
 Combined Test Data Selection and Scheduling for Test Quality
Optimization under ATE Memory Depth Constraint

Erik Larsson and Stina Edbom

Embedded Systems Laboratory

Linköpings Universitet, Sweden

Abstract1

The increasing test data volume required to ensure high test
quality when testing a System-on-Chip is becoming a
problem since it (the test data volume) must fit the ATE
(Automatic Test Equipment) memory. In this paper, we (1)
define a test quality metric based on fault coverage, defect
probability and number of applied test vectors, and (2) a test
data truncation scheme. The truncation scheme combines (1)
test data (vector) selection for each core based on our metric,
and (2) scheduling of the execution of the selected test data,
in such a way that the system test quality is maximized, while
the selected test data is guaranteed to fit the ATE’s memory.
We have implemented the technique and the experimental
results, produced at reasonable CPU times, on several
ITC’02 benchmarks show that high test quality can be
achieved by a careful selection of test data.

1. Introduction

High test quality when testing a System-on-Chip (SOC) is a
must. However, high quality requires a large test data volume
to be stored in the limited memory of the ATE (Automatic
Test Equipment). Currently, the test data volume for SOCs
increases faster than the number of transistors in a design
[16]. The increasing test data volume is due to (1) high
number of fault sites because of the high amount of
transistors, (2) new defect types introduced with nanometer
process technologies, and (3) faults related to timing and
delay since systems have higher performance and make use
of multiple-clock domains [16]. In addition, updating to a
new ATE is expensive, hence not an alternative. The problem
is therefore, in order to have the highest possible test quality,
to find techniques to make the test data volume fit the limited
memory of the existing ATE.

Vranken et al. [16] discuss three alternatives to make the
test data fit the ATE; (1) test memory reload, where the test
data is divided into several partitions, is possible but not
practical due to the high time involved, (2) test data
truncation, the ATE is filled as much as possible and the test
data that does not fit the ATE is simply not applied, leads to
reduced test quality, and (3) test data compression, the test
stimuli is compressed, however, it does not guarantee that the
test data will fit the ATE. Thus there is a need for a usable
technique that ensures high test quality while making sure the
test data volume fits the ATE memory.

The test data must also be organized or scheduled in the
ATE. A recent industrial study showed that by using test
scheduling the test data was made to fit the ATE [3]. The
study clearly showed that ATE memory limitations is a real
and critical problem.

Test scheduling reduces the amount of idle bits to be stored
in the ATE, and therefore scheduling must be considered in
combination with test data reduction. Also when discussing
memory limitations, the ATE memory depth in bits is equal
to the maximal test application time for the system in clock
cycles [9]. Hence, the memory constraint can be seen as a
time constraint.

In this paper, we explore test data truncation. The aim is a
technique that maximizes test quality while making sure that
the selected test data fits the ATE. We assume that given is a
core-based design and for each core defect probability,
maximal fault coverage and size of the test set are given. We
define for each core and its test data a CTQ (core test quality)
metric and for the system a STQ (system test quality) metric.
The metrics reflect that test data should be selected from a
core (1) with high probability of having a defect and (2)
where it is possible to detect a fault using a minimal number
of test vectors. For the fault coverage function we make use
of an estimation. Fault simulation can extract fault coverage
at each test vector, however, it is a time consuming process
and also it might not be applicable for all cores due to IP-
protection, for instance.

The test vectors in a test set can be applied in any order.
However, regardless of order, it is well-known in the test
community that the first stimuli detects a higher number of
faults compared to stimuli applied at the end of testing a
testable unit, and that the function fault coverage versus
number of test vectors is approximately exponential/
logarithmic. We therefore assume that the fault coverage over
time for a core can be approximated to an exponential/
logarithmic function.

We make use of CTQ metric to select test data volume for
each core in such a way that the test quality for the system is
maximized (STQ), and we integrate the selection with test
scheduling in order to verify that the selected test data
volume really fits the ATE memory. We have implemented
our technique and we have made experiments that
demonstrate that high test quality can be achieved by
applying only a sub-set of the test stimuli. Furthermore, it is
possible to turn the problem (and our solution), and view it
as: for a certain test quality, which test data should be
selected to minimize the test application time.1. The research is partially supported by the Swedish National Pro-

gram STRINGENT.

