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Abstract—The IEEE P1687 (IJTAG) standard proposal aims at providing a standardized interface between the IEEE Standard
1149.1 test access port (TAP) and on-chip embedded test, debug and monitoring logic (instruments), such as scan-chains and
temperature sensors. A key feature in P1687 is to include Segment Insertion Bits (SIBs) in the scan-path to allow flexibility both
in designing the instrument access network and in scheduling the access to instruments. This paper presents algorithms to
compute the overall access time (OAT) for a given P1687 network. The algorithms are based on analysis for flat and hierarchical
network architectures, considering two access schedules, i.e. concurrent schedule and sequential schedule. In the analysis,
two types of overhead are identified, i.e. network configuration data overhead and JTAG protocol overhead. The algorithms are
implemented and employed in a parametric analysis and in experiments on realistic industrial designs.
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1 INTRODUCTION

THE complexity and reduced feature sizes in recent
integrated circuit (IC) designs, necessitates the

provision of on-chip infrastructures for test, debug
and monitoring. The IEEE Standard 1149.1 (a.k.a.
JTAG1) [1], originally intended for board test, has
proved useful in ad hoc access to such on-chip in-
frastructure, as discussed in [2]. However, since JTAG
has not been originally meant for accessing such on-
chip test, debug and monitoring logic (collectively
called instruments), there are some drawbacks asso-
ciated with its use in this context [2]. Furthermore,
due to the lack of a uniform method of using JTAG
to access the on-chip instruments, electronic design
automation (EDA) support in this context is limited.
Therefore, there is a need to standardize how JTAG
circuitry should connect to the embedded logic. The
IEEE P1687 standard proposal [2], [3], [4], [5], [6] aims
to address this need of standardization by describing
a flexible data transport infrastructure (called network)
to interface JTAG to the chip internal instruments.
P1687 has therefore received the informal name of In-
ternal JTAG (IJTAG). When ratified, P1687 will specify
methods for access and control of embedded instru-
ments [3]. Here, instrument refers to any device with
a shift-register [7] that could be included in the JTAG
scan-path. Examples of instruments include embed-
ded sensors, internal scan-chains and IEEE standard
1500 wrapped cores [8].

Compared with similar efforts for interfacing the
on-chip instruments with JTAG, e.g. the works pre-
sented in [9], [10], [11], [12], [13], P1687 is charac-
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ghanizadegan@ieee.org, urban.ingelsson@liu.se, erik.larsson@liu.se.

• G. Carlsson is with Ericsson AB, Sweden
e-mail:gunnar.carlsson@ericsson.com.

• The preliminary version of this work has been presented in the Asian
Test Symposium, Shanghai, 2010.

1. Joint Test Action Group

terized by introduction of a single JTAG instruction
called GateWay ENable (GWEN) and a hardware
component called Segment Insertion Bit (SIB). The
use of SIBs makes it possible to create a multitude
of different networks for the same set of instruments,
and to have the benefit of flexibility in scheduling the
access to those instruments, as will be discussed in
this paper. To setup the scan-path, P1687 proposes to
transport SIB control data together with instrument
data on a single wire (the JTAG scan-path), and this
will affect overall access time (OAT).

Since IEEE P1687 has recently been proposed, only
a few studies have considered it [4], [9], [14], [15].
In particular, no study has investigated the impact of
IEEE P1687 on overall access time (OAT). Therefore,
this paper analyzes (Sections 4, 5, and 7) the impact
of IEEE P1687 on OAT and identifies two types of
overhead associated with accessing embedded instru-
ments using P1687, namely network configuration
data (i.e. SIB control data) overhead and JTAG pro-
tocol overhead. Furthermore, it is shown that OAT
depends on several parameters including the place-
ment of instruments and SIBs. To make it possible to
calculate OAT for large P1687 networks, a first OAT
calculation tool, IJTAGcalc, is presented (Section 6) for
both concurrent and sequential schedules. IJTAGcalc
is used in a parametric analysis (Section 7) to investi-
gate how OAT and the identified overhead types react
to changes in the design variables. IJTAGcalc is also
used to calculate OAT for a number of P1687 networks
based on ITC’02 benchmark set (Sections 8 and 9).

2 BACKGROUND AND PRIOR WORK

In this section, JTAG is briefly introduced and the
drawbacks associated with its application in accessing
the on-chip instruments are explained. It should be
noted that such application is beyond the intended
scope of JTAG. Furthermore, it will be discussed how
P1687 addresses these drawbacks.
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Fig. 1. A conceptual view of JTAG circuitry and how
P1687 Gateway is interfaced to JTAG

Fig. 2. JTAG TAP Controller state diagram

Fig. 1 shows a conceptual view of JTAG circuitry
in a chip [1]. Accessing the on-chip JTAG circuitry
is done through the test access port (TAP) which
includes four mandatory signals, namely test data
input (TDI), test data output (TDO), test mode select
(TMS) and test clock (TCK). The TMS signal is de-
coded by a state diagram (see Fig. 2) to generate the
control signals required for the capture, shift and update
operations on instruction register (IR) and test data
registers (TDRs). The capture operation is defined as
parallel loading a value into the IR (or any of the
TDRs), the update operation is defined as transferring
logic values from the shift-register stage of the IR (or
any of the TDRs) to their latched parallel outputs,
and the shift operation is defined as shifting the data
serially into and out of the IR (or any of the TDRs)
one bit per TCK [1].

The state diagram (Fig. 2) is implemented in the
TAP Controller, see Fig. 1. From Fig. 2 it can be
seen that the state diagram has two similar branches,
(1) the IR branch used for performing operations
on the IR (IR-Scan) and (2) the DR branch used
for performing operations on the current TDR (DR-
Scan). The current TDR is selected by the instruction
currently loaded into the IR, which is decoded by the
IR Decoder, see Fig. 1. Input vectors are shifted into
the selected TDR by shifting the data when the TAP
Controller is in the Shift-DR state. By keeping TMS

at logic ’0’ it is possible to shift in as many bits as
required. Moving to the Update-DR state makes the
shifted vector appear at the parallel outputs of the
TDR. The data that should be parallel loaded into
the TDR, i.e. the output vectors, are captured at the
Capture-DR state and are shifted out by moving to the
Shift-DR state. It is possible to shift in the next input
vector while shifting out the output vector corre-
sponding to the previous input vector. The following
sequence of five states, Exit1-DR, Update-DR, Select-
DR, Capture-DR and Shift-DR, will be assumed and
called a CUC (Cycle of Update and Capture) in the
rest of this paper for applying inputs and capturing
outputs between two shift operations.

The on-chip instruments serve different purposes
such as testing (e.g. internal scan-chains, IEEE Stan-
dard 1500 wrapped cores [8], and BIST engines), de-
bugging and diagnosis (e.g. shadow capturing of key
registers [2]), monitoring (e.g. temperature sensors),
and configuration (e.g. SERDES characterization).
From [7] it can be understood that in most cases the
interface to the instruments is a shift (and update)
register. As examples of efforts to connect the em-
bedded instruments to JTAG TAP, the following can
be mentioned. In [10], [11], [14] IEEE Standard 1500
wrapped cores are connected to the JTAG TAP, in [16]
integrity loss sensors are accessed through JTAG TAP,
and in [12], [13] internal scan-chains are connected
to/combined with JTAG boundary scan register.

