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Abstract1 

This paper addresses the energy minimization problem for 
system-on-chip testing. We assume a hybrid BIST test architec-
ture where a combination of deterministic and pseudorandom 
test sequences is used. The objective of our proposed technique 
is to find the best ratio of these sequences so that the total energy 
is minimized and the memory requirements for the deterministic 
test set are met without sacrificing test quality. We propose two 
different heuristic algorithms and a fast estimation method that 
enables considerable reduction of the computation time. Ex-
perimental results have shown the efficiency of the approach for 
finding reduced energy solutions with low computational over-
head. 

1. Introduction 
The latest advance in microelectronics technology has enabled 

the integration of an increasingly large number of transistors into 
a single die. This has imposed a major production challenge, due 
to the increased density of such chips and the increased power 
dissipation. At the same time the number of portable, battery 
operated devices (such as laptops, PDA-s, and mobile phones) is 
rapidly increasing. These devices require advanced methods for 
reducing power consumption in order to prolong the life of the 
batteries and thus increase the length of the operating periods of 
the system. There are several well investigated techniques for 
handling power dissipation during the normal operation. And 
various research has shown that the switching activity, and con-
sequently the power dissipation, during the test mode may be 
several times higher than during the functional mode [1], [2]. 
The self-tests, regularly executed in portable devices, can hence 
consume significant amounts of energy and consequently reduce 
the lifetime of the batteries [3]. Excessive switching activity 
during the test mode can also cause problems with circuit reli-
ability [4]. And the increased current levels can lead to serious 
silicon failure mechanisms (such as electromigration [5]) and 
may need expensive packages for removal of the excessive heat. 
Therefore, it is important to find ways for reducing circuit power 
dissipation during the testing process. 

There are several components contributing to the power con-
sumption of standard CMOS technology: dynamic power dissi-
pation caused by the switching activity, and static power dissipa-
tion caused mainly by leakage. The leaks contribute usually only 
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marginally to the total power consumption and can therefore be 
neglected. The main contributing factor remains to be dynamic 
power dissipation caused by switching of the gate outputs. This 
activity accounts for more than 90% of the total power dissipa-
tion for current technology, even though the importance of static 
power dissipation will increase with the scaling down of feature 
sizes [6]. For every gate the dynamic power, Pd, required to 
charge and discharge the circuit nodes, can be calculated as fol-
lows: 

GcycDDloadd NTVCP ×××= )/(5.0 2  (1) 
where Cload is the load capacitance, VDD is the supply voltage, 
Tcyc is the global clock period, and NG is the switching activity, 
i.e., the number of gate output transitions per clock cycle. 

While assuming that the VDD as well as Tcyc remain constant 
during the test and that the load capacitance for each gate is 
equal to the number of fan-outs of this gate, we can define 
switching activity as a quantitative measure for power dissipa-
tion. Therefore, the most straightforward way to reduce the dy-
namic power dissipation of the circuit during test is to minimize 
the circuit’s switching activity. 

Several approaches have been proposed to handle the power 
issues during test application. They can be divided into three 
categories: energy, average power and peak power reduction 
techniques. Energy reduction techniques aim at the reduction of 
the total switching activity generated in the circuit during the test 
application and have thus impact on the battery lifetime [7]-[10]. 
Average power dissipation is the amount of dissipated energy 
divided over the test time. The reduction of average power dissi-
pation can improve the circuit’s reliability by reducing tempera-
ture and current density. Some of the methods to reduce average 
power dissipation have been proposed in [11] and [12]. The peak 
power corresponds to the maximum sustained power in a circuit. 
The peak power determines the thermal and electrical limits of 
the components and the system packaging requirements. If the 
peak power exceeds certain limits, the correct functioning of the 
entire circuit is no longer guaranteed. Methods for peak power 
reduction include those described in [13]-[17]. 

