
Energy Minimization for Hybrid BIST
in a System-on-Chip Test Environment

Raimund Ubar, Tatjana Shchenova

Department of Computer Engineering
Tallinn University of Technology, Estonia

raiub@pld.ttu.ee, tatjana.shchenova@kreenholm.ee

Gert Jervan, Zebo Peng
Embedded Systems Laboratory (ESLAB)

Linköping University, Sweden
{gerje, zebpe}@ida.liu.se

Abstract1

This paper addresses the energy minimization problem for
system-on-chip testing. We assume a hybrid BIST test architec-
ture where a combination of deterministic and pseudorandom
test sequences is used. The objective of our proposed technique
is to find the best ratio of these sequences so that the total energy
is minimized and the memory requirements for the deterministic
test set are met without sacrificing test quality. We propose two
different heuristic algorithms and a fast estimation method that
enables considerable reduction of the computation time. Ex-
perimental results have shown the efficiency of the approach for
finding reduced energy solutions with low computational over-
head.

1. Introduction
The latest advance in microelectronics technology has enabled

the integration of an increasingly large number of transistors into
a single die. This has imposed a major production challenge, due
to the increased density of such chips and the increased power
dissipation. At the same time the number of portable, battery
operated devices (such as laptops, PDA-s, and mobile phones) is
rapidly increasing. These devices require advanced methods for
reducing power consumption in order to prolong the life of the
batteries and thus increase the length of the operating periods of
the system. There are several well investigated techniques for
handling power dissipation during the normal operation. And
various research has shown that the switching activity, and con-
sequently the power dissipation, during the test mode may be
several times higher than during the functional mode [1], [2].
The self-tests, regularly executed in portable devices, can hence
consume significant amounts of energy and consequently reduce
the lifetime of the batteries [3]. Excessive switching activity
during the test mode can also cause problems with circuit reli-
ability [4]. And the increased current levels can lead to serious
silicon failure mechanisms (such as electromigration [5]) and
may need expensive packages for removal of the excessive heat.
Therefore, it is important to find ways for reducing circuit power
dissipation during the testing process.

There are several components contributing to the power con-
sumption of standard CMOS technology: dynamic power dissi-
pation caused by the switching activity, and static power dissipa-
tion caused mainly by leakage. The leaks contribute usually only

1 This work has been supported by the EU projects REASON (IST-2000-30193) and

e-Vikings II (IST-2001-37592), Estonian Science Foundation grants G5649 and
G5910, and the Swedish Foundation for Strategic Research (SSF) under the Strategic
Integrated Electronic Systems Research (STRINGENT) program.

marginally to the total power consumption and can therefore be
neglected. The main contributing factor remains to be dynamic
power dissipation caused by switching of the gate outputs. This
activity accounts for more than 90% of the total power dissipa-
tion for current technology, even though the importance of static
power dissipation will increase with the scaling down of feature
sizes [6]. For every gate the dynamic power, Pd, required to
charge and discharge the circuit nodes, can be calculated as fol-
lows:

GcycDDloadd NTVCP ×××=)/(5.0 2 (1)
where Cload is the load capacitance, VDD is the supply voltage,
Tcyc is the global clock period, and NG is the switching activity,
i.e., the number of gate output transitions per clock cycle.

While assuming that the VDD as well as Tcyc remain constant
during the test and that the load capacitance for each gate is
equal to the number of fan-outs of this gate, we can define
switching activity as a quantitative measure for power dissipa-
tion. Therefore, the most straightforward way to reduce the dy-
namic power dissipation of the circuit during test is to minimize
the circuit’s switching activity.

Several approaches have been proposed to handle the power
issues during test application. They can be divided into three
categories: energy, average power and peak power reduction
techniques. Energy reduction techniques aim at the reduction of
the total switching activity generated in the circuit during the test
application and have thus impact on the battery lifetime [7]-[10].
Average power dissipation is the amount of dissipated energy
divided over the test time. The reduction of average power dissi-
pation can improve the circuit’s reliability by reducing tempera-
ture and current density. Some of the methods to reduce average
power dissipation have been proposed in [11] and [12]. The peak
power corresponds to the maximum sustained power in a circuit.
The peak power determines the thermal and electrical limits of
the components and the system packaging requirements. If the
peak power exceeds certain limits, the correct functioning of the
entire circuit is no longer guaranteed. Methods for peak power
reduction include those described in [13]-[17].