JTAG is a successful and widely used standard, and
the JTAG TAP is available on most modern ICs [2].
But there are three drawbacks associated with the use
of JTAG TAP to access the embedded instruments,
namely (1) posing a trade-off between scalability of
hardware and flexibility in scheduling the access to
the instruments, (2) lack of a language suitable for de-
scribing all sorts of instruments, and (3) lack of a lan-
guage related to the JTAG description that describes
the operation of the instrument independent of the
placement, configuration, or use of that instrument in
the overall access mechanism.

The first drawback can be explained by assuming
that each instrument is added to the JTAG circuitry
as a separate TDR, to allow the individual access to
each of the instruments. In this scenario, the JTAG
circuitry does not scale well with the increase in the
number of instruments, either because the instruction
register (IR) becomes too long or the IR Decoder
becomes too complex. To have an idea of the number
of instruments in a modern SOC, consider an ASIC
from Ericsson which contains 64 cores, each core
having its dedicated data and instruction memories.
This ASIC also contains a number of SERDESs and
hardware accelerators. Therefore, there are more than
200 blocks of logic inside this ASIC where each block
may contain MBIST, LBIST, sensors, etc., which can
be regarded as on-chip instruments. It can be seen
that the number of instruments in this ASIC would
amount up to several hundreds. It should be noted
that chaining all instruments into a single scan-path
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helps to avoid the scalability problem—by requiring
only one instruction for selecting the scan-path and
accessing the instruments—at the cost of losing flexi-
bility in scheduling the access to instruments. The loss
of such flexibility might in turn increase the instru-
ment access time. In addition, such an architecture has
a high risk of failure, since any problem with the scan-
path, e.g. stuck-at-fault, will render all instruments in
that scan-path inaccessible. Section 8 and Section 9
will present experiments to elaborate on the drawback
of using such chain of instruments.

The second drawback with using JTAG to access the
instruments is that boundary scan definition language
(BSDL) which is part of the JTAG standard and is
used to describe the boundary scan devices, is neither
efficient nor sufficient to describe all types of instru-
ments [15].

The third drawback with using JTAG is that there
is no portable vector or portable procedure language
that can be used to describe the operations associated
with the instrument regardless of where and how that
instrument is used. The serial vector format (SVF) [17],
which is used to describe the JTAG operations, is
written at the chip-level, not the instrument level.
Furthermore, SVF files must be recreated for any
changes in the configuration, i.e. length of TAP IR,
length of the instrument interface shift-registers and
their placement order on the scan-path, etc.

To address the drawbacks associated with the use
of JTAG in accessing the embedded instruments, the
IEEE P1687 standard proposal standardizes the way
the embedded instruments are accessed through JTAG
TAP by (1) proposing an interface between JTAG TAP
and on-chip instruments to introduce flexibility and
scalability into the JTAG scan-path, (2) proposing an
instrument connectivity language (ICL) to describe
the characteristics of the instruments and the require-
ments for interfacing to them [3], and (3) a procedural
description language (PDL) to describe the operation
of an instrument independent of its placement, to
facilitate the re-targeting of the vectors for that instru-
ment to chip-level and board-level. The focus of this
paper is only on the hardware aspects of P1687.

The interface proposed by P1687 for connecting
JTAG TAP to instruments is implemented by adding
a TDR called Gateway to the JTAG circuitry, see
Fig. 1. The Gateway is selected by loading an in-
struction called GateWay ENable (GWEN) through
IR-Scan, which makes the Gateway accessible from
the TDI and TDO terminals [1], [3]. Once the GWEN
instruction is set, any further access, configuration
and control of instruments through P1687 will be
done through DR-Scans [1], [3], as will be detailed
in Section 3.

There has been previous work on P1687. In [4] a
possible implementation of P1687 is demonstrated in
a case study of characterization and test of high-speed
serial I/O links, and a four-layer API is presented for
developing the instrument access procedures which
allows easy reuse and portability of the test algo-

Fig. 3. Simplified view of the SIB component
rithms. In [15] a scan description language is sug-
gested and is evaluated in the context of P1687. It
should be noted that although P1687 has attracted
interest in the research community [9], [14], no study
has so far considered the instrument access time in
the context of P1687, which is the focus of this paper.

The IEEE P1687 standard proposal is, at the time
of writing of this paper, in the final stage of review
but still subject to changes. However, even in case of
changes in the hardware aspects of the final standard
draft, the analysis approach presented in this work
can still be applied to the changed draft, or basically
to any similar situation where instruments on a mul-
tiplexed scan-path are accessed through a JTAG TAP.

3 P1687 HARDWARE
As was noted in Section 1, P1687 introduces a new
hardware component called SIB, used to set up the
scan-path for P1687 networks. The P1687 Gateway
itself is made from one or several SIBs. Fig. 3(a) shows
a simplified view of a SIB. Besides the ScanIn and
ScanOut terminals, SIB has a hierarchical interface
port (HIP) used to connect to a P1687 network seg-
ment. A segment can be either simply an instrument
or composed of other SIBs. A SIB acts as a doorway
with two states. It is either open (Fig. 3(b)) and
includes the segment on its HIP the in scan-path
(hence the name Segment Insertion Bit), or it is closed
(Fig. 3(c)) and transfers the data from its ScanIn port
to its ScanOut port, excluding the segment on its HIP.

The use of SIBs to include the shift-registers of
instruments in the scan-path, or exclude them from
the scan-path, can be compared to using multiplexers
in daisychain architecture to include/exclude scan-
chains [18]. As shown in Fig. 4, in the daisychain
architecture, a long scan-path is formed out of the
available scan-chains. By providing multiplexers and
bypass registers, it is possible to shorten the path to
a certain scan-chain by bypassing the others. Here,
control signals are provided separately from scan-
chain data. That is, the control signals should either
be provided from the chip pins or—as shown for
the a, b and c control signals in Fig. 4—through a
shift-register accessible from a control pin. This is in
contrast to P1687 which proposes to transport control
data together with instrument data on a single wire,
i.e. the TDI-TDO path of JTAG.

The hierarchical interface port (HIP) has three ter-
minals: HIP-ToScanIn, HIP-FromScanOut and HIP-
ToSel. HIP-ToScanIn and HIP-FromScanOut connect
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Fig. 4. The daisychain architecture

Fig. 5. Example P1687 instrument access networks
the scan-path to the network segment connected to
the HIP when the SIB is open. The HIP-ToSel signal is
activated when the SIB is open, to enable the segment
connected to the HIP. To clarify the need for HIP-ToSel
it should be noted that a SIB, in addition to the ter-
minals shown in Fig. 3(a), has clock, select and three
control (i.e. shift-enable, capture-enable and update-
enable) input terminals. The clock and control signals
are shared among all components in a P1687 network
and the control signals should be gated separately for
each SIB using its select input. For example, consider
that SIB s1 is to be accessed through the HIP of SIB s2.
In this case, the HIP-ToSel output of s2 should be con-
nected to the select input of s1. In a similar way, the
assumed interface for the instruments also requires
the clock, select, and control inputs in addition to the
serial data in and serial data out signals. Here again,
the control signals are shared among all instruments
(and SIBs) in the network and should be gated for
each instrument by using its select input. That is,
when an instrument is to be accessed through the
HIP of a SIB, the HIP-ToSel output of the SIB should
be connected to the select input of that instrument.
However, to keep the figures in this paper simple,
the HIP-ToSel signal is not shown, but it is assumed
that whenever a SIB is open, the instrument or the
network segment connected to its HIP is enabled.