In a System-on-Chip testing environment, several test power 
related problems are handled at the core level, with the methods 
described above. However, the high degree of parallelism in 
SoCs facilitates parallel testing to reduce the test application 
time. Consequently, this might also lead to excessive power dis-
sipation. In such cases the system-wide peak power values can 
be controlled with intelligent test scheduling and this problem 
has been studied by many authors [18]-[21]. 

In this paper we focus on total test energy minimization for 
SoC testing. We assume a hybrid built-in self-test (BIST) test 



architecture, where the test set is composed of core-level locally 
generated pseudorandom patterns and additional deterministic 
test patterns that are generated offline and stored in the system. 
The exact composition of these patterns defines not only the test 
length and test memory requirements but also the energy con-
sumption. In general, since a deterministic test pattern is more 
effective in detecting faults than a pseudorandom pattern, using 
more deterministic test patterns for a core will lead to a short test 
sequence, and consequently less energy on the average case. 
However, the total number of deterministic test patterns is con-
strained by the test memory requirements, and at the same time, 
the deterministic test patterns of different cores of a SoC have 
different energy and fault detection characteristics. A careful 
trade-off between the deterministic pattern lengths of the cores 
must therefore be made in order to produce a globally optimal 
solution. In this paper we propose two heuristics that try to 
minimize the total switching energy while taking into account 
the assumed test memory constraint. The solutions are obtained 
by modifying the ratio of pseudorandom and deterministic test 
patterns for every individual core such that the total energy dis-
sipation is minimized. 

The rest of this paper is organized as follows. In the next sec-
tion an overview of the hybrid BIST technique and the proposed 
approach is given. Section 3 is devoted to basic definitions and 
Section 4 describes the fast estimation mechanism used in hybrid 
BIST calculations. Section 5 describes the proposed heuristics 
for energy minimization and in Section 6 the experimental re-
sults are presented. The paper is concluded in Section 7. 

2. Hybrid BIST and Energy Reduction 
Several BIST solutions have been proposed in the literature 

for performing test pattern generation and output response com-
paction on the chip, by using pseudorandom patterns. Due to 
several reasons, like very long test sequences, and random pat-
tern resistant faults, these solutions may not always be efficient. 
Therefore different hybrid approaches have been proposed, 
where pseudorandom test patterns are complemented with a set 
of deterministic test patterns. These approaches are generally 
referred to as hybrid BIST [22]-[26]. Such a hybrid approach 
reduces the memory requirements compared to the pure deter-
ministic testing, while providing higher fault coverage and re-
duced test times compared to the stand-alone BIST solution. 

In the current work we have assumed a hybrid BIST test archi-
tecture where all cores have their own dedicated BIST logic that 
is capable to produce a set of independent pseudorandom test 
patterns, i.e. the pseudorandom tests for all cores can be carried 

out concurrently. The deterministic tests, on the other hand, are 
applied from an on-chip memory, one core at a time. And we 
have also assumed for test data transportation an AMBA-like 
test bus [27]. AMBA (Advanced Microcontroller Bus Architec-
ture) integrates an on-chip test access technique that reuses the 
basic bus infrastructure [28]. An example of a multi-core system 
with such test architecture is given in Figure 1. 

For portable systems with such a test architecture, one of the 
most important test constraints is the total amount of on-chip test 
memory. In [23] and [29] we have proposed methods for test 
time minimization under given test memory constraint for test-
per-clock and test-per-scan schemes. If the objective is only test 
time minimization and power/energy is not taken into account 
then the shortest test schedule for such a test architecture (Figure 
1), is the one where all cores are tested concurrently and have the 
same tests lengths, as depicted in Figure 2. 