In a System-on-Chip testing environment, several test power
related problems are handled at the core level, with the methods
described above. However, the high degree of parallelism in
SoCs facilitates parallel testing to reduce the test application
time. Consequently, this might also lead to excessive power dis-
sipation. In such cases the system-wide peak power values can
be controlled with intelligent test scheduling and this problem
has been studied by many authors [18]-[21].

In this paper we focus on total test energy minimization for
SoC testing. We assume a hybrid built-in self-test (BIST) test

architecture, where the test set is composed of core-level locally
generated pseudorandom patterns and additional deterministic
test patterns that are generated offline and stored in the system.
The exact composition of these patterns defines not only the test
length and test memory requirements but also the energy con-
sumption. In general, since a deterministic test pattern is more
effective in detecting faults than a pseudorandom pattern, using
more deterministic test patterns for a core will lead to a short test
sequence, and consequently less energy on the average case.
However, the total number of deterministic test patterns is con-
strained by the test memory requirements, and at the same time,
the deterministic test patterns of different cores of a SoC have
different energy and fault detection characteristics. A careful
trade-off between the deterministic pattern lengths of the cores
must therefore be made in order to produce a globally optimal
solution. In this paper we propose two heuristics that try to
minimize the total switching energy while taking into account
the assumed test memory constraint. The solutions are obtained
by modifying the ratio of pseudorandom and deterministic test
patterns for every individual core such that the total energy dis-
sipation is minimized.

The rest of this paper is organized as follows. In the next sec-
tion an overview of the hybrid BIST technique and the proposed
approach is given. Section 3 is devoted to basic definitions and
Section 4 describes the fast estimation mechanism used in hybrid
BIST calculations. Section 5 describes the proposed heuristics
for energy minimization and in Section 6 the experimental re-
sults are presented. The paper is concluded in Section 7.

2. Hybrid BIST and Energy Reduction
Several BIST solutions have been proposed in the literature

for performing test pattern generation and output response com-
paction on the chip, by using pseudorandom patterns. Due to
several reasons, like very long test sequences, and random pat-
tern resistant faults, these solutions may not always be efficient.
Therefore different hybrid approaches have been proposed,
where pseudorandom test patterns are complemented with a set
of deterministic test patterns. These approaches are generally
referred to as hybrid BIST [22]-[26]. Such a hybrid approach
reduces the memory requirements compared to the pure deter-
ministic testing, while providing higher fault coverage and re-
duced test times compared to the stand-alone BIST solution.

In the current work we have assumed a hybrid BIST test archi-
tecture where all cores have their own dedicated BIST logic that
is capable to produce a set of independent pseudorandom test
patterns, i.e. the pseudorandom tests for all cores can be carried

out concurrently. The deterministic tests, on the other hand, are
applied from an on-chip memory, one core at a time. And we
have also assumed for test data transportation an AMBA-like
test bus [27]. AMBA (Advanced Microcontroller Bus Architec-
ture) integrates an on-chip test access technique that reuses the
basic bus infrastructure [28]. An example of a multi-core system
with such test architecture is given in Figure 1.

For portable systems with such a test architecture, one of the
most important test constraints is the total amount of on-chip test
memory. In [23] and [29] we have proposed methods for test
time minimization under given test memory constraint for test-
per-clock and test-per-scan schemes. If the objective is only test
time minimization and power/energy is not taken into account
then the shortest test schedule for such a test architecture (Figure
1), is the one where all cores are tested concurrently and have the
same tests lengths, as depicted in Figure 2.

In a hybrid BIST approach the test set is composed of pseudo-
random and deterministic test patterns, where the ratio of these
patterns is defined by different design constraints, such as test
memory and test time. In general, a shorter pseudorandom test
set implies a larger deterministic test set. This requires additional
memory space, but at the same time, shortens the overall test
process, since deterministic test vectors are more effective in
covering faults than the pseudorandom ones. A longer pseudo-
random test, on the other hand, will lead to longer test applica-
tion time with reduced memory requirements [22]. From an en-
ergy perspective, different cores have different energy dissipa-
tion while applying the same amount of test patterns. Further-
more, the pseudorandom and deterministic test sequences for the
same core have different power characteristics. Therefore for
total energy minimization it is important to find, for every indi-
vidual core, such ratio of the pseudorandom and deterministic
test patterns that leads to the overall reduction of switching en-
ergy. At the same time the basic design constraints, such as test
memory, should not be violated. Once a low-energy hybrid
BIST solution has been found, appropriate test scheduling meth-
ods can be used for managing peak power related problems. In
the following some basic definitions together with the problem
formulation are given.