The state of SIBs in a P1687 network is set by
embedding control bits in each input vector such that
after being shifted in, when the TAP Controller is in
the Shift-DR state, each control bit is placed into the
register of its intended SIB. The control bit for each SIB
is then transferred into the SIB’s State Register, shown
in Fig. 3(b) and Fig. 3(c), once the TAP Controller is
in the Update-DR state. Moving to Update-DR and
back to Shift-DR for shifting out the output vector and
shifting in the next input vector is part of the cycle of
update and capture (CUC) explained in Section 2.

Fig. 5(a) shows a P1687 network of three instru-
ments (I1, I2 and I3) and three SIBs, one for each
instrument. The control, select and clock signals are

not shown. In Fig. 5(a), L stands for the length of the
shift-register for each instrument and A stands for the
number of instrument-specific accesses. In this paper,
access is defined as (1) shifting input bits into the
instrument’s shift-register, (2) latching the contents of
the shift-register to be applied to the internal circuitry
of the instrument, (3) capturing the output of the
instrument into the shift-register and (4) shifting the
captured values out. The shifting-out of the instru-
ment outputs can overlap in time with shifting-in the
input command bits for the next access. Considering
the relatively slow P1687 clock (i.e. TCK applied to
JTAG TAP) [4], [5], it is assumed that the time it takes
an instrument to process the applied inputs and make
the outputs ready to be captured, is less than the time
it takes to move from Update-DR to Capture-DR in
the TAP Controller.

It is important to note that not all instrument types
are accessed as described above. For example, a BIST
engine might be selected (by opening its correspond-
ing SIB) and activated (by launching the BIST) and
then be de-selected (by closing its SIB) while still
active and running. Later in the access schedule, the
BIST can be selected again and its Done and Fail
signals be polled. In this work, we only consider the
instruments that are either selected and active, or de-
selected and inactive.

The type of architecture that is implemented by the
SIBs in Fig. 5(a), is called a flat architecture in the
remainder of this paper. In the flat architecture no SIB
is connected to the HIP of another SIB. Fig. 5(b) shows
another network of the same three instruments, i.e. I1,
I2, and I3. Here, there are five SIBs and three of these
SIBs are connected to the TAP through the HIP of
SIB2. This type of architecture is called hierarchical
architecture in the remainder of this paper. Each SIB
that has another SIB connected to its HIP, represents
a doorway to another level of hierarchy, such as SIB2
and SIB4 in Fig. 5(b). In this paper, for the sake of
terminology, a SIB having only an instrument on its
HIP is referred to as an instrument SIB and a SIB
having one or more SIBs on its HIP is called a doorway
SIB. It should be noted that SIB1, SIB2 and SIB3 in
Fig. 5(a) form the IJTAG Gateway, while in Fig. 5(b)
SIB1 and SIB2 form the Gateway. The SIBs forming
the Gateway receive their select signal directly from
JTAG instruction decoder (IR Decoder in Fig. 1).

For the purpose of access time analysis, which
is the focus of this paper, the simplified view of
the SIB presented in Fig. 3 is sufficient, and the
implementation details are out of the scope of this
work. However, the implementation might have an
impact on instrument access time, as will be briefly
discussed here. One possible implementation of a SIB
is presented in Fig. 6(a). As can be seen in Fig. 6(a),
each SIB contains a shift register (S) and an update
register (U). The U register serves as the State Register
shown in Fig. 3(b) and Fig. 3(c). When the value in
the U register is a logic 0, the scan-path is through
the S register and the multiplexer (see Fig. 3(c)). But

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YYYY 5

Fig. 6. A simplified RTL view of a SIB

when U contains a logic 1, the scan-path will be
through S to the HIP output, i.e. HIP-ToScanIn, and
back from the HIP input, i.e. HIP-FromScanOut, to
the multiplexer (see Fig. 3(b)). Fig. 7 shows the scan-
path of the network presented in Fig. 5(b) at the RTL
level, when all the SIBs are open. The thick lines in
Fig. 7(a) denote a combinatorial path which can be
a limiting factor for the P1687 clock when the depth
of hierarchy increases, thus affecting the instrument
access time. To avoid such long combinatorial paths
in the P1687 networks, it is possible to add a register
at the ScanOut output of the SIB, as shown in Fig. 6(b),
to pipeline the combinatorial path [3].

The pipelining register acts on the negative edge
of the clock. Therefore, its presence only affects the
shifting of the data when two or more pipelining
registers exist on the scan-path with no positive-edge
triggered register in between. Dummy bits should
be embedded in the input vectors such that after
the vector is shifted in, the SIB control bits and the
instrument data bits end up in the correct registers of
the respective SIB or instrument’s shift-register. The
existence of two pipelining registers on the scan-path
with no positive-edge triggered register in between
only happens once per doorway SIB, as can be seen
from Fig. 7(b). In Fig. 7(b), the pipelining register of
SIB4, which is a doorway SIB, is on the scan-path
immediately (i.e. with only combinational circuitry in
between) after the pipelining register of SIB5, and the
same is true for SIB2 (also a doorway SIB) and SIB4.

By using the implementation shown in Fig. 6(c), it
is possible to pipeline the ScanOut path by using the
S register itself. This, however, comes at the cost of
applying a wide fan-out signal to the ScanIn inputs.
Therefore, the SIB implementation in Fig. 6(c) makes
it possible to avoid both long combinatorial paths and
the need for scanning in dummy bits. In the rest of
this paper it is assumed that the SIB is implemented
as shown in either Fig. 6(a) or Fig. 6(c).

4 ANALYSIS: FLAT ARCHITECTURE
In this section, the flat architecture shown in Fig. 5(a)
is analyzed with respect to overall access time (OAT).
Two access schedules are considered, namely concur-

Fig. 7. The scan-path for the network in Fig. 5(b) drawn
at the RTL level when all SIBs are open

Fig. 8. Scan-path configurations of the flat architecture
example for the concurrent schedule
rent schedule (Section 4.1) and sequential schedule
(Section 4.2).

4.1 Concurrent schedule
In the concurrent schedule, accesses for all instru-
ments start as soon as possible, which for the flat
architecture means all accesses start at the same time.
When an instrument is no more active (i.e. there are no
more inputs to be applied to it) it is excluded from the
network, by closing its corresponding instrument SIB.
This makes the scan-path shorter for accessing the rest
of the instruments. Various forms of concurrency can
be considered, but the concurrent schedule as defined
and used in this paper results in the minimum access
time. This type of concurrency is not possible using
original JTAG specifications and is unique to P1687 in
this regard.

The input data for the instruments and the control
bits for the SIBs on the current scan-path are concate-
nated appropriately to form the input vector. While
an input vector is shifted in, the output vector cor-
responding to the previous inputs to the instruments
is shifted out. Each output vector contains the output
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TABLE 1
Flat architecture, concurrent schedule

Row Scanned bits # of scan Sum for
No. Scan-path SIBs I1 I2 I3 CUC sequences scan-path
1 Fig. 8(a) 3 0 0 0 5 1 3 + 5
2 Fig. 8(b) 3 3 5 4 5 5 (15 + 5) · 5
3 Fig. 8(c) 3 3 0 4 5 1 10 + 5
4 Fig. 8(d) 3 0 0 4 5 5 (7 + 5) · 5

OAT
∑

=183

data from each of the instruments on the scan-path
and the contents of the S registers of the SIBs on the
scan-path.

