717026 100.00% 7522 100.00% 26.51
A1 265282 37.00% 8126 108.03% 36.31
A2 286883 40.01% 8129 108.07% 26.96
SA

3000

241123 33.63% 8153 108.39% 1095.21
System 2 – 6 cores
[92] 6548659 100.00% 52145 100.00% 12.05
A1 5502763 84.03% 70331 134.88% 12.49
A2 5318781 81.22% 70331 134.88% 4.28
SA

1700

4747498 72.50% 83865 160.83% 3805.23
[92] 2315958 100.00% 19208 100.00% 20.21
A1 1998390 86.29% 23774 123.77% 7.66
A2 1861844 80.39% 24317 126.60% 18.79
SA

3000

1845022 79.67% 28134 146.47% 5032.05
[92] 893184 100.00% 8815 100.00% 21.47
A1 742462 83.13% 9537 108.19% 26.45
A2 746479 83.58% 9537 108.19% 55.09
SA

4700

723817 81.04% 12596 142.89% 3654.02
System 3 – 20 cores
[92] 12830419 100.00% 40941 100.00% 47.49
A1 9242890 72.04% 70331 171.79% 51.43
A2 9839005 76.68% 70331 171.79% 40.49
SA

5000

7367201 57.42% 60495 147.76% 29201.96
[92] 6237211 100.00% 20253 100.00% 53.39
A1 4039622 64.77% 31619 156.12% 73.58
A2 4223263 67.71% 52145 257.47% 14.36
SA

7000

3500894 56.13% 31919 157.60% 20750.03
[92] 4686729 100.00% 15483 100.00% 45.37
A1 1719726 36.69% 17499 113.02% 115.53
A2 1815129 38.73% 17554 113.38% 90.52
SA

10000

1606499 34.28% 17992 116.20% 14572.33

CHAPTER 7

162

7.6. Conclusions

In this chapter we have proposed two heuristics for test energy
reduction for hybrid BIST. Both algorithms modify the ratio be-
tween pseudorandom and deterministic test patterns. We have
also proposed a fast estimation mechanism for the modification
of this ratio together with an iterative procedure for transform-
ing the estimated results to the real results. Experimental re-
sults have shown the efficiency of these heuristics for energy re-
duction under test memory constraints.

HYBRID BIST IN AN ABORT-ON-FIRST-FAIL ENVIRONMENT

 163

Chapter 8

Hybrid BIST in an Abort-
on-First-Fail Environment

8.1. Introduction

Many different methods have been researched for test cost re-
duction. They range from test set reduction techniques to test
scheduling heuristics. In the previous chapters we described
some methods for hybrid test set generation, which serve the
purpose of test cost reduction.

In a production test environment the test process is stopped as
soon as a fault is detected. This approach, called abort-on-first-
fail (AOFF), leads to reduced test costs as faulty dies can be
eliminated before completing the entire test flow. Therefore, the
likelihood of defects in different parts of the design, together
with test set characteristics (such as efficiency and length)
should be taken into account, because tests should be ordered
such that defective ICs are failed early in the test process. It is

CHAPTER 8

164

important to note that any test scheduling algorithm will only
reduce the time needed to test defective dies, since the time
needed to test good dies will be independent of the order in which
the test are applied. However, in a production test environment,
where a large number of dies have to be tested, such an approach
can produce significant gain in terms of total test time. The ap-
proach is especially relevant in low-yield situations.

In general, it is rather difficult to obtain information for defect
probability analysis. In our work, we use probabilities of individ-
ual faults, which are usually derived from the statistical analysis
of the production process or generated based on inductive fault
analysis. In this chapter, a hybrid BIST scheduling algorithm in
an AOFF environment will be described. A hybrid BIST ap-
proach gives us the opportunity not only to schedule the tests as
black boxes, as it has been done in previous approaches, but also
to select the best internal structure for individual test sets. This
means choosing the best order of pseudorandom and determinis-
tic test patterns for every individual core, so that the total test
time of the entire system can be minimized. The proposed algo-
rithm [68] assumes that all cores can be tested in parallel (hence
the test power is not considered) and is limited to test-per-clock
test architectures. The algorithm is based on a parallel hybrid
BIST architecture, described in Section 4.4.2, where every core
has its own dedicated BIST logic that is capable to produce a set
of independent pseudorandom test patterns and the determinis-
tic tests are carried out for one core at a time, using a single test
access bus (Figure 4.5).

8.2. AOFF Test Scheduling

The main idea of our algorithm is to sort the tests so, that the
expected total test time (ETTT) is the shortest. ETTT denotes
here the expectation of the total test application time for testing
a die in a production test environment, where some of the dies

HYBRID BIST IN AN ABORT-ON-FIRST-FAIL ENVIRONMENT

 165

might be faulty and therefore discarded before completing the
entire test flow. The main purpose is to reduce the total test
time, when large volumes of dies have to be tested.

8.2.1. Definitions and Problem Formulation

Suppose that the system S, consisting of cores C1,C2,...,Cn, has a
test architecture depicted in Figure 4.5. Let us denote with DTij
and PRij, respectively, the j-th deterministic pattern and j-th
pseudorandom pattern in the respective sequences for core Ci. di
and ri are the total number of deterministic and pseudorandom
test patterns for core Ci.

We assume that from the test scheduling point of view the de-
terministic test sequence is an undividable block, i.e. the deter-
ministic test sequence cannot be divided into smaller subse-
quences. The pseudorandom test sequence, on the other hand,
can be stopped and restarted in order to enable the application of
the deterministic test sequence at a certain scheduled time mo-
ment. This assumption is a consequence of the assumed test ar-
chitecture, where pseudorandom patterns are generated locally
by every core, while deterministic test patterns are applied from
one single test source and applied to one core at a time.

System Defect Probability

The system defect probability DF(S) is defined as the probability
of a system to be detected faulty during the production test.
Similarly, the core defect probability DF(Ci) is defined as the
probability of a core to be detected faulty during the production
test. Given the core defect probabilities, the system defect prob-
ability can be calculated as follows:

DF S() 1 1 DF Ci()–()
i 1=

n

∏–=

(8.1)

CHAPTER 8

166

In order to define the ETTT, the individual fault coverage of a
test pattern has to be defined.

Individual Fault Coverage of a Test Pattern

To test a core Ci we have to apply di deterministic test patterns
and ri pseudorandom test patterns (in particular cases one of
these sets may be empty). By calculating the number of faults
F(DTij) or F(PRij) that are not yet detected by the previous pat-
terns before the j-th pattern and detected just by the j-th pattern
(either pseudorandom or deterministic), the independent fault
coverage of each test pattern can be calculated as follows:

)1(,
)(

)(i
i

ij
ij dj

F
DTF

DTIFC ≤≤=

)1(,
)(

)(i
i

ij
ij rj

F
PRF

PRIFC ≤≤=

(8.2)

where IFC(DTij) and IFC(PRij) are respectively the independent
fault coverage of the j-th deterministic and j-th pseudorandom
pattern for core Ci. Fi is the total number of non-redundant faults
in core Ci.

Expected Total Test Time

Based on the given hybrid BIST test architecture we can gener-
ate and apply pseudorandom tests to all cores in parallel, thus
reducing the total test time. However, a deterministic test se-
quence and a pseudorandom test sequence belonging to the same
core cannot be scheduled in parallel due to the test conflict. This
explains, for example, why the deterministic test pattern DT31
cannot be applied directly after the pseudorandom test sequence
in Figure 8.1.

In this approach we treat deterministic test patterns and
pseudorandom test sequences in a similar way, since pseudoran-
dom test sequence can be treated as a single test pattern with a
length corresponding to the length of the particular pseudoran-

HYBRID BIST IN AN ABORT-ON-FIRST-FAIL ENVIRONMENT

 167

dom sequence. Therefore, in the following discussion a “test pat-
tern” is used to denote both individual deterministic test pat-
terns and pseudorandom test sequences, if not mentioned other-
wise. It is important also to note that if a test-per-clock
architecture is assumed then the length of one deterministic test
pattern is one clock cycle. On the other hand, in a test-per-scan
environment the length of a deterministic test pattern is defined
by the length of the scan cycle. Correspondingly, the lengths of
the pseudorandom sequences are also different.

This leads us to a set of all possible test termination points: af-
ter every individual deterministic test pattern and at the end of
every pseudorandom test sequence, as illustrated in Figure 8.1.
The possible test termination points are marked with black dot-
ted lines.

Note that in test-per-clock architectures many of these points
overlap and therefore are treated as one identical possible test
termination point. Due to the differences in scan chain lengths
the termination points at test-per-scan architectures are not pe-
riodical.

Figure 8.1. Hybrid BIST sessions for a system with 5 cores.

CHAPTER 8

168

We are interested in the ETTT as the expectation of the total
test application time in the AOFF environment. In Equation
(8.3) below we give a generic formula for ETTT calculation.

())()(TpLAptETTT
Xx

xx ×+×= ∑
∈∀

 (8.3)

Equation (8.3) is presented as the sum of two literals. The first
corresponds to the situation when a test is terminated prema-
turely and the second one corresponds to the case where all tests
are passed to the completion. At every possible test termination
point x∈X we can calculate a test abortion probability p(Ax) to-
gether with a test length tx at this test termination point x. With
Ax we denote the event that the test has been aborted at test
termination point x. Similarly we can also calculate the probabil-
ity p(T) that no faults are detected and all tests (T) are exercised
till their completion. The length of the complete test set is de-
noted with L.

At every test termination point x∈X we can distinguish two
different sets of tests – the tests that have failed and the tests
that have passed. The failed set Yx consists of all test patterns y
that have finished exactly at this point. They are supposed to de-
tect at least one fault, otherwise the test would not have been
stopped at this point. The passed set Zx consists of all test se-
quences that have successfully finished before this point x. They
are all supposed to be passed otherwise the test would have been
aborted before this point. This leads us to the following formula:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∈∀∈∀
IU I

xx Zz
z

Yy
yx PFA (8.4)

Here Fy is an event that the test pattern y detects at least one
fault and Pz is an event that the test sequence z is passed. Thus
the event Ax can be described as an event at test termination
point x, such that any of the test patterns in the failed test set Yx
detect at least one fault, and all test sequences in the passed test
set Zx have passed. Please note that if a test pattern is included

HYBRID BIST IN AN ABORT-ON-FIRST-FAIL ENVIRONMENT

 169

to the failed set then all other patterns testing the same core (in-
cluding both the pseudorandom patterns and deterministic pat-
terns) should be removed from the passed set, since the probabil-
ity of these patterns passing the test has been already considered
due to the use of incremental fault coverages (see Equation (8.8)
below).

We assume that defect occurrences in different cores are inde-
pendent of each other. Thus, we can calculate the probability
that the test is terminated at a possible termination point x as
follows:

() () ()() ()∏∏∏
∈∀∈∀∈∀∈∀

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

xxxx Zz
z

Yy
y

Zz
z

Yy
yx PpFpPpFpAp 11U (8.5)

Similarly we can also calculate the probability p(T) that no
faults are detected and all tests are exercised till their comple-
tion, as follows:

;I
eZz

zPT
∈∀

= () ()()∏
=∈∀

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

i
i

Zz
z CDPPpTp

e 1

1I (8.6)

where DP(C) denotes the defect probability of core C.

This leads us to the refined version of Equation (8.3):

()() () ()()∏∑ ∏∏
=∈∀ ∈∀∈∀

−×+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−×=

n

i
i

Xx Zz
z

Yy
yx CDPLPpFptETTT

xx 1

111 (8.7)

The probability of the event that at least one fault is detected
by a test pattern y∈Yx at the test termination point x can be cal-
culated as

() () ()CDPyIFCFp y ×= (8.8)

where the incremental fault coverage IFC(y) of a single test pat-
tern y is defined as a percentage of the faults only detected by y
and not detected by any previous test pattern.

Similarly, the probability of the event that no faults are de-
tected by a test sequence z∈Zx can be calculated as

CHAPTER 8

170

() () ()∑
=

×−=
n

j
jz CDPvIFCPp

1
1 (8.9)

where n is the total number of test patterns in the test sequence
z∈Zx, and vj is the j-th test pattern.

8.2.2. Proposed Heuristic for Test Scheduling

Based on the proposed cost function, defined in the previous sec-
tion, we developed an iterative heuristic for ETTT minimization.
As described earlier, the test scheduling problem in the hybrid
AOFF test environment is essentially scheduling of deterministic
test sequences, such that the ETTT of the system is minimal.

By changing the schedule of deterministic sequences, the set of
passed test sequences Zx and the set of failed test sequences Yx,
affiliated to every possible test termination point x, is also
changed. Consequently, the individual fault coverage of each test
pattern must be recalculated, since the passing probability of
these patterns is changed. This will lead to the recalculation of
the ETTT as described in the previous section.

It would be natural to order the tests in such a way, that the
cores with high failure probability would be tested first. How-
ever, such a naïve schedule does not necessarily lead to the
minimal expected total test time. In addition to the defect prob-
abilities also the efficiency of test patterns and length of individ-
ual test sequences have to be taken into account. Due to the
complexity of the problem we propose here an iterative heuristic
that can be efficiently used.