3. Basic Definitions and Problem Formulation
Let us assume that a system S consists of n cores C1, C2,…, Cn.

For every core Ck ∈ S a complete sequence of deterministic test
patterns TDF

k and a complete sequence of pseudorandom test

Tester
Memory

Test
Controller

Embedded
Tester

SoC

Core 2Core 3

BIST

Core 1 Core 2

BIST BIST

AMBA System Bus

Core 4 Core 5 Core 6 Core 7

BIST BIST BIST BIST

Figure 1. AMBA bus-based hybrid BIST architecture

7

12

24

43

123

7

5

12

263

258

246

227

190

147

103

80

37

43

19

44

Pseudorandom

Deterministic

Core 3

Core 2

Core 5

Core 6

Core 7

Core 1

Core 4

Time

Figure 2. Time minimized test schedule

patterns TPF
k will be generated. It is assumed that both test sets

can obtain by itself maximum achievable fault coverage Fmax .
Definition 1: A hybrid BIST set THk = {TPk, TDk} for a core

Ck is a sequence of tests, constructed from a subset of the com-
plete pseudorandom test sequence TPk ⊆ TPF

k , and a subset of
the deterministic test sequence TDk ⊆ TDF

k . The test sequences
TPk and TDk complement each other to achieve the maximum
achievable fault coverage, and define the hybrid test set THk .

By knowing the length of the pseudorandom test sequence TPk
we can always find the amount of additional deterministic pat-
terns TDk [22]. Therefore we can say that the pseudorandom test
sequence TPk uniquely defines the structure of the entire hybrid
test set.

Definition 2: J = (j1, j2,…, jn) is called the characteristic vector
of a hybrid test set TH = {TH1, TH2, …, THn}, where jk ∈ J is
the length of the pseudorandom test sequence TPk ⊆ THk.

According to the above definitions, for each jk corresponds a
pseudorandom subsequence TPk(jk) ⊆ TPF

k. In order to form a
hybrid test sequence THk this subsequence is complemented with
a deterministic test sequence, denoted with TDk(jk), that is gener-
ated such that the hybrid sequence THk reaches to the maximal
achievable fault coverage. Based on this we can conclude that
the characteristic vector J determines entirely the structure of the
hybrid test set THk for all cores Ck ∈ S.

Definition 3: Let us denote with Mk(jk) and Ek(jk) respectively
the memory cost and energy cost of the hybrid BIST set THk =
{TPk, TDk} of the core Ck ∈ S as functions of its pseudorandom
test sequence with length jk.

Note that it is very time consuming to calculate the exact val-
ues of Mk(jk) and Ek(jk) for any arbitrary hybrid BIST set THk,
since it requires exact calculation of the corresponding hybrid
test set which is an expensive procedure [23]. To overcome the
problem we propose in this paper to use an energy estimation
method that is based only on a few critical point calculations.

Definition 4: Let us denote with M(J) and E(J) respectively
the memory cost and energy cost of the corresponding hybrid
BIST set TH with characteristic vector J. These costs can be
calculated using the following formulas:

)()(
1

k

n

k
k jMJM ∑

=

=)()(
1

k

n

k
k jEJE ∑

=

= (2)

A hybrid BIST set TH = {TH1, TH2, …, THn} for a system S =
{C1, C2, …,Cn} consists of hybrid BIST sets THk for each indi-
vidual core Ck. In our approach the pseudorandom components
of the TH are going to be scheduled in parallel, while the deter-
ministic components of the TH, based on the given test architec-
ture (Figure 1), have to be scheduled in sequence.

The objective of this paper can be thus formulated as to find a
hybrid test set TH with a characteristic vector J for the system S,
such that E(J) is smallest possible and the memory constraint
M(J) ≤ MLIMIT is satisfied.

Next, we are going to describe the estimation method that is
going to be used for calculating the hybrid BIST structure.

4. Parameter Estimation
For hybrid BIST energy minimization at a given memory con-

straint we have to obtain values of Mk(jk) and Ek(jk) for every
core Ck ∈ S and for any possible jk value. This would give us a
possibility to compare memory and energy values of the differ-
ent alternatives. However, the procedure to calculate the cost

functions M(J) and E(J) is very time consuming, since it as-
sumes that the deterministic test sets TDk for all possible values
of the characteristic vector J are available. This means that for
each possible pseudorandom test TPk, a set of not yet detected
faults FNOT (TPk) should be calculated, and the needed determi-
nistic test set TDk has to be found. This can be done either by
repetitive use of the automatic test pattern generator or by sys-
tematically analyzing and compressing the fault tables for each
TPk [30]. Both procedures are time-consuming and therefore not
feasible for larger designs.