In the following, it will be described how to calcu-
late the OAT for the flat architecture shown in Fig. 5(a)
and the concurrent schedule, with the help of Fig. 8
and Table 1. In Fig. 8, the gray boxes represent the S
registers inside the correspondingly numbered SIBs.
Table 1 will be explained as the OAT calculation is
described.

Before accessing the instruments, the SIBs must
be opened, since the scan-path initially only consists
of the SIBs in the Gateway, as shown in Fig. 8(a).
To open the SIBs, three bits with logic value of ’1’
are scanned in (one bit for each SIB) and subse-
quently a CUC is performed. The three bits each
corresponds to the S register of a closed SIB, and
they are accounted for on the row marked 1 in Ta-
ble 1, column “SIBs”. After the CUC, which takes
five clock cycles (TCKs) as indicated in the column
“CUC”, all instruments are included in the scan-path,
as shown in Fig. 8(b). At this point, input data can
be applied to all three instruments, with a total scan-
path length of 1SIB1+3I1+1SIB2+5I2+1SIB3+4I3=15
bits, where 1SIBx represents the 1-bit S register inside
SIBx. The number of bits for the three instruments
(called 3I1, 5I2, 4I3 above) are counted in the columns
I1, I2 and I3 of Table 1. After four input vectors have
been applied, accessing instrument I2 is complete
and its shift-register should be excluded from the
scan-path, which is done by setting the control bits
such that SIB2 is closed, and SIB1 and SIB3 are kept
open. This operation, to close SIB2, cannot occur until
the output corresponding to the last input to I2 has
been scanned out. Therefore, a fifth scan sequence is
required during which the last output vector of I2 is
scanned out and the SIB control bits to exclude I2
from the scan-path are scanned in. In total, five scan
sequences are performed on the scan-path shown in
Fig. 8(b), which is represented under column “# of
scan sequences” in the row marked 2. After exclusion
of I2 from the network, the scan-path has a total length
of 1SIB1+3I1+1SIB2+1SIB3+4I3=10 bits. The scan-path
is now as shown in Fig. 8(c). After one scan sequence
which is shifting out the last outputs of I1, represented
by the row marked 3, the access to instrument I1 is
complete and SIB1 is closed. The scan-path becomes
as shown in Fig. 8(d). Four input vectors, hence four
scan sequences, remain for instrument I3 and one
more scan sequence is used to scan out the last of
the outputs for instrument I3, while closing SIB3.
For these last five scan sequences the total scan-path

TABLE 2
Flat architecture, sequential schedule

Row Scanned bits # of scan Sum for
No. Scan-path SIBs I1 I2 I3 CUC sequences scan-path
1 Fig. 9(a) 3 0 0 0 5 1 3 + 5
2 Fig. 9(b) 3 3 0 0 5 6 (6 + 5) · 6
3 Fig. 9(c) 3 0 5 0 5 5 (8 + 5) · 5
4 Fig. 9(d) 3 0 0 4 5 11 (7 + 5) · 11

OAT
∑

=271

Fig. 9. Scan-path configurations of the flat architecture
example for the sequential schedule
length is 1SIB1+1SIB2+1SIB3+4I3=7 bits, as shown in
the row marked 4.

Table 1 shows the number of bits of different
types that are scanned in for each scan sequence
and the number of sequences performed on each
scan-path configuration. The scan-path configuration
corresponding to each row is specified under the
column “Scan-path”. The last column (i.e. “Sum for
scan-path”) shows the total number of bits that are
scanned in for each scan-path. OAT is the sum of the
values in this last column, as shown on the last row,
which for this example is 183 clock cycles.

It should be noted that the SIB control bits con-
tribute to OAT by 3+3 · 5+3+3 · 5 = 36 clock cycles.
Furthermore, the number of clock cycles spent per-
forming CUC is 5+5 ·5+5+5 ·5 = 60. These 36+60=96
clock cycles spent scanning SIB control bits and per-
forming CUC are considered overhead, because no
actual instrument data is transported during this time,
and in the rest of this paper will be referred to as SIB
programming overhead and CUC overhead, respectively.
It can be seen that OAT consists of three components,
namely instrument data, SIB programming overhead,
and CUC overhead. An overhead ratio can be defined as
total overhead divided by OAT, which for the above
example is calculated as 96/183 ≈ 0.52. In general,
many number of accesses and short scan-chains lead
to a high overhead ratio. Of course, the length of the
instrument scan-chains does not impact the overhead
(the number of scanned SIB control bits or the number
of CUCs), but long scan-chains effectively limit the
overhead ratio.

4.2 Sequential schedule
In this section, OAT will be calculated for the flat
architecture considering the sequential schedule. In
the sequential schedule, the instruments are accessed
one at a time, and the assumed order of access is
the order that the instruments appear on the scan-
path when all SIBs are open. The order of access can
affect the overall access time in hierarchical networks,
if it causes closing the already opened doorway SIBs
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and reopening them again to access instruments in
segments connected to the HIPs of those SIBs. It is
also assumed that the access for each instrument is
completed before accessing any other instrument.

Similar to how Fig. 8 and Table 1 described the
access for the concurrent schedule, Fig. 9 and Table 2
will be used to explain the steps of sequential access
to the instruments in the network shown in Fig. 5(a).
Initially, the scan-path is as shown in Fig. 9(a). Three
bits are used in the first scan sequence (see the row
marked 1 in Table 2) to open SIB1 so that for the six
following scan sequences the scan-path is as shown
in Fig. 9(b). The row marked 2 in Table 2 shows that
the three bits of I1 are included in scan-path. After
six scan sequences (see the row marked 2), all the
five input vectors for I1 have been applied and the
corresponding outputs have been scanned out, while
closing SIB1 and opening SIB2 so that the scan-path
becomes as shown in Fig. 9(c). For this configuration
of the scan-path, four input vectors for I2 are applied
followed by a scan sequence to scan out the last
outputs (see the row marked 3). Fig. 9(d) shows the
scan-path as it is after completing the access for I2.
Finally, 11 scan sequences (see the row marked 4)
are applied to complete the access for I3 and scan
out the last outputs, while closing SIB3. As can be
seen from Table 2, OAT for the sequential schedule
is 271 clock cycles, which should be compared to 183
clock cycles for the concurrent schedule discussed in
Table 1. The difference in OAT can be explained by
a larger number of scan sequences performed in the
sequential schedule, which leads to more SIB and
CUC overheads. Similar to how the overhead ratio
was calculated in Section 4.1, the overhead ratio for
the flat architecture and the sequential schedule can
be calculated as (69 + 115)/271 ≈ 0.68.

5 ANALYSIS: HIERARCHICAL ARCHITEC-
TURE
This section discusses the overall access time (OAT)
for the hierarchical architecture shown in Fig. 5(b).

Table 3 and Table 4 show the steps to calculate
OAT for the concurrent and sequential schedules,
respectively. These tables are similar to Tables 1 and
2 in structure. The possible configurations referred to
by the column “Scan-path”, are presented in Fig. 10.

