
Power-Aware Test Planning in the Early
System-on-Chip Design Exploration Process

Erik Larsson, Member, IEEE, and Zebo Peng, Senior Member, IEEE

Abstract—Test application and test design, performed to ensure the production of fault-free chips, are becoming complicated and very

expensive, especially in the case of SoCs (System-on-Chip), as the number of possible faults in a chip is increasing dramatically due to

the technology development. It is therefore important to take test design into consideration as early as possible in the SoC design-flow

in order to develop an efficient test solution. We propose a technique for modular core-based SoCs where test design is integrated in

the early design exploration process. The technique can, in contrast to previous approaches, already be used in the core selection

process to evaluate the impact on the system’s final test solution imposed by different design decisions. The proposed technique

considers the interdependent problems of core selection, test scheduling, TAM (test access mechanism) design, test set selection, and

test resource floorplanning, and minimizes a weighted cost-function based on test time and TAM routing cost, while considering test

conflicts and test power limitations. Concurrent scheduling of tests is used to minimize the test application time; however, concurrent

test application leads to higher activity during the testing and, hence, higher power consumption. The power consumed during testing

is, in general, higher than that during normal operation since it is desirable with hyperactivity in order to maximize the number of tested

faults in a minimal time. A system under test can actually be damaged during testing and, therefore, power constraints must be

considered. However, power consumption is complicated to model and, often, simplistic models that focus on the global system power

limit only have been proposed and used. We therefore include a novel three-level power model: system, power-grid, and core. The

advantage is that the system-level power budget is met and hot-spots can be avoided both at a specific core and at certain hot-spot

areas in the chip. We have implemented and compared the proposed technique with a technique that assumes already fixed cores and

tests, an estimation-based approach, and a computationally expensive pseudoexhaustive method. The results from the experiments

show that, by exploring different design and test alternatives, the total test cost can be reduced, the pseudoexhaustive technique

cannot produce results within reasonable computational time, and the estimation-based technique cannot produce solutions with high

quality. The proposed technique produces results that are near the ones produced by the pseudoexhaustive technique at

computational costs that are near the costs of the estimation-based technique, i.e., it produces high-quality solutions at low

computational cost.

Index Terms—Test scheduling, test set selection, design exploration, TAM design, power consumption, hot-spots.

�

1 INTRODUCTION

TECHNOLOGY development has made it possible to design
a chip where the complete system is placed on a single

die, a so-called system chip or SoC (System-on-Chip). The
production of these systems may lead to faulty chips and it
is therefore important that the produced chips are tested.
The growing complexity of chips, device size miniaturiza-
tion, increasing transistor count, and high clock frequencies
have led to a dramatic increase in the number of possible
fault sites and fault types and, therefore, a high test data
volume is needed for high-quality testing. However, the
high test data volume leads to long testing times and,
therefore, the planning and organization of the testing
becomes a challenge that has to be tackled.

EDA (Electronic Design Automation) tools are devel-
oped to reduce the design productivity gap, i.e., the gap
between what technology allows to be designed and what a
design team can produce within a reasonable time. A way
to handle the increasing complexity of systems is to model

the systems at higher abstraction levels. However, modeling
at higher abstraction levels means that fewer implementa-
tion specific details are visible. The problem is that device
size miniaturization has made implementation specific
details highly important. A modular core-based design
approach has therefore been proposed to allow the design
of complex systems in reasonable time and, at the same
time, handle implementation specific details [15], [17]. The
basic idea is that predesigned and preverified blocks of
logic, as well as newly designed blocks of logic, called cores,
are integrated by the core integrator to an SoC. The cores,
provided by core vendors, may each have a different origin,
such as from various companies, reuse from previous
designs, or the cores can be completely new in-house
designs. The test designer is responsible for the design of the
system’s test solution, which includes decisions on the
organization and the application of test data (test stimuli
and test responses) for each core in the system. Test
application time minimization is often one of the main
objectives since it is highly related to the cost of test, but it is
also important to minimize the added overhead, such as
additional wiring, while constraints and conflicts should be
considered.

A core-based SoC design methodology consists usually
of two major steps: a core selection step, where the core

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006 227

. The authors are with the Embedded Systems Laboratory, Department of
Computer and Information Science, Linköping University, SE-581 83
Linköping, Sweden. E-mail: {erila, zpe}@ida.liu.se.