In our heuristic we assume that we start from a subset of m
already scheduled deterministic sequences, m<n. The objective is
to increase this subset to m+1 scheduled deterministic se-
quences. This is obtained by selecting a deterministic sequence
from the remaining unscheduled n-m candidate sequences and
inserting it into the existing sequence in such a way, that the re-
sulting ETTT is as short as possible. This procedure is repeated

HYBRID BIST IN AN ABORT-ON-FIRST-FAIL ENVIRONMENT

 171

for all cores m=0, 1, ..., n-1. For the initial solution (m=0) the test
sequence with the lowest ETTT is chosen.

At every iteration (n-m)(m+1) different solutions have to be
explored since there are n-m candidate sequences and m+1 inser-
tion points for each candidate. The heuristic is illustrated in
Figure 8.2. Here we have illustrated a situation where two de-
terministic test sequences out of five are already scheduled (m=2,
n=5). For every candidate schedule there are three different in-
sertion points, indicated by arrows. During the iteration step, the
ETTT for all candidate sequences for all possible insertion points
is calculated and the candidate sequence will be finally inserted
to the point with lowest ETTT.

The new situation is illustrated in Figure 8.3. In this example
the deterministic test sequence of core 4 was chosen and inserted
into the schedule after the core 1.

Core 1

Core 2

Core 3

Core 4

Core 5

0 1 2 3 4 5 6 7 8 9 t

3

i 2

1

I

I

I

1

2

DT11 DT12 DT14

DT52

DT13

DT21

DT31

DT41 DT42

DT51

PS10

DT53

PS40

PS50

PS02

PS03

PS20

PS05

PS04

13 10 11 12

candidate

cand date

candidate

Ins Ins ns

Ins Ins ns

Ins Ins ns

sched

sched

Scheduled Deterministic Sequence

Deterministic Sequence to be Scheduled

Pseudorandom Test Sequence

Figure 8.2. Initial solution for the iteration.

CHAPTER 8

172

Core 1

Core 2

Core 3

Core 4

Core 5

0 1 2 3 4 5 6 7 138 9 10 11 12 t

candidate3

just scheduled

candidate1

sched1

sched2

DT11 DT12 DT14

DT52

DT13

DT21

DT31

DT41 DT42

DT51

PS10

DT53

PS40

PS50

PS02

PS03

PS20

PS05

PS04

Scheduled Deterministic Sequence

Deterministic Sequence to be Scheduled

Pseudorandom Test Sequence

Figure 8.3. The new locally optimal order after the iteration.

In the following the pseudo-code of the algorithm is presented.
As described earlier, the test schedule is obtained constructively
by enlarging the subset of scheduled test sequences. During each
iteration we add one additional sequence into the previously
scheduled set of sequences and explore the solution space in or-
der to find the optimal insertion point for the new sequence. The
algorithm starts with the initialization phase. Thereafter comes
the iterative scheduling heuristic, consisting of three main loops.
The outer loop iteratively increases the number of already
scheduled sequences. The middle loop iteratively goes through
all candidate sequences in the current candidate set and the in-
ner loop calculates for the chosen candidate sequence a new
ETTT in every possible insertion point. A solution with lowest
ETTT is chosen and the new schedule forms an initial solution
for the next iteration. The heuristic stops when all test have been
scheduled.

HYBRID BIST IN AN ABORT-ON-FIRST-FAIL ENVIRONMENT

 173

Algorithm 8.1. Pseudo-code of the algorithm.

Begin

Initialization

For (current_scheduled = 1 to n) Do

 m = current_scheduled_number(Scheduled[]);

 For (current_candidate = 1 to n-m+1) Do

 For (current_insert_position = 0 to m) Do

 Calculate new cost;

 If (new_cost < min_cost)

 min_cost = new_cost

 chosen_candidate = current_candidate;

 chosen_insert_position = current_insert_position;

 EndIf;

 EndFor;

 Insert candidate to the chosen position;

 EndFor;

EndFor;

Output Schedule;

End.

8.2.3. Experimental Results

We have performed experiments with 9 different designs, con-
sisting of 5 to 50 cores (Table 8.1). In order to obtain diversifica-
tion we have calculated for every experimental design 5 different
hybrid test sets (different ratio of pseudorandom and determinis-
tic test patterns) and the experimental results illustrate the av-
erage of five experiments. The defect probabilities for individual
cores have been given randomly, while keeping the system defect
probability at the value 0.6.

CHAPTER 8

174

Table 8.1. Experimental results.

5 7 10 12 15

Design Size
ETTT

CPU
Time

(s)
ETTT

CPU
Time

(s)
ETTT CPU

Time (s) ETTT CPU
Time (s) ETTT

CPU
Time

(s)

No Optimi-
zation 248.97 1.1 261.38 64.4 366.39 311.8 415.89 346.8 427.34 371.6

Our
Heuristic

228.85 0.6 232.04 1.4 312.13 6.6 353.02 12.2 383,40 25.2

SA 228.85 1144.2 231.51 1278.5 311.68 3727.6 352.10 4266.8 381.46 5109.2

Exhaustive
Search

228.70 1.2 231.51 80.0 311.68 112592.6 N/A N/A N/A N/A

17 20 30 50

Design Size
ETTT

CPU
Time

(s)
ETTT

CPU
Time

(s)
ETTT CPU

Time (s)
ETTT CPU

Time (s)

No Optimi-
zation 544.37 466.6 566.13 555.4 782.88 822.4 1369.54 1378.0

Our
Heuristic 494.57 43.6 517.02 85.4 738.74 380.4 1326.40 3185.0

SA 493.93 6323.8 516.89 7504.4 736.51 11642.4 1324.44 21308.8

Exhaustive
Search

N/A N/A N/A N/A N/A N/A N/A N/A

In order to illustrate the significance of test scheduling we
have performed another set of experiments for comparison,
where a random schedule is assumed. As it can be seen from
Table 8.1, by employing our heuristic the ETTT can be reduced
in a range of 5-15%, which is very relevant for large volume pro-
duction testing.

As our heuristic can produce only a near optimal solution, ex-
periments for estimating the accuracy of the solution were per-
formed. For this purpose a simulated annealing algorithm and
an exhaustive search has been used, where possible. As it can be
seen from Table 8.1 our heuristic is able to produce results simi-
lar or very close to the results obtained with simulated annealing
and exhaustive search, while having significantly lower compu-
tation times. These comparisons are also illustrated in Figure 8.4

HYBRID BIST IN AN ABORT-ON-FIRST-FAIL ENVIRONMENT

 175

and Figure 8.5. In Figure 8.4 we have compared the ETTT val-
ues, calculated with different approaches, while in Figure 8.5 the
CPU times with our heuristic and with simulated annealing are
compared.

0

200

400

600

800

1000

1200

1400

5 7 10 12 15 17 20 30 50

Number of Cores

E
xp

ec
te

d
 T

o
ta

l
T
es

t
T
im

e

No Scheduling

Our Heuristic

Simulated Annealing

Exhaustive Search

Figure 8.4. Comparison of expected total test times.

6,6 12,2 25,2 85,4 380,4

3185,0

11642,4

21308,8

43,6

0,6

3727,6

5109,2

4266,8

6323,8

7504,4

1144,2

0

5000

10000

15000

20000

25000

Design Size

C
PU

 T
im

e
(s

)

Our Heuristic

Simulated Annealing

5 7 10 12 15 17 20 30 50

Figure 8.5. Comparison of CPU times.

Optimization

CHAPTER 8

176

8.3. Conclusions

In this chapter we have proposed a methodology for hybrid BIST
scheduling in an abort-on-first-fail environment, where the test
is terminated as soon as a defect is detected. We have developed
a methodology for expected total test time calculation, based on
defect probabilities and proposed a heuristic for ETTT minimiza-
tion. Experimental results have shown the efficiency of the pro-
posed method.

 177

PART III

HIERARCHICAL TEST

GENERATION

MODELING WITH DECISION DIAGRAMS

 179

Chapter 9

Introduction and Modeling

As described in the previous chapters, the introduction of Sys-
tem-on-Chip (SOC) entails several challenges in respect to the
design, test and manufacturing of such systems. To cope with the
challenges faced by SOC designers, tools and techniques dealing
with design at higher levels of abstraction have been developed.
For example, behavioral-level synthesis tools and hard-
ware/software co-design techniques are starting to play an im-
portant role in the initial phases of the design process. The main
advantages of deploying such high-level design tools is the possi-
bility to quickly evaluate the costs and benefits of different archi-
tecture alternatives, including both hardware and software com-
ponents, starting from a high-level functional specification of the
implemented system.

While the main design focus is quickly moving toward higher
levels of abstraction, the test issues are usually considered only
when a detailed description of the design is available, typically at
the gate level for test sequence generation and at register trans-
fer (RT) level for design for testability structure insertion.

CHAPTER 9

180

To address the problems associated with test generation and
design-for-test, when performed at the later design stages, inten-
sive research efforts have been devoted to devise solutions to test
sequence generation and DFT in the early design phases, mainly
at the RT level. For high-level test generation, several proposed
approaches are able to generate test patterns of good quality,
sometimes even better than those of gate-level ATPG tools. How-
ever, due to the lack of general applicability, most of these ap-
proaches are still not used in the industry.

This part of the thesis presents a high-level hierarchical test
generation approach for improving the results obtained by a pure
high-level test generator. The hierarchical test generator takes
into account structural information from lower levels of abstrac-
tion while generating test sequences on the behavioral level [94].
We will start our discussion with the description of the modeling
technique we use to model the design under test and the corre-
sponding fault modeling techniques. In the next chapter the hi-
erarchical test generation approach will be described.

9.1. Modeling with Decision Diagrams

Test generation for digital systems encompasses three main ac-
tivities: selecting a description method, developing a fault model,
and generating tests to detect the faults covered by the fault
model. The efficiency of test generation (quality and speed) is
highly depending on the description method and fault models
which have been chosen. In order to generate tests at the high
abstraction levels, we need a modeling technique that can cap-
ture designs at the levels in concern. Since the hierarchical test
generation approach takes advantages of both high-level and
low-level design information, we need a modeling technique
which spans several levels of abstraction. This section will de-
scribe such a model, called Decision Diagrams.

MODELING WITH DECISION DIAGRAMS

 181

9.1.1. Introduction

For high-level test generation, different high-level design and
fault models have been introduced. The main idea of high-level
modeling is to capture the high-level description of the system in
a formal model, and to obtain different incorrect versions of the
design by introducing a fault into the model. This approach is
called model perturbation [64]. The models can be “perturbed” in
certain ways, e.g. by truth-table modification, micro-operation
modification, etc. In one way or the other, this idea is imple-
mented in different high-level fault models for different classes of
digital systems.

In the case of microprocessors, individual functional fault
models and their corresponding test strategies have been devel-
oped for different function classes, such as register decoding, in-
struction decoding, control, data storage, data transfer, data ma-
nipulation, etc [16], [152]. The main disadvantage of this
approach is that only microprocessors are handled and the re-
sults obtained cannot be extended to cover the general digital
systems testing problem. When using register transfer languages
(RTL-approach), a formal definition of an RTL statement is de-
fined, and nine categories of functional faults for components of
RTL statements are identified [146], [149]. Recently, a lot of at-
tention has been devoted to generating tests directly from high
level description languages [50], [51], [167]. Some attempts to
develop special functional fault models for different data-flow
network units like decoders, multiplexers, memories, PLAs, etc.
are described in [2].

The drawback of traditional multi-level and hierarchical ap-
proaches to test generation lies in the need of different languages
and models for different levels. For example, one might use logic
expressions for combinational circuits; state transition diagrams
for finite state machines (FSM); abstract execution graphs, sys-
tem graphs, instruction set architecture (ISA) descriptions, flow-
charts, hardware description languages, or Petri nets for system

CHAPTER 9

182

level description, etc. All these models need different manipula-
tion algorithms and fault models which are difficult to merge
into a coherent hierarchical test method. To address this prob-
lem, Decision Diagrams (DDs) can be used [17], [123], [136],
[157], [158], [159]. Binary DDs (BDD) have found already very
broad applications in logic design as well as in logic test [17],
[123]. Structurally Synthesized BDDs (SSBDD) are able to rep-
resent gate-level structural faults directly in the graph [157],
[158]. Recent research has shown that generalization of BDDs
for higher levels provides a uniform model for both gate and RT
level [136], [159], and even behavioural level test generation [87],
[90].

In our approach, a method for describing digital systems and
for modeling faults is based on decision diagrams. DDs serve as a
basis for a general theory of test design for mixed-level represen-
tations of systems, similarly as we have the Boolean algebra for
the plain logical level. DDs can be used to represent systems uni-
formly either at logic level, high-level or simultaneously at both
levels. The fault model defined on DDs represents a generaliza-
tion of the classical gate-level stuck-at fault model.

9.2. Modeling Digital Systems by Binary Decision
Diagrams

Let us first consider binary decision diagrams in order to illus-
trate the basic notations. BDDs are a special case of DDs that
are described later in this chapter for behavior level diagnostic
modeling of digital systems. We will first describe logic level
BDDs to prepare the readers for a better understanding of the
generalization of BDDs for higher level system representation.
We will use the graph-theoretical definitions instead of tradi-
tional logic oriented ite expressions [17], [123] because all the
procedures defined further for DDs are based on the topological

MODELING WITH DECISION DIAGRAMS

 183

reasoning rather than on graph symbolic manipulations as in the
case of BDDs.