The access according to the concurrent schedule
was explained for the flat architecture in Section 4.1.
For the hierarchical architecture, in contrast to the flat
architecture, when all instruments in a network seg-
ment have become inactive, the doorway SIB whose
HIP is connected to that segment will be closed to
exclude all the instruments and SIBs on that segment
from the scan-path. As can be seen from Table 3,
OAT for the hierarchical architecture and the con-
current schedule is 223 clock cycles, which should
be compared to 183 clock cycles for the concurrent
schedule and the flat architecture. In this example,
the hierarchical architecture leads to a longer OAT

TABLE 3
Hierarchical architecture, concurrent schedule

Row Scanned bits # of scan Sum for
No. Scan-path SIBs I1 I2 I3 CUC sequences scan-path
1 Fig. 10(a) 2 0 0 0 5 1 2 + 5
2 Fig. 10(f) 4 3 0 0 5 1 7 + 5
3 Fig. 10(h) 5 3 5 0 5 1 13 + 5
4 Fig. 10(i) 5 3 5 4 5 4 (17 + 5) · 4
5 Fig. 10(g) 5 0 0 4 5 7 (9 + 5) · 7

OAT
∑

=223

TABLE 4
Hierarchical architecture, sequential schedule

Row Scanned bits # of scan Sum for
No. Scan-path SIBs I1 I2 I3 CUC sequences scan-path
1 Fig. 10(a) 2 0 0 0 5 1 2 + 5
2 Fig. 10(b) 2 3 0 0 5 6 (5 + 5) · 6
3 Fig. 10(c) 4 0 0 0 5 1 4 + 5
4 Fig. 10(d) 4 0 5 0 5 5 (9 + 5) · 5
5 Fig. 10(e) 5 0 0 0 5 1 5 + 5
6 Fig. 10(g) 5 0 0 4 5 11 (9 + 5) · 11

OAT
∑

=310

because of two factors. Firstly, the overhead from the
additional SIBs affects OAT. Secondly, the overhead in
terms of capture-and-update cycles (CUC) is higher,
due to opening the doorway SIBs to access the other
levels of hierarchy.

Accessing instruments according to the sequential
schedule was discussed in Section 4.2. For the hier-
archical architectures, it is additionally assumed that
only those doorway SIBs are open which are on the
shortest scan-path to the instrument being accessed.
Table 4 shows that for the sequential schedule, OAT
is 310 clock cycles, which should be compared with
271 clock cycles for the sequential schedule and the
flat architecture. The reason for the higher OAT with
the hierarchical architecture is more SIB programming
overhead and more CUCs.

The overhead ratio for the hierarchical architecture
can be calculated as (66 + 70)/223 ≈ 0.61 for the
concurrent schedule and (98 + 125)/310 ≈ 0.72 for
the sequential schedule.

It should be noted that in the example discussed
in Section 4 and this section, the flat architecture
and the concurrent schedule led to the lowest overall
access time (OAT). This is not a general conclusion,
since other examples may show lower OAT on other
architectures and schedules. For example, if for the
networks shown in Fig. 5 the number of accesses for
instruments were 20, 5 and 2 for I1, I2 and I3 respec-
tively, the hierarchical network resulted in a lower
OAT for both concurrent and sequential schedules.

6 TEST TIME CALCULATION TOOL: IJTAG-
CALC
This section will describe a tool called IJTAGcalc
consisting of two algorithms for calculating OAT for
a given P1687 network. Algorithm 1 is for concurrent
schedule and Algorithm 2 is for sequential schedule.

The terminology used in the algorithms, when
defining variable names, is from a tree structure. The
JTAG TAP is the root of the tree and the SIBs define
the nodes. For each SIB s, there is a subtree of SIBs
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Fig. 10. Scan-path configurations of the hierarchical architecture example
that is accessed through the HIP of s. This subtree is
empty and the SIB is a leaf node in case the SIB is an
instrument SIB. SIBs that are in the subtree of s and
on the next hierarchy level are referred to as children
of s. In the example shown in Fig. 5(b), SIB2 has the
subtree consisting of SIB3, SIB4 and SIB5. SIB2, which
is on Level1, is the parent of SIB3 and SIB4, since they
are on Level2.

To describe the placement of instruments, it is con-
sidered that each SIB can have at most one instrument
connected to its HIP. The properties of this instru-
ment, i.e. L and A, are associated with the connected
SIB. If an instrument is connected to a SIB s, then
s.ILength, s.IAccesses and s.IRemaining define the
properties of the instrument. Initially, s.IAccesses and
s.IRemaining are set to the number of accesses (A)
for the instrument, and s.ILength is set to the length
of the instrument’s shift-register (L). For each input
vector that is applied, s.IRemaining is decremented.
When s.IRemaining has reached 0, the final output
vector of the instrument is to be shifted out. Therefore,
a negative number in s.IRemaining represents that
the instrument is not to be accessed anymore. If SIB s
is a doorway SIB, s.ILength and s.IAccesses are set to
0, and s.IRemaining is set to −1, which has the effect
that no instrument is connected to s. The variable
s.SRemaining for a SIB s will at all times hold the
maximum of the value of the IRemaining-variables
over all the SIBs in the subtree of s. In practice, this
means that when s.SRemaining reaches a negative
value, SIB s can be closed.

6.1 Concurrent Schedule
This section describes the algorithm for the concurrent
schedule, presented in Algorithm 1. The algorithm
consists of two functions, namely IJTAGcalcConcur-
rent and Traverse. In the Lines 2-4 of IJTAGcalc-
Concurrent, the SRemaining variable is initialized for
all the SIBs. Lines 5-9 describe a loop where each
iteration contains a call to function Traverse. Each
iteration corresponds to a scan sequence (see Table 1)
and by summing the number of bits (SSLength) with
the CUC for each scan sequence, OAT is added up
(line 8). The iterations finish when there are no more
input vectors to apply, as given by the SRemaining
variable. At this point, OAT will have been found.

In Algorithm 1, Traverse is a key function which
returns the value for SRemaining. It also updates the
global variable SSLength which keeps track of the
number of bits that have been scanned in during each
scan sequence. The basic operation of the Traverse

Algorithm 1 for the Concurrent Schedule
1: function IJTAGcalcConcurrent()
2: for each SIB s do
3: s.SRemaining := max{IAccesses found in subtree of s}
4: end for
5: while TAP.SRemaining > −1 do
6: SSLength :=0 // Scan sequence length
7: TAP.SRemaining := Traverse(TAP ) // SSLength is

updated by the Traverse function.
8: OAT := OAT + SSLength+ CUC
9: end while

10: end function
11:
12: function Traverse(node)
13: subtreeSAccessList := {−1}
14: for each child ∈ node.children do
15: SSLength := SSLength+ 1
16: if child.SRemaining > −1 or child.IRemaining > −1

then
17: if child.IsOpen=False then
18: child.IsOpen := True
19: else
20: child.SRemaining := Traverse(child)
21: SSLength := SSLength+ child.ILength
22: child.IRemaining := child.IRemaining − 1
23: end if
24: else
25: child.IsOpen := False // might already be closed
26: end if
27: append max{child.SRemaining,child.IRemaining} to

subtreeSAccessList
28: end for
29: return max{subtreeSAccessList}
30: end function

function is to inspect the child nodes of the node that
was passed to Traverse as parameter. For these child
nodes, the number of remaining accesses is calculated
as the return value of Traverse. Since each child is
a SIB, the SSLength variable is incremented by one
to represent the time it takes to scan in a control
bit for the SIB (line 15). If the SIB is in the closed
state but there are still input vectors to be applied
to any instrument in its subtree (as indicated by the
SRemaining and IRemaining variables, line 16), the
SIB is opened (line 18). In the opposite situation, when
there are no more input vectors to be applied for the
subtree of a SIB, that SIB is closed (line 25). For an
open SIB with remaining input vectors, a recursive
call to Traverse is performed (line 20). The SSLength
variable is incremented by ILength which signifies
the shifting of the bits of one input vector (line 21).
Furthermore, the number of remaining accesses is
reduced by one (line 22). The number of remaining
accesses for the subtree for which Traverse was called
is calculated by taking the maximum number of ac-
cesses remaining for any of the child nodes (line 27
and line 29).
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Algorithm 2 for the Sequential Schedule
1: function IJTAGcalcSequential(node)
2: if size(node.Children)>0 then
3: SIBs := SIBs+size(node.Children)
4: OAT := OAT + SIBs+ CUC
5: for each child ∈ node.Children do
6: IJTAGcalcSequential(child)
7: end for
8: SIBs := SIBs−size(node.Children)
9: else