In a hybrid BIST approach the test set is composed of pseudo-
random and deterministic test patterns, where the ratio of these 
patterns is defined by different design constraints, such as test 
memory and test time. In general, a shorter pseudorandom test 
set implies a larger deterministic test set. This requires additional 
memory space, but at the same time, shortens the overall test 
process, since deterministic test vectors are more effective in 
covering faults than the pseudorandom ones. A longer pseudo-
random test, on the other hand, will lead to longer test applica-
tion time with reduced memory requirements [22]. From an en-
ergy perspective, different cores have different energy dissipa-
tion while applying the same amount of test patterns. Further-
more, the pseudorandom and deterministic test sequences for the 
same core have different power characteristics. Therefore for 
total energy minimization it is important to find, for every indi-
vidual core, such ratio of the pseudorandom and deterministic 
test patterns that leads to the overall reduction of switching en-
ergy. At the same time the basic design constraints, such as test 
memory, should not be violated. Once a low-energy hybrid 
BIST solution has been found, appropriate test scheduling meth-
ods can be used for managing peak power related problems. In 
the following some basic definitions together with the problem 
formulation are given. 

3. Basic Definitions and Problem Formulation 
Let us assume that a system S consists of n cores C1, C2,…, Cn. 

For every core Ck ∈ S a complete sequence of deterministic test 
patterns TDF

k and a complete sequence of pseudorandom test 
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patterns TPF
k will be generated. It is assumed that both test sets 

can obtain by itself maximum achievable fault coverage Fmax . 
Definition 1: A hybrid BIST set THk = {TPk, TDk} for a core 

Ck is a sequence of tests, constructed from a subset of the com-
plete pseudorandom test sequence TPk ⊆ TPF

k , and a subset of 
the deterministic test sequence TDk ⊆ TDF

k . The test sequences 
TPk and TDk complement each other to achieve the maximum 
achievable fault coverage, and define the hybrid test set THk .  

By knowing the length of the pseudorandom test sequence TPk 
we can always find the amount of additional deterministic pat-
terns TDk [22]. Therefore we can say that the pseudorandom test 
sequence TPk uniquely defines the structure of the entire hybrid 
test set. 

Definition 2: J = (j1, j2,…, jn) is called the characteristic vector 
of a hybrid test set TH = {TH1, TH2, …,  THn}, where jk ∈ J is 
the length of the pseudorandom test sequence TPk ⊆ THk. 

According to the above definitions, for each jk corresponds a 
pseudorandom subsequence TPk(jk) ⊆ TPF

k. In order to form a 
hybrid test sequence THk this subsequence is complemented with 
a deterministic test sequence, denoted with TDk(jk), that is gener-
ated such that the hybrid sequence THk reaches to the maximal 
achievable fault coverage. Based on this we can conclude that 
the characteristic vector J determines entirely the structure of the 
hybrid test set THk for all cores Ck ∈ S. 

Definition 3:  Let us denote with Mk(jk) and Ek(jk) respectively 
the memory cost and energy cost of the hybrid BIST set THk = 
{TPk, TDk} of the core Ck ∈ S as functions of its pseudorandom 
test sequence with length jk. 

Note that it is very time consuming to calculate the exact val-
ues of Mk(jk) and Ek(jk) for any arbitrary hybrid BIST set THk, 
since it requires exact calculation of the corresponding hybrid 
test set which is an expensive procedure [23]. To overcome the 
problem we propose in this paper to use an energy estimation 
method that is based only on a few critical point calculations. 

Definition 4: Let us denote with M(J) and E(J) respectively 
the memory cost and energy cost of the corresponding hybrid 
BIST set TH with characteristic vector J.  These costs can be 
calculated using the following formulas: 
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A hybrid BIST set TH = {TH1, TH2, …,  THn} for a system S = 
{C1, C2, …,Cn} consists of hybrid BIST sets THk for each indi-
vidual core Ck. In our approach the pseudorandom components 
of the TH are going to be scheduled in parallel, while the deter-
ministic components of the TH, based on the given test architec-
ture (Figure 1), have to be scheduled in sequence.  

The objective of this paper can be thus formulated as to find a 
hybrid test set TH with a characteristic vector J for the system S, 
such that E(J) is smallest possible and the memory constraint 
M(J) ≤ MLIMIT is satisfied.  