The advantage with our technique is that given a core-
based system with test sets, a number on maximal fault
coverage, and defect probability per core, we can select test
data for the system and schedule the selected test data in
such a way that the test quality is maximized and the
selected test data fits the ATE memory.

The paper is organized as follows. In Section 2 we
present related work, and in Section 3 the problem
definition is given. The test quality metric is defined in
Section 4 and our test data selection and scheduling
approach is described in Section 5. The experiments are
presented in Section 6 and finally the paper is concluded in
Section 7.

2. Related Work

Test scheduling and test data compression are examples of
approaches proposed to reduce the high test data volumes
that must be stored in the ATE in order to test SOCs.

The idea in test scheduling is to organize the test bits in
the ATE in such a way that the number of introduced so
called idle bits (not useful bits) is minimized. The gain is
reduced test application time and reduced test data volume.
A scheduling approach depends on a test architecture such
as the AMBA test bus [4], the test bus [15] and the TestRail
[13]. Iyengar et al. [8] proposed a technique to partition the
set of scan chain elements (internal scan chains and wrapper
cells) at each core into wrapper chains, which are connected
to TAM wires in such a way that the total test time is
minimized. Goel et al. [3] showed that ATE memory
limitation is a critical problem. On an industrial design they
showed that by using an effective test scheduling technique
the test data can be made to fit the ATE.

There has also been scheduling techniques that make use
of an abort-on-fail strategy, that is the testing is terminated
as soon as a fault is detected. Koranne’s minimizes the
average-completion time by scheduling short tests early
[11]. Other techniques have taken the defect probability for
each testable unit into account [5,10,12]. Huss and
Gyurcsik proposed a sequential technique using of a
dynamic programming algorithm for ordering the tests [5],
while Milor and Sangiovanni-Vincentelli presents a
sequential technique based on selection and ordering of test
sets [14]. Jiang and Vinnakota proposed a sequential
technique, where the information about the fault coverages
provided by the tests is extracted from the manufacturing
line [10]. For SOC designs, Larsson et al. proposed a
technique based on ordering of tests, considering different
test bus structures, scheduling approaches (sequential vs.
concurrent) and test set assumptions (fixed test time vs.
flexible test time) [12].

Several compression schemes have been used to
compress the test data. For instance, Ichihara et al. used
statistical codes [6], Chandra and Chakrabarty Golomb
codes[1], Iyengar et al. run-length codes [7], Chandra and
Chakrabarty Frequency-directed run-length codes [2], and

Volkerink et al. Packet-based codes [17].
All approaches above reduces the ATE memory

requirement. The main advantage with the techniques is that
the highest possible test quality is reached. However, the
main disadvantage is that techniques do not guarantee that
the test data volume fits the ATE. Hence, they might not be
applicable in practice. It means that there is a need for a
technique that in a systematic way defines the test data
volume for a system in such a way that the test quality is
maximized while the test data is guaranteed to fit the ATE
memory.

3. Problem Formulation

We assume that given is a core-based architecture with n
cores denoted by i. For each core i in the system, the
following is given:
 • scij={sci1, sci2,..., scim} - the length of the scanned ele-

ments at core i are given where m is the number of
scanned elements,

 • wii - the number of input wrapper cells,
 • woi - the number of output wrapper cells,
 • wbi - the number of bidirectional wrapper cells,
 • tvi - the number of test vectors,
 • fci - the fault coverage reached when all the tvi test vec-

tors are applied.
 • ppi - the pass probability per core and,
 • dpi - the defect probability per core (given as 1-ppi).

For the system, a maximal TAM bandwidth Wtam, a
maximal number of k TAMs, and a upper-bound memory
constraint Mmax on the memory depth in the ATE are given.

The TAM bandwidth Wtam is to be partitioned into a set
of k TAMs that we denote by j each of width Wtam={w1, w2,
..., wk} in such a way that:

and on each TAM, one core can be tested at a time.
Since the memory depth in the ATE (in bits) is equal to

the test application time for the system (in clock cycles) [9],
the memory constraint can be seen as a time constraint τmax:

Our problem is to:

 • For each core i select the number of test vectors (stvi),
 • Partition the given TAM width Wtam into no more than

k TAMs,
 • Determine the width of each TAM (wj),
 • Assign each core to one TAM, and
 • Assign a start time for the testing of each core.