10: OAT := OAT + (node.ILength + SIBs + CUC) ·
(node.IAccesses+ 1)

11: end if
12: end function

6.2 Sequential Schedule
This section describes IJTAGcalcSequential (Algo-
rithm 2) for the sequential schedule. IJTAGcalcSe-
quential considers the same type of tree representation
as was discussed in Section 6. The basic idea behind
the OAT calculation is that there are Ai + 1 scan
sequences for each instrument i, for which the number
of shifted bits per scan sequence is constant. This
can be seen in the examples of Table 2 and Table 4.
The number of shifted bits during the instrument
access, depends on the length of that instrument’s
shift-register and the number of SIBs on the scan-
path to that instrument. To calculate OAT , IJTAG-
calcSequential should be called with TAP as param-
eter (the root node of the tree). Before the call to
IJTAGcalcSequential, the global variables SIBs and
OAT should be set to 0. Here, SIBs is a variable
that counts the number of SIBs on the scan-path, and
OAT is the variable that will contain the OAT when
IJTAGcalcSequential terminates. The number of SIBs
on the scan-path will vary according to the location of
the instrument that is being accessed within the P1687
network. Therefore, IJTAGcalcSequential keeps track
of the SIBs that must be traversed to reach the level of
hierarchy on which the accessed instrument is located.
Each level of hierarchy is marked by a recursive call
(line 6).

When IJTAGcalcSequential is called, it checks
whether the current node (which is a SIB) has any
child SIBs (Line 2). If node has children, the SIBs
variable should be incremented with the number of
children (Line 3) and OAT should be increased to
represent the initial SIB programming required for
the newly opened level of hierarchy (Line 4). Simi-
larly when the function is leaving this level, SIBs is
reduced to the previous value, corresponding to the
previous level of hierarchy (Line 8). IJTAGcalcSequen-
tial should be called recursively for the children of
the current node (Lines 5- 7). If current node has no
child (Line 9), then OAT will be incremented with the
access time required for applying all the instrument’s
input vectors and the scan-out of the last output
vector (line 10).

7 PARAMETRIC ANALYSIS
It is possible for P1687 adopters to adjust design
variables to balance the trade-offs among design goals

Fig. 11. How OAT changes with increase in concur-
rency ratio

such as time overhead reduction, hardware overhead
reduction, etc. Among such design variables are ac-
cess schedule, network architecture, number of ac-
cesses (A), length of shift-registers (L), and number
of instruments. For example, it might be possible for
a designer to reduce the number of accesses required
for an instrument by increasing the length of the shift-
register for that instrument, and it is important to
know how this decision affects the design goals. In
this section, analysis is presented to demonstrate the
effect of changes in design variables on OAT and its
components, i.e. instrument data, SIB programming
overhead, and CUC overhead. For the analysis, the
algorithms presented in Section 6 are implemented
and slightly modified to report the SIB programming
and the CUC overheads in addition to OAT.

As for the choice of schedule, it is possible to
perform some accesses concurrently and some ac-
cesses sequentially. It should be considered that due
to resource constraints, power constraints, or thermal
constraints, it might not be always possible to use
maximum concurrency. To study the effect of access
schedule on OAT, a concurrency ratio is defined as
the number of instruments being accessed concur-
rently divided by the total number of instruments.
For example a concurrency ratio of 2/5 means that
two instruments are accessed concurrently, followed
by the sequential access to the remaining three in-
struments. For this analysis 1024 similar instruments
(L = 10 and A = 10) are considered in a flat network.
The concurrency ratio is increased from zero to one,
where in each step 64 additional instruments are
accessed concurrently, and OAT and its components
are calculated. Fig. 11 presents the results for this
experiment. In Fig. 11, the primary vertical axis is
scaled logarithmically to present the OAT and its
components in time units (TCKs). To present the
overhead ratio in percentage, a secondary vertical
axis is added to Fig. 11 and is scaled from 0 to 100.
Using the secondary vertical axis, the overhead ratio
is presented as a shaded area. Fig. 11 shows that as
concurrency increases, the instrument data remains
constant and both SIB programming and CUC over-
head types decrease, leading to the instrument data
dominating OAT.

As the second variable, the number of instruments
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Fig. 12. How OAT changes as the number of instruments increases
is considered. To study the effect of an increase in
number of instruments on OAT and its components,
two similar instruments with L = 10 and A = 10 in
a flat network are considered. The number of instru-
ments is increased in powers of two from 2 to 1024
and the instrument data, SIB programming overhead,
and CUC overhead are calculated for each of these
cases, using both concurrent and sequential schedules.
Fig. 12 shows the results for this experiment. It can be
seen from Fig. 12(a) that for the concurrent schedule,
as the number of instruments increases, the instru-
ment data becomes the dominating component of
OAT, the CUC overhead remains the same since all of
the instruments in this experiment have equal number
of accesses, and the SIB overhead increases and re-
mains a significant portion of OAT. But for sequential
schedule, the CUC overhead increases and it is the
SIB programming overhead which becomes extremely
high and dominates the OAT (see Fig. 12(b)).

Another variable to consider is the number of ac-
cesses. Assuming 10 similar instruments each having
L = 20 in a flat network, the OAT is calculated as the
number of accesses (A) is increased from 2 to 1024
for all of the instruments, and for the concurrent and
sequential schedules. Fig. 13 presents the results. It
is interesting how the overhead ratio remains almost
the same as the number of accesses increases (see
Fig. 13(a) and Fig. 13(b)). As Fig. 13(a) shows, when
using the concurrent schedule, the instrument data
dominates OAT.

An experiment similar to the one above can be
performed for the length of instrument shift-registers
(L). Assuming 10 similar instruments each having
A = 10 in a flat network, OAT is calculated as the
length of shift-registers (L) is increased from 2 to 1024
for all of the instruments, and for the concurrent and
sequential schedules. Fig. 14 presents the results from
which it can be seen that for both concurrent and
sequential schedules, both overhead types remain the
same and OAT is dominated by the instrument data
as L increases.