To overcome the complexity explosion problem we propose
an iterative algorithm, where the costs M(J) and E(J) for the de-
terministic test sets TDk are calculated based on estimates in a
similar way as described in [23]. The estimation method is based
on fault coverage figures and does not require accurate calcula-
tions of the deterministic test sets for not yet detected faults
FNOT(TPk).

The estimation method is described in Algorithm 1 given be-
low. We will use FDk(i) and FPk(i) to denote the fault coverage
figures of the test sequences TDk(i) and TPk(i), correspondingly,
where i is the length of the test sequence. Also a pattern in a
pseudorandom test sequence will be called effective pattern if it
detects at least one new fault that is not detected by the previous
test patterns in the same sequence.

Algorithm 1: Estimation of the length of the deterministic
test set TDk.

1. Calculate, by fault simulation, the fault coverage functions
FDk(i), i = 1, 2, …, |TDF

k|, and FPk(i), i = 1, 2, …, |TPF
k|.

The patterns in TDF
k are ordered in such a way that each

pattern put into the sequence contribute with maximum in-
crease in fault coverage.

2. For each i* ≤ |TPF
k|, find the fault coverage value F* that

can be reached by the pseudorandom test sequence with
length i* (see Figure 3a).

3. By solving the equation FDk(i) = F*, find the maximum
integer value j* that satisfies the condition FDk(j*) ≤ F*.
The value of j* is the length of the deterministic sequence
TDk that can achieve the same fault coverage F*.

4. Calculate the value of |TDE
k(i*)| = |TDF

k| - j* which is the
number of test patterns needed in addition to the pseudo-
random patterns to reach to the maximum achievable fault
coverage.

The value |TDE
k(i*)|=|TDF

k|- j*, calculated by Algorithm 1, can
be used to estimate the length of the deterministic test sequence
TDk in the hybrid test set THk = {TPk, TDk} with i* efficient test
patterns in TPk, (|TPk|=i*).

The algorithm is illustrated with the example given in Figures
3b and 3c. In the given example, if i*=524 then the fault cover-
age is F*=97.5%. From the fault simulation table (Figure 3b) we
can find that similar fault coverage can be achieved by 60 deter-
ministic test patterns (j*=60). Based on the fourth step of Algo-
rithm 1 we can say that it takes approximately 90-60=30 deter-
ministic test patterns in addition to the 524 pseudorandom test
patterns in order to reach the maximum achievable fault cover-
age.

Based on the created relationships between the pseudorandom
test sequence length |TPk| and estimated deterministic test length
|TDE

k| we can easily solve the equation |TDE
k| = f(|TPk|) also in

the opposite way when TDE
k is given and |TPk| has to be found.

These calculations will be used in the next section, where the
energy minimization heuristics will be described.

5. Heuristic Algorithms for Hybrid BIST
Energy Minimization

To minimize the energy consumption at the given memory
constraint we have to create a hybrid test TH with characteristic
vector J for the system S, so that E(J) is minimal at the constraint
M(J) ≤ MLIMIT .

To solve this complex combinatorial task we propose two fast
heuristic algorithms: Local Gain Algorithm and Average Gain
Algorithm. Both are based on the estimation methodology de-
scribed in Algorithm 1.

5.1. Local Gain Algorithm
The main idea of this algorithm is to start with pure determi-

nistic test sets THk = {TPk = ∅, TDF
k} for all cores Ck ∈ S. Next,

the deterministic test patterns are gradually substituted by corre-
sponding sequences of pseudorandom patterns PRi ⊆ TPF

k until
the memory constraint is satisfied. For every deterministic test
pattern substitution a core Ck ∈ S with the maximum memory-
energy ratio (∆Mk,i /∆Ek,i) is selected. Here ∆Mk,i corresponds to
the estimated memory gain when deterministic test pattern DPi
∈ TDF

k is removed from the memory, and ∆Ek,i corresponds to
the estimated increase in energy dissipation by the sequence of
pseudorandom patterns PRi ⊆ TPF

k that are substituting the de-
terministic test pattern DPi ∈ TDF

k . In other words, at any itera-
tion of the algorithm we always select a core that provides the
best local gain in terms of ∆Mk,i/∆Ek,i and substitute, in the hybrid
test set of this core, one deterministic test pattern with appropri-
ate number of pseudorandom patterns. The number of inserted
pseudorandom test patterns is calculated so that the fault cover-
age of the core is not reduced and thus the maximum achievable
fault coverage is always guaranteed.