Manuscript received 5 Dec. 2004; revised 22 Apr. 2005; accepted 14 July
2005; published online 21 Dec. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-0397-1204.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

integrator selects the appropriate cores for the system, and
the core test design step, where the test solution for the
system is created, which includes test scheduling and the
design of the infrastructure for test data transportation, the
TAM (Test Access Mechanism). These two steps are
traditionally performed in sequence, one after the other
(see Fig. 1a). For such an SoC design-flow, it is important to
note that the core integrator can, in the initial design step
(core selection), select among several different cores, often
from several core vendors, to implement a certain function-
ality in the system. The core integrator selects, based on
each core’s design characteristics given in its specification,
the cores that fit the system best. Each possible core may not
only have different design characteristics, but may also
have different test characteristics (for instance, test sets and
test power consumption). For example, one core may
require a large ATE (Automatic Test Equipment) stored
test set, while another core, implementing the same
functionality, requires a combination of a limited ATE test
set and a BIST (Built-In Self-Test) test set. The decision on
which core to select therefore has an impact on the global
test solution. Selecting the optimal core based only on its
functionality will lead to local optimum, which is not
necessarily the global optimum when the total cost of the
system, including test cost, is considered. In other words,
the selection (of cores and/or tests) must be considered
with a system perspective in order to find a globally
optimized solution. This means that there is a need for a test
solution design tool that can be used in the early core
selection process to explore and optimize the system’s test
solution (see Fig. 1b). Such a tool could help the test
designer to answer the following question from a core
integrator: “For this SoC-design, which of these cores are
the most suitable cores for the system’s test solution?”

We have previously proposed a technique for integrated
test scheduling and TAM design where a weighted cost-
function based on test time and TAM wiring cost is
minimized while considering test conflicts and test power
consumption [11]. We assumed that the tests for each
testable unit were fixed and the main objective was, for a
given system, to define a test solution. In this paper, on the
other hand, we assume that, for each testable unit, several
alternatives may exist. We propose a technique to integrate
core selection, test set selection, test resource floorplanning, TAM
design, and test scheduling in a single procedure. Core
selection, test set selection, test resource floorplanning,

TAM design, and test scheduling are highly interdepen-
dent. The test time can be minimized by scheduling the tests
as concurrently as possible; however, the possibility of
concurrent testing depends on the size of the TAM
connecting the test resources (test sources and test sinks).
The placement of the test resources has a direct impact on
the length of the TAM wires. And, finally, the selected test
sets for each testable unit are partitioned over the test
resources and have a large impact on the TAM design and
the test schedule. Therefore, these problems must be
considered in an integrated manner.

Test power consumption is becoming a severe problem.
In order to reduce testing times, concurrent execution of
tests is explored. However, this may lead to more power
than the given power budget of the system being consumed
and that can damage the system. The proposed technique
includes an improved power model that considers 1) global
system-level limitations, 2) local limitations on power-grid
level (hot-spots), as well as 3) core-level limitations. The
motivation for the more elaborate power model is that the
system is designed to operate in normal mode; however,
during testing mode, the testable units are activated in a
way that would not usually occur during normal operation.
It can lead to 1) the systems power budget being exceeded
or 2) hot-spots appearing and damaging a certain part in the
system or 3) a core being activated in such a way that the
core is damaged.

The proposed technique can be used to explore alter-
native cores for an SoC, different test alternatives for each
testable unit, as well as the placement of test resources. As
the design alternatives increase, we make use of Gantt
charts to limit the search space. We have implemented the
proposed technique, an estimation-based technique, and a
pseudoexhaustive technique. In the experiments, we have
compared with our previously proposed technique, where
the cores are fixed and the tests are fixed. The experiments
show that allowing design and test selection can reduce the
final test cost and the experiments using the estimation-
based technique show that it is difficult to produce high-
quality solutions and the experiments with the pseudoex-
haustive technique demonstrate that the search space is
enormous. The proposed technique, on the other hand,
produces solutions with a total cost that is near the cost
produced by the pseudoexhaustive technique but at a
computational cost that is near the estimation-based
technique.

The rest of the paper is organized as follows: Background
and an overview of prior work are given in Section 2 and
the problem formulation is in Section 3. The test problems
and their modeling are in Section 4 and the algorithm and
an illustrative example are in Section 5. The experimental
results are in Section 6 and the conclusions are in Section 7.

