
Test Time Analysis for IEEE P1687
Farrokh Ghani Zadegan1, Urban Ingelsson1, Gunnar Carlsson2 and Erik Larsson1

1 Linköping University, 2 Ericsson AB,
Linköping, Sweden Stockholm, Sweden

ghanizadegan@ieee.org, urbin@ida.liu.se, erila@ida.liu.se gunnar.carlsson@ericsson.com

Abstract—The IEEE P1687 (IJTAG) standard proposal aims
at providing a standardized interface between on-chip embedded
logic (instruments), such as scan-chains and temperature sensors,
and the IEEE 1149.1 standard which provides test data transport
and test protocol for board test. A key feature in P1687 is
to include Select Instrument Bits (SIBs) in the scan path to
allow flexibility in test architecture design and test scheduling.
This paper presents algorithms to compute the test time in a
P1687 context. The algorithms are based on analysis for flat
and hierarchical test architectures, considering two test schedule
types - concurrent and sequential test scheduling. Furthermore,
two types of overhead are identified, i.e. control data overhead
and JTAG protocol overhead. The algorithms are implemented
and employed in experiments on realistic industrial designs.

Keywords-Test Time Calculation, IEEE P1687 IJTAG, Test Ar-
chitectures, Test Schedules

I. INTRODUCTION

The complexity and reduced feature sizes in recent IC
designs, necessitates the provision of on-chip infrastructures
for test and debug. The IEEE 1149.1 standard (a.k.a. JTAG),
originally intended for board test, has proved useful in this
context for ad-hoc access to such on-chip infrastructure, as
discussed in [1]. This means that JTAG is required to connect
to a wide range of different electronic circuits, such as
embedded test logic. Therefore, there is a need to standardize
how JTAG circuitry should connect to the embedded logic.
The IEEE P1687 standard proposal [2], [3], which describes
a flexible test data transport infrastructure to interface JTAG
to the embedded test logic, aims to address this need of
standardization. When ratified, P1687 will specify methods
for access and control of embedded instruments [2]. Here,
instrument refers to any device (DFT-specific or not) with
a scanable register that could be included in the JTAG scan
path. Examples of instruments include embedded sensors and
scan-chains. This paper considers using P1687 for testing
the internal cores of an IC and therefore, the instruments
mentioned in the remainder of this paper are scan-chains.

Before the P1687 proposal, similar efforts for interfacing
instruments with JTAG have been presented in [4]–[6], but it
should be noted that compared with the approaches in [4]–[6],
P1687 introduces a component called Select Instrument Bit
(SIB). The SIBs provide flexibility in setting up the scan path
by making it possible to include and exclude instruments. An
example of this flexibility is the possibility to build hierarchies
of SIBs and instruments, as will be discussed in this paper.
To setup the scan path, P1687 proposes to transport control
data together with test data on a single wire (the JTAG scan

path), and this will affect the Test Application Time (TAT)
compared to previous approaches [4]–[6]. Since IEEE P1687
has recently been proposed, only a few studies have considered
it [4], [7], [8]. In particular, no study has investigated the
impact of IEEE P1687 on TAT. Therefore, this paper will
analyze (Sections III and IV) the implications of IEEE P1687
on TAT, and it is shown that the TAT depends on several
parameters including the placement of instruments and SIBs.
To make it possible to calculate the TAT for large designs with
complicated structures of instruments and SIBs, a first TAT
calculation method IJTAGcalc is presented (Section V) and
used to calculate the TAT for a number of ITC’02 benchmark
designs (Sections VI and VII).

II. IEEE P1687 IJTAG OVERVIEW

The IEEE P1687 standard proposal is at the time of this
paper’s writing in the final stage of review, and is sufficiently
mature, so that no changes are expected that would affect the
study presented in this paper. P1687 proposes an interface for
connecting instruments with JTAG for test data transport. The
interface is implemented by adding a Test Data Register called
Gateway, composed of one or more SIBs, to the JTAG cir-
cuitry. The Gateway is selected by loading an instruction called
Gateway Enable (GWEN) through the IR-scan procedure [2].
Loading GWEN makes the Gateway accessible from the JTAG
Test Access Port (TAP) terminals, Test Data Input (TDI) and
Test Data Output (TDO). Once the GWEN instruction is set,
any further access, configuration and control of instruments
through P1687 will be done through DR-scans [2]. The IR-
scan and the DR-scan procedures are controlled by a state
machine which is defined by JTAG and implemented in the
JTAG TAP controller.