The selection of test data (stvi for each core i) and the test
scheduling should be done in such a way that the test quality
of the system (defined in Section 4) is maximized while the
ATE memory depth (Mmax) (test application time τmax) is
met.

W tam w j
j 1=

k

∑= 1

M max τmax= 2

4. Test Quality Metric

For the truncation scheme we need a test quality metric to
(1) select test data for each core and (2) to measure the
system test quality. We take the following parameters into
account to measure test quality: defect probability, fault
coverage, and number of applied test vectors.

The defect probability, the probability that a core is
defect, can be collected from the production line or set by
experience. Defect probability has to be taken into account
since it is better to select test data for a core with a high
defect probability since it is more likely to hold a defect
compared to a core with a low defect probability.

The possibility to detect faults depends on the fault
coverage versus the number of applied test vectors, hence
the fault coverage and the number of applied test vectors
also have to be taken into account. Fault simulation can be
used to extract which fault each test vector detect. However,
in a complex core-based design with a high number of
cores, fault simulation for each core is, if possible due to IP-
protection, highly time consuming. We therefore make use
of an estimation technique. The fault coverage does not
increase linearly over the number of applied test vectors.
Figure 1 shows the fault coverage for a set of ISCAS
benchmarks. And the following observation can be made:
the curves have an exponential/logarithmic behaviour (as in
Figure 2). We assume that the fault coverage after applying
stvi for core i can be estimated to:

where the slopeConst is given as follows:

and the +1 is used to adjust the curve to passes the origin.
For each core i we use the CTQi (core test quality) as:

and for the system with n cores, we introduce the STQ
(system test quality) metric given as:

5. Test Scheduling and Test Vector Selection

In this section we describe our technique to optimize test
quality by using test vector selection and test scheduling
under time constraint given by the ATE memory depth (see
Eq. 2 and [9]).

Given is a system as described in Section 3. We assume
an architecture where the TAM wires can be grouped into
several TAMs and the cores connected to the same TAM are
tested sequentially [15]. For grouping the scanned elements
(scan-chains, input cells, output cells and bidirectional
cells) into a balanced number of so called wrapper scan
chains, which are to be connected to the TAM wires wj, we
make use of the Design_wrapper algorithm proposed by
Iyengar et al. [8]. For a wrapper chain configuration at a
core i where sii is the longest wrapper scan-in chain and soi
is the longest wrapper scan-out chain, the test time τi(wj,tvi)
for core i is given by [8]:

where tvi is the number of applied test vectors for core i and
w is the TAM width.

We need a way to guide the assignment of cores to TAMs
in the case when multiple TAMs exist. We make use of the
fact that balancing the wrapper scan-in chain and wrapper
scan-out chain introduces different number of ATE idle bits
as the TAM bandwidth varies. We define TWUi (TAM width
utilization) for a core i at a TAM of width w as:

and we make use of a single wrapper-chain (one TAM wire)
as a reference point to introduce WDC (wrapper design
cost) that measure the imbalance (introduced number of idle
bits) for a TAM width w relative to TAM width 1:

For illustration of variations of ATE idle bits, we plot the
value of WDC for different TAM widths, obtained by using
core 1 of the ITC’02 benchmark p93791, in Figure 3.

The algorithm for our test truncation scheme is outlined
in Figure 4. Initially no test vector is selected for any core.
The vector that contributes most to improving STQ is

f ci stvi()
stvi 1+()log

slopeConst
-------------------------------= 3

slopeConst
tvi 1+()log

f ci
----------------------------= 4

CT Qi dpi f ci× stvi()= 5

STQ CT Qi
i 1=

n

∑ dpi
i 1=

n

∑⁄= 6

Number of
test vectors

Fault coverage (%)

Figure 2. Fault coverage versus number of test vectors
estimated as an exponential/logarithmic function.

stvi

Max fault coverage - fci

fci(stvi)

tvi

fci

Figure 1. Fault coverage versus the number of applied
test vectors for a set of ISCAS designs.

1 max sii w() soi w(),()+() tv min sii w() soi w(),()+×= 7

TW U i w() max sii w() soi w(),() w×= 8

WDCi TW U i w() TW U i 1()–= 9

selected, assigned to a TAM where WDC is minimal and
scheduled on the TAM. Additional vectors are selected one
by one in such a way that STQ is maximized, and after each
selection the schedule is created to verify that the time
constraint (ATE memory depth) is met. Note that the test
vectors for a core might not be selected in order. However,
for the scheduling, the test vectors for each core are grouped
and scheduled as a single set. The algorithm (Figure 4)
assumes a fixed TAM partition (number of TAMs and their
width). We have therefore added an outer loop that makes
sure that we explore all possible TAM configurations.