Definition 9.1: A BDD that represents a Boolean function y =
f(X), X = (x1, x2, …, xn), is a directed acyclic graph Gy = (M, Γ, X),
with a set of nodes M and a mapping Γ from M to M. M = MN ∪
MT consists of two types of nodes: nonterminal MN and terminal
MT nodes. A terminal node mT ∈ MT = {mT,0, mT,1} is labeled by a
constant e ∈ {0, 1} and is called a leaf; while all nonterminal
nodes m ∈ MN are labeled by variables x ∈ X, and have exactly
two successors. Let us denote the variable associated with node
m as x(m), then m0 is the successor of m for the value x(m) = 0
and m1 is the successor of m for x(m) = 1.

Definition 9.2: By the value of x(m) = e, e ∈ {0, 1}, we say the
edge between nodes m ∈ M and me ∈ M is activated. Consider a
situation where all the variables x ∈ X are assigned by a Boolean
vector Xt ∈ {0, 1}n to some value. The activated edges by Xt form
an activated path l(m0, m

T) ⊆ M from the root node m0 to one of
the terminal nodes mT∈ MT.

Definition 9.3: We say that a BDD Gy = (M, Γ, X) represents a
Boolean function y = f(X), iff for all the possible vectors Xt ∈ {0,
1}n a path l(m0, m

T) ⊆ M is activated so that y = f(Xt) = x(mT).

Definition 9.4: Consider a BDD Gy = (M, Γ, X) where X is the
vector of literals of a function y = P(X) represented in the equiva-
lent parenthesis form [158], the nodes m ∈ MN are labeled by
x(m) where x ∈ X and ⎜M ⎜ = ⎜X ⎜. The BDD is called a structur-
ally synthesized BDD (SSBDD), iff there exists a one-to-one cor-
respondence between literals x ∈ X and nodes m ∈ MN given by
the set of labels {x(m) ⎜ x ∈ X, m ∈ MN}, and for all the possible
vectors Xt ∈ {0,1}n a path l(m0, m

T) is activated, so that y = f(Xt) =
x(mT).

Unlike the traditional BDDs [17], [123], SSBDDs [158] support
structural representation of gate-level circuits in terms of signal
paths. By superposition of DDs [158], we can create SSBDDs
with one-to-one correspondence between graph nodes and signal

CHAPTER 9

184

paths in the circuit. The whole circuit can then be represented as
a network of tree-like subcircuits (macros), each of them repre-
sented by a SSBDD. Using SSBDDs, it is possible to ascend from
the gate-level to a higher macro level without loosing accuracy of
representing gate-level signal paths.

Our intention is to make use of the SSBDDs to capture both
the structural and functional properties of a given circuit in or-
der to generate high-quality test patterns.

Figure 9.1 shows a representation of a tree-like combinational
circuit by a SSBDD. For simplicity, values of variables on edges
of the SSBDD are omitted (by convention, an edge going to the
right corresponds to 1, and an edge going down corresponds to 0).
Also, terminal nodes with constants 0 and 1 are omitted: leaving
the graph to the right corresponds to y = 1, and down, to y = 0.
The SSBDD graph contains 7 nodes, and each of them represents
a signal path in the given subcircuit (denoted as a macro in
Figure 9.1). By bold lines an activated path in the graph corre-
sponding to the input pattern x1x2x3x4x5x6 = 110100 is high-
lighted. The value of the function y = 1 for this pattern is deter-
mined by the value of the variable x5 = 1 in the terminal node of
the path.

Figure 9.1. A gate level circuit and its corresponding SSBDD.

The path activation properties can efficiently used in test gen-
eration, for example.

Procedure 9.1: Test generation. To generate a test for a node
m ∈ MN in Gy, the following paths have to be activated:

&

&

&

&

&

&

&

1
2

3
4
5

6

7

71

72

73

a

b

c

d

e

y

Macro

&

&&

&&

&&

&

&

&

1
2

3
4
5

6

7

71

72

73

a

b

c

d

e

y

Macro
6 73

1

2

5

7271

y

0

1
6 73

1

2

5

7271

y

0

1

MODELING WITH DECISION DIAGRAMS

 185

(1) l(m0, m),

(2) l(m1,mT,1), and

(3) l(m0,mT,0).

To generate a test pattern for the path from x7,1 to y in the cir-
cuit by using SSBDD means to generate a test pattern for the
corresponding node x7,1 in the graph. To test the node x7,1, accord-
ing to Procedure 1, the following paths should be activated;
(6,¬1, 2, 71), (¬1, mT,1), and (¬1, mT,0), which produces the test
pattern: x1x2x3x4x5x6 = 11xx00. For example, to test a physical de-
fect of a bridge between the lines 6 and 7, which is activated on
the line 7, additional constraint W=¬x6∧x7=1 has to be used,
which updates the test vector to 111x00.

9.3. Modeling with a Single Decision Diagram on
Higher Levels

Consider now a digital system S = (Z, F) as a network of compo-
nents (or processes), where Z is the set of variables (Boolean,
Boolean vectors or integers) that represent connections between
components, as well as inputs and outputs of the network. De-
note by X ⊂ Z and Y ⊂ Z, correspondingly, the subsets of input
and output variables. V(z) denotes the set of possible values for
z ∈ Z, which are finite.

Let F be the set of digital functions on Z: zk = fk (zk,1, zk,2, ... , zk,p)
= fk (Zk) where zk ∈ Z, fk ∈ F, and Zk ⊂ Z. Some of the functions
fk ∈ F, for the state variables z ∈ ZSTATE ⊂ Z, are next state func-
tions.

Definition 9.5: A decision diagram is a directed acyclic graph
G = (M, Γ, Z) where M is a set of nodes, Γ is a relation in M, and
Γ(m) ⊂ M denotes the set of successor nodes of m ∈ M. The nodes
m ∈ M are marked by labels z(m). The labels can be variables
z ∈ Z, algebraic expressions fm(Z(m)) of Z(m) ⊆ Z, or constants.

CHAPTER 9

186

For non-terminal nodes m ∈ MN, where Γ(m) ≠ ∅, an onto func-
tion exists between the values of z(m) and the successors
me ∈ Γ(m) of m. By me we denote the successor of m for the value
z(m) = e. The edge (m, me) which connects nodes m and me is
called activated iff there exists an assignment z(m) = e. Activated
edges, which connect mi and mj, make up an activated path
l(mi, mj) ⊆ M. An activated path l(m0, mT) ⊆ M from the initial
node m0 to a terminal node mT is called a full activated path.

Definition 9.6: A decision diagram Gz,k represents a high-level
function zk = fk (zk,1, zk,2, …, zk,p) = fk (Zk), zk ∈ Z iff for each value
v(Zk) = v(zk,1) × v(zk,2) × ... × v(zk,p), a full path in Gz,k to a terminal
node mT ∈MT in Gz,k is activated, so that zk = z(mT) is valid.

Depending on the class of the system (or its representation
level), we may have various DDs, where nodes have different in-
terpretations and relationships to the system structure. In RTL
descriptions, we usually partition the system into control and
data parts. Nonterminal nodes in DDs correspond to the control
path, and they are labelled by state and output variables of the
control part serving as addresses or control words. Terminal
nodes in DDs correspond to the data path, and they are labelled
by the data words or functions of data words, which correspond
to buses, registers, or data manipulation blocks.

When using DDs for describing complex digital systems, we
have to, first, represent the system by a suitable set of intercon-
nected components (combinational or sequential subcircuits).
Then, we have to describe these components by their correspond-
ing functions which can be represented by DDs.

Figure 9.2 depicts an example of a DD describing the behavior
of a digital system together with its possible RTL implementa-
tion. The variables R1, R2 and R3 represent registers, IN repre-
sents the input bus, the integer variables y1, y2 , y3, y4 represent
the control signals, M1, M2, M3 are multiplexers, and the func-
tions R1+R2 and R1*R2 represent the adder and multiplier, corre-
spondingly. Each node in DD represents a subcircuit of the sys-

MODELING WITH DECISION DIAGRAMS

 187

R2M3

e
+M1

a

*M2

b

•

•

R1

IN •

•

•

c

d

y1 y2 y3 y4

R2M3

e
+M1

a

*M2

b

•

•

R1

IN •

•

•

c

d

y1 y2 y3 y4

tem (e.g. the nodes y1, y2, y3, y4 represent multiplexers and decod-
ers,). The whole DD describes the behavior of the input logic of
the register R2. To test a node means to test the corresponding
subcircuit.

if (y

1
=0)

 c:=R
1
+R

2
;

else
 c:=IN+R

2
;

endif;

if (y

2
=0)

 d:=R
1
*R

2
;

else
 d:=IN*R

2
;

endif;

case y

3

 0: e:=c;
 1: e:=IN;
 2: e:=R1;
 3: e:=d;
end case;

if (y

4
=2)

 R
2
:=e;

Figure 9.2. Representing a data path by a decision diagram.

For test pattern simulation, a path is traced in the graph,
guided by the values of input variables until a terminal node is
reached, similarly as in the case of SSBDDs. In Figure 9.2 the
result of simulating the vector y1, y2, y3, y4, R1, R2, IN =
0,0,3,2,10,6,12 is R2 = R1*R2 = 60 (bold arrows mark the activated
path). Instead of simulating by a traditional approach all the

y4

y3 y1 R1 + R2

IN + R2

R1 * R2

IN* R2

y2

R2 0

1

2 0

1

0

1

0

1

#0

R2

IN

R1
2

3

y4

y3 y1 R1 + R2

IN + R2

R1 * R2

IN* R2

y2

R2 0

1

2 0

1

0

1

0

1

#0

R2

IN

R1
2

3

CHAPTER 9

188

components in the circuit, in the DD only 3 control variables are
visited during simulation, and only a single data manipulation
R2 = R1*R2 is carried out.

9.3.1. Decision Diagrams at the Behavioral Level

Our approach starts from a behavioral specification, given in
VHDL. At this level the design does not include any details about
the final implementation, however we assume that a simple fi-
nite-state machine (FSM) has already been introduced and
therefore the design is conceptually partitioned into the data
path and control part. For this transformation we are using the
CAMAD high-level synthesis system [39].

DD synthesis from a high-level description language consists
of several steps, where data path and control part of the design
will be converted into the DDs. As described earlier, the entire
system can be represented with a single DD. However, in our
case, the design is already partitioned into the control part and
data path, and therefore both parts will be converted into sepa-
rate DDs.

Figure 9.3 depicts an example of a DD, describing the behavior
of a simple function. For example, variable A will be equal to
IN1+2, if the system is in the state q=2 (Figure 9.3c). If this state
is to be activated, condition IN1≥0 should be true (Figure 9.3b).
The DDs, extracted from a specification, will be used as a compu-
tational model in the hierarchical test generation environment.

9.3.2. SICStus Prolog Representation of Decision
Diagrams

For each internal or primary output variable corresponds one
data-flow DD. In a certain system state, the value of a variable is
determined by the terminal node in the data graph. In this case,
the relationship between the terminal node and the variable can
be viewed as a functional constraint on the variable at the state.

MODELING WITH DECISION DIAGRAMS

 189

To generate a test pattern for a fault we have to excite the
fault (justification) and to sensitize the fault effect at the pri-
mary outputs (propagation). For example, if we want to test the
statement that is highlighted in Figure 9.3a, we have to bring
the system to the state q=2. This can be guaranteed only when
q’=0 and IN1≥ 0. These requirements can be seen as justification
constraints.

if (IN1 < 0) then
 A := IN1 * 2; ------ q=1
else
 A := IN1 + 2; ------ q=2
endif;

B := IN1 * 29; ------ q=3
A := B * A; ------ q=4
B := A + 43; ------ q=5

a) Specification
(comments start with “--“)

q' IN1 1

0

<00q

1,2 3

2

3 4

4 5

5

b) The control-flow DD
(q denotes the state variable
and q’ is the previous state)

q 1

2

q 3IN1 * 2

IN1 + 2

A'

IN1 * 29

A+43

B'

A B

B*A4

5

1, 2, 4

3, 5

c) The data-flow DD

Figure 9.3. A decision diagram example.

CHAPTER 9

190

For observing the fault effect at primary outputs, we have to
distinguish between the faulty and the correct behavior of a
variable under test (Variable “A” in our example). This requires,
that B ≠ 0 (from the statement A:=B*A) and consequently
IN1*29 ≠ 0 (from the statement B:=IN1*29), otherwise the vari-
able “A” will have always value 0 and the fault cannot be de-
tected. These conditions can be seen as propagation constraints.

By solving the extracted constraints we will have a test pat-
tern (combination of input values) which can excite the fault and
propagate the fault effect to the primary outputs. For solving
these constraints we employ a commercial constraint solver
SICStus [147] and have developed a framework for representing
a DD model in the form of constraints. First, we translate the
control-flow DD into a set of state transition predicates and path
activation constraints are extracted along the activated path.
Then all the data-flow DDs are parsed as functional constraints
at different states by using predicates. Finally, a DD model is
represented as a single Prolog module. See [150] for technical de-
tails about the translation process.

HIERARCHICAL TEST GENERATION WITH DDS

 191

Chapter 10

Hierarchical Test
Generation with DDs

One possible approach to deal with test generation complexity is
to raise up the level of design abstractions at which the basic test
generation procedure is performed. In the following we will de-
scribe an approach that performs the test generation procedure
using the high-level behavioral description captured by DDs, but
at the same time, takes into account some detailed information
of the basic components at the lower levels.