Fig. 1(a) shows a simplified view of a SIB. In addition to
the TDI and TDO ports, the SIB has a hierarchical interface
port (HIP) that is used to connect to a P1687 segment which
can be either an instrument or other SIBs. A SIB acts as a
doorway since it has two states, it is either open (Fig. 1(b))
and includes the segment on the HIP in the scan path, or it is
closed (Fig. 1(c)) and transfers the data from its TDI port to its
TDO port, excluding the segment on the HIP. Whether the SIB
is open or closed, it corresponds to a 1-bit data register on the
scan path. The state of the SIB is set by scanning in a control
bit into its register, and the next time the JTAG state machine
[9] is in its Update-DR state, the SIB will transfer the control
bit to its state register (shown in Fig. 1(b) and Fig. 1(c)). The
Update-DR state is part of the progression of five states in



SIB
TDI

HIP-ToTDI HIP-FromTDO

TDO

(a) SIB ports

TDI

HIP-ToTDI HIP-FromTDO

TDO
State Register 1

(b) Open SIB

TDI TDO
State Register 0

(c) Closed SIB

Fig. 1. Simplified view of SIB component

(a) Flat architecture (b) Hierarchical architecture

Fig. 2. Example test data transport infrastructures

the JTAG TAP controller, controlling test stimulus application
and capturing of the corresponding test response (Exit1-DR,
Update-DR, Select-DR, Capture-DR and Shift-DR). In this
paper, the progression of the five states will be referred to
as a capture-and-update cycle (CUC). The control bits for the
SIBs are embedded in each test stimuli vector.

Fig. 2(a) shows a test data transport infrastructure and three
instruments (SC1, SC2 and SC3) including three SIBs, one for
each instrument. In Fig. 2(a), L stands for the length of the
scan-chain for each instrument and P stands for the number
of test patterns in an instrument-specific test. The typical test
application process is to scan in test stimuli from TDI, through
the SIBs, into the scan-chains of the instruments, apply the test
and scan out the captured test responses, through the SIBs to
TDO. It should be noted that while a test response is scanned
out, it is possible to scan in the next test stimuli.

The type of test architecture that is implemented by the SIBs
in Fig. 2(a), is called a flat architecture in the remainder of
this paper. In the flat architecture no SIB is connected to the
HIP of another SIB. Fig. 2(b) shows another structure of SIBs
that connect the same three instruments (SC1, SC2 and SC3)
as in Fig. 2(a). Here there are five SIBs and three of these
SIBs are connected from the HIP of SIB2. This type of SIB
structure is called hierarchical architecture in the remainder of
this paper. Each SIB that has another SIB on its HIP represents
the doorway to another level of hierarchy, such as SIB2 and
SIB4 in Fig. 2(b). In this context, SIB placement impacts TAT.

III. ANALYSIS: FLAT ARCHITECTURE

In this section, the flat architecture is analyzed regarding the
TAT. Two test schedules are considered. In Section III-A, all
the tests are started at the same time (the concurrent schedule).
In Section III-B, the tests are performed sequentially, one test
at a time (the sequential schedule).

A. Concurrent schedule

Regarding the concurrent schedule, the following will de-
scribe how to calculate the TAT for the flat architecture,
with the help of Table I and Fig. 3. In Fig. 3, the gray

1
TDI

2 3
TDO

(a)

SC1, L=3, P=51 2 3 SC3, L=4, P=10
TDI TDO

(b)
1 2 SC3, L=4, P=103

TDI TDO

(c)

SC1, L=3, P=51 2 3
TDI TDO

(d)
SC2, L=5, P=41 32

TDI TDO

(e)

Fig. 3. Scan path configurations of the flat architecture example

TABLE I
FLAT ARCHITECTURE, CONCURRENT SCHEDULE

Scanned bits Scanned bits
Sequence type SIBs SC1 SC2 SC3

∑
+CUC

Setup-sequence 3 0 0 0 3 3 + 5
Scan-sequence 1-5 3 3 5 4 15 (15 + 5) · 5
Scan-sequence 6 3 3 0 4 10 10 + 5
Scan-sequence 7-11 3 0 0 4 7 (7 + 5) · 5