2 BACKGROUND AND RELATED WORK

The technology development has, as discussed above,
enforced the introduction of the core-based design environ-
ment where reusable logic blocks (cores) are combined to
form a system that is placed on a single die [17]. A core-
based design and production flow is typically a sequential
process that starts with core selection, followed by test

228 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006

Fig. 1. Design flow in a core-based design environment: (a) traditional

and (b) proposed.

solution design, and, after production, the system is tested
(Fig. 1a). In the core selection stage, the core integrator
selects appropriate cores to implement the intended
functionality of the system. For each function, there are
often a number of possible cores to select from and each
candidate core has its specification. The specification
includes, for instance, data on performance, power con-
sumption, area, and test characteristics. The core integrator
explores the design space (search and combines cores) in
order to optimize the performance of the SoC. Once the
system is fixed (the cores are selected), the test designer
designs the TAM and schedules the tests based on the test
specification for each core. In such a design flow (illustrated
in Fig. 1a), the test solution design is a consecutive step to
core selection. This means that, even if each core’s design is
highly optimized, when integrated as a system, the system’s
global test solution is not optimized.

A design flow such as the one in Fig. 1b, on the other
hand, integrates the core selection step and the test solution
design step. The advantage is that it is possible to consider
the impact of core selection when designing the test
solution. In such a design flow (Fig. 1b), the global system
impact on core selection is considered and it is possible to
develop a more optimized test solution. The impact of the
design flow in Fig. 1b can be illustrated as in Fig. 2, where
the core type is floorplanned in the system, but there is not
yet a design decision on which core to select. For each core
type (the floorplan position), several alternative cores can be
used. For instance, for the cpu core, there are three
alternative processor cores (cpu1, cpu2, and cpu3), as
illustrated in Fig. 2. And, for each core, several tests can
be given.

In this paper, we make use of the test concepts
introduced by Zorian et al. [15], which are illustrated with
an example in Fig. 3. The example consists of three main
blocks of logic, core A (CPU core), core B (DSP core), and
core C (UDL, user-defined logic, block). A test source is
where test stimulus is created or stored and a test sink is
where the test response is stored or analyzed. The test
resources (test source and test sink) can be placed on-chip
or off-chip. In Fig. 3, the ATE serves as an off-chip test
source and off-chip test sink, while TG1, for instance, is an
on-chip test source. The TAM is the infrastructure 1) for test
stimulus transportation from a test source to the testable
unit and 2) for test response transportation from a testable
unit to a test sink. A wrapper is the interface between a core
and the TAM and a core with a wrapper is said to be
wrapped while a core without a wrapper is said to be
unwrapped. Core A is a wrapped core, while Core C is

unwrapped. The wrapper cells at each wrapper can be in
one of the following modes at a time: internal mode, external
mode, and normal operation mode. In addition to the
definitions by Zorian et al. [15], we assume that a testable
unit is not a core, but a block at a core, and that a core can
consist of a set of blocks. For example, core A (Fig. 3)
consists of two blocks (A.1 and A.2).

For a fixed system where cores are selected and floor-
planned and, for each testable unit, the tests are fixed, the
main tasks are to organize the testing and the transportation
of test stimuli and test responses (as the example design in
Fig. 3). Several techniques have been proposed to solve
different important problems under the assumption that the
cores are already selected (design flow as in Fig. 1a).

Zorian [14] proposed a test scheduling technique for a
fully BISTed system where each testable unit is tested by
one test with a fixed test time and each testable unit has its
dedicated on-chip test source and its dedicated on-chip test
sink. A fixed test power value is attached to each test and
the aim is to organize the tests into sessions in such a way
that the summation of the power consumed in a session is
not above the system’s power budget, while the test
application time is minimized. In a system where the
testable units share test sources and test sinks, the test
conflicts must be taken into account. Chou et al. proposed a
test scheduling technique that uses a conflict graph to
handle general conflicts and minimizes the test time for
systems where both the test time and power consumption
for each test are fixed [1].

The approaches by Zorian and Chou et al. assume fixed
testing times for each testable unit. The test time for a core
can be fixed by the core provider, which may be due to the
core providers having optimized their cores in order to
protect the IP-blocks, for instance. However, the test time at
a core is not always fixed. For scan-tested cores, the scanned
elements can be connected to any number of wrapper
chains. If the scanned elements (scan-chains, inputs, and
outputs) at a core are connected to a small number of
wrapper chains, the testing time is longer compared to
when the scan elements are connected into a larger number

LARSSON AND PENG: POWER-AWARE TEST PLANNING IN THE EARLY SYSTEM-ON-CHIP DESIGN EXPLORATION PROCESS 229

Fig. 2. System design with different alternatives.