At the behavioral level we can represent digital system with a
single DD or to partition the system into the control-flow DD and
data-flow DDs. For illustrative purposes we will use hereby the
latter approach. The control-flow DD carries two types of infor-
mation: state transition information and path activation infor-
mation. The state transition information captures the state tran-
sitions that are given in the FSM corresponding to the specified
system. The path activation information holds conditions associ-
ated to state transitions.

CHAPTER 10

192

Depending on the partition of a system into a network of sub-
systems we can represent the whole DD-model as a set of DDs,
so that for every output of a subsystem a DD will be associated
with it.

A test for a system represented by DDs can be created in two
parts [157]:

• A scanning test, which makes sure that the different func-
tional blocks are working correctly; and

• A conformity test, which makes sure that the different work-
ing modes chosen by control signals are properly carried out.

In [90] it has been shown that in some cases there exists a gap
between the fault coverage figures attained by test sequences
generated purely on a high-level and those by the gate-level
ones. This gap can be reduced by integrating structural informa-
tion to the test generation process by employing the hierarchical
test generation (HTG) approach to be discussed here.

The main idea of a HTG technique [126] is to use information
from different abstraction levels while generating tests. One of
the main principles is to use a modular design style, which al-
lows us to divide a larger problem into several smaller subprob-
lems and to solve them separately. This approach allows generat-
ing test vectors for the lower level modules based on different
techniques suitable for the respective entities.

The HTG algorithm of interest to us generates conformity
tests from pure behavioral descriptions. This test set targets er-
rors in branch selection (nonterminal nodes of the DDs). During
the second test generation phase the functional blocks (e.g., ad-
ders, multipliers and ALUs) composing the behavioral model are
identified (terminal nodes of the data-flow DDs), and suitable
test vectors are generated for the individual blocks. During the
block-level test generation phase each block is considered as an
isolated and fully controllable and observable entity; and a gate-
level test generation tool is used for this purpose. The test vec-
tors generated for the basic blocks are then justified and their

HIERARCHICAL TEST GENERATION WITH DDS

 193

fault effects propagated in the behavioral model of the circuit
under test. In this way we can incorporate accurate structural in-
formation into the high-level test pattern generation environ-
ment while keeping propagation and justification task still on a
high abstraction level.

10.1. Test Generation Algorithm

The test generation task is performed in the following way
(Figure 10.1). Tests are generated sequentially for each nonter-
minal node of the control-flow DD. Symbolic path activation is
performed and functional constraints are extracted. Solving the
constraints gives us the path activation conditions to reach a
particular segment of the specification. In order to test the op-
erations, presented in the terminal nodes of the data-flow DD,
different approaches can be used. In our approach we employ a
gate level test pattern generator. In this way we can incorporate
accurate structural information into the high-level test pattern
generation environment while keeping the propagation and justi-
fication task still on a high abstraction level. If the constraint
solver is not able to find a solution, a new test case should be
generated, if possible. This cycle should be continued until a so-
lution is found or a timeout occurs.

The HTG environment is depicted in Figure 10.2. Our HTG
environment accepts as input a behavioral VHDL specification.
The VHDL code is translated into the DD model, which is used
as a formal platform for test generation, and later into a Prolog
model, which is used by the constraint solver. In our approach
we use a commercial constraint solver SICStus [147]. The HTG
algorithm generates test cases and forwards them in form of con-
straints to the constraint solver, which generates the final test
vectors. Propagation and justification of the gate level test pat-
terns are performed by the constraint solver as well.

CHAPTER 10

194

No

Generate a test case
(Conformity test or gate-level ATPG)

Yes

BEGIN

Success?

Yes

No

Extract functional and path activation
constraints for justification

Extract funtional and path activation
constraints for fault effect propagation

Solve constraints

A solution?
No No

Yes

Yes
Timeout?

Any
unprocessed nodes

in the DD?

Select an unprocessed node

END

Figure 10.1. The general flow for hierarchical
test generation algorithm.

HIERARCHICAL TEST GENERATION WITH DDS

 195

Constraint Solver Interface

DD Model

DD2Prolog

Prolog DD model

CCoonnssttrraaiinntt SSoollvveerr
((SSIICCSSttuuss -- eexxtteerrnnaall ttooooll))

Test Vectors

VHDL2DD

Behavioral VHDL

Test Cases Generator

Test Cases

FU Library

GGaattee--lleevveell AATTPPGG
((eexxtteerrnnaall ttooooll))

Figure 10.2. Our hierarchical test generation environment.

In the following, the test pattern generation algorithm is de-
scribed in more detail.

10.2. Scanning Test

Consider a terminal node mT ∈ MT in Gz,k, labeled by a functional
expression fm(Z(mT)). To generate a test for the node mT means to
generate a test for the function fm(Z(mT)).

For generating a test for fm(Z(mT)) we have to solve two tasks:
1. to activate a path l(m0, m

T) ⊆ M, from the root node m0 of
the DD up to mT by choosing proper values z(m) * for all
the control variables z(m) in the nodes m ∈ l(m0, m

T)\ mT;
and

2. to find the proper sets of data values D = (D1, D2,…, Dp) for
the variables Z(mT) to test the function fm(Z(mT)).

CHAPTER 10

196

For executing these two tasks, we can use the following test
program:

Algorithm 10.1:

FOR all the values of t = 1, 2, …, p

BEGIN

Load the data registers Z(mT) with Dt ;

Carry out the tested working mode at the control values
z(m)* for all z(m), m ∈ l(m0, m

T)\ mT;

Read the value of zk
 and compare it to the reference value

fm(Dt).

END.

The task of the scanning test is to detect the faults in regis-
ters, buses and data manipulation blocks. In terms of DDs the
terminal nodes are tested by the scanning test.

Example 10.1: We illustrate how a test can be generated for
testing the multiplier in Figure 9.2. In the DD of Figure 9.2 we
have two terminal nodes with the multiplier function. Let us
choose the node R1*R2 for testing. By activating the path to this
node (shown by bold in Figure 9.2) we generate a control word y2,
y3, y4 = 0,3,2. To find the proper values of R1 and R2 we need to
descend to the lower level (e.g., gate level) and generate test pat-
terns by a low level ATPG for the implementation of the multi-
plier. Let us have a test set of n test patterns (D11, D21; D12, D22; …
D1p, D2p) generated for the multiplier with inputs R1 and R2.

Based on the above information, the following test program
can be used:

Algorithm 10.2:

FOR all the values of i = 1, 2, …, p

BEGIN
Load the data registers R1 = D1i, R2 = D2i;

HIERARCHICAL TEST GENERATION WITH DDS

 197

Carry out the tested working mode at the control values
y2,y3 y4 = 0,3,2;
Read the value of R2 and compare to the reference D1i * D2i.

END.

10.2.1. Scanning Test in the HTG Environment

One of the most important parameters guiding the design syn-
thesis process is the technology and module library that will be
used in the final implementation. By defining the technology and
module library, we can have information about the implementa-
tion of functional units that will be used in the final design. The
hierarchical test generation algorithm can employ this structural
information for generating tests. Tests are generated by coopera-
tion of high-level and low-level test pattern generators. It is usu-
ally performed one by one for every arithmetic operator given in
the specification (Figure 10.3).

if (IN1 > 0)
 X=IN2+3; --- q=1
else {
 if (IN2 >= 0)
 X=IN1+IN2; -- q=2
 else
 X=IN1*5; --- q=3
}

Y=X-10; -------- q=4
X=Y*2; -------- q=5
OUT=X+Y; -------- q=6

Behavioral description

OUT q’

X+Y

OUT’
0,1,2,3,4,5

6

Figure 10.3. Testing functional units

In the HTG environment we describe here, the algorithm
starts by choosing an operator not yet tested from the specifica-
tion, and uses a gate level ATPG to generate a test pattern tar-

1
X

X
0

0
X
Fragment of a gate level netlist

CHAPTER 10

198

geting structural faults in the corresponding functional unit. In
this approach a PODEM like ATPG is used, but in the general
case any gate-level test pattern generation algorithm can be ap-
plied. If necessary, pseudorandom patterns can be used for this
purpose as well.

The test patterns, which are generated by this approach, can
have some undefined bits (don’t cares). As justification and
propagation are performed at the behavioral level by using sym-
bolic methods, these undefined bits have to be set to a given
value. Selecting the exact values is an important procedure since
not all possible values can be propagated through the environ-
ment and it can therefore lead to the degradation of fault cover-
age.

A test vector that does not have any undefined bits is thereaf-
ter forwarded to a constraint solver, where together with the en-
vironmental constraints it forms a test case. Solving such a test
case means that the generated low-level test vector can be justi-
fied till the primary inputs and the fault effect is observable at
the primary outputs. If the constraint solver cannot find an input
combination that would satisfy the given constraints, another
combination of values for the undefined bits has to be chosen and
the constraint solver should be employed again. This process is
continued until a solution is found or timeout occurs.

If there is no input combination that satisfies the generated
test case, the given low-level test pattern will be abandoned and
the gate-level ATPG will be employed again to generate a new
low-level test pattern. This task is continued until the low-level
ATPG cannot generate any more patterns.

This can be illustrated with the following example (Figure
10.4). Let us assume that we want to test the FU which is in the
statement Y=X+IN2. For this purpose the gate-level ATPG is
employed and it returns a test vector X=0X0X and IN2=1X11.
From the environment we know that variable X can hold only a
very limited range of values. Either X=1 or X has a value which

HIERARCHICAL TEST GENERATION WITH DDS

 199

is a multiple of 5 (0, 5, 10, 15, …). Therefore, if we replace the
undefined bits so that X=0001, the justification process will be
successful, but if X=0100 (decimal value 4), the justification will
fail.

We generate tests for every FU one by one and finally the fault
coverage for every individual FU under the given environmental
constraints can be reported, which gives the possibility to rank
all modules according to their testability.

if (IN1>0)

 X=IN1*5;

else

 X=1;

 Y=X+IN2;

Behavioral description

X

IN2
Y+

FU under test
 X IN2

ATPG: 0X0X 1X11
 0001 (1) 1011 (11) SUCCESS
 0100 (4) 1011 (11) FAILURE
 0101 (5) 1011 (11) SUCCESS

Test vectors

Figure 10.4. Selection of a test vector.

10.3. Conformity Test

Consider a nonterminal node m labeled by a control variable
z(m) in a given DD Gz,k, representing a digital system with a
function zk = fk (Zk). Let Z = (ZC, ZD), where ZC is the vector of
control variables and ZD is the vector of data variables. To gener-
ate a test for the node m means to generate a test for the control
variable z(m) ∈ ZC. Suppose that the variable z(m) may have n =
|z(m)| different values. For testing z(m), we have to activate and
exercise all the proper working modes controlled at least once by
each value of z(m). At the same time, for each of such a working
mode, a current state of the system should be generated, so that

CHAPTER 10

200

every possible faulty change of z(m) should produce a faulty next
state different compared to the expected next state for the given
working mode.

Let us denote by me the successor node of the node m for the
value z(m) = e, where e = 1, 2, …, n. For generating a test for m
we have to solve the following tasks on the DD:

1. to activate a path l(m0, m)\m ⊆ M from the root node of
the DD up to the node m by choosing proper values z(m’)*
for all the control variables z(m’) ∈ ZC in the nodes m’ ∈
l(m0, m)\ m;

2. to activate for all neighbors me of m nonoverlapping paths
l(me,me,T) from me up to the nonoverlapping terminal nodes
me,T by choosing proper values z(m’)* for all the control
variables z(m’) ∈ ZC

 in the nodes of m’ ∈ l(me,me,T); and
3. to find the proper set of data (the values z* of the vari-

ables z ∈ ZD), by solving the inequality z(mT,1) ≠ z(mT,2) ≠ …
≠ z(mT,n) where n = | v(z(m))|.

Consider the resulting test as a set of symbolic test patterns T
= {(z(m) = e, ZC*, ZD*, z(mT,e)) ⎪ e ∈ v(z(m))}, where e is the sym-
bolic value of the tested variable z(m); ZC* is the constant vector
of the other control signals corresponding to the set of variables
ZC ⊆ Z, and generated by the first two steps of the algorithm; ZD*
is the constant vector of the data values corresponding to the set
of variables ZD ⊆ Z, and generated by the third step of the algo-
rithm; and, finally, z(mT,e) is the expected output value of the sys-
tem corresponding to the value e of the tested control variable
z(m). The final conformity test of the control variable z(m) cre-
ated from the symbolic test pattern T consists of the following
program:

FOR each value of e = 1, 2, …, |z(m)|
BEGIN

Load the data registers with ZD*;

Carry out the tested working mode at the control signals
z(m) = e, and ZC*;

HIERARCHICAL TEST GENERATION WITH DDS

 201

Read the value of zk, and compare with the reference
value z(mT,e).

END.

The task of the conformity test is to detect the control faults
and the faults in multiplexers. In terms of DDs the nonterminal
nodes are tested by the conformity test.

For example, in order to test nonterminal node IN1 in Figure
10.5, one of the output branches of this node should be activated.
Activation of the output branch means activation of a certain set
of program statements. In our example, activation of the branch
IN1<0 will activate the branches in the data-flow DD where q=1
(A:=X). For observability the values of the variables calculated in
all the other branches of IN1 have to be distinguished from the
value of the variables calculated by the activated branch. In our
example, node IN1 is tested, in the case of IN1<0, if X≠Y. The
path from the root node of the control-flow DD to the node IN1
has to be activated to ensure the execution of this particular
specification segment and the conditions generated here should
be justified to the primary inputs of the module. This process will
be repeated for each output branch of the node. In the general
case there will be n(n-1) tests, for every node, where n is the
number of output branches.

q q'
0

...