TAT
∑

=183

boxes represent the data register inside the correspondingly
numbered SIBs. Before applying the first test pattern, the SIBs
must be opened, since the scan path initially only consists
of the SIBs, as shown in Fig. 3(a). To open the SIBs, three
bits are scanned in (one bit for each SIB) and subsequently a
CUC is performed. The three bits each corresponds to the 1
bit register of a closed SIB (Fig. 1(c)), and they are accounted
for on the row marked Setup-sequence in Table I, column
“SIBs”. After the CUC, all instruments are included in the
scan path, as shown in Fig. 2(a). At this point, test patterns
can be applied to all three instruments, with a total scan-chain
length of 1O + 3SC1 + 1O + 5SC2 + 1O + 4SC3=15 bits,
where 1O corresponds to the 1 bit SIB register that is between
each open SIBs’ TDI port and its instrument (Fig. 1(b)). The
total number of such 1O bits is accounted for on the row
marked Scan-sequence 1 in Table I, in the column “SIBs”.
Similarly, the number of bits (called 3SC1, 5SC2, 4SC3 above)
for the three instruments are counted in the columns SC1,
SC2 and SC3. After four test patterns have been applied, the
test for instrument SC2 is complete and its scan-chain should
be excluded from the scan path by setting the control bit
so that SIB2 is closed while keeping SIB1 and SIB3 open.
This operation, to close SIB2, cannot occur until the test
response for the last test pattern of SC2 has been scanned
out. Therefore, a fifth scan-sequence is required during which
the last test response of SC2 is scanned out and the SIB
control bits to exclude SC2 from the scan path are scanned
in. The sixth scan-sequence, has a total scan-chain length of
1O+3SC1+1C+1O+4SC3=10 bits. Here, 1C corresponds to the
1 bit register between the TDI and TDO ports of a closed SIB
(Fig. 1(c)). The scan path is as shown in Fig. 3(b). After the
sixth scan-sequence, the test for instrument SC1 is complete
and SIB1 is closed. The scan path becomes as shown in
Fig. 3(c). For Pattern 7 to Pattern 11, four test patterns remain
for instrument SC3 and one scan-sequence is used to scan out
the last of the test responses for instrument SC3, while closing
SIB3. For these last five scan-sequences the total scan-chain
length is 1C+1C+1O+4SC3=7 bits.

Table I shows the number of bits of different types
(columns) that are scanned in for each sequence (rows). The



TABLE II
FLAT ARCHITECTURE, SEQUENTIAL SCHEDULE

Scanned bits Scanned bits
Sequence type SIBs SC1 SC2 SC3

∑
+CUC

Setup-sequence 3 0 0 0 3 8
Scan-sequence 1-6 3 3 0 0 6 11 · 6
Scan-sequence 7-11 3 0 5 0 8 13 · 5
Scan-sequence 12-22 3 0 0 4 7 12 · 11

TAT
∑

=271

column marked
∑

sums the bits to get the total scan path
length. These are the number of bits that are scanned for each
sequence. The last column shows the number of bits to scan in
for each sequence plus the five clock cycles that are required
to perform a capture-and-update cycle (CUC) for JTAG [9]
(see Section II), times the number of sequences. The TAT is
the sum of the values in the last column of Table I, as shown
on the last row. In this example, the TAT is 183 clock cycles.

It should be noted that the SIB control bits contribute to
TAT by 36 clock cycles. Furthermore, the number of clock
cycles spent performing CUC is 60. These 36+60=96 clock
cycles spent scanning SIB control bits and performing CUC is
considered overhead, because no actual test data is transported
during this time. Thus the overhead ratio is 96/183 ≈ 0.52 in
this example. In general, many test patterns and short scan-
chains lead to a high overhead ratio. Of course, the length of
the instrument scan-chains does not impact the overhead (the
number of scanned SIB control bits or the number of CUCs),
but long scan-chains effectively limit the overhead ratio.