Fig. 3. A system and the illustration of some test concepts.

of wrapper chains. Iyengar et al. proposed a scheduling
technique for systems where the testing time for all cores is
flexible and the objective is to form a set of wrapper chains
for each core in such a way that the testing time for the
system is minimized [7].

In order to minimize the test times, as many fault
locations as possible are activated concurrently, which leads
to high power consumption. Zorian [14] and Chou et al. [1]
assign a fixed power value to each test and make sure that
the scheduling does not activate the tests in such a way that
the system’s power budget is exceeded at any time.
Bonhomme et al. [2] and Saxena et al. [12] proposed a
clock-gating scheme intended to reduce the test power
consumed during the scan-shift process. The advantage is
that the test power can be reduced at a core with such a
scheme and, hence, a higher number of cores can be
scheduled for test concurrently. The basic idea is if n scan-
chains at a core are to be connected to m wrapper-chains
(n > m), only m scan-chains can be loaded at a time, which
means that not all n chains are active at the same time,
hence, lower power consumption.

There has been research to find the most suitable ATE/
BIST partition for each testable unit. Sugihara et al.
investigated the partitioning of test sets where one part is
on-chip test (BIST) and the other part is off-chip test using
an ATE [13]. A similar approach was proposed by Jervan
et al. [8], which later was extended to not only locally
optimize the test set for a core but to consider the complete
system by using an estimation technique to reduce the test
analysis complexity [9].

Hetherington et al. discussed several important test
limitations such as ATE bandwidth and memory limitations
[5]. These problems, as well as the problems described
above, are important to consider in the search of a final test
solution for the system.

The problems addressed above are all individually
important to consider when designing the test solution for

a SoC. However, it is important to consider them all
simultaneously and from a system test perspective. We
have previously proposed an integrated technique for test
scheduling and TAM design where the test application time
and the TAM design are minimized while considering test
conflicts and power consumption [11]. The technique
handles unwrapped as well as wrapped cores and also
systems where some cores have a fixed testing time and
some cores have a flexible testing time. The technique is also
general in the test source and test sink usage. Each test can be
defined to use any test source and any test sink. It is not
necessary for a test to use a test source and a test sink where
both are placed on-chip or both are placed off-chip.
Furthermore, the technique allows an arbitrary number of
tests per testable unit, which is an important feature in order
to handle testing for timing faults and delay faults and not
only stuck-at faults. However, that technique assumes that
the tests for each testable unit are fixed and defined.

3 PROBLEM FORMULATION

Fig. 4 illustrates the problem we address. We assume that a
floorplan is given of an SoC where the core types are
defined but the particular core is not yet selected. For
example, at position cx, c1 and c2 are the alternatives. Each
of the alternative cores may consist of a set of blocks
(testable unit) where each block has multiple test alter-
natives. For instance, b1 at c1 can be tested by test t1 or by
tests t2 and t3. Each test is attached to one block and each
test has its combination of test source and test sink. For
instance, t1 makes use of r1 and s1. Since no other test in the
system makes use of r1 and s1, r1 and s1 will most likely not
limit the test time. On the other hand, since s1 and r1 are not
used by any other test, the added TAM has a low
utilization, which leads to the waste of resources.

An example of an input specification of the example
system in Fig. 3, the starting point in our approach, is given in

230 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006

Fig. 4. Illustration of design alternatives.

Fig. 5. The structure of the input specification is based on the
specification we made use of in [11]. The major extensions are
1) for each block (testable unit), several alternative lists of tests
can be specified, instead of as before where it was only
possible to assign one dedicated list of tests per block, and
2) the improved power-grid model makes it possible to more
accurately model power dissipation.

The advantage of the possibility of specifying several
lists of tests for each block (testable unit), where each test in
a list makes use of its specified resources (test source and
test sink) and each test has its test characteristics, is that it
makes it possible to explore different design alternatives.
The test problems that are considered in our technique and
their modeling are discussed in Section 4. The input
specification is explained in the following text, where the
notations are defined and illustrated with the example
given in Fig. 5.

The cores are floorplanned, i.e., given (x, y) coordinates
and each core consisting of a set of blocks (testable units):

[Cores] #name x y block_list
coreA 20 10 { blockA1, blockA2 }

For each block, several sets of tests are available, where
each set of tests is sufficient for the testing of the block. For
instance, to test block blockA1, three possible test sets are
given:

[Blocks] #name test_sets {} {}

blockA1 {tA1.2 tA1.3}

{tA1.1} or {tA1.2 tA1.3} should be selected where each test

has its resources and characteristics.
The proposed technique will select cores and corre-

sponding blocks and, for each block, the set of tests to use in

order to produce an optimized test solution for the system.