IN1 1

2

<0

A q
1

2

X

Y

Figure 10.5. Conformity test example

 ≠

 ≠

Control-flow DD:

Data-flow DD:

CHAPTER 10

202

Example 10.2: Let us consider how to generate a test program
for testing the node m labeled by y3 in Figure 9.2. First, we acti-
vate the path l(m0, m)\m, which results in y3 = 2. Then we acti-
vate 4 paths l(m,me,T) for each value e = 1, 2, 3, 4 of y3, which re-
sults in y1 = 0 and y2 = 0. Two of the 4 paths for values y3 = 1 and
y3 = 2 are “automatically” activated since the successors of the
node y3 for these values are terminal nodes. The test data R1 =
D1, R2 = D2, IN = D3 are found by solving the inequality:

R1 + R2 ≠ IN ≠ R1 ≠ R1 * R2 (10.1)

From the procedure described above, the following conformity
test for the control variable y3 is generated:

Algorithm 10.3:

FOR e = 1, 2, 3, and 4

BEGIN

Load the data registers R1 = D1, R2 = D2;

Carry out the tested working mode at
y3 = e, y1 = 0, y2 = 0, y4 = 2 and IN = D3;

Read the value of R2, and compare it to the reference
value z(mT,e).

END.

In the case when the control values are data dependent then
the algorithms become more complicated, since the data found
for nonterminal nodes by activating the paths in the DD should
be consistent with data found in processing the terminal nodes.

In the general case, a digital system cannot be represented by
a single DD. In this case a system will be represented as a net-
work of components or subsystems where each subsystem is
modelled by its own DD. The test sequences generated for a sub-
system with its DD by the procedures described above are to be
treated as local test sequences. To generate the whole test se-
quence in a global sense, the classical fault propagating and line

HIERARCHICAL TEST GENERATION WITH DDS

 203

justification tasks should be solved on the system level. For solv-
ing these tasks, DDs can also be used.

To justify a value D for a variable zk represented by a DD Gz,k,
a path should be activated in Gz,k from the root node to a termi-
nal node mT labelled by a register, bus or input variable z, and
the value D is assigned to z. If z corresponds to an input or any
other directly controllable point, the line justification task is fin-
ished. Otherwise, if z is a register or a bus represented by its own
DD Gz, the line justification tasks will be iteratively solved for z
using the graph Gz,.

To propagate the fault from the point represented by a vari-
able z through a subsystem which is represented by a DD Gz,k, a
test generation procedure described above should be carried out
in Gz,k for the node m labeled by z. The test generated for the
node m is propagating any erroneous value of z(m) to the output
variable zk of the subsystem.

10.4. Experimental Results

In this section we present our experimental results. We demon-
strate that test sequences generated from high-level descriptions
provide fault coverage figures comparable with figures obtained
at the gate level, while the test generation time is reduced sig-
nificantly. We will also demonstrate that our approach can suc-
cessfully be used for testability evaluation.

We performed experiments on the DIFFEQ circuits taken from
the High-Level Synthesis’91 benchmark suite. We have synthe-
sized two gate level implementations of the same circuit: one op-
timized for speed (DIFFEQ 1) and the other optimized for area
(DIFFEQ 2). Generated test patterns are applied to the gate
level implementations of the circuit and the fault coverage is
measured based on the SSA model. The results are reported in
Table 10.1, where for every approach we have presented the ob-

CHAPTER 10

204

tained stuck-at fault coverage (FC), number of generated test
vectors (Len) and CPU time spent (CPU) for test generation.

Table 10.1. Results for the DIFFEQ benchmark circuit.

 Pure High-level
ATPG

Our Hierarchical
ATPG

Gate-level ATPG
testgen

 FC
[%]

Len
[#]

CPU
[s]

FC
[%]

Len
[#]

CPU
[s]

FC
[%]

Len
[#]

CPU
[s]

DIFFEQ 1 97.25 553 954 98.05 199 468 99.62 1,177 4,792
DIFFEQ 2 94.57 553 954 96.46 199 468 96.75 923 4,475

We compare our results with pure high-level ATPG [90] and
pure gate level ATPG (testgen from Synopsys). The pure high-
level ATPG works at the behavioral level and generates tests
based on different code coverage metrics. The gate-level ATPG,
on the other hand, uses only gate-level information and can
therefore be used only at the latter stages of the design cycle.
The results show that the test sequences provided with our HTG
approach can be successfully used for detecting stuck-at faults.
These results also show that when moving test vector generation
toward lower levels of abstractions, where more detailed infor-
mation about the tested circuits are available, the obtained re-
sults in terms of fault coverage figures are improved. The fault
coverage obtained by the hierarchical ATPG is higher than that
of the pure high-level ATPG, while the fault coverage working at
the gate level is the highest. However, all three different ap-
proaches can obtain very high and comparable fault coverage
figures. On the other hand, moving test generation towards the
higher levels of abstraction has positive effects on the test gen-
eration time and on the test length that are both significantly
reduced.

We can also note that our HTG approach can generate test se-
quences faster and with higher quality than pure high-level
ATPG. This can be partially explained with the very simple test
generation algorithm employed in the pure high-level ATPG ap-
proach reported here.

HIERARCHICAL TEST GENERATION WITH DDS

 205

We have also investigated possibilities to apply our ATPG ap-
proach to an industrial design F4 [148], which is part of the
F4/F5 layer of the ATM protocol, covering the main functionality
as specified by standard references. The F4/F5 layer covers the
Operation and Maintenance (OAM) functionality of the ATM
switches. The F4 level handles the OAM functionality concerning
virtual paths and the F5 level handles the OAM functionality
concerning virtual channels. We have extracted two blocks from
the specification: F4_InputHandler_1 and F4_OutputHandler_1.
Experimental results of these two examples are compared with
those obtained using the commercial gate level ATPG tool from
Mentor Graphics (FlexTest) and are presented in Table 10.2:

Table 10.2. ATPG results with F4 design.

Our Hierarchical
ATPG

Gate level ATPG Flex-
Test

Design
VHDL
Lines

[#]

Stuck-at
faults

[#] Len
[#]

CPU
[s]

FC
[%]

Len
[#]

CPU
[s]

FC
[%]

F4_Input
Handler_1

175 4872 62 228 64.22% 219 811 38.22%

F4_Output
Handler_1

54 872 26 1.52 76.26% 170 5 81.30%

As it can be seen, HTG can produce results that are compara-
ble with results obtained at the gate level, while having shorter
test generation time and reduced test length. In case of the
F4_InputHandler_1 block, our HTG approach obtains even
higher fault coverage figure than that of the gate-level ATPG.
This illustrates very well the situation when a gate-level ATPG
cannot produce high quality test vectors due to the higher com-
plexity of descriptions at lower levels of abstraction, and a high-
level ATPG tool can outperform a gate-level ATPG tool by pro-
ducing test patterns with higher fault coverage.

In order to investigate the possibility of using the HTG ap-
proach for testability evaluation we have also performed a more
thorough analysis using the DIFFEQ design. The results are
presented in Figure 10.6. We have annotated the VHDL behav-

CHAPTER 10

206

ioral description of the design with the test generation results.
We use the instruction y_var := y_var + t7; in order to explain the
attached information:

y_var := y_var + t7;
 -- Tested 389 faults

Total number of detected stuck-at faults in the FU,
when implemented in the target technology.

 -- Untestable 0
Total number of untestable faults in the FU, when
implemented in the target technology.

 -- Aborted 39
Total number of aborted faults (the faults that cannot
be detected due to different reasons. For example, the
generated gate-level test pattern could not be propa-
gated and/or justified till primary inputs/outputs).

 -- Fault coverage: 90.89
Final stuck-at fault coverage.

 -- 11 Vectors
Number of test vectors that were generated by a gate
level ATPG and successfully justified till primary in-
puts and propagated till primary outputs.

As it can be seen, fault coverage of functional units differs sig-
nificantly, depending of the location and type of every individual
FU. This information can be successfully exploited at the latter
stage of the DFT flow, when selecting modules for DFT modifica-
tions.

HIERARCHICAL TEST GENERATION WITH DDS

 207

ENTITY diff IS
 PORT
 (x_in : IN integer;
 y_in : IN integer;
 u_in : IN integer;
 a_in : IN integer;
 dx_in : IN integer;
 x_out : OUT integer;
 y_out : OUT integer;
 u_out : OUT integer
) ;
END diff ;

ARCHITECTURE behavior OF diff IS
BEGIN
 PROCESS
 variable x_var, y_var, u_var,
 a_var, dx_var : integer;
 variable t1,t2,t3,t4,t5,
 t6,t7: integer ;
 BEGIN
 x_var := x_in;
 y_var := y_in;
 a_var := a_in;
 dx_var := dx_in;
 u_var := u_in;
 while x_var < a_var loop
 t1 := u_var * dx_var;
 -- Tested 5634 faults
 -- Untestable 0
 -- Aborted 14
 -- Fault coverage: 99.75
 -- Fault efficiency: 99.75
 -- 52 Vectors

 t2 := x_var * 3;
 -- Tested 4911 faults
 -- Untestable 0
 -- Aborted 737
 -- Fault coverage: 86.95
 -- Fault efficiency: 86.95
 -- 11 Vectors

 t3 := y_var * 3;
 -- Tested 4780 faults
 -- Untestable 0
 -- Aborted 868
 -- Fault coverage: 84.63
 -- Fault efficiency: 84.63
 -- 10 Vectors

 t4 := t1 * t2;
 -- Tested 5621 faults
 -- Untestable 0
 -- Aborted 27
 -- Fault coverage: 99.52
 -- Fault efficiency: 99.52
 -- 38 Vectors

 t5 := dx_var * t3;
 -- Tested 5616 faults
 -- Untestable 0
 -- Aborted 32
 -- Fault coverage: 99.43
 -- Fault efficiency: 99.43
 -- 35 Vectors

 t6 := u_var - t4;
 -- Tested 368 faults
 -- Untestable 0
 -- Aborted 60
 -- Fault coverage: 85.98
 -- Fault efficiency: 85.98
 -- 9 Vectors

 u_var := t6 - t5;
 -- Tested 424 faults
 -- Untestable 0
 -- Aborted 4
 -- Fault coverage: 99.06
 -- Fault efficiency: 99.06
 -- 15 Vectors

 t7 := u_var * dx_var;
 -- Tested 1123 faults
 -- Untestable 0
 -- Aborted 4525
 -- Fault coverage: 19.88
 -- Fault efficiency: 19.88
 -- 1 Vectors

 y_var := y_var + t7;
 -- Tested 389 faults
 -- Untestable 0
 -- Aborted 39
 -- Fault coverage: 90.88
 -- Fault efficiency: 90.88
 -- 11 Vectors

 x_var := x_var + dx_var;
 -- Tested 414 faults
 -- Untestable 0
 -- Aborted 14
 -- Fault coverage: 96.72
 -- Fault efficiency: 96.72
 -- 15 Vectors

 end loop ;

 x_out <= x_var;
 y_out <= y_var;
 u_out <= u_var;
 END PROCESS ;
END behavior;

Figure 10.6. DIFFEQ benchmark with testability figures for
every individual functional unit.

CHAPTER 10

208

10.5. Conclusions

This part of the thesis described a modeling technique, the Deci-
sion Diagrams, which is used to capture a digital design at sev-
eral levels of abstraction. We illustrate first how DDs can be
used to capture a gate-level design, with respect of both func-
tional and structural information. The use of DDs to capture de-
signs at the register-transfer and behavioral levels were then de-
scribed.

With the help of the Decision Diagrams, a hierarchical test
generation approach could be developed to generate efficiently
test patterns based on information from several abstraction lev-
els. The described hierarchical test pattern generation technique
generates test sequences with higher fault coverage than those of
a pure behavioral test generator. This improvement in fault cov-
erage has been obtained by integrating structural information
coming from lower-level design. The algorithms maintain effi-
ciency in terms of execution speed by mainly working at the be-
havioral level for test vector justification and propagation. In the
particular hierarchical test generation implementation, a con-
straint solving algorithm is used to solve the vector justification
and propagation problems.

 209

PART IV

CONCLUSIONS AND

FUTURE WORK

CONCLUSIONS

 211

Chapter 11

Conclusions

The aim of this thesis is to develop a built-in self-test methodol-
ogy with the corresponding optimization methods and to propose
a technique for test pattern generation at high abstraction level.
In this chapter we summarize the thesis and underline the main
contributions. Possible directions for the future work will be
given in the next chapter.

Integrated circuits have been one of the most rapidly develop-
ing research domains during the last twenty years. Such circuits
have evolved from few-hundred-transistor controllers to the
modern systems-on-chip with hundreds of millions of transistors.
The introduction of new EDA tools has allowed designers to work
on higher abstraction levels, leaving the task of generating lower
level designs to automatic synthesis tools. Despite this trend,
test-related activities are still mainly performed at the gate level,
and the risk of reiterating through the design flow due to test
problems is high. Due to the increased complexity, the test gen-
eration process is also one of the most expensive and time-
consuming steps of the entire design flow. Therefore, new meth-

CHAPTER 11

212

ods for test pattern generation and testability analysis at the
early stages of the design flow are highly beneficial. The design
flow can be further improved by different design-for-testability
techniques. In this way, significant improvement could be
achieved in terms of design cost (especially by reducing the time
for designing a testable system) and design quality (by identify-
ing the optimal solution in terms not only of area, time, and
power constraints, but also of testing).