B. Sequential schedule

In this section, the TAT will be calculated for the flat
architecture considering the sequential schedule. Fig. 3 and
Table II will be used to explain the steps of the test. Before the
test process starts, the scan path is as shown in Fig. 2(a), and
three bits are used in the setup-sequence to open SIB1 so that
for the six following scan-sequences, the scan path is as shown
in Fig. 3(d). The row marked Scan-sequence 1-6 in Table II
shows that the three bits of SC1 are included in scan path.
After Scan-sequence 6, the five test patterns of the test for SC1
have been applied and the test responses have been scanned
out while closing SIB1 and opening SIB2 so that the scan path
becomes as shown in Fig. 3(e). For this configuration of the
scan path, four test patterns are applied to complete the test for
instrument SC2 followed by a scan-sequence to scan out the
last test responses (Scan-sequence 7-11 in Table II). Fig. 3(c)
shows the scan path as it is after Scan-sequence 11. Finally, the
Scan-sequences 12-22 (Table II) are applied to complete the
test for SC3 and scan out the last test responses, while closing
SIB3. As can be seen from Table II, the TAT for the sequential
schedule is 271 clock cycles, which should be compared to 183
clock cycles for the concurrent schedule discussed in Table I.
The difference in TAT can be explained by a larger number of
scan-sequences performed in the sequential schedule, which
leads to more SIB and CUC overhead.

IV. ANALYSIS: HIERARCHICAL ARCHITECTURE

Similar to the test time analysis for the flat architecture
(Section III), this section will discuss the TAT for the hierar-

1
TDI TDO

2

(a)

SC1, L=3, P=51
TDI

2
TDO

(b)

1
TDI TDO

42 3

(c)
1

TDI
2 3 4SC2, L=5, P=4

TDO

(d)

1 52 3 4
TDOTDI

(e)
SC1, L=3, P=51

TDI
2 3 4

TDO

(f)

1
TDI

52 3 4 SC3, L=4, P=10
TDO

(g)
SC1, L=3, P=51

TDI
2 3 4SC2, L=5, P=4 5

TDO

(h)

Fig. 4. Scan path configurations of the hierarchical architecture example

TABLE III
HIERARCHICAL ARCHITECTURE, CONCURRENT SCHEDULE

Sequence Scanned bits Scanned bits
type SIBs SC1 SC2 SC3

∑
+CUC Scan path

Set-up 2 0 0 0 2 7 Fig. 4(a)
Scan 1 4 3 0 0 7 12 Fig. 4(f)
Scan 2 5 3 5 0 13 18 Fig. 4(h)
Scan 3-6 5 3 5 4 17 22 · 4 Fig. 2(b)
Scan 7-13 5 0 0 4 9 14 · 7 Fig. 4(g)

TAT
∑

=223

chical architecture shown in Fig. 2(b). Table III and Table IV
show the steps to calculate the TAT regarding the concurrent
and sequential schedules, respectively. In Tables III and IV,
the column “Scan path” refers to the scan path that relates to
each scan sequence.

As can be seen from Table III, the TAT for the hierarchical
architecture and the concurrent schedule is 223 clock cycles,
which should be compared to 183 clock cycles for the corre-
sponding schedule and the flat architecture. In this example,
the hierarchical architecture leads to a longer TAT because
of two factors. Firstly, the overhead from the additional SIBs
affects the TAT. Secondly, the overhead in terms of capture-
and-update cycles (CUC) is higher. From Table III, it should
be noted that the SIB overhead varied depending on the scan-
sequence and the hierarchy level for the tested instrument.

As for the sequential schedule (Table IV), the total TAT is
310 clock cycles, which should be compared with 271 clock
cycles for the sequential schedule and the flat architecture. The
reason for the higher TAT with the hierarchical architecture
is more SIB-overhead and more CUCs. In Section III-A it
was discussed how the TAT and the overhead ratio scale with
different numbers of test patterns P and the scan-chain length
L for the instruments. The observations made there apply also
to the hierarchical architecture with a few modifications. The
number of scan-sequences, and therefore the CUC overhead,
depends on the level of hierarchy for an instrument and on the
number of scan-sequences spent only on configuring SIBs.

It should be noted that in the example discussed in Sec-
tion III and this section, the flat architecture and the concur-
rent schedule led to the lowest TAT. This is not a general
conclusion, since other examples may show lower TAT on
other architectures and schedules.

V. TEST TIME CALCULATION METHOD: IJTAGCALC

This section will describe a method called IJTAGcalc for
calculating the TAT for general instances of the flat and
hierarchical architecture types in Fig. 2. The method consists



TABLE IV
HIERARCHICAL ARCHITECTURE, SEQUENTIAL SCHEDULE

Sequence Scanned bits Scanned bits
type SIBs SC1 SC2 SC3

∑
+CUC Scan path

Set-up 2 0 0 0 2 7 Fig. 4(a)
Scan 1-6 2 3 0 0 5 10 · 6 Fig. 4(b)
Set-up 4 0 0 0 4 9 Fig. 4(c)
Scan 7-11 4 0 5 0 9 14 · 5 Fig. 4(d)
Setup 5 0 0 0 5 10 Fig. 4(e)
Scan 12-22 5 0 0 4 9 14 · 11 Fig. 4(g)

TAT
∑

=310

of two sets of algorithms corresponding to the concurrent and
the sequential schedules.