The cost of a test solution is given by the test application

time and the amount of routed TAM wires:

cost ¼ �� �total þ � � TAM; ð1Þ

where �total is the total test application time (the end time of

the test with the latest test time), TAM is the routing length

of all TAM wires, and � and � are two user-defined

constants used to determine the importance of test time in

relation to TAM cost. The selection of the user-defined

constants � and � is based on the characteristics of the

particular SoC; hence, it is therefore not possible to define

universal values on � and �.
The produced output from our technique is a test

schedule where the cores are selected and, for each block

(testable unit) at the selected cores, the tests are selected and

given a start time and an end time in such a way that all

conflicts and constraints are not violated, and a correspond-

ing TAM layout, where the cost (1) is minimized.

LARSSON AND PENG: POWER-AWARE TEST PLANNING IN THE EARLY SYSTEM-ON-CHIP DESIGN EXPLORATION PROCESS 231

Fig. 5. Input specification for the example system in Fig. 3.

4 TEST PROBLEMS AND THEIR MODELING

In this section, we discuss the test problems that have to be
considered in our approach and the modeling of the
problems.

4.1 Test Time

The testing time for a testable unit can be fixed or flexible
prior to the design of the test solution. A core provider
might protect the core and, therefore, optimize the core and
its core wrapper prior to delivery, hence, having the testing
time fixed. On the other hand, the testing time for a core can
be flexible, such as for a scan-tested core where the scanned
elements (scan-chains and wrapper cells) can be connected
into one or several wrapper-chains. The testing time for a
test with flexible test time depends on the number of
wrapper-chains. It is important to note that tests with fixed
and flexible testing times can be mixed in the system. The
test time model must therefore handle systems where some
cores have fixed test time while other cores have flexible
testing time.

A higher number of wrapper-chains at a core results in
lower testing time compared to if fewer wrapper-chains are
used. The scan-chains at a core can be few and unbalanced
(of unequal length), and the testing time might not be
linearly dependent on the number of wrapper chains.
Therefore, we analyzed the linearity of the testing time (�)
versus the number of wrapper-chains (w), that is, if
� � w ¼ constant. We selected the scan-tested cores in one
of the largest ITC ’02 designs, namely, the P93791 design
[11]. We observed that the testing time for core 11 was the
most nonlinear (as shown by the curve labeled as Core 11-
original in Fig. 6). We noted that the 576 scanned elements
were partitioned into 11 scan-chains (with the length 82 82
82 81 81 81 18 18 17 17 17). We redesigned core 11 into four
new cores with 11, 22, 44, and 88 balanced scan-chains,
respectively. We plotted the � � w curves for all these cores
in Fig. 6. As the number of scan-chains increases, the value
� � w becomes more or less constant at any TAM width.
The testing time at a single wrapper chain times TAM width

one is 149,381 (marked in Fig. 6). For core 11 with

44 balanced scan-chains, the value � � w at any TAM width

is always less than 5 percent from the constant theoretical

value. It is important to note that, for all cores, the value

� � w is almost constant within a certain range. We assume

that the core test designer optimizes the cores, hence, the

number of scan-chains at a core is relatively high and of

nearly equal length.
In our model, we specify the testing time for a testable

unit at a single TAM wire and the bandwidth limitations.

For instance, a test tA1.1 has a test time of 60 time units at a

single wrapper chain and where the scanned elements can

be arranged into wrapper-chains in the range 1 to 4 (only

test time and bandwidth are mentioned):

[Tests] #name test time minbw maxbw

tA1.1 60 1 4

We assume, based on our experiments, that the test time is

linear to the number of TAM wires within the bandwidth

range. It means that, given the test time at a single TAM

wire (�1), the test time ti can be computed by:

�i ¼
�1

i
; ð2Þ

where i is in the range ½minbw;maxbw�. If the testing time is

fixed, minbw ¼ maxbw.

4.2 Test Power Consumption

The test application time is reduced if a high number of

cores are activated and tested concurrently; however, it

leads to higher switching activity and higher power

dissipation. The system-level power budget can be ex-

ceeded and high power consumption can damage the

system. Furthermore, if cores that are floorplanned close to

each other are activated concurrently, a hot-spot can be

created and it also can damage the system. For instance,

assume a memory organized as four banks where, in

normal operation, only one bank is activated at a time.