Let us introduce the following additional notations: M – cur-

rent memory cost, L – current pseudorandom test length, and
MLIMIT – memory constraint. The algorithm starts with initial
values: L = 0, and M = M(TDF

1) + M(TDF
2) + … + M(TDF

n)
where M(TDF

k) is memory cost of the complete deterministic test
set of core Ck ∈ S. Initially: THk = {TPk = ∅, TDF

k}.
Algorithm 2: Local Gain Algorithm.
1. Select core Ck ∈ S where ∆Mk,i/∆Ek,i = max;
2. Remove DPk,i∈ TDk from TDk, estimate the needed PRi

and include PRi into TPk.
3. Update the current memory cost: M = M - ∆Mk,i
4. If M > MLIMIT then go to 1
5. END.

The algorithm is illustrated with the example given in Figure
4. We start from an all-deterministic solution. At every step we
calculate the memory-energy ratio for all cores if one determinis-
tic test pattern (denoted as white boxes in Figure 4a) would be
replaced with pseudorandom patterns. Thereafter the core with
highest ∆Mk,i/∆Ek,i value is selected and a deterministic test pat-
tern in this core’s test set is replaced with a set of pseudorandom
patterns. In our example the Core 3 was selected (Figure 4b). At
the end of every step we can calculate new memory (M) and
energy (E) values for the entire system. This procedure is re-
peated until M ≤ MLIMIT .

5.2. Average Gain Algorithm
Another heuristic is called Average Gain Algorithm. The main

idea of the Average Gain Algorithm is to guide the selection of
cores based on the highest average ratio of ∆Mk/∆Ek over all
iterations of the algorithm. Here ∆Mk denotes the estimated
memory gain from the beginning of the algorithm, including the
selected substitution, for the core Ck ∈ S, and ∆Ek denotes the
estimated increase of energy dissipation for the same core from
the beginning of the algorithm, including the current selected
substitution.

The algorithm starts again with initial values: L = 0, and M =
M(TDF

1) + M(TDF
2) + … + M(TDF

n) where M(TDF
k) is the

memory cost of the complete deterministic test set of the core

Core 1 DET

Core 2

Core 3

Core 4

DET

DET

DET

DET
20
150

PR

PR

PR

Test Length

Core 1

Core 2

Core 3

Core 4

DET PR

Test Length

DET
20
90

DET
30
60

PR

DET
10
150

DET

DET

DET
20
150

PR
DET
20
90

PR

DET PR
DET
10
150

DET
20
150

∆Mk,i

∆Ek,i

Figure 4. Local Gain Algorithm

a) M=1450 E=20500

b) M=1420 E=20560

|TP| FC% |TD| FC%
1 21.9 1 43.3
2 34.7 2 45.6
 …

524 97.5 60 97.5
 …

1000 98.9 90 100 60

524

30

476

0 200 400 600 800 1000

Pseudorandom Test Sequence

Deterministic Test Sequence

i

F

F D k (i) F P k (i)

i *

F*

| T D E
k (i*) |

100%

| T D F
k | j*

a)

b) c)
Figure 3. Estimation of the length of the

deterministic test sequence

Fault Coverage

Ck ∈ S. Initially: THk = {TPk = ∅, TDF
k}. For all cores ∆Mk =

∆Mk,1, and ∆Ek = ∆Ek,1, and for all cores i = 1.
Algorithm 3: Average Gain Algorithm.
1. Select the core Ck ∈ S where ∆Mk,i/∆Ek,i = max;
2. Remove DPk,i∈ TDk from TDk, and include PRi into TPk.
3. Update the current memory cost: M = M - ∆Mk,i.
4. Update the total memory cost for the selected core: ∆Mk =
∆Mk - ∆Mk,i+1.

5. Update the total energy dissipation for the selected core:
∆Ek = ∆Ek + ∆Ek,i+1.

6. Update for the selected core i = i + 1.
7. If M > MLIMIT then go to 1
8. END

The main difference between Algorithms 2 and 3 is that Algo-
rithm 2 takes into account only the immediate effect of the test
pattern substitution. Algorithm 3, on the other hand, takes into
account the entire history of pattern substitutions.