The terminology used in the algorithms, when defining
variable names, is from a tree structure. The JTAG TAP is
the root of the tree and the SIBs define the nodes. For each
SIB s, there is a subtree of SIBs that are accessed through
the HIP of s. This subtree is empty and the SIB is a leaf
node in case the HIP only connects to an instrument. SIBs
that are in the subtree of s and on the next hierarchy level are
referred to as children of s. An example is shown in Fig. 2(b),
where SIB2 has the subtree consisting of SIB3, SIB4 and
SIB5. SIB2, which is on Level1, is the parent of SIB3 and
SIB4, since they are on Level2. To describe the placement
of instruments, it is considered that each SIB can have at
most one instrument connected to its HIP. The properties of
this instrument, i.e. L and P of its scan-chain, are associated
with the connected SIB. If an instrument is connected to
a SIB s, then s.ILength, s.IPatterns and s.IRemaining
define the properties of the instrument. Initially, s.IPatterns
and s.IRemaining are set to the number of patterns (P )
of the instrument, and s.ILength is set to the length of the
instrument scan-chain (L). For each test stimuli that is applied,
s.IRemaining is decremented. When s.IRemaining has
reached 0, the final test response for the instrument is to be
shifted out. Therefore, a negative number in s.IRemaining
represents that the instrument has been completely tested. If
SIB s has a subtree on its HIP, s.ILength and s.IPatterns
are set to 0, and s.IRemaining is set to -1, so that it can
be handled the same way as an instrument that is already
completely tested. The variable s.SRemaining for a SIB
s will at all times hold the maximum of the value of the
IRemaining-variables over all the SIBs in the subtree of s.
In practice, this means that when s.SRemaining reaches a
negative value, SIB s can be closed.

A. IJTAGcalc for the Concurrent Schedule

This section describes the IJTAGcalc method for the concur-
rent schedule as shown in Algorithm 1 IJTAGcalcConcurrent
and Algorithm 2 Traverse. On the first three lines of Algo-
rithm 1, the SRemaining variable is initialized for all the
SIBs. The remaining lines in Algorithm 1 describe a loop
where each iteration contains a call to Traverse (Algorithm 2).
Each iteration corresponds to a scan-sequence (see Table I)
and by summing the number of bits in each scan-sequence
(SSLength) with the CUC for each scan-sequence, the TAT
(TAT ) is added up (line 7). The iterations finish, when
there are no more test patterns to apply, as given by the

Algorithm 1 IJTAGcalcConcurrent
1: for each SIB s do
2: SRemaining := max{IPatterns found in subtree of s}
3: end for
4: while TAP.SRemaining > −1 do
5: SSLength :=0 // Scan sequence length
6: TAP.SRemaining := Traverse(TAP )
7: TAT := TAT + SSLength+ CUC
8: end while

Algorithm 2 Traverse(node)
1: subtreeSPatternList := {−1}
2: for each child ∈ node.children do
3: SSLength := SSLength+ 1
4: if child.SRemaining > −1 or child.IRemaining > −1 then
5: if child.IsOpen=False then
6: child.IsOpen := True
7: else
8: child.SRemaining := Traverse(child)
9: SSLength := SSLength+ child.ILength

10: child.IRemaining := child.IRemaining − 1
11: end if
12: else
13: child.IsOpen := False // might already be closed
14: end if
15: append max{child.SRemaining,child.IRemaining} to

subtreeSPatternList
16: end for
17: return max{subtreeSPatternList}

SRemaining variable. At this point, the TAT (TAT ) will
have been found.