However, during testing, in order to shorten the test time,

all banks are activated concurrently. The system’s total

power limit might not be exceeded, however, a local hot-

spot is created in the memory subsystem and the system

may be damaged.
The switching activity and power consumption are

higher during testing than during normal operation. It

means that a core during testing can dissipate power above

its specified limit due to the nature of the test stimuli and/

or the test clock frequency.
We therefore make use of a three-level power model:

system-level, power-grid-level (local hot-spot), and core-level. For

the system-level, we make use of the power model defined

by Chou et al. where the summation of power values of the

concurrently executed tests is below the power budget of

the system [1].
As an example, we can specify the system budget as:

MaxPower ¼ 100

and, for each test, we specify the power consumed when the

test is activated:

232 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006

Fig. 6. Test time analysis for core 11 in design P93791, where the cost

w� � is plotted for the cores at TAM widths (w) 1 to 16.

[Tests] #name pwr time tpg tre min_bw max_bw

tA1.1 60 60 TG1 TE1 1 4

mem ict flexible_pwr

10 no no

Additionally, the idle power, the power consumed when a
block is in stand-by mode and not active, is also specified
for each block:

[Blocks] #name idle pwr test sets {} {}

blockA1 0 {tA1.1} {tA1.2 tA1.3}

For local hot-spots, we introduce a power grid model,
which has similarities to the approach proposed by Chou
et al. [1], but, instead of having a single maximal power
constraint for the whole system, we have local power
constraints for subparts of the system. We assume that each
block (testable unit) is assigned to a power grid, where the
power grid has its power budget. The system can contain an
arbitrary number of power grids. Blocks assigned to a
power grid cannot be tested in such a way that the power
grid budget is exceeded at any time; the scheduling
algorithm prevents such a situation from occurring by
selecting alternative tests or scheduling tests later.

An example to illustrate the need for power grids is as
follows: A memory can be organized as a bank of memory
blocks (see Fig. 7). Assume that the memory, during normal
operation, never accesses more than a single memory block
at a time and the power grid is designed accordingly.

A single grid is specified as:

[PowerGrid] #name power_limit

p_grid1 50

For each block the power grid usage is given as:

[Blocks] #name idle pwr pwr_grid test sets {} {}

blockkA1 0 p_grid1 {tA1.1} {tA1.2 tA1.3}

As discussed above, some tests have a fixed testing time
while other tests allow flexible testing times. Regarding test
power consumption, we have some tests where the power is
fixed regardless of the number of assigned TAM wires,
while other tests allow the power to be adjusted by clock-
gating [12]. Clock-gating can be used to reduce the power
consumption so that a higher number of tests can be
executed concurrently, but it also can be used for the units
under test where its own power dissipation is higher than
its allowed power consumption due to, for instance, a too
high test clock frequency.

The motivation behind core-level adjustments is two-
fold. First, by lowering the power consumption at a core, a
higher number of cores can be activated concurrently
without violating the total power budget. Second, since test

power consumption often is higher than that during normal
operation, the power dissipation during test at a specific
core can be higher than its own power budget.

The power consumption for a test is given as a single
value, which corresponds to the power consumption when
a single TAM wire is used, for instance, as in the following
example (interconnection test flag, test source, and test sink
usage are omitted):

[Tests] #name pwr time minbw maxbw flexible_pwr

tA1.1 60 60 1 4 yes

tC1.1 70 80 1 4 no

Note that we include the possibility of specifying if clock-
gating can be used by setting flexible_pwr to yes or no. If power
can be modified, we assume a linear dependency [12]:

pi ¼ p1 � tam; ð3Þ

where p1 is the power at a single TAM wire, pi is the power
consumed when i number of TAM wires are used; i has to
be in the specified range ½minbw : maxbw�.

4.3 Test Conflicts

During the test solution design, there are a number of
conflicts that have to be considered and modeled. Each test
may have its defined constraints depending on the type of
test; stuck-at, functional, delay, timing, etc. For general
conflicts, we make use of the following notation [11]:

[Constraints] #name {block1, block2, ..., block n}

tA1.1 {blockA1}

The notation means that, when applying test tA1.1,
blockA1 must be available and no testing can be performed
on it since it is used by test tA1.1 or tA1.1 might interfere
with blockA1. This modeling supports general conflicts,
which can be due to hierarchy where cores are embedded in
cores or interference during testing. The model can also be
used for designs where an existing functional bus is used as
the TAM. A functional bus can be modeled as a dummy
block, where, usually, only one test can be active at a time.