Next, we are going to describe the estimation method that is 
going to be used for calculating the hybrid BIST structure. 

4. Parameter Estimation 
For hybrid BIST energy minimization at a given memory con-

straint we have to obtain values of Mk(jk) and Ek(jk) for every 
core Ck ∈ S and for any possible jk value. This would give us a 
possibility to compare memory and energy values of the differ-
ent alternatives. However, the procedure to calculate the cost 

functions M(J) and E(J) is very time consuming, since it as-
sumes that the deterministic test sets TDk for all possible values 
of the characteristic vector J are available. This means that for 
each possible pseudorandom test TPk, a set of not yet detected 
faults FNOT (TPk) should be calculated, and the needed determi-
nistic test set TDk  has to be found. This can be done either by 
repetitive use of the automatic test pattern generator or by sys-
tematically analyzing and compressing the fault tables for each 
TPk [30]. Both procedures are time-consuming and therefore not 
feasible for larger designs.  

To overcome the complexity explosion problem we propose 
an iterative algorithm, where the costs M(J) and E(J) for the de-
terministic test sets TDk are calculated based on estimates in a 
similar way as described in [23]. The estimation method is based 
on fault coverage figures and does not require accurate calcula-
tions of the deterministic test sets for not yet detected faults 
FNOT(TPk).  

The estimation method is described in Algorithm 1 given be-
low. We will use FDk(i) and FPk(i) to denote the fault coverage 
figures of the test sequences TDk(i) and TPk(i), correspondingly, 
where i is the length of the test sequence. Also a pattern in a 
pseudorandom test sequence will be called effective pattern if it 
detects at least one new fault that is not detected by the previous 
test patterns in the same sequence. 

Algorithm 1: Estimation of the length of the deterministic 
test set TDk. 

1. Calculate, by fault simulation, the fault coverage functions 
FDk(i), i = 1, 2, …, |TDF

k|,  and FPk(i), i = 1, 2, …, |TPF
k|. 

The patterns in TDF
k are ordered in such a way that each 

pattern put into the sequence contribute with maximum in-
crease in fault coverage.  

2. For each i* ≤ |TPF
k|, find the fault coverage value F* that 

can be reached by the pseudorandom test sequence with 
length i* (see Figure 3a).  

3. By solving the equation FDk(i) = F*, find the maximum 
integer value j* that satisfies the condition FDk(j*) ≤ F*. 
The value of j* is the length of the deterministic sequence 
TDk that can achieve the same fault coverage F*.  

4. Calculate the value of |TDE
k(i*)| = |TDF

k| - j*  which is the 
number of test patterns needed in addition to the pseudo-
random patterns to reach to the maximum achievable fault 
coverage. 

The value |TDE
k(i*)|=|TDF

k|- j*, calculated by Algorithm 1, can 
be used to estimate the length of the deterministic test sequence 
TDk in the hybrid test set THk = {TPk, TDk} with i* efficient test 
patterns in TPk, (|TPk|=i*).  

The algorithm is illustrated with the example given in Figures 
3b and 3c. In the given example, if i*=524 then the fault cover-
age is F*=97.5%. From the fault simulation table (Figure 3b) we 
can find that similar fault coverage can be achieved by 60 deter-
ministic test patterns (j*=60). Based on the fourth step of Algo-
rithm 1 we can say that it takes approximately 90-60=30 deter-
ministic test patterns in addition to the 524 pseudorandom test 
patterns in order to reach the maximum achievable fault cover-
age. 

Based on the created relationships between the pseudorandom 
test sequence length |TPk| and estimated deterministic test length 
|TDE

k| we can easily solve the equation |TDE
k| = f(|TPk|) also in 

the opposite way when TDE
k is given and |TPk| has to be found. 



These calculations will be used in the next section, where the 
energy minimization heuristics will be described. 