As can be seen in IJTAGcalcConcurrent (Algorithm 1),
Traverse (Algorithm 2) is an important function, which returns
the value for SRemaining. It also updates the global variable
SSLength which keeps track of the number of bits that
have been scanned in during each scan sequence. The basic
operation of the Traverse function is to inspect the children
nodes of the node that was used to call Traverse, and for
these children nodes, the number of remaining test patterns is
calculated as the return value of Traverse. Since each child
is a SIB, the SSLength variable is incremented by one to
represent the time it takes to scan in a control bit for the SIB
(line 3). If the SIB is closed but there are still test patterns
to be applied to any instrument in its subtree (as indicated by
the SRemaining and IRemaining variables, line 4), the SIB
is opened (line 6). In the opposite situation, when there are
no more test patterns to be applied for the subtree of a SIB,
that SIB is closed (line 13). For an open SIB with remaining
test patterns, a recursive call to Traverse (Algorithm 2) is
performed (line 8). The SSLength variable is incremented
by ILength which signifies the shifting of the bits of one test
stimuli while reducing the number of remaining test patterns
by one (lines 9 and 10 respectively). The number of remaining
test patterns for the subtree for which Traverse was called is
calculated by taking the maximum number of test patterns
remaining for any of the child nodes (line 15 and line 17).

B. IJTAGcalc for the Sequential Schedule

This section describes the IJTAGcalc method for the sequen-
tial schedule. The algorithm is called IJTAGcalcSequential
(Algorithm 3). IJTAGcalcSequential considers the same type



Algorithm 3 IJTAGcalcSequential(node)
1: SIBs := SIBs+size(node.Children)
2: TAT := TAT + (node.ILength + SIBs + CUC) ·

(node.IPatterns+ 1)
3: if size(node.Children)>0 then
4: for each child ∈ Children(node) do
5: IJTAGcalcSequential(child)
6: end for
7: end if
8: SIBs := SIBs−size(node.Children)

of tree representation as was discussed in Section V. The
key idea which makes the TAT calculation possible is that
there are Pi + 1 scan sequences for each instrument i, for
which the number of shifted bits per scan-sequence is constant.
This can be seen in the example of Table IV. The number
of shifted bits during the tests depends on the length of the
scan-chain of the tested instrument and the hierarchy level. To
calculate TAT , IJTAGcalcSequential should be called with
TAP as parameter (the root node of the tree). Before the
call to IJTAGcalcSequential, the variables SIBs and TAT
should be set to 0. Here, SIBs is a variable that counts
the number of SIBs on the scan path, and TAT is the
variable that will contain the TAT when IJTAGcalcSequential
terminates. The number of SIBs on the scan path will vary
according to the location of the instrument that is being tested
within the P1687 structure. Therefore, IJTAGcalcSequential
(Algorithm 3), keeps track of the SIBs that must be traversed
to reach the level of hierarchy on which the tested instrument
is located. Each level of hierarchy is marked by a recursive call
(line 5). When the IJTAGcalcSequential function is called, it
enters a previously not visited level of hierarchy and therefore
SIBs is incremented with the number of SIBs on this level
(line 1). Similarly, when the call is complete (line 8), the
function leaves that same level of hierarchy, and SIBs is
reduced to the previous value, corresponding to the previous
level of hierarchy. In each call to the function, the parameter
node will be a SIB. If the SIB has an instrument on its HIP,
then TAT will be incremented with the test time required for
applying all the instrument’s patterns and the scan-out of the
last test response (line 2). This is similar to the grouping of
scan-sequences in Table IV. If the SIB passed as the node
parameter has no instrument on its HIP, then this implies
that this SIB needs to be opened to reach another level of
hierarchy, such as SIB2 in Fig. 2(b). Here, node.ILength and
node.IPatterns are both 0. The TAT is increased by the sum
of SIBs and CUC. If the SIB passed as the node parameter
has children SIBs, the IJTAGcalcSequential function will be
called recursively for each of these children.

VI. EXPERIMENTAL SETUP

The IJTAGcalc method has been used in experiments to
analyze six ITC’02 SOC Test Benchmarks [10] with regard
to the TAT. Since in the context of P1687 all test patterns
are transported through a single wire, the scan-chains and
boundary cells corresponding to the core inputs and outputs are
concatenated to form a core-chain. To calculate the number of
the boundary scan cells, each input/output terminal is counted
as one cell and every bi-directional terminal is counted as