6. Experimental Results

We have implemented the technique and made experiments
using five ITC’02 benchmarks, d281, d695, p22810,
p34392, and p93791 to demonstrate the importance of
considering defect probability, fault coverage, and test data
selection. We have added pass probabilities and maximal
fault coverage numbers for each core (the data is omitted
but for d695 (Table 2) due to space limitations). For the
experiments we assume a TAM bandwidth Wtam of 32.

All experimental results are collected in Table 3, and the

results on design p22810 are also plotted in Figure 6. The
computational cost for every experiment is in the range of a
few seconds to a few minutes. We have performed
experiments at various ATE memory depths constraints
(equal to time constraints (see Eq. 2 and [9])). The
constraints are set as a percentage of the time it would take
to apply all test vectors. At each time constraint we make
the following experiments:

1. Test scheduling when not considering defect probabili-
ty nor fault coverage and testing is aborted at τmax (col-
umn three (Table 3) - technique 1).

2. Test scheduling when considering defect probability
but not fault coverage and testing is aborted at τmax

(column four (Table 3) - technique 2).
3. Test scheduling when considering defect probability as

well as fault coverage and testing is aborted at τmax

(column five (Table 3) - technique 3).
4. Test scheduling and test vector selection when consid-

ering defect probability and fault coverage, using one
TAM (column six (Table 3) - technique 4).

5. Test scheduling and test vector selection when consid-
ering defect probability and fault coverage, using up to
two TAMs (column seven (Table 3) - technique 5).

6. Test scheduling and test vector selection when consid-
ering defect probability and fault coverage, using up to
three TAMs (column eight (Table 3) - technique 6).

We illustrate our technique on design d695 where the time
constraint is set to 5% of the maximal test application time
and where the selected test data volume per core is reported
in Table 1, and the test schedules for technique 1, 4, and 5
and the corresponding STQ are presented in Figure 5.

From the experimental results collected in Table 3 we
learn that the STQ value increases with the time constraint,
which is obvious. We also see that test set selection
improves the test quality when comparing STQ at the same
test time limit. But also important, we note that we can
achieve a high test quality at low testing times. Take design
p93791, for example, where the STQ value (0.584) for
technique 1 at 75% of the testing time is lower than the STQ
value (0.748) at only 5% for technique 6. It means that it is
possible, by integrating test set selection and test
scheduling, to reduce the test application time while
keeping the test quality high.

 0

 1000

 2000

 3000

 4000

 5000

 6000

10 20 30 40 50 60

W
D

C

TAM width

Figure 3. WDC at core 1 (p93791) at various TAM width.

Figure 4. Test vector selection and test
scheduling algorithm.

1. Given: τmax - the upper test time limit for the system
Wtam - number of TAM wires - distributed over k TAMs w1,
w2, ..., wk in such a way that Eq. 1 holds.

2. Variables: stvi = 0 //selected number of test vectors for core i
TAT = 0 // test application time of the system

3. Compute WDCi for all cores at all k TAMs (Eq. 9)
4. Select best TAM for each core based on WDCi
5. while TAT< τmax at any TAM begin
6. for i=1 to n begin // For all cores
7. Compute τ(wj,1) (Eq. 7)
8. Compute CTQi assuming stvi=stvi+1 (Eq. 5)
9. end
10. for core with highest CTQ/τ(wj,1) and stvi<tvi
11. stvi=stvi+1
12. for all cores where stvi>0 begin// some selected vectors
13. Assign core to an available TAM with minimal WDCi
14. if a TAM is full (<τmax) - mark TAM as unavailable.
15. end
16. Compute and return STQ (Eq. 6).
17. end

Technique
Selected % of test data for each core

0 1 2 3 4 5 6 7 8 9 10

Technique 1 0 0 100 0 0 20 0 0 0 0 0

Technique 2 0 0 0 0 0 0 0 54.7 0 0 0

Technique 3 100 0 0 0 0 0 0 52.6 0 0 0

Technique 4 0 100 9.6 6.7 4.8 0 1.7% 10.5 6.2 8.3 4.4

Technique 5 0 100 9.6 16.0 10.5 0 3.8 21.1 13.4 8.3 4.4

Technique 6 0 100 9.6 17.3 11.4 0 2.6 13.7 17.5 33.3 14.7

Table 1. Selected test vectors (%) for the cores in design
d695 considering different scheduling techniques.