A test source ([Generators]) may have limited bandwidth
and memory. The bandwidth limitation and the memory
limitation are especially critical for ATEs, but are also
important if on-chip resources such as memories are used
for test data storage. We denote bandwidth limitation as an
integer stating the highest allowed bandwidth for the test
source. For memory limitations, an integer is used as the
maximal memory capacity. A test sink ([Evaluators]) can also
have a limited bandwidth and, in a similar way as with test
sources, we denote it with an integer. For simplicity, we only
assign memory constraint at the test source. For each test, we
give an integer value as its memory requirement. An example
with testA1.1 using test source ATE and test sink ATE with
memory requirement 10 is given below (for the test, only
name, source, sink, and memory limitation are given):

[Generators] #name x y maxbw memory
ATE 10 0 4 100

[Evaluators] #name x y maxbw

ATE 50 0 4

[Tests] #name tpg tre mem

tA1.1 ATE ATE 10

LARSSON AND PENG: POWER-AWARE TEST PLANNING IN THE EARLY SYSTEM-ON-CHIP DESIGN EXPLORATION PROCESS 233

Fig. 7. A memory organized as a bank of four blocks powered by a

common grid.

The wrapper conflicts are slightly different compared to
general conflicts because of the TAM routing. The testing of
a wrapped core is different from the testing of an
unwrapped one. The testing of the wrapped core A
(Fig. 3), for example, is performed by placing the wrapper
in internal test mode and test stimuli are transported from
the required test source using a set of TAM wires to the core
and the produced test responses are transported from the core
using a set of TAM wires to the test sink. In the case of an
unwrapped testable unit such as the UDL block, the wrappers
at cores A and B are placed in external test mode. The test
stimuli are transported from the required test source on the
TAM via core A to the UDL block and the test responses are
transported via core B to the TAM and to the test sink. It
means that, for the TAM design, the TAM should be routed to
core A and B (and not to the UDL block).

We model the wrapper conflict as in the following
example, with two blocks (bA and bB) and one test per
block (tA and tB):

[Blocks] #name {test1, test2,..., test m} {test1, ..., test n}
bA {tA1.1}

bB {tB}

[Tests] name tg tre ict

tA r1 s1 bB

tB r1 s1 no

The difference between these tests is illustrated in Fig. 8.
Test tB is not an interconnection test, hence, ict (inter-
connection test) is marked as no. It means that there will be
a connection between r1 to bB and from bB to s1, marked as
TAM for tB in Fig. 8. Test tA, on the other hand, is an
interconnection test with bB. It means that r1 is connected to
bA and bB is connected to s1. The required TAM is marked
as TAM for tA in Fig. 8.

5 TEST DESIGN ALGORITHM

In this section, we describe the proposed test design
algorithm (outlined in Fig. 9, and detailed in Fig. 10 and
Fig. 11).

In order to evaluate the cost of a test solution, we make

use of (1). At a design modification, the cost change before

and after modification is given by:

ð�� � �þ�TAM � �Þ; ð4Þ

where �� (�TAM) is the difference in test time (TAM cost)

before and after the modification.
The TAM cost is given by the length l and its width w

(TAM ¼ l� w) and by combining the cost function (1)

considering only one testable unit and the test time versus

TAM cost (2), the optimal TAM bandwidth is given by [11]:

w ¼
ffi
ð�� �Þ=ð� � lÞ

p
: ð5Þ

A detailed description of the algorithm (Fig. 9) is in

Fig. 10 (test set selection algorithm) and Fig. 11 (test

scheduling and TAM design). The algorithm starts by the

part given in Fig. 10, where the list of test sets for each

testable unit is sorted based on the cost function (1). The

cost for each testable unit is locally optimized; however,

there is, at this point, no global consideration on the sharing

of TAM wires or conflict avoidance. For each testable unit,

the first set of tests for each testable unit is selected and the

set is scheduled and the TAM is designed (Fig. 11). From

the test schedule, the test application time is given and,

from the TAM layout, the TAM cost for the solution is

given. The algorithm checks the use of resources from a

Gantt-chart for the solution (explained below in Section 5.1).

For example, assume that a test solution generates a Gantt

chart as in Fig. 12, where TG:r1 is the critical resource. For

all tests that use the critical (limiting) resource, the

algorithm tries to find alternative tests. Equation (4) is used

to evaluate the change in cost for each possible alternative

(at the critical resource). Instead of trying all possible

alternatives, a limited number of design modifications

(given from the Gantt chart) are explored. And, to reduce

the TAM cost, existing TAMs are reused as much as

possible (a test may be delayed and applied later).