TABLE V
CONSIDERED BENCHMARK DESIGNS

SOC # Cores Patterns Length Shifted
Min Max Min Max Test Data

F2126 4 103 422 502 8875 5330439
T512505 31 3 3370 7 43922 165400967
A586710 5 2945 1914433 69 21324 843806808
P34392 19 128 12336 11 9669 16728056
P22810 28 1 12324 52 11878 8172047
U226 5 15 2666 20 1201 252929

three cells [9], [11]. To consider the testing requirements for
hierarchical cores, the boundary cells of each embedded child
core is appropriately included in the set of boundary cells of
its direct parent core [11]. To do the concatenation, the number
of the boundary scan cells is added to the sum of the lengths
of the internal scan-chains for each core. Table V shows for
each of the six SOCs the number of cores, the minimum
and maximum of pattern counts and core-chain lengths found
among the cores, as well as the amount of test data that
needs to be shifted. The amount of test data to be shifted
is calculated as ShiftedTestData =

∑N
i=1 Li · (Pi + 1),

where N is the number of cores, Pi and Li are the number of
patterns and the length of the core-chain for core i respectively.
It should be noted that Module 0, mentioned in the ITC’02
benchmarks, as well as modules containing BIST-engines are
not included in the experiments and are also not accounted for
in Table V. All six SOCs were included in an experiment with
the flat architecture (denoted with “F”) and three of the designs
(P22810, P34392 and A586710 which have hierarchical cores)
were also used in an experiment with the hierarchical archi-
tecture (denoted with “H”). In the hierarchical architectures
the children cores are assigned to the next hierarchy level
in relation to their parent core. This is to make a one-to-
one correspondence to the hierarchy in the SOC itself, for
the sake of experiment. It should be noted that hierarchy in
terms of P1687 can be implemented in a huge variety of ways,
but to calculate and analyze the TAT, we require one such
implementation and we have chosen to take inspiration from
the notion of the hierarchical cores.

VII. EXPERIMENTAL RESULTS

Fig. 5(a) shows experimental results using the concurrent
schedule. The results are presented as a normalized stacked
column chart for the ratios between the amount of shifted test
data, SIB overhead and CUC overhead, such that their sum
(100%) gives the TAT. Since the overhead constitutes a small
portion of TAT, the vertical axis is scaled from 70% to allow
details to be visible. On the horizontal axis are nine designs
and the six left-most designs have flat architecture as indicated
by the labels.

Fig. 5(a) shows that F2126 F and T512505 F both have
relatively low overhead. Long scan-chains and a small number
of test patterns should result in relatively low overhead. This
is the case for all the cores of F2126 F. For T512505 F,
there are some cores that have short core-chains but in those
cases the number of test patterns is also low. On the other
hand, there is one core with a very long core-chain and the
shifted test data for this core corresponds to about 90% of



70%

75%

80%

85%

90%

95%

100%

(a) Concurrent schedule

70%

75%

80%

85%

90%

95%

100%

CUC Overhead

SIB Overhead

Shifted Test Data

(b) Sequential schedule

Fig. 5. Experimental Results

the overall shifted test data. Therefore, this core made such
impact on TAT that the overhead from the other cores became
negligible. U226 F contains some cores that have short core-
chains and a large number of test patterns. Therefore, the
overhead ratio for the TAT of U226 F, which is about 10%,
is larger than that of the other designs. In A586710 F, there
is a core with about two million test patterns and a core-chain
length of 326 cells. However, this large number of patterns
has not resulted in a large SIB overhead ratio. The reason
is that the 326-cell core-chain is significantly longer than
the number of SIBs in the scan path in A586710 F, which
effectively limits the SIB overhead ratio corresponding to this
core. As for P22810 F and P34392 F, the maximum number
of patterns among the cores are similar (see Table V) resulting
in similar CUC overheads for both designs. However, the ratios
of CUC overhead are not similar in these two designs due to
the differences in their amounts of shifted test data.

The observations regarding the designs with flat architecture
typically applies also to the corresponding designs (from the
same SOC) with hierarchical architecture, as can be seen in
Fig. 5(a). It should be noted that even though there was a
noticeable difference between the TAT of the flat architec-
ture and that of the hierarchical architecture for the small
example of Fig. 2, see Section IV, the experiments with
SOC benchmarks show little difference in overhead ratio.
P22810 H and P22810 F show similar results because there
are few hierarchical levels relative to the number of cores.
Therefore, P22810 H has characteristics similar to those of
its flat counterpart.