5.3. The iterative procedure
Both Algorithms 2 and 3 create an energy-optimized hybrid

BIST solution THk = {TPk , TDk} where energy consumption is
minimized with respect to the given memory constraint. How-
ever, the algorithms are based on estimated memory and energy
values for TDk, and therefore also the final result is only an esti-
mate. We refer them as quasi-optimal solutions. After obtaining
a quasi-optimal solution the cost estimates should be improved
and another, better, quasi-optimal solution can be calculated
which leads us to the following iterative procedure [23].

Algorithm 4: Iterative procedure.
The algorithm uses as a starting point the result obtained with

Algorithm 2 or 3. Let us denote the estimated memory cost with
M*.

1. Based on M*, find a candidate solution J* = (j*1, j*2,…,
j*n).

2. To calculate the real cost MREAL for the candidate solution
J*, find the set FNOT,k(j*k) of faults not yet detected by
pseudorandom test for each core Ck ∈ S and generate the
corresponding deterministic test set TD*k by using an
ATPG algorithm.

3. If MREAL = MLIMIT, go to the Step 6.
4. If the difference ⏐∆t⏐ = ⏐ MLIMIT - MREAL ⏐ is bigger than

that in the earlier iteration make a correction ∆t = ∆t/2.
5. Calculate a new constraint M’ = M’ + ∆t for the next itera-

tion, go to Step 2
6. END: The vector J* = (j*1, j*2,…, j*n) is the solution.

Algorithm 4 transfers a solution that was generated based on
estimates to the solution that is calculated based on real test sets.
This iterative algorithm is illustrated in Figure 5. It is easy to see
that Algorithm 4 always converges. By each iteration we get
closer to the memory constraint level, and also closer to the
minimal energy consumption at a given constraint. The outcome
of this algorithm is the final solution: amount of pseudorandom
and deterministic test patterns for every individual core such that
the system memory constraint is satisfied.

6. Experimental results
We have performed experiments with different designs con-

taining the ISCAS’89 benchmarks as cores. The complexity of
these designs ranges from system with 6 cores till system with
20 cores. All cores were redesigned in order to include a scan
chain. For simplicity we assumed that all flip-flops are con-
nected into one single scan chain. For the BIST part a STUMPS
architecture was used.

In Table 1 we have listed the results for every system with
three different memory constraints. We have listed results from
[23], which provide shortest possible test length without consid-
ering energy consumption, our two algorithms (Local Gain Al-
gorithm is denoted with A2 and Average Gain Algorithm with
A3, both improved with Algorithm 4) and simulated annealing
(SA). In every solution the minimized test time solution from
[23] has taken as a baseline (100%) and every solution is com-
pared against this result.

Alg. MLIMIT Energy
(switches)

Comp.
to [23]

(%)

Test
Length
(clocks)

Comp.
to [23]

(%)

CPU
Time
(sec)

System 1 – 6 cores
[23] 2588822 100.00% 24689 100.00% 8.41
A2 1281690 49.51% 31619 128.07% 11.09
A3 1281690 49.51% 31619 128.07% 6.64
SA

1500

1240123 47.90% 31619 128.07% 5326.24
[23] 635682 100.00% 6726 100.00% 24.61
A2 426617 67.11% 10559 156.99% 14.23
A3 446944 70.31% 10679 158.77% 4.84
SA

2500

409576 64.43% 10529 156.54% 2944.26
[23] 717026 100.00% 7522 100.00% 26.51
A2 265282 37.00% 8126 108.03% 36.31
A3 286883 40.01% 8129 108.07% 26.96
SA

3000

241123 33.63% 8153 108.39% 1095.21
System 2 – 6 cores

[23] 6548659 100.00% 52145 100.00% 12.05
A2 5502763 84.03% 70331 134.88% 12.49
A3 5318781 81.22% 70331 134.88% 4.28
SA

1700

4747498 72.50% 83865 160.83% 3805.23
[23] 2315958 100.00% 19208 100.00% 20.21
A2 1998390 86.29% 23774 123.77% 7.66
A3 1861844 80.39% 24317 126.60% 18.79
SA

3000

1845022 79.67% 28134 146.47% 5032.05
[23] 893184 100.00% 8815 100.00% 21.47
A2 742462 83.13% 9537 108.19% 26.45
A3 746479 83.58% 9537 108.19% 55.09
SA