The last variable to consider is the network ar-
chitecture. Given the flexibility in design of P1687
networks provided by SIBs, it is possible to design
a large number of networks for the same set of
instruments, by using hierarchy. However, to keep this

TABLE 5
Summary for the parametric analysis

Variable ↑ Instrument CUC SIB Prog. OAT Overhead
data overhead overhead ratio

Number of instruments ↑ (1) ↑ ↑ (1)

Number of accesses (A) ↑ ↑ ↑ ↑ (2)

Shift-register length (L) ↑ − − ↑ ↓
Concurrency ratio − ↓ ↓ ↓ ↓

Hierarchical levels − ↑ (1) (1) (1)

(1) Depends on schedule and properties of instruments (i.e. L and A).
(2) Remains almost the same.

study simple, only a very small subset of all possible
networks could be considered. Therefore, we chose
to start with a flat network (i.e. only a single level
of hierarchy) and observe how OAT changes with
increasing the number of hierarchical levels. In our
experiment, to add a level of hierarchy, the instrument
SIBs directly connected to the HIP of doorway SIBd
(see Fig. 16) are divided into two groups, each group
is connected to the HIP of an additional doorway SIB,
and the two additional doorway SIBs are connected
to the HIP of doorway SIBd. This idea is shown in
Fig. 16 for eight instruments, but this experiment
considers 1024 instruments (L = 10 and A = 10).
For these 1024 instruments, 10 levels of hierarchy
are considered where at the 10th level each doorway
SIB has two instrument SIBs connected to its HIP.
The OAT calculation results are presented in Fig. 15.
From Fig. 15(a) (for the concurrent access schedule)
it is seen that an increase in the number of levels
of hierarchy increases OAT, and from Fig. 15(b) an
opposite trend is observed for the sequential access.
Here, an important observation is that for both con-
current and sequential schedules, CUC overhead is
not affected significantly by increase in hierarchical
levels. Therefore, since instrument data is indepen-
dent of network architecture, for both schedules, the
increase and decrease in OAT can be attributed to the
contribution of SIB programming overhead.

One important observation regarding this paramet-
ric analysis is that in all experiments and for almost
all cases in each experiment, the CUC overhead has
the least contribution to OAT. Table 5 summarizes the
parametric analysis presented in this section, where
the effect of increasing any of the design variables
(Column 1) on OAT, its components, and the overhead
ratio is presented. The effect is shown as increasing
(↑), decreasing (↓) or unaffected (−).
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Fig. 13. How OAT changes as the number of accesses (A) increases

Fig. 14. How OAT changes as the length of shift-registers (L) increases

Fig. 15. How OAT changes by increase in levels of hierarchy

Fig. 16. Adding a level of hierarchy

8 EXPERIMENTAL SETUP
We have performed experiments to study the connec-
tion of instruments to the JTAG TAP in respect to OAT,
both without and with the use of P1687.

To perform the experiments, a set of instruments
was required. Therefore, we have chosen to view the
cores inside the SOCs of ITC’02 benchmark set [19],
as design-for-test instruments. This way, considering

how access is defined in this paper, the calculated OAT
is actually the test application time. Each SOC from
the ITC’02 set contains a number of cores, as shown in
Fig. 17(a) for the P34392 SOC. Each core has a number
of I/O pins as well as some internal scan-chains, as
shown in Fig. 17(b) for Core 1 from P34392. Since in
the context of P1687 all data are transported through a
single wire, to access all of these I/O pins and internal
scan-chains, boundary cells are assumed for each I/O
pin and a core-chain is formed by concatenating the
boundary cells and the internal scan-chains, as shown
in Fig. 17(c) for a core with M inputs, N outputs and K
scan-chains. To calculate the number of the boundary
scan cells, each input/output terminal is counted as
one cell and every bi-directional terminal is counted
as three cells [1], [20]. For example, the length of the
core-chain for Core 1, shown in Fig. 17(b), is calculated
as 15 + 806 + 94 = 915. It should be noted that in
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Fig. 17. Using the ITC’02 benchmark SOCs for the
experiments

case a core is hierarchical, e.g. core 10 in Fig. 17(a),
the outputs of the child cores, e.g. core 11, should
be considered as inputs to the parent core (i.e. the
hierarchical core). Similarly, the inputs of the child
cores should be considered as outputs of the parent
core. Therefore, concerning the hierarchical cores, the
boundary cells of each embedded child core are ap-
propriately included in the set of boundary cells of its
direct parent core [20].

For each of the SOCs, the total amount of instru-
ment data that should be shifted in is calculated as∑N

i=1
Li · (Ai+1), where N is the number of cores, Ai

is the number of accesses for the core-chain of core
i, and Li is the length of the core-chain for core i.
In this relation, +1 denotes the shift out of the last
output. It should be noted that the chip-level module
(Module 0), specified in the ITC’02 benchmarks, and
modules containing BIST-engines are not included in
the experiments and are also not accounted for in
presentation of the results.

We have performed two sets of experiments to
calculate and compare OAT when (1) instruments are
connected in series as a single TDR to the JTAG TAP,
and (2) when instruments are connected to JTAG TAP
through P1687.

As for Experiment 1, all the shift-registers of instru-
ments (here core-chains) are assumed to be connected
in series as a single TDR to be accessed according to
the concurrent schedule. This idea was referred to as
chain of instruments in Section 2. The length of this
TDR for each SOC, is the sum of the lengths of that
SOC’s core-chains. Of course, in this scenario it is not
possible to exclude an instrument from the scan-path
when there are no more input vectors to be applied
to it. Therefore, the number of accesses for the TDR is
the maximum number of accesses found among the
core-chains that form the TDR.

For Experiment 2, P1687 networks are assumed for

TABLE 6
Results for Experiment 1

SOC TDR∗ Instrument Dummy bits CUC OAT
Length Accesses† data overhead overhead

F2126 15205 422 5330439 1101276 2115 6433830
T512505 76554 3370 165400967 92662567 16855 258080389
U226 1288 2666 252929 3182167 13335 3448431
P22810 30885 12324 8172047 372485578 61625 380719250
A586710 41966 1914433 843806808 79497330436 9572170 80350709414
P34392 23456 12336 16728056 272648616 61685 289438357

∗TDR is formed by concatenation of core-chains in the SOC.
†The number of accesses for a TDR is the maximum number of accesses

found among the core-chains that form the TDR.

the same instruments (i.e. cores) used in Experiment 1.
All six SOCs were included in an experiment with
a flat network (denoted with “F”) and three of the
SOCs (P22810, P34392 and A586710 which have hier-
archical cores) were also used in an experiment with
a hierarchical network (denoted with “H”). In the
hierarchical networks the child cores are assigned to
the next hierarchy level in relation to their parent
core, see Fig. 17(d). This is to make a one-to-one
correspondence to the hierarchy in the SOC itself,
for the sake of experiment. It should be noted that
hierarchy in terms of P1687 can be implemented in a
huge variety of ways, but to calculate and analyze
OAT, we require one such implementation and we
have chosen to take inspiration from the hierarchy
of the cores. Fig. 17(d) shows part of the network
assumed for P34392 (H) in which core 2 and core 18
are at the first level of the hierarchy and their child
cores are at the second level. To perform Experiment 2,
the algorithms presented in Section 6 are implemented
and slightly modified to report the SIB programming
and the CUC overheads in addition to OAT.

9 EXPERIMENTAL RESULTS
The results of the performed experiments are reported
and discussed in this section.

Regarding Experiment 1, chaining the instruments
into a long scan-path, as was mentioned in Section 2,
has the drawback of increased instrument access time.
Table 6 shows OAT and its components for each
SOC. Here, the OAT components are the instrument
data, the number of dummy bits shifted during the
access, and the CUC overhead. It can be seen that the
amount of overhead due to the dummy bits can be
prohibitively high.

Regarding Experiment 2, Table 7 and Table 8
present the results. Table 7 lists the instrument data
and the network types considered for each SOC
(columns 2 and 3) as well as the detailed results
for accessing the instruments inside each network
using the concurrent schedule (columns 4-6) and se-
quential schedule (columns 7-9). For each schedule,
the two overhead components, i.e. SIB programming
overhead and CUC overhead, are reported. OAT for
each network and each schedule is the sum of the
instrument data and the overhead components for the
respective network and schedule.