Fig. 5(b) shows results for the experiments that use sequen-
tial test scheduling. From the two figures it can be seen that
the overhead ratio is larger when using a sequential schedule
compared to using a concurrent schedule. The main reason
for this is that the total number of scan-sequences increase,
leading to an increase in both CUC and SIB overhead, while
the amount of shifted test data stays the same in both sched-
ules. Design P34392 shows a noticeable difference in overhead
ratio between the flat architecture, marked by P34392 F, and
the hierarchical architecture, marked by P34392 H, in the case
of the sequential schedule. For the flat architecture the overall
overhead is about 9% and for the hierarchical architecture the
overhead is about 7% with the difference mainly due to a lesser
SIB overhead. In P34392 F, every scan-sequence, independent
of the core, includes 19 SIBs (the same number as the number
of cores). However, in P34392 H, the scan-sequences contain
on average 13 SIBs. Since this is significantly less than 19

SIBs, this explains the noticeable difference in SIB overhead.
To summarize, the IJTAGcalc method has been applied to

calculate the TAT for six SOCs and the impact of the SIB
structure (flat or hierarchical) has been observed.

VIII. CONCLUSION

In expectation of ratification of IEEE P1687 IJTAG, this
paper has presented an analysis of how test time is to be
calculated. P1687 aims to standardize access to embedded
logic through IEEE 1149.1 JTAG. In this context the accessed
logic is called an instrument. The access is through a single
wire interface for data transport. This interface can be dynami-
cally configured through a component called Select Instrument
Bit (SIB) to create a multitude of alternative scan paths, by
opening up levels of hierarchy. A number of SIBs are placed
on the scan path and they are configured using the same single
wire interface as the one used for the data transport.

The analysis explored the configuration possibilities pro-
vided by SIBs and showed that overhead in terms of clock cy-
cles spent shifting other bits than test data can be put into two
categories, namely time spent shifting test control data (SIB
overhead) and time spent performing test stimuli application
and test response capture sequences in the JTAG controller
(CUC overhead). In the analysis it has been observed how
long scan-chains and a low number of test patterns lead to a
low overhead ratio, compared to the total TAT.

This paper presents a test time calculation method called
IJTAGcalc, which is able to handle a wide range of test
architectures that are implemented using P1687 and two types
of schedules, namely concurrent scheduling and sequential
scheduling. The IJTAGcalc method was employed to perform
experiments on ITC’02 benchmark designs. The results show
that industrial and academic SOCs from the set of benchmarks
can have an overhead ratio of up to 9% and 24%, respectively.
The results can be well explained by the observations made
in the analysis. For a particular benchmark, it was seen that
the test architecture has a noticeable impact on the overhead.

REFERENCES

[1] J. Rearick, B. Eklow, K. Posse, A. Crouch, and B. Bennetts, “IJTAG
(Internal JTAG): A Step Toward a DFT Standard,” in Proc. ITC, 2005.

[2] IJTAG, “IJTAG - IEEE P1687,” 2010. [Online]. Available:
http://grouper.ieee.org/groups/1687

[3] A. L. Crouch, “IJTAG: The Path to Organized Instrument Connectivity,”
in Proc. ITC, 2007, pp. 1–10.

[4] L.-T. Wang et al., “Turbo1500: Toward Core-Based Design for Test and
Diagnosis Using the IEEE 1500 Standard,” in Proc. ITC, 2008, pp. 1–9.

[5] E. J. Marinissen and T. Waayers, “Infrastructure for modular SOC
testing,” in Proc. CICC, 2004, pp. 671–678.

[6] Y. Zorian and A. Yessayan, “IEEE 1500 utilization in SOC design and
test,” in Proc. ITC, 2005, pp. 1–10.

[7] M. Higgins, C. MacNamee, and B. Mullane, “SoCECT: System on Chip
Embedded Core Test,” in Proc. DDECS, 2008, pp. 326–331.

[8] J. Rearick and A. Volz, “A Case Study of Using IEEE P1687 (IJTAG)
for High-Speed Serial I/O Characterization and Testing,” in Proc. ITC,
2006, pp. 1–8.

[9] IEEE association, “IEEE Std 1149.1-2001, IEEE Standard Test Access
Port and Boundary-Scan Architecture,” 2001.

[10] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A set of benchmarks
for modular testing of SOCs,” in Proc. ITC, 2002, pp. 519–528.

[11] S. K. Goel, “Test-access planning and test scheduling for embedded
core-based system chips,” Ph.D. dissertation, University of Twente,
2005. [Online]. Available: http://doc.utwente.nl/48260/