4700

723817 81.04% 12596 142.89% 3654.02
System 3 – 20 cores

[23] 12830419 100.00% 40941 100.00% 47.49
A2 9242890 72.04% 70331 171.79% 51.43
A3 9839005 76.68% 70331 171.79% 40.49
SA

5000

7367201 57.42% 60495 147.76% 29201.96
[23] 6237211 100.00% 20253 100.00% 53.39
A2 4039622 64.77% 31619 156.12% 73.58
A3 4223263 67.71% 32145 158.71% 14.36
SA

7000

3500894 56.13% 31919 157.60% 20750.03
[23] 4686729 100.00% 15483 100.00% 45.37
A2 1719726 36.69% 17499 113.02% 115.53
A3 1815129 38.73% 17554 113.38% 90.52
SA

10000

1606499 34.28% 17992 116.20% 14572.33

Table 1. Experimental results

L

M

Real M

Estimated M

Memory
constraint

 1

1*

2
3

2*

3*

∆ t1

Correction for∆ t1

∆ M

∆ t2
 Correction for∆ t2

Figure 5. Calculation of the final result

As shown in Table 1 both proposed algorithms lead to reduced
energy solutions (in some cases up to with 63% reduction of the
total switching activity). When compared to the simulated an-
nealing algorithm our heuristics have significantly lower execu-
tion time, while maintaining acceptable accuracy.

To understand the impact of our algorithms on the test length
we have also collected these figures and reported them in Table
1. As can be expected in all these solutions generated by our
techniques the test time has increased compared to the technique
which targets towards test length minimization [23]. Neverthe-
less if the main objective is to reduce energy dissipation during
the test mode (for example in portable devices) the increase of
the test length is tolerable. A future work is to design a technique
to make trade-offs of all parameters, including energy, power,
test time, and test memory requirements.

The experiments show also that the number of iterations made
by Algorithm 4 was in all cases below 10, illustrating the effi-
ciency of the proposed estimation method.

7. Conclusions
In this paper we have proposed two heuristics for test energy

reduction for hybrid BIST. Both algorithms modify the ratios
between pseudorandom and deterministic test patterns. We have
also proposed a fast estimation mechanism for the modification
of these rations together with an iterative procedure for trans-
forming the estimated results to the real results. Experimental
results have shown the efficiency of these heuristics for energy
reduction under test memory constraints.

References
[1] Y. Zorian. A Distributed BIST Control Scheme for Complex
VLSI Devices. IEEE VLSI Test Symposium, pp. 4-9, 1993.
[2] S. Devadas, M. Malik. A Survey of Optimization Techniques
Targeting Low Power VLSI Circuits. ACM/IEEE Design Automation
Conference, pp. 242-247, 1995.
[3] P. Girard, L. Guiller, C. Landrault, S. Pravossoudovitch. A Test
Vector Inhibiting Technique for Low Energy BIST Design. VLSI Test
Symposium, pp. 407 – 412, 1999.
[4] P. Girard. Low Power Testing of VLSI Circuits: Problems and
Solutions. IEEE International Symposium on Quality Electronic De-
sign, pp. 173 – 179, 2000.
[5] P.C. Li, T.K. Young. Electromigrations: The Time Bomb in
Deep-Submicron ICs. IEEE Spectrum, vol. 33, no. 9, pp. 75-78, 1996.
[6] A. Chandrakasan, T. Sheng, R. W. Brodersen. Low Power CMOS
Digital Design. Journal of Solid State Circuits, Vol. 27, No. 4, pp.
473–484, 1992.
[7] P. Girard, L. Guiller, C. Landrault, S. Pravossoudovitch. A Test
Vector Inhibiting Technique for Low Energy BIST Design. VLSI Test
Symposium, pp. 407-412, 1999.
[8] P. Girard, L. Guiller, C. Landrault, S. Pravossoudovitch, H.J.
Wunderlich, H.J. A Modified Clock Scheme for a Low Power BIST
Test Pattern Generator. VLSI Test Symposium, pp. 306 – 311, 2001.
[9] P. Girard, L. Guiller, C. Landrault, S. Pravossoudovitch, J. Fi-
gueras, S. Manich, P. Teixeira, M. Santos. Low-Energy BIST Design:
Impact of the LFSR TPG Parameters on the Weighted Switching
Activity. International Symposium on Circuits and Systems, pp 110-
113, 1999.
[10] D. Gizopoulos, N. Kranitis, A. Paschalis, M. Psarakis, Y.
Zorian. Low Power/Energy BIST Scheme for Datapaths. VLSI Test
Symposium, pp. 23-28, 2000.