5. Heuristic Algorithms for Hybrid BIST  
Energy Minimization 

To minimize the energy consumption at the given memory 
constraint we have to create a hybrid test TH with characteristic 
vector J for the system S, so that E(J) is minimal at the constraint 
M(J) ≤ MLIMIT .  

To solve this complex combinatorial task we propose two fast 
heuristic algorithms: Local Gain Algorithm and Average Gain 
Algorithm. Both are based on the estimation methodology de-
scribed in Algorithm 1. 

5.1. Local Gain Algorithm 
The main idea of this algorithm is to start with pure determi-

nistic test sets THk = {TPk = ∅, TDF
k} for all cores Ck ∈ S. Next, 

the deterministic test patterns are gradually substituted by corre-
sponding sequences of pseudorandom patterns PRi ⊆ TPF

k until 
the memory constraint is satisfied. For every deterministic test 
pattern substitution a core Ck ∈ S with the maximum memory-
energy ratio (∆Mk,i /∆Ek,i) is selected. Here ∆Mk,i corresponds to 
the estimated memory gain when deterministic test pattern DPi 
∈ TDF

k  is removed from the memory, and ∆Ek,i corresponds to 
the estimated increase in energy dissipation by the sequence of 
pseudorandom patterns PRi ⊆ TPF

k that are substituting the de-
terministic test pattern DPi ∈ TDF

k . In other words, at any itera-
tion of the algorithm we always select a core that provides the 
best local gain in terms of ∆Mk,i/∆Ek,i and substitute, in the hybrid 
test set of this core, one deterministic test pattern with appropri-
ate number of pseudorandom patterns. The number of inserted 
pseudorandom test patterns is calculated so that the fault cover-
age of the core is not reduced and thus the maximum achievable 
fault coverage is always guaranteed. 

Let us introduce the following additional notations: M – cur-

rent memory cost, L – current pseudorandom test length, and 
MLIMIT  –  memory constraint. The algorithm starts with initial 
values: L = 0, and M = M(TDF

1) + M(TDF
2) + … + M(TDF

n) 
where M(TDF

k) is memory cost of the complete deterministic test 
set of core Ck ∈ S. Initially: THk = {TPk = ∅, TDF

k}.   
Algorithm 2: Local Gain Algorithm. 
1. Select core Ck ∈ S where ∆Mk,i/∆Ek,i  = max; 
2. Remove  DPk,i∈ TDk  from TDk, estimate the needed PRi 

and include PRi into TPk. 
3. Update the current memory cost: M = M - ∆Mk,i 
4. If  M > MLIMIT  then go to 1 
5. END. 

The algorithm is illustrated with the example given in Figure 
4. We start from an all-deterministic solution. At every step we 
calculate the memory-energy ratio for all cores if one determinis-
tic test pattern (denoted as white boxes in Figure 4a) would be 
replaced with pseudorandom patterns. Thereafter the core with 
highest ∆Mk,i/∆Ek,i value is selected and a deterministic test pat-
tern in this core’s test set is replaced with a set of pseudorandom 
patterns. In our example the Core 3 was selected (Figure 4b). At 
the end of every step we can calculate new memory (M) and 
energy (E) values for the entire system. This procedure is re-
peated until M ≤ MLIMIT .  

5.2. Average Gain Algorithm 
Another heuristic is called Average Gain Algorithm. The main 

idea of the Average Gain Algorithm is to guide the selection of 
cores based on the highest average ratio of ∆Mk/∆Ek over all 
iterations of the algorithm. Here ∆Mk denotes the estimated 
memory gain from the beginning of the algorithm, including the 
selected substitution, for the core Ck ∈ S, and ∆Ek denotes the 
estimated increase of energy dissipation for the same core from 
the beginning of the algorithm, including the current selected 
substitution. 