7. Conclusions

The test quality when testing a System-on-Chip must be
kept high. However, high test quality requires a high test
data volume that must fit the limited memory of the ATE
(Automatic Test Equipment). A new ATE is expensive and
and currently the test data volumes increases at a higher
pace than the number of transistors in a system. Several
compression schemes and test scheduling techniques have
been developed to make the test data fit the ATE memory.
However, these techniques reduces the test data volume but
they do not guarantee that the volume will fit the ATE.

In this paper we have therefore proposed a test data
truncation scheme that systematically selects test vectors
and schedules the selected test vectors for each core in a
core-based system in such a way that the test quality is
maximized while the constraint on ATE memory depth is
met. We have defined a test quality metric based on defect

probability, fault coverage and the number of applied
vectors, that is used in the test data selection scheme. We
have implemented our technique and the experiments on
several ITC’02 benchmarks, at reasonable CPU times, show
that high test quality can be achieved by careful selection of
test data. Further, our technique can be used to shorten the
test application time for a given test quality value.

References
[1] A. Chandra and K. Chakrabarty, “System-on-a-Chip Test

Data Compression and Decompression Architectures Based
on Golomb Codes”, Trans. on CAD of IC and Systems, Vol.
20, No. 3, 2001, pages 355-367.

[2] A. Chandra and K. Chakrabarty, “Frequency -Directed-Run-
Length (FDR) Codes with Application to System-on-a-Chip
Test Data Compression”, Proc. of VTS, 2001, pages 42-47.

[3] S. K. Goel et al., “Test Infrastructure Design for the
NexperiaTMHome Platform PNX8550 System Chip”, Proc.
of DATE, Paris, France, 2004, pages 1530-1591.

[4] P. Harrod, “Testing reusable IP-a case study”, Proc. of ITC,
Atlantic City, NJ, USA, pp. 493-498, 1999.

[5] S. D. Huss and R. S. Gyurcsik, “Optimal Ordering of Analog
Integrated Circuit Tests to Minimize Test Time”,
Proceedings of DAC, pp. 494-499, 1991.

[6] H. Ichihara et al., “Dynamic Test Compression Using
Statistical Coding”, Proc. of ATS, 2001, pages 143-148.

[7] V. Iyengar et al., “Built-In Self-Testing of Sequential
Circuits Using Precomputed Test Sets”, Proc. of VTS, 1998,
pages 418-423.

[8] V. Iyengar et al., “Test wrapper and test access mechanism
co-optimization for system-on-chip”, Proc. of International
Test Conf., Baltimore, MD, USA, pp. 1023-1032, 2001.

[9] V. Iyengar et al., “Test resource optimization for multi-site
testing of SOCs under ATE memory depth constraints”,
Proc. of ITC, pp. 1159 - 1168, Baltimore, USA, Oct. 2002.

[10] W. J. Jiang and B. Vinnakota, “Defect-Oriented Test
Scheduling”, Transactions on Very-Large Scale Integration
(VLSI) Systems, Vol. 9, No. 3, pp. 427-438, June 2001.

[11] S. Koranne, “On Test Scheduling for Core-Based SOCs”,
Proceedings of International Conference on VLSI Design
(VLSID), pp. 505-510, Bangalore, India, January 2002.

[12] E. Larsson, J. Pouget, and Z. Peng, “Defect-Aware SOC Test
Scheduling“, Proceedings of VLSI Test Symposium (VTS),
Napa Valley, Ca, USA, April 2004.

[13] E. J. Marinissen et al., “A structured and scalable mechanism
for test access to embedded reusable cores”, Proc. of ITC,
Washington, DC, USA, pp. 284-293, October 1998.

[14] L. Milor and A. L. Sangiovanni-Vincentelli, “Minimizing
Production Test Time to Detect Faults in Analog Circuits”,
Trans. on CAD of IC &Sys., Vo. 13,No. 6, pp 796-,June 1994.