[11] S. Wang, S. Gupta. ATPG for Heat Dissipation Minimization
during Test Application. IEEE Transactions on Computers, Vol. 46,
No. 2, pp. 256-262, 1998.
[12] S. Chakravarty, V. Dabholkar. Minimizing Power Dissipation in
Scan Circuits During Test Application. IEEE International Workshop
on Low Power Design, pp. 51-56, 1994.
[13] S. Gerstendorfer, H.J. Wunderlich. Minimized Power
Consumption for Scan-based BIST. IEEE International Test
Conference, pp. 77-84, 1999.
[14] L. Whetsel. Adapting Scan Architectures for Low Power
Operation. International Test Conference, pp. 863-872, 2000.
[15] R. Sankaralingam, B. Pouya, N. A. Touba. Reducing Power
Dissipation During Test Using Scan Chain Disable. VLSI Test
Symposium, pp. 319-324, 2001.
[16] P. M. Rosinger, B. M. Al-Hashimi, N. Nicolici. Scan
Architecture for Shift and Capture Cycle Power Reductions, IEEE
International Symposium on Defect and Fault Tolerance in VLSI
Systems, pp. 129-137, 2002.
[17] N. Z. Basturkmen, S. M. Reddy, I. Pomeranz. A Low Power
Pseudo-Random BIST Technique, IEEE International On Line
Testing Workshop, pp. 140-144, 2002.
[18] E. Cota, L. Carro, M. Lubaszewski, A. Orailoglu. Test Planning
and Design Space Exploration in a Core-based Environment. Design,
Automation and Test in Europe Conference, pp. 478-485, 2002.
[19] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman,
Y. Zaidan, S. M. Reddy. Resource Allocation and Test Scheduling for
Concurrent Test of Core-based SOC Design. IEEE Asian Test
Symposium, pp. 265-270, 2001.
[20] V. Iyengar, K. Chakrabarty, E. J. Marinissen. Test Wrapper and
Test Access Mechanism Co-optimization for System-on-Chip. IEEE
International Test Conference, pp. 1023-1032, 2001.
[21] E. Larsson, Z. Peng. An Integrated Framework for the Design
and Optimization of SOC Test Solutions. Journal of Electronic
Testing; Theory and Applications, Vol. 18, No. 4/5, pp. 385-400,
2002.
[22] G. Jervan, Z. Peng, R. Ubar. Test Cost Minimization for Hybrid
BIST. IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems, pp. 283-291, 2000.
[23] G. Jervan, P. Eles, Z. Peng, R. Ubar, M. Jenihhin. Test Time
Minimization for Hybrid BIST of Core-Based Systems. IEEE Asian
Test Symposium, pp. 318-323, 2003.
[24] M. Sugihara, H. Date, H. Yasuura. Analysis and Minimization
of Test Time in a Combined BIST and External Test Approach.
Design, Automation and Test in Europe Conference, pp, 134-140,
2000.
[25] S. Hellebrand, S. Tarnick, J. Rajski, B. Courtois. Generation of
Vector Patterns through Reseeding of Multiple-Polynomial Linear
Feedback Shift Registers. IEEE International Test Conference, pp.
120-129, 1992.
[26] N. A. Touba, E. J. McCluskey. Synthesis of Mapping Logic for
Generating Transformed Pseudo-random Patterns for BIST. IEEE
International Test Conference, pp. 674-682, 1995.
[27] D. Flynn. AMBA: Enabling Resuable On-Chip Designs. IEEE
Micro, Vol. 17, No. 4, pp. 20-27, 1997.
[28] P. Harrod. Testing Reusable IP − A Case Study. IEEE
International Test Conference, pp. 493-498, 1999.
[29] G. Jervan, P. Eles, Z. Peng, R. Ubar, M. Jenihhin. Hybrid BIST
Time Minimization for Core-Based Systems with STUMPS
Architecture. IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, pp. 225-232, 2003.
[30] G. Jervan, Z. Peng, R. Ubar, H. Kruus. A Hybrid BIST
Architecture and its Optimization for SoC Testing. IEEE International
Symposium on Quality Electronic Design, pp. 273-279, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