The algorithm starts again with initial values: L = 0, and M = 
M(TDF

1) + M(TDF
2) + … + M(TDF

n) where M(TDF
k) is the 

memory cost of the complete deterministic test set of the core 
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Ck ∈ S. Initially: THk = {TPk = ∅, TDF
k}. For all cores ∆Mk = 

∆Mk,1, and ∆Ek = ∆Ek,1, and for all cores i = 1. 
Algorithm 3: Average Gain Algorithm. 
1. Select the core Ck ∈ S where ∆Mk,i/∆Ek,i  = max; 
2. Remove  DPk,i∈ TDk  from TDk, and include PRi into TPk. 
3. Update the current memory cost: M = M - ∆Mk,i. 
4. Update the total memory cost for the selected core: ∆Mk = 
∆Mk - ∆Mk,i+1.  

5. Update the total energy dissipation for the selected core: 
∆Ek = ∆Ek + ∆Ek,i+1.  

6. Update for the selected core i = i + 1. 
7. If  M > MLIMIT  then go to 1 
8. END 

The main difference between Algorithms 2 and 3 is that Algo-
rithm 2 takes into account only the immediate effect of the test 
pattern substitution. Algorithm 3, on the other hand, takes into 
account the entire history of pattern substitutions.  

5.3. The iterative procedure 
Both Algorithms 2 and 3 create an energy-optimized hybrid 

BIST solution THk = {TPk , TDk} where energy consumption is 
minimized with respect to the given memory constraint. How-
ever, the algorithms are based on estimated memory and energy 
values for TDk, and therefore also the final result is only an esti-
mate. We refer them as quasi-optimal solutions. After obtaining 
a quasi-optimal solution the cost estimates should be improved 
and another, better, quasi-optimal solution can be calculated 
which leads us to the following iterative procedure [23]. 

Algorithm 4: Iterative procedure. 
The algorithm uses as a starting point the result obtained with 

Algorithm 2 or 3. Let us denote the estimated memory cost with 
M*. 

1. Based on M*, find a candidate solution J* = (j*1, j*2,…, 
j*n). 

2. To calculate the real cost MREAL for the candidate solution 
J*, find the set FNOT,k(j*k) of faults not yet detected by 
pseudorandom test for each core Ck ∈ S and generate the 
corresponding deterministic test set TD*k by using an 
ATPG algorithm.  

3. If MREAL = MLIMIT, go to the Step 6. 
4. If the difference ⏐∆t⏐  = ⏐ MLIMIT - MREAL ⏐ is bigger than 

that in the earlier iteration make a correction ∆t  = ∆t/2. 
5. Calculate a new constraint M’ =  M’ + ∆t for the next itera-

tion, go to Step 2 
6. END: The vector J* = (j*1, j*2,…, j*n) is the solution. 

Algorithm 4 transfers a solution that was generated based on 
estimates to the solution that is calculated based on real test sets. 
This iterative algorithm is illustrated in Figure 5. It is easy to see 
that Algorithm 4 always converges. By each iteration we get 
closer to the memory constraint level, and also closer to the 
minimal energy consumption at a given constraint. The outcome 
of this algorithm is the final solution: amount of pseudorandom 
and deterministic test patterns for every individual core such that 
the system memory constraint is satisfied. 

6. Experimental results 
We have performed experiments with different designs con-

taining the ISCAS’89 benchmarks as cores. The complexity of 
these designs ranges from system with 6 cores till system with 
20 cores. All cores were redesigned in order to include a scan 
chain. For simplicity we assumed that all flip-flops are con-
nected into one single scan chain. For the BIST part a STUMPS 
architecture was used. 

In Table 1 we have listed the results for every system with 
three different memory constraints. We have listed results from 
[23], which provide shortest possible test length without consid-
ering energy consumption, our two algorithms (Local Gain Al-
gorithm is denoted with A2 and Average Gain Algorithm with 
A3, both improved with Algorithm 4) and simulated annealing 
(SA). In every solution the minimized test time solution from 
[23] has taken as a baseline (100%) and every solution is com-
pared against this result.  