The contribution of this thesis is twofold:

Hybrid BIST technique and its optimization methods. In
the second part of the thesis an approach for improving classical
BIST, called hybrid BIST, was described. The method is based on
a hybrid test set that is composed of a limited number of pseudo-
random test vectors and some additional deterministic test pat-
terns that are specially designed to shorten the pseudorandom
test cycle and to target random resistant faults.

The main contribution of the thesis is a set of algorithms for
hybrid BIST optimization. We have analyzed hybrid BIST in
both environments: single-core designs and multi-core designs.
For single core designs, algorithms for total test cost calculation
and test cost minimization were devised. For multi-core systems,
algorithms for test time minimization, based on different test ar-
chitectures were proposed. Due to the complexity of optimizing
several SOC test parameters simultaneously, we have devised a
solution, where one of the parameters is constrained (test mem-
ory) and we try to minimize the second one (test time). This ap-
proach has high significance, for example, in handheld devices
where available memory is usually very limited. In addition, we
have developed several algorithms for hybrid BIST energy reduc-
tion and hybrid BIST test scheduling in an abort-on-first-fail test
environment.

High-level hierarchical test pattern generation. In the
third part of the thesis a novel high-level hierarchical test pat-
tern generation algorithm was proposed. It works at an imple-

CONCLUSIONS

 213

mentation independent behavioral level but also takes into ac-
count information from lower abstraction levels and is therefore
able to generate test sequences with higher fault coverage than
those test generation algorithms that are working purely on a
behavioral level.

FUTURE WORK

 215

Chapter 12

Future Work

The thesis covers several aspects related to hybrid BIST and
high-level test generation. In both domains we foresee several di-
rections for future research.

Hybrid BIST:

• Complex optimization. In this thesis we have proposed a
method for total test cost minimization only for single-
core designs. The proposed algorithms for multi-core de-
signs can minimize only one of the test parameters.
Therefore, a possible future development is an optimiza-
tion algorithm that can minimize several test parame-
ters concurrently. Consequently a method that can lead
to a highly efficient test solution in the general case
could be developed. This task is, however, very depend-
ant on the selected test strategy and the defined priori-
ties. For this reason, this work should be carried out in
close cooperation with chip manufacturers.

CHAPTER 12

216

• Hybrid BIST for sequential circuits. In this thesis we
have proposed a hybrid BIST approach for combinational
circuits and sequential circuits with full scan. A more
complex problem is to propose an architecture and opti-
mization mechanisms for sequential circuits without any
scan (or with partial scan). The difficulty of developing
such an architecture and optimization mechanisms is not
only due to the complex nature of sequential circuits, but
also related to pseudorandom testability. In case of com-
binatorial circuits, pseudorandom patterns have rela-
tively high fault detection capabilities. This is not valid
for sequential circuits and alternative methods for reduc-
ing the test data amount have to be developed. One of
the possibilities is to apply pseudorandom patterns only
for a combinatorial section of the design while the rest of
the design is tested with deterministic patterns.

• Self test methods for other fault models. Most of the exist-
ing work in the area of BIST is targeting the classical
SSA fault model. At the same time it has been demon-
strated that the SSA fault model can only cover some
failure modes in CMOS technology. Thus, the impor-
tance of other fault models (like transition and path de-
lay) is increasing rapidly. Therefore, it would be very in-
teresting to analyze the quality of hybrid test sets in
terms of defect detection capabilities and to develop a
methodology to support the detection of other failures
than the stuck-at ones.

• Power constrained test scheduling. In this thesis we have
proposed different heuristics for test time minimization
and test scheduling. Any of these approaches, however,
did not take into account power consumption of the tests.
Scheduling too many tests concurrently might unfortu-
nately simply burn the circuit. Therefore, the current
work should be extended by incorporating also the peak
power constraint into the test scheduling process.

FUTURE WORK

 217

High-level hierarchical test pattern generation:

• Testability of hardware/software systems. The testing of
the hardware and software parts of a system is, at this
moment, considered usually as separate problems and
solved with very different methods. It would be very in-
novative to develop a test generation technique that is
both applicable to the hardware and the software do-
mains. As an example, the early generated test se-
quences could be effective in testing hardware compo-
nents against manufacturing defects, but could also be
useful for debugging the code implementing the same
component, if the designer decides to choose a software
solution. Future work should also investigate whether it
is possible that, to some extent, the concept of testability
is independent of the adopted implementation in hard-
ware or software.

• High-level fault models. The problem with existing high-
level fault models is that their efficiency has been so far
demonstrated only experimentally. Therefore, it would
be highly beneficial to develop a theoretical framework
concerning high-level testability. Such a theoretical
foundation is crucial for generation of efficient test se-
quences, testability analysis and DFT insertion at the
high level of abstraction. This may lead to the develop-
ment of new fault models that are able to represent the
physical defects or software bugs and to map them on
high-level descriptions.

 219

References

[1] “90 Nanometer: The World's Most Advanced Chip-Making
Process,” Intel Research, 2003.
http://www.intel.com/techtrends/research/

[2] J. A. Abraham, ”Fault Modeling in VLSI. VLSI Testing,”
North-Holland, pp 1-27, 1986.

[3] M. Abramovici, M. A. Breuer, A. D. Friedman, “Digital Sys-
tems Testing and Testable Design,” IEEE Press, 1990.

[4] V. K. Agarwal, E. Cerny, “Store and Generate Built-In
Testing Approach,” International Symposium on Fault-
Tolerant Computing, pp. 35-40, 1981.

[5] V. D. Agrawal, C. R. Kime, K. K. Saluja, “A Tutorial on
Built-In Self-Test,” IEEE Design and Test of Computers,
pp. 73 – 82, March 1993; pp. 69 – 77, June 1993.

[6] B. Akers, W. Jansz, “Test Set Embedding in Built-In Self-
Test Environment,” IEEE International Test Conference,
pp. 257-263, 1989.

220

[7] G. al-Hayek, C. Robach, “An Enhancement Process for
High-Level Hardware Testing Using Software Methods,”
IEEE European Test Workshop, pp. 215-219, 1998.

[8] L. Ali, R. Sidek, I. Aris, B. S. Suparjo, M. A. M. Ali, “Chal-
lenges and Directions for Testing IC,” Integration, the VLSI
Journal, Vol. 37, No. 1, pp. 17-28, February 2004.

[9] C. Angelbro, “P-Bist Test Method Conquer the Ericsson
World,” Ericsson Telecom AB, 1997.

[10] B. S. Baker, E. G. Coffman, Jr., R. L. Rivest, “Orthogonal
Packings in Two Dimensions,” SIAM Journal of Comput-
ing, Vol. 9, Issue 4, pp. 846-855, 1980.

[11] P. H. Bardell, W. H. McAnney, “Self-Testing of Multichip
Logic Modules,” IEEE International Test Conference, pp.
200-204, 1982.

[12] P. H. Bardell, W. H. McAnney, J. Savir, “Built-In Test for
VLSI Pseudorandom Techniques,” John Wiley and Sons,
1987.

[13] N. Z. Basturkmen, S. M. Reddy, I. Pomeranz, “A Low
Power Pseudo-Random BIST Technique,” IEEE Interna-
tional On-Line Testing Workshop, pp. 140-144, 2002.

[14] B. Beizer, “Software Testing Techniques,” (2nd ed.), Van
Nostrand Rheinold, New York, 1990.

[15] M. Bershteyn, “Calculation of Multiple Sets of Weights for
Weighted Random Testing,” IEEE International Test Con-
ference, pp. 1031-1040, 1993.

[16] D. Brahme, J. A. Abraham, “Functional Testing of Micro-
processors,” IEEE Transactions on Computers, Vol. 33, No.
6, pp 475-485, 1984.

 221

[17] R. E. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation,” IEEE Transactions on Com-
puters, Vol. 35, No. 8, pp 667-690, 1986.

[18] F. Brglez, H. Fujiwara, “A Neutral Netlist of 10 Combina-
tional Benchmark Circuits and a Target Translator in For-
tran,” IEEE International Symposium on Circuits and Sys-
tems, pp. 663-698, 1985.

[19] F. Brglez, D. Bryan, K. Kozminski, “Combinational Profiles
of Sequential Benchmark Circuits,” IEEE International
Symposium on Circuits and Systems, pp. 1929-1934, 1989.

[20] K. Chakrabarty, “Test Scheduling for Core-Based Systems
Using Mixed-Integer Linear Programming,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 19, No. 10, pp. 1163-1174, October 2000.

[21] S. Chakravarty, V. Dabholkar, “Minimizing Power Dissipa-
tion in Scan Circuits During Test Application,” IEEE In-
ternational Workshop on Low Power Design, pp. 51-56,
1994.

[22] A. Chandrakasan, T. Sheng, R. W. Brodersen, “Low Power
CMOS Digital Design,” Journal of Solid State Circuits, Vol.
27, No. 4, pp. 473–484, 1992.

[23] M. Chatterjee, D. K. Pradhan, “A Novel Pattern Generator
for Near-Perfect Fault-Coverage,” IEEE VLSI Test Sympo-
sium, pp. 417-425, 1995.

[24] C. L. Chen, “Linear Dependencies in Linear Feedback Shift
Registers,” IEEE Transactions on Computers, Vol. C-35,
No. 12, pp. 1086-1088, 1986.

[25] S. Chiusano, F. Corno, P. Prinetto, “Exploiting Behavioral
Information in Gate level ATPG,” Journal of Electronic
Testing; Theory and Applications (JETTA), No. 14, pp. 141-
148, 1999.

222

[26] Core Test Language Web site,
http://grouper.ieee.org/groups/ctl.

[27] F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda,
“GATTO: A Genetic Algorithm for Automatic Test Pattern
Generation for Large Synchronous Sequential Circuits,”
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, Vol. 15, No. 8, pp. 991-1000,
August 1996.

[28] F. Corno, M. Sonza Reorda, G. Squillero, “High Level Ob-
servability for Effective High level ATPG,” IEEE VLSI Test
Symposium, pp. 411-416, 2000.

[29] E. Cota, L. Carro, M. Lubaszewski, A. Orailoglu, “Test
Planning and Design Space Exploration in a Core-based
Environment,” Design, Automation and Test in Europe
Conference, pp. 478-485, 2002.

[30] F. DaSilva, Y. Zorian, L. Whetsel, K. Arabi, R. Kapur,
“Overview of the IEEE P1500 Standard,” IEEE Interna-
tional Test Conference, pp. 988-997, 2003.

[31] R. A. DeMillo, R. J. Lipton, F. G. Sayward, “Hints on Test
Data Selection: Help for the Practical Programmer,” IEEE
Computer, Vol.11, No.4, Apr. 1978.

[32] S. Devadas, M. Malik, “A Survey of Optimization Tech-
niques Targeting Low Power VLSI Circuits,” IEEE/ACM
Design Automation Conference, pp. 242-247, 1995.

[33] K. I. Diamantaras, N. K. Jha, “A New Transition Count
Method for Testing of Logic Circuits,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, Vol. 10, No. 3, pp. 407–410, March 1991.

[34] D. L. Dill, “What’s Between Simulation and Formal Verifi-
cation?” IEEE/ACM Design Automation Conference, pp.
328-329, 1998.

 223

[35] C. Dufaza, C. Chevalier, L. F. C. Lew Yan Voon, “LFSROM:
A Hardware Test Pattern Generator for Deterministic
ISCAS85 Test Sets,” IEEE Asian Test Symposium, pp. 160-
165, 1993.

[36] G. Edirisooriya, J. P. Robinson, “Design of Low Cost ROM
Based Test Generators,” IEEE VLSI Test Symposium, pp.
61-66, 1992.

[37] E. B. Eichelberg, E. Lidbloom, “Random Pattern Coverage
Enhancement and Diagnosis for LSSD Logic Self-Test,”
IBM Journal of Research and Development, Vol. 27, No. 3,
pp. 265-272, May 1983.

[38] R. D. Eldred, “Test Routines Based on Symbolic Logic Sys-
tems,” Journal of the ACM, Vol. 6, No. 1, pp. 33-36, Janu-
ary 1959.

[39] P. Eles, K. Kuchcinski, Z. Peng, “System Synthesis with
VHDL”, Kluwer Academic Publishers, 1997.

[40] F. Fallah, P. Ashar, S. Devadas, “Simulation Vector Gen-
eration from HDL Descriptions for Observability-Enhanced
Statement Coverage,” IEEE/ACM Design Automation Con-
ference, pp. 666-671, 1999.

[41] F. Ferrandi, F. Fummi, D. Sciuto, “Implicit Test Genera-
tion for Behavioral VHDL Models,” IEEE International
Test Conference, pp. 587-596, 1998.

[42] F. Ferrandi, G. Ferrara, D. Scuito, A. Fin, F. Fummi,
“Functional Test Generation for Behaviorally Sequential
Models,” Design, Automation and Test in Europe, pp. 403-
410, 2001.

[43] D. Flynn, “AMBA: Enabling Reusable On-Chip Designs,”
IEEE Micro, Vol. 17, No. 4, 1997, pp. 20-27.

224

[44] L. Formaggio, F. Fummi, G. Pravadelli, “A Timing-
Accurate HW/SW Co-simulation of an ISS with SystemC,”
CODES+ISSS, pp. 152-157, 2004.