Table 8 presents the same information presented
in Table 7 in percentage of OAT for each network.
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TABLE 7
Detailed experimental results (in TCKs) for Experiment 2

Concurrent schedule Sequential schedule
SOC† Instrument Network‡ Overhead types OAT Overhead types OAT

data SIB Prog. CUC SIB Prog. CUC
F2126 (4) 5330439 F 1696 2120 5334255 3868 4835 5339142
T512505 (31) 165400967 F 104532 16860 165522359 325841 52555 165779363
U226 (5) 252929 F 13340 13340 279609 40475 40475 333879

P22810 (28) 8172047 F 345128 61630 8578805 701176 125210 8998433
H 340728 61635 8574410 665898 125220 8963165

A586710 (5) 843806808 F 9572175 9572175 862951158 10709500 10709500 865225808
H 9753317 9572175 863132300 10890647 10709505 865406960

P34392 (19) 16728056 F 234422 61690 17024168 1260498 331710 18320264
H 250086 61695 17039837 841306 331725 17901087

†The numbers inside parentheses, denote the number of cores in the corresponding SOC.
‡F denotes a flat architecture and H denotes a hierarchical architecture.

TABLE 8
Detailed experimental results (in Percentage of OAT) for Experiment 2

Concurrent schedule Sequential schedule
SOC† Network‡ Overhead types Instrument Overhead types Instrument

SIB Prog. CUC data SIB Prog. CUC data
F2126 (4) F 0.03 0.04 99.93 0.07 0.09 99.84
T512505 (31) F 0.06 0.01 99.93 0.20 0.03 99.77
U226 (5) F 4.77 4.77 90.46 12.12 12.12 75.75

P22810 (28) F 4.02 0.72 95.26 7.79 1.39 90.82
H 3.97 0.72 95.26 7.43 1.40 91.17

A586710 (5) F 1.11 1.11 97.78 1.24 1.24 97.52
H 1.13 1.11 97.76 1.26 1.24 97.50

P34392 (19) F 1.38 0.36 98.26 6.88 1.81 91.31
H 1.47 0.36 98.17 4.70 1.85 93.45

†The numbers inside parentheses, denote the number of cores in the corresponding SOC.
‡F denotes a flat architecture and H denotes a hierarchical architecture.

Therefore, the column “OAT” (which is always 100%)
is removed from the table and the column “Instru-
ment data” is repeated for each of the concurrent and
sequential schedules. It should be noted that although
the instrument data is independant of the network
and the access schedule, when shown as a percent
of OAT it might be different for each network and
schedule.

Regarding the concurrent schedule, Table 8 shows
that F2126 and T512505 both have relatively low
overhead. Long instrument shift-registers and a small
number of accesses should result in relatively low
overhead. This is the case for all the cores of F2126.
For T512505, there are some cores that have short core-
chains but in those cases the number of accesses is also
low. On the other hand, there is one core with a very
long core-chain and the instrument data for this core
corresponds to about 90% of the overall instrument
data. Therefore, this core made such impact on OAT
that the overhead from the other cores became negli-
gible. U226 contains some cores that have short core-
chains and a large number of accesses. Therefore, the
overhead percentage of OAT for U226, which is about
10% (4.77% for the SIB programming overhead plus
4.77% for the CUC overhead), is larger than that of the

other networks. In A586710 (F), there is a core with
about two million accesses and a core-chain length
of 326 cells. However, this large number of accesses
has not resulted in a large SIB programming overhead
ratio. The reason is that the 326-cell core-chain is
significantly longer than the number of SIBs in the
scan-path in A586710 (F), which effectively limits the
SIB programming overhead ratio corresponding to
this core. As for P22810 (F) and P34392 (F), the maxi-
mum number of accesses among the cores are similar,
resulting in similar CUC overheads for both networks.
However, the ratios of CUC overhead are not similar
in these two networks due to the differences in their
amounts of instrument data.

The observations regarding the networks with flat
architecture typically applies also to the correspond-
ing networks (from the same SOC) with hierarchical
architecture, as can be seen in Table 8. It should be
noted that even though there was a noticeable differ-
ence between OAT of the flat network and that of the
hierarchical network for the small example of Fig. 5,
see Section 5, the experiments with SOC benchmarks
show little difference in overhead ratio. P22810 (H)
and P22810 (F) show similar results because there are
few hierarchical levels relative to the number of cores.
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Therefore, P22810 (H) has characteristics similar to
those of its flat counterpart.

Comparing the results for the concurrent schedule
with those of the sequential schedule, it can be seen
that the overhead ratio is larger when using a sequen-
tial schedule. For example, in case of U226 (F), the
overhead ratio is about 24% (12.12% + 12.12%) for
the sequential schedule compared to 10% for the con-
current schedule. The main reason for this is that the
total number of scan sequences increase, leading to an
increase in both CUC and SIB programming overhead,
while the amount of instrument data stays the same in
both schedules. P34392 shows a noticeable difference
in overhead ratio between the flat network, marked
by P34392 (F), and the hierarchical network, marked
by P34392 (H), in the case of the sequential schedule.
For the flat network the overall overhead is about
9% and for the hierarchical network the overhead is
about 7% with the difference mainly due to a lesser
SIB programming overhead. In P34392 (F), every scan
sequence, independent of the core, includes 19 SIBs
(the same number as the number of cores). However,
in P34392 (H), the scan-sequences contain on average
13 SIBs. Since this is significantly less than 19 SIBs, this
explains the noticeable difference in SIB programming
overhead.

10 CONCLUSION
In expectation of ratification of IEEE P1687 IJTAG,
this paper has presented an overview of this standard
proposal and an analysis of how overall access time
(OAT) is to be calculated in this context.

The analysis explored the configuration possibili-
ties for P1687 networks and considered accessing the
instruments in those networks using two schedules,
namely concurrent schedule and sequential schedule.
The analysis shows that overhead in terms of clock
cycles spent performing other operations than shift-
ing instrument data can be put into two categories,
namely time spent on shifting control data (for P1687
network configuration) and time spent in the JTAG
TAP controller for applying inputs to instruments and
capturing their outputs.

This paper presents an OAT calculation tool for
P1687 networks called IJTAGcalc, which supports
both concurrent and sequential access schedules. IJ-
TAGcalc is implemented and employed in a para-
metric analysis to study how changes in the design
variables, e.g. number of instruments, number of ac-
cesses for instruments and lengths of instrument shift-
registers, will affect OAT. From the key observations
of this analysis the following can be mentioned: (1)
length of an instrument’s shift-register has no effect on
overhead, (2) the time spent shifting instrument data
is independent of the access schedule and the network
architecture, (3) using hierarchical networks may re-
duce OAT, depending on the used access schedule,
and (4) JTAG TAP controller overhead often has the
least contribution to OAT. These observations can be

utilized to optimize P1687 networks with respect to
OAT. Furthermore, IJTAGcalc can be used to evaluate
and compare the optimized networks, or be used
in future optimization techniques where selecting
among multiple alternative networks is required.

IJTAGcalc was also employed in performing exper-
iments on ITC’02 benchmark set. The results show a
possible overhead ratio of up to 24%. The results can
be well explained by the observations made in the
analysis. For a particular benchmark, it was seen that
the network architecture has a noticeable impact on
the overhead.
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