[15] P. Varma and S. Bhatia, “A Structured Test Re-Use
Methodology for Core-based System Chips”, Proc of ITC,
pp. 294-302, Washington, DC, USA, October 1998.

[16] H. Vranken et al., “ATPG Padding And ATE Vector Repeat
Per Port For Reducing Test Data Volume”, Proc. of ITC,
Charlotte, NC, USA, 2003, pages 1069-1078.

[17] E. H. Volkerink et al., “Packet-based Input Test Data
Compression Techniques”, Proc. of ITC, 2002, pp. 154-163.

3 4 8

6 9 10

52

2

7

1

3 4 6 7 8 9 10

21

Figure 5. Results for different scheduling techniques.
(a) - technique 1, (b) technique 4, and (c) technique 5.

(a) Test scheduling without test vector selection.

(b) Test scheduling using test vector selection and one TAM.

(c) Test scheduling using test vector selection and two TAMs.

STQ=0.0332

STQ=0.440

STQ=0.538

0.2

0.4

0.6

0.8

1

 0 10 20 30 40 50 60 70 80 90 100

S
T

Q

test time %

Test vector selection, three TAMs
Test vector selection, two TAMs
Test vector selection, one TAM

Considering dp and fc
Considering dp but not fc
Not considering dp and fc

Figure 6. Experimental results on p22810.

Core

0 1 2 3 4 5 6 7 8 9 10

Scan-chains 0 0 0 1 4 32 16 16 4 32 32

Inputs wi 0 32 207 34 36 38 62 77 35 35 28

Outputs wo 0 32 108 1 39 304 152 150 49 320 106

Test vectors tvi 0 12 73 75 105 110 234 95 97 12 68

Pass probability ppi 97 98 99 95 92 99 94 90 92 98 94

Max fault coverage fci (%) 95 93 99 98 96 96 99 94 99 95 96

 Table 2 Data for benchmark d695.

SOC % of max test time
Technique 1 Technique 2 Technique 3 Technique 4 Technique 5 Technique 6

STQ STQ STQ STQ STQ STQ

d281

5 0.0209 0.164 0.496 0.674 0.726 0.726

10 0.0230 0.186 0.563 0.774 0.818 0.818

25 0.198 0.215 0.834 0.879 0.905 0.912

50 0.912 0.237 0.903 0.935 0.949 0.949

75 0.956 0.870 0.923 0.960 0.968 0.968

100 0.974 0.974 0.974 0.974 0.974 0.974

d695

5 0.0332 0.167 0.203 0.440 0.538 0.556

10 0.0370 0.257 0.254 0.567 0.670 0.690

25 0.208 0.405 0.510 0.743 0.849 0.863

50 0.335 0.617 0.803 0.879 0.952 0.952

75 0.602 0.821 0.937 0.946 0.965 0.965

100 0.966 0.966 0.966 0.966 0.966 0.966

p22810

5 0.0333 0.174 0.450 0.659 0.691 0.759

10 0.0347 0.186 0.608 0.764 0.796 0.856

25 0.0544 0.398 0.769 0.885 0.900 0.940

50 0.181 0.830 0.912 0.949 0.949 0.968

75 0.600 0.916 0.964 0.969 0.969 0.973

100 0.973 0.973 0.973 0.973 0.973 0.973

p34392

5 0.0307 0.312 0.683 0.798 0.843 0.859

10 0.0341 0.331 0.766 0.857 0.893 0.898

25 0.0602 0.470 0.846 0.919 0.940 0.942

50 0.533 0.492 0.921 0.950 0.963 0.967

75 0.547 0.906 0.943 0.965 0.972 0.972

100 0.972 0.972 0.972 0.972 0.972 0.972

p93791

5 0.00542 0.118 0.559 0.715 0.748 0.748

10 0.0249 0.235 0.618 0.791 0.822 0.822

25 0.0507 0.459 0.742 0.883 0.908 0.908

50 0.340 0.619 0.902 0.945 0.960 0.960

75 0.584 0.927 0.957 0.969 0.974 0.974

100 0.976 0.976 0.976 0.976 0.976 0.976

Table 3. Experimental results. 1 - only test scheduling, 2 - test scheduling and considering defect probability (dp), 3
- test scheduling considering dp and fault coverage (fc), 4 - test vector selection and test scheduling considering dp

and fc at one TAM, 5 - as in 4 but two TAMs, 6 - as in 4 but three TAMs.