Alg. MLIMIT Energy 
(switches) 

Comp. 
to [23]  

(%) 

Test  
Length 
(clocks) 

Comp. 
to [23] 

(%) 

CPU  
Time 
(sec) 

System 1 – 6 cores 
[23] 2588822 100.00% 24689 100.00% 8.41 
A2 1281690 49.51% 31619 128.07% 11.09 
A3 1281690 49.51% 31619 128.07% 6.64 
SA 

1500 

1240123 47.90% 31619 128.07% 5326.24 
[23] 635682 100.00% 6726 100.00% 24.61 
A2 426617 67.11% 10559 156.99% 14.23 
A3 446944 70.31% 10679 158.77% 4.84 
SA 

2500 

409576 64.43% 10529 156.54% 2944.26 
[23] 717026 100.00% 7522 100.00% 26.51 
A2 265282 37.00% 8126 108.03% 36.31 
A3 286883 40.01% 8129 108.07% 26.96 
SA 

3000 

241123 33.63% 8153 108.39% 1095.21 
System 2 – 6 cores 

[23] 6548659 100.00% 52145 100.00% 12.05 
A2 5502763 84.03% 70331 134.88% 12.49 
A3 5318781 81.22% 70331 134.88% 4.28 
SA 

1700 

4747498 72.50% 83865 160.83% 3805.23 
[23] 2315958 100.00% 19208 100.00% 20.21 
A2 1998390 86.29% 23774 123.77% 7.66 
A3 1861844 80.39% 24317 126.60% 18.79 
SA 

3000 

1845022 79.67% 28134 146.47% 5032.05 
[23] 893184 100.00% 8815 100.00% 21.47 
A2 742462 83.13% 9537 108.19% 26.45 
A3 746479 83.58% 9537 108.19% 55.09 
SA 

4700 

723817 81.04% 12596 142.89% 3654.02 
System 3 – 20 cores 

[23] 12830419 100.00% 40941 100.00% 47.49 
A2 9242890 72.04% 70331 171.79% 51.43 
A3 9839005 76.68% 70331 171.79% 40.49 
SA 

5000 

7367201 57.42% 60495 147.76% 29201.96 
[23] 6237211 100.00% 20253 100.00% 53.39 
A2 4039622 64.77% 31619 156.12% 73.58 
A3 4223263 67.71% 32145 158.71% 14.36 
SA 

7000 

3500894 56.13% 31919 157.60% 20750.03 
[23] 4686729 100.00% 15483 100.00% 45.37 
A2 1719726 36.69% 17499 113.02% 115.53 
A3 1815129 38.73% 17554 113.38% 90.52 
SA 

10000 

1606499 34.28% 17992 116.20% 14572.33 

Table 1. Experimental results 
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Figure 5. Calculation of the final result 



As shown in Table 1 both proposed algorithms lead to reduced 
energy solutions (in some cases up to with 63% reduction of the 
total switching activity). When compared to the simulated an-
nealing algorithm our heuristics have significantly lower execu-
tion time, while maintaining acceptable accuracy.  

To understand the impact of our algorithms on the test length 
we have also collected these figures and reported them in Table 
1. As can be expected in all these solutions generated by our 
techniques the test time has increased compared to the technique 
which targets towards test length minimization [23]. Neverthe-
less if the main objective is to reduce energy dissipation during 
the test mode (for example in portable devices) the increase of 
the test length is tolerable. A future work is to design a technique 
to make trade-offs of all parameters, including energy, power, 
test time, and test memory requirements. 

The experiments show also that the number of iterations made 
by Algorithm 4 was in all cases below 10, illustrating the effi-
ciency of the proposed estimation method.  

7. Conclusions 
In this paper we have proposed two heuristics for test energy 

reduction for hybrid BIST. Both algorithms modify the ratios 
between pseudorandom and deterministic test patterns. We have 
also proposed a fast estimation mechanism for the modification 
of these rations together with an iterative procedure for trans-
forming the estimated results to the real results. Experimental 
results have shown the efficiency of these heuristics for energy 
reduction under test memory constraints.  
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