[45] H. Fujiwara, T. Shimono, “On the Acceleration of Test
Generation Algorithms,” IEEE Transactions on Computers,
Vol. C-32, No. 12, pp. 1137-1144, December 1983.

[46] R. A. Frohwerk, “Signature Analysis, A New Digital Field
Service Method,” Hewlett Packard Journal, Vol. 28, No. 9,
pp. 2-8, May 1977.

[47] D. D. Gajski, R. H. Kuhn, “Guest Editor’s Introduction:
New VLSI Tools,” IEEE Computer, December 1983.

[48] D. D. Gajski, F. Vahid, S. Narayan, J. Gong, “Specification
and Design of Embedded Systems,” Prentice-Hall, 1994.

[49] S. Gerstendörfer, H.J. Wunderlich, “Minimized Power Con-
sumption for Scan-based BIST,” IEEE International Test
Conference, pp. 77-84, 1999.

[50] S. Ghosh, T. J. Chakraborty, “On Behavior Fault Modeling
for Digital Designs,” Journal of Electronic Testing: Theory
and Applications, Vol. 2, No. 2, pp 135-151, 1991.

[51] N. Giambiasi, “Test Pattern Generation for Behavioral De-
scriptions in VHDL,” VHDL conference, pp 228-234, 1991.

[52] P. Girard, L. Guiller, C. Landrault, S. Pravossoudovitch, “A
Test Vector Inhibiting Technique for Low Energy BIST De-
sign,” IEEE VLSI Test Symposium, pp. 407 – 412, 1999.

[53] P. Girard, L. Guiller, C. Landrault, S. Pravossoudovitch, J.
Figueras, S. Manich, P. Teixeira, M. Santos, “Low-Energy
BIST Design: Impact of the LFSR TPG Parameters on the
Weighted Switching Activity,” IEEE International Sympo-
sium on Circuits and Systems, pp 110-113, 1999.

 225

[54] P. Girard, “Low Power Testing of VLSI Circuits: Problems
and Solutions,” IEEE International Symposium on Quality
Electronic Design, pp. 173-179, 2000.

[55] P. Girard, L. Guiller, C. Landrault, S. Pravossoudovitch,
H.J. Wunderlich, “A Modified Clock Scheme for a Low
Power BIST Test Pattern Generator,” VLSI Test Sympo-
sium, pp. 306-311, 2001.

[56] D. Gizopoulos, N. Kranitis, A. Paschalis, M. Psarakis, Y.
Zorian, “Low Power/Energy BIST Scheme for Datapaths,”
VLSI Test Symposium, pp. 23-28, 2000.

[57] F. Glover, “Future Paths for Integer Programming and
Links to Artificial Intelligence,” Computers & Operations
Research, No. 5, pp. 533-549, 1986.

[58] F. Glover, E. Taillard, D. de Werra, “A User's Guide to
Tabu Search,” Annals of Operations Research, No. 41, pp.
3-28, 1993.

[59] F. Glover, M. Laguna. “Modern Heuristic Techniques for
Combinatorial Problems”, Blackwell Scientic Publishing,
pp. 70-141, 1993.

[60] P. Goel, “An Implicit Enumeration Algorithm to Generate
Tests for Combinational Logic Circuits,” IEEE Transac-
tions on Computers, Vol. C-30, No. 3, pp. 215-222, March
1981.

[61] S. K. Goel, K. Chiu, E. J. Marinissen, T. Nguyen, S. Oost-
dijk, “Test Infrastructure Design for the Nexperia™ Home
Platform PNX8550 System Chip,” Design, Automation, and
Test in Europe, pp. 108-113 (Designer's Forum Proceed-
ings), 2004.

[62] S. W. Golomb, “Shift Register Sequences,” Aegan Park
Press, 1982.

226

[63] A. Gupta, “Formal Hardware Verification Methods: A Sur-
vey,” Formal Methods in System Design, Vol. 1, pp. 151-
238, 1992.

[64] A. K. Gupta, J. R. Armstrong, “Functional Fault Modeling
and Simulation for VLSI Devices,” IEEE/ACM Design
Automation Conference, pp 720-726, 1985.

[65] R. K. Gupta, Y. Zorian, “Introduction to Core-Based Sys-
tem Design,” IEEE Design and Test of Computers, Vol. 14,
No. 4, pp. 15-25, 1997.

[66] P. Hansen, “The Steepest Ascent Mildest Descent Heuristic
for Combinational Programming,” Congress on Numerical
Methods in Combinatorial Optimization, 1986.

[67] P. Harrod, “Testing Reusable IP - A Case Study,” IEEE In-
ternational Test Conference, pp. 493-498, 1999.

[68] Z. He, G. Jervan, Z. Peng, P. Eles, “Hybrid BIST Test
Scheduling Based on Defect Probabilities,” IEEE Asian
Test Symposium, pp. 230-235, 2004.

[69] S. Hellebrand, S. Tarnick, J. Rajski, B. Courtois, “Genera-
tion Of Vector Patterns Through Reseeding of Multiple-
Polynomial Linear Feedback Shift Registers,” IEEE Inter-
national Test Conference, pp. 120-129, 1992.

[70] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, B.
Courtois, “Built-In Test for Circuits with Scan Based on
Reseeding of Linear Feedback Shift Registers,” IEEE
Transactions on Computers, Vol. 44, No. 2, pp. 223-233,
February 1995.

[71] S. Hellebrand, B. Reeb, S. Tarnick, H.-J. Wunderlich, “Pat-
tern Generation for Deterministic BIST Scheme,”
IEEE/ACM International Conference on CAD-95, pp. 88-
94, 1995.

 227

[72] S. Hellebrand, H.-J. Wunderlich, A. Hertwig, “Mixed-Mode
BIST Using Embedded Processors,” Journal of Electronic
Testing: Theory and Applications, No. 12, pp. 127-138,
1998.

[73] F. C. Hennie, “Fault Detecting Experiments for Sequential
Circuits,” Annual Symposium on Switching Theory and
Logical Design, pp. 95-110, 1974.

[74] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A.
Hassan, J. Rajski, “Logic BIST for Large Industrial De-
signs: Real Issues and Case Studies,” IEEE International
Test Conference, pp. 358-367, 1999.

[75] P. D. Hortensius, R. D. McLeod, W. Pries, D. M. Miller, H.
C. Card, “Cellular Automata-Based Pseudorandom Num-
ber Generators for Built-In Self-Test,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, Vol. 8 , No. 8, pp. 842-859, August 1989.

[76] S.-Y. Huang, K.-T. Cheng, “Formal Equivalence Checking
and Design Debugging,” Kluwer Academic Publishers,
1998.

[77] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O.
Samman, Y. Zaidan, S. M. Reddy, “Resource Allocation and
Test Scheduling for Concurrent Test of Core-based SOC
Design,” IEEE Asian Test Symposium, pp. 265-270, 2001.

[78] S. D. Huss, R. S. Gyurcsik, “Optimal Ordering of Analog
Integrated Circuit Tests to Minimize Test Time,”
IEEE/ACM Design Automation Conference, pp. 494-499,
1991.

[79] H. Higuchi, N. Ishiura, S. Yajima, “Compaction of Test
Sets Based on Symbolic Fault Simulation,” Synthesis and
Simulation Meeting and International Interchange, pp.
253-262, 1992.

228

[80] O. H. Ibarra, S. Sahni, “Polynomially Complete Fault De-
tection Problems,” IEEE Transactions on Computers, Vol.
C-24, No. 3, pp. 242-249, March 1975.

[81] “IEEE Standard Test Access Port and Boundary-Scan Ar-
chitecture,” IEEE Standard 1149.1, IEEE Press, 1990.

[82] V. Iyengar, K. Chakrabarty, B. T. Murray, “Deterministic
Built-in Pattern Generation for Sequential Circuits,” Jour-
nal of Electronic Testing: Theory and Applications, pp. 97-
114, No. 15, 1999

[83] V. Iyengar, K. Chakrabarty, E. J. Marinissen, “Test Wrap-
per and Test Access Mechanism Co-optimization for Sys-
tem-on-Chip,” IEEE International Test Conference, pp.
1023-1032, 2001.

[84] M. Jacomino, J.-L. Rainard, R. David, “Fault Detection in
CMOS Circuits by Consumption Measurement,” IEEE
Transactions on Instrumentation and Measurement, Vol.
38, No. 3, pp. 773-778, June 1989.

[85] W. J. Jiang, B. Vinnakota, “Defect-Oriented Test Schedul-
ing,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 9, No. 3, pp. 427-438, 2001.

[86] G. Jervan, A. Markus, P. Paomets, J. Raik, R. Ubar, “A
CAD system for Teaching Digital Test,” European Work-
shop on Microelectronics Education, pp. 287-290, 1998.

[87] G. Jervan, P. Eles, Z. Peng, “A Hierarchical Test Genera-
tion Technique for Embedded Systems,” Electronic Circuits
and Systems Conference, pp 21-24, 1999.

[88] G. Jervan, Z. Peng, R. Ubar, “Test Cost Minimization for
Hybrid BIST,” IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, pp. 283-291, 2000.

 229

[89] G. Jervan, Z. Peng, R. Ubar, H. Kruus, “A Hybrid BIST Ar-
chitecture and its Optimization for SOC Testing,” IEEE In-
ternational Symposium on Quality Electronic Design, pp.
273-279, 2002.

[90] G. Jervan, Z. Peng, O. Goloubeva, M. Sonza Reorda, M.
Violante, “High-Level and Hierarchical Test Sequence
Generation,” IEEE International Workshop on High Level
Design Validation and Test, pp 169-174, 2002.

[91] G. Jervan, P. Eles, Z. Peng, R. Ubar, M. Jenihhin, “Hybrid
BIST Time Minimization for Core-Based Systems with
STUMPS Architecture,” IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems, pp. 225-232,
2003.

[92] G. Jervan, P. Eles, Z. Peng, R. Ubar, M. Jenihhin, “Test
Time Minimization for Hybrid BIST of Core-Based Sys-
tems,” IEEE Asian Test Symposium, pp. 318-323, 2003.

[93] G. Jervan, Z. Peng, R. Ubar, O. Korelina, “An Improved Es-
timation Methodology for Hybrid BIST Cost Calculation,”
IEEE Norchip Conference, pp. 297-300, 2004.

[94] G. Jervan, R. Ubar, Z. Peng, P. Eles, “An Approach to Sys-
tem-Level DFT” in “System-level Test and Validation of
Hardware/Software Systems,” M. Sonza Reorda, Z. Peng,
M. Violante (editors), Springer-Verlag, 2005 (in print).

[95] G. Jervan, R. Ubar, Z. Peng, P. Eles, “Test Generation: A
Hierarchical Approach” in “System-level Test and Valida-
tion of Hardware/Software Systems,” M. Sonza Reorda, Z.
Peng, M. Violante (editors), Springer-Verlag, 2005 (in
print).

[96] N. K. Jha, S. Gupta, “Testing of Digital Systems,” Cam-
bridge University Press, 2003.

230

[97] M. W. Johnson, “High Level Test Generation Using Soft-
ware Testing Metrics,” M.Sc. Thesis, University of Illinois
at Urbana-Champaign, 1994.

[98] R. Kapur, S. Patil, T. J. Snethen, T. W. Williams, “Design
of an Efficient Weighted Random Pattern Generation Sys-
tem,” IEEE International Test Conference, pp. 491-500,
1994.

[99] F. Karimi, Y. B. Kim, F. Lombardi, N. Park, “Compression
of Partially Specified Test Vectors in an ATE Environ-
ment,” Instrumentation and Measurement Technology Con-
ference, Vol.2, pp. 999-1004, 2003.

[100] C. Kern, M. R. Greenstreet, “Formal Verification in Hard-
ware Design: A Survey,” ACM Transactions on Design
Automation of Electronic Systems, Vol. 4, No. 2, pp. 123-
193, April 1999.

[101] J. Khare, W. Maly, N. Tiday, “Fault Characterization of
Standard Cell Libraries Using Inductive Contamination
Analysis (ICA),” IEEE VLSI Test Symposium, pp. 405-413,
1996.

[102] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by
Simulated Annealing,” Science, Vol. 220, No. 4598, pp. 671-
680, 1983.

[103] B. Koenemann, “LFSR-Coded Test Patterns for Scan De-
signs,” European Test Conference, pp. 237-242, 1991.

[104] S. Koranne, “On Test Scheduling for Core-based SOCs,” In-
ternational Conference on VLSI Design, pp. 505-510, 2002.

[105] A. Krasniewski, S. Pilarski, “Circular Self-Test Path: A
Low Cost BIST Technique of VLSI Circuits,” IEEE Trans-
actions on Computer-Aided Design, Vol. 8, No. 1, pp. 46-55,
January 1989.

 231

[106] B. Könemann, J. Mucha, G. Zwiehoff, “Built-In Test for
Complex Digital Integrated Circuits,” IEEE Journal of
Solid-State Circuits, Vol. SC-15, No. 3, pp. 315-319, June
1980.

[107] M. Lajolo, L. Lavagno, M. Rebaudengo, M. Sonza Reorda,
M. Violante, “Behavioral level Test Vector Generation for
System-on-Chip Designs,” IEEE International Workshop on
High Level Design Validation and Test, pp. 21-26, 2000.

[108] W. K. Lam, “Hardware Design Verification: Simulation and
Formal Method-Based Approaches,” Prentice Hall, 2005.

[109] E. Larsson, Z. Peng, “An Integrated Framework for the De-
sign and Optimization of SOC Test Solutions,” Journal of
Electronic Testing; Theory and Applications, Vol. 18, No. 4,
pp. 385-400, August 2002.

[110] E. Larsson, H. Fujiwara, “Test Resource Partitioning and
Optimization for SOC Designs,” IEEE VLSI Test Sympo-
sium, pp. 319-324, 2003.

[111] E. Larsson, J. Pouget, Z. Peng, “Defect-Aware SOC Test
Scheduling,” IEEE VLSI Test Symposium, pp. 359-364,
2004.

[112] J. J. LeBlanc, “LOCST: A Built-In Self-Test Technique,”
IEEE Design and Test of Computers, Vol. 1, No. 4, pp. 45-
52, 1984.

[113] J. Lee, J. H. Patel, “Architectural Level Test Generation for
Microprocessors,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 13, No. 10,
pp. 1288-1300, October 1994.

[114] K.-J. Lee, J.-J. Chen, C.-H. Huang, “Broadcasting Test Pat-
terns to Multiple Circuits,” IEEE Transactions on Com-
puter-Aided Design of Integrated Circuits and Systems,
Vol.18, No.12, pp.1793-1802, 1999.

232

[115] P. C. Li, T. K. Young, “Electromigrations: The Time Bomb
in Deep-Submicron ICs,” IEEE Spectrum, Vol. 33, No. 9,
pp. 75-78, 1996.

[116] C. Lin, Y. Zorian, S. Bhawmik, “PSBIST: A Partial Scan
Based Built-In Self-Test Scheme,” IEEE International Test
Conference, pp. 507-516, 1993.

[117] E. J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M.
Lousberg, C. Wouters, “A Structured And Scalable Mecha-
nism for Test Access to Embedded Reusable Cores,” IEEE
International Test Conference, pp. 284-293, 1998.

[118] E. J. Marinissen, Y. Zorian, “Challenges in Testing Core-
Based System ICs,” IEEE Communications Magazine, pp.
104-109, June 1999.

[119] E. J. McCluskey, S. Bozorgui-Nesbat, “Design for Autono-
mous Test,” IEEE Transactions on Computers, Vol. C-30,
No. 11, pp. 866-875, November 1981.

[120] P. Michel, U. Lauther, P. Duzy, ”The Synthesis Approach
To Digital System Design,” Kluwer Academic Publishers,
1992

[121] A. Miczo, “The Sequential ATPG: A Theoretical Limit,”
IEEE International Test Conference, pp. 143-147, 1983.

[122] L. Milor, A. L. Sangiovanni-Vincentelli, “Minimizing Pro-
duction Test Time to Detect Faults in Analog Circuits,”
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, Vol. 13, No. 6, pp. 796-813,
1994.

[123] S. Minato, “BDDs and Applications for VLSI CAD,” Kluwer
Academic Publishers, 1996.

 233

[124] G. E. Moore, “Cramming More Components Onto Inte-
grated Circuits,” Electronics, Vol. 38, No. 8, pp. pp. 114-
117, 1965.

[125] D. Moundanos, J. A. Abraham, Y. V. Hoskote, “A Unified
Framework for Design Validation and Manufacturing
Test,” IEEE International Test Conference, pp. 875-884,
1996.

[126] B. T. Murray, J. P. Hayes, “Hierarchical Test Generation
Using Precomputed Tests for Modules,” IEEE Interna-
tional Test Conference, pp. 221-229, 1988.

[127] B. T Murray, J. P. Hayes, “Testing ICs: Getting to the Core
of the Problem,” IEEE Transactions on Computer, Vol. 29,
pp. 32-39, November 1996.

[128] H. T. Nagle, S. C. Roy, C. F. Hawkins, M. G. McNamer, R.
R. Fritzemeier, “Design for Testability and Built-In Self
Test: A Review,” IEEE Transactions on Industrial Elec-
tronics, Vol. 36, No. 2, pp. 129-140, May 1989.

[129] F. Najm, “Transition Density: A New Measure of Activity
in Digital Circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 12, pp. 310-
323, February 1993.

[130] W. M. Needham, “Nanometer Technology Challenges for
Test and Test Equipment,” IEEE Computer, Vol. 32, No.
11, pp. 52-57, November 1999.

[131] T. M. Niermann, J. H. Patel, “HITEC: A Test Generation
Package for Sequential Circuits,” European Design Auto-
mation Conference, pp. 214-218, 1991.

[132] P1500 Web site. http://grouper.ieee.org/groups/1500.

[133] M. Pedram, “Power Minimization in IC design: Principles
and Applications,” ACM Transactions on Design Automa-
tion of Electronic Systems, Vol. 1, No. 1, pp. 3-56, 1996.

234

[134] I. Pomeranz, L. N. Reddy, S. M. Reddy, “Compactest: A
Method to Generate Compact Test Sets for Combinatorial
Circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 12, No. 7, pp. 1040-
1049, July 1993.

[135] I. Pomeranz, S. M. Reddy, “3-Weight Pseudo-random Test
Generation Based on a Deterministic Test Set for Combi-
natorial and Sequential Circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
Vol. 12, No. 7, pp. 1050-1052, July 1993.

[136] J. Raik, R. Ubar, “Sequential Circuit Test Generation Us-
ing Decision Diagram Models,” Design, Automation and
Test in Europe, pp. 736-740, 1999.

[137] J. Raik, R. Ubar. “Fast Test Pattern Generation for Se-
quential Circuits Using Decision Diagram Representa-
tions.” Journal of Electronic Testing: Theory and Applica-
tions, Vol. 16, No. 3, pp. 213-226, June, 2000.

[138] P. M. Rosinger, B. M. Al-Hashimi, N. Nicolici, “Scan Archi-
tecture for Shift and Capture Cycle Power Reductions,”
IEEE International Symposium on Defect and Fault Toler-
ance in VLSI Systems, pp. 129-137, 2002.

[139] J. P. Roth, “Diagnosis of Automata Failures: A Calculus
and a Method,” IBM Journal of Research and Development,
Vol. 10, No. 4, pp. 278-291, July 1966.

[140] J. A. Rowson, “Hardware/Software Co-Simulation,”
IEEE/ACM Design Automation Conference, pp. 439-440,
1994.

[141] E. M. Rudnick, R. Vietti, A. Ellis, F. Corno, P. Prinetto, M.
Sonza Reorda, “Fast Sequential Circuit Test Generation
Using High Level and Gate Level Techniques,” European
Design Automation and Test Conference, pp. 570-576, 1998.

 235

[142] S. M. Sait, H. Youssef, “Iterative Computer Algorithms
with Application in Engineering. Solving Combinatorial
Optimization Problems,” IEEE Computer Society Press,
1999.

[143] R. Sankaralingam, B. Pouya, N. A. Touba, “Reducing
Power Dissipation During Test Using Scan Chain Disable,”
IEEE VLSI Test Symposium, pp. 319-324, 2001.

[144] M. B. Santos, F. M. Gonçalves, I. C. Teixeira, J. P.
Teixeira, “RTL-Based Functional Test Generation for High
Defects Coverage in Digital Systems,” Journal of Electronic
Testing, Theory and Application, Vol. 17, No. 3/4, pp. 311-
319, 2001.

[145] J. P. Shen, W. Maly, F. J. Ferguson, “Inductive Fault
Analysis of MOS Integrated Circuits,” IEEE Design and
Test of Computers, Vol. 2, No. 6, pp. 13-26, December 1985.

[146] L. Shen, S. Y. H. Su, “A Functional Testing Method for Mi-
croprocessors,” IEEE Transactions on Computers, Vol. 37,
No. 10, pp 1288-1293, 1988.

[147] “SICStus Prolog User’s Manual,” Swedish Institute of
Computer Science, 2001.

[148] M. Sonza Reorda, M. Violante G. Jervan, Z. Peng,
“COTEST Report D1: Report on Benchmark Identification
and Planning of Experiments to Be Performed”, Politecnico
di Torino, 2002. http://www.ida.liu.se/~eslab/cotest.html

[149] S. Y. H. Su, T. Lin, “Functional Testing Techniques for
Digital LSI/VLSI Systems,” IEEE/ACM Design Automa-
tion Conference, pp 517-528, 1984.

[150] Y. Sun, “Automatic Behavioral Test Generation By Using a
Constraint Solver”, Final Thesis, LiTH-IDA-Ex-02/13,
Linköping University, 2001.

236

[151] S. Sze, “VLSI Technology,” McGraw-Hill, 1983.

[152] S. M. Thatte, J. A. Abraham, “Test Generation for Micro-
processors,” IEEE Transactions on Computers, Vol. 29, No.
6, pp 429-441, 1980.

[153] “The International Technology Roadmap for Semiconduc-
tors. 2003 Edition (ITRS 2003),” Semiconductor Industry
Association, 2003. http://public.itrs.net/

[154] N. A. Touba, E. J. McCluskey, “Transformed Pseudo-
random Patterns for BIST,” IEEE VLSI Test Symposium,
pp. 410-416, 1995.

[155] N. A. Touba, E. J. McCluskey, “Synthesis of Mapping Logic
for Generating Transformed Pseudo-Random Patterns for
BIST,” IEEE International Test Conference, pp. 674-682,
1995.

[156] “Turbo Tester Reference Manual,” Tallinn Technical Uni-
versity, 1999. http://www.pld.ttu.ee/tt

[157] R. Ubar, “Test Synthesis with Alternative Graphs,” IEEE
Design and Test of Computers, Vol. 2, pp 48-57, 1996.

[158] R. Ubar, “Multi-Valued Simulation of Digital Circuits with
Structurally Synthesized Binary Decision Diagrams,” Mul-
tiple Valued Logic, Vol. 4, pp 141-157, 1998.

[159] R. Ubar, “Combining Functional and Structural Ap-
proaches in Test Generation for Digital Systems,” Microe-
lectronics Reliability, Vol. 38, No. 3, pp 317-329, 1998.

[160] R. Ubar, G. Jervan, Z. Peng, E. Orasson, R. Raidma, “Fast
Test Cost Calculation for Hybrid BIST in Digital Systems,”
Euromicro Symposium on Digital Systems Design, pp. 318-
325, 2001.

 237

[161] R. Ubar, H. Kruus, G. Jervan, Z. Peng, “Using Tabu Search
Method for Optimizing the Cost of Hybrid BIST,” Confer-
ence on Design of Circuits and Integrated Systems, pp. 445-
450, 2001.

[162] R. Ubar, M. Jenihhin, G. Jervan, Z. Peng, “Hybrid BIST
Optimization for Core-based Systems with Test Pattern
Broadcasting,” IEEE International Workshop on Electronic
Design, Test and Applications, pp. 3-8, 2004.

[163] R. Ubar, M. Jenihhin, G. Jervan, Z. Peng, “An Iterative
Approach to Test Time Minimization for Parallel Hybrid
BIST Architecture,” IEEE Latin-American Test Workshop,
pp. 98-103, 2004.

[164] R. Ubar, T. Shchenova, G. Jervan, Z. Peng, “Energy Mini-
mization for Hybrid BIST in a System-on-Chip Test Envi-
ronment,” IEEE European Test Symposium, 2005 (to be
published).

[165] P. Varma, S. Bhatia, “A Structured Test Re-Use Methodol-
ogy for Core-Based System Chips,” IEEE International Test
Conference, pp. 294-302, 1998.

[166] S. Wang, S. Gupta, “ATPG for Heat Dissipation Minimiza-
tion During Test Application,” IEEE Transactions on Com-
puters, Vol. 46, No. 2, pp. 256-262, 1998.

[167] P. C. Ward, J. R. Armstrong, “Behavioral Fault Simulation
in VHDL,” IEEE/ACM Design Automation Conference, pp
587-593, 1990.

[168] L. Whetsel, “Adapting Scan Architectures for Low Power
Operation,” IEEE International Test Conference, pp. 863-
872, 2000.

[169] M. J. Y. Williams, J. B. Angell, “Enhancing Testability of
Large Scale Integrated Circuit via Test Points and Addi-

238

tional Logic,” IEEE Transactions on Computers, Vol. C-22,
No. 1, pp. 46-60, January 1973.

[170] H.-J. Wunderlich, “Multiple Distributions for Biased Ran-
dom Test Patterns,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 9,
No. 6, pp. 594-602, June 1990.

[171] H.-J. Wunderlich, G. Kiefer, “Bit-Flipping BIST,”
ACM/IEEE International Conference on CAD-96, pp. 337-
343, 1996.

[172] V. N. Yarmolik, I. V. Kachan, “Self-Checking VLSI De-
sign,” Elsevier Science Ltd, 1993.

[173] N. Zacharia, J. Rajski, J. Tyzer, “Decompression of Test
Data Using Variable-Length Seed LFSRs,” IEEE VLSI Test
Symposium, pp. 426-433, 1995.

[174] Y. Zorian, “A Distributed BIST Control Scheme for Com-
plex VLSI Devices,” IEEE VLSI Test Symposium, pp. 4-9,
1993.

[175] Y. Zorian, “Test Requirements for Embedded Core-based
Systems and IEEE P1500,” IEEE International Test Con-
ference, pp. 191-199, 1997.

[176] Y. Zorian, E. J. Marinissen, S. Dey, “Testing Embedded
Core-Based System Chips,” IEEE International Test Con-
ference, pp. 130-143, 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