234 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006

Fig. 8. Illustration of TAM requirements for a core test and an interconnection test.

Fig. 9. The algorithm.

5.1 Resource Utilization

We make use of a machine-oriented Gantt chart to track

bottlenecks (the resource that limits the solution) [3]. We let

the resources be the machines, and the tests be the jobs to

show the allocation of jobs on machines. For example, a

Gantt chart is given in Fig. 12, where test B2 needs TG:r2

and TRE:s2. An inspection of Fig. 12 shows that TG:r2 and

TRE:s2 are not critical to the solution. On the other hand,

test source TG:r1 is the most critical one. It means that testA,

testB1, and testC are the obvious candidates for modifica-

tion. The Gantt chart pinpoints bottlenecks and therefore

reduces the search for candidates for modification. Note

that the Gantt chart does not show a valid schedule, only

the usage of resources in the system.

5.2 Illustrative Example

We use the design example in Fig. 13 to illustrate the

algorithm described above. The example (Fig. 13), simpli-

fied by removing power grids, memory limitations, and the

list of general constraints, consists of two cores, each with a

single block (testable unit), where each block can be tested

in two ways; there are two alternative test sets for each

block. For instance, blockA can be tested by testA1 or

testA2. Each of the tests is defined with its test time,

combination of test sink and test source, etc.
The algorithm proceeds as follows: Initial step: For each

block, the test sets are ordered ascending according to the

cost function ((1) assuming � ¼ � ¼ 1):

test time TAM total cost

testA1: 60 40 100
testA2: 100 20 120

testB1: 72 40 112

testB2: 120 20 140

The evaluation results in the following sorted lists per block

(first in the list is the best candidate):

blockA: {{testA1}, {testA2}}

blockB: {{testB1}, {testB2}}

LARSSON AND PENG: POWER-AWARE TEST PLANNING IN THE EARLY SYSTEM-ON-CHIP DESIGN EXPLORATION PROCESS 235

Fig. 10. Test set selection algorithm.

Fig. 11. Test scheduling and TAM design algorithm.

Fig. 12. A machine-oriented Gantt chart [3].

The first set of tests are selected as active, that is, for blockA
{testA1} and for blockB {testB1}. The test scheduling algo-
rithm sorts the tests based on test time and starts with the
longest test, making the test schedule: testB starting at time 0
followed by testA starting at time 72. The resulting total test
application time is 132. The TAM design algorithm connects
TG1, coreB, coreA, and TA1, and the Manhattan length is
20þ 20þ 20 ¼ 60. The total cost (at � ¼ � ¼ 1) for the test
solution is then: 132 (test time) + 60 (TAM cost) = 192.

From the Gantt chart for this test solution, we observe
that TG1 and TA1 both are used for 132 time units, while
TG2 and TA2 are not used at all and we note that TG1 and
TA1 limit the solution. Based on the Gantt-chart, the
algorithm tries to find an alternative that does not use
TG1 and TA1. For each test that uses the limiting resources
in the Gantt chart, in our example TG1 and TA1, the
algorithm computes the alternative cost of using other
resources. It is important to note that, in order to limit the
number of possible options, we only try with the tests that
depend on the resources critical to the solution.

As the first alternative modification, we try to use testA2
to test BlockA instead of using testA1. It means that testA1
will not be executed (only one of the set of tests for each
block is required and each list contains only one test). We
evaluate the impact of the test modification on the TAM
layout and we observe that we do not have to include coreA
in the TAM layout. Taking coreA out of the bus layout
means that TAM corresponding to 20 units can be removed
(testA2 makes use of different test resources compared to
testA1). However, in order to execute testA2, we have to
include wires from TG2 to coreA and from coreA to TA2.
The additional required wiring corresponds to 20 units.

The difference in test time between testA1 and testA2 is
(100� 60 ¼) 40. It means that the total cost difference is

estimated to be: �20 (gain by not including coreA for
testA1) + 20 (what we have to add to include TAM for
TG2->coreA->TA2) + 40 = 40.

For the second alternative modification, we try testB2
instead of testB1. It means that a TAM (length and width)
corresponding to 20 units can be removed. The additional
TAM cost of adding testB2 (its resources) is 20 and the
difference in test time between testB2 and testB1 is 48
(120� 72). The cost difference for this alternative is
�20þ 20þ 48 ¼ 48.

In this example, we have two tests using the resources that

are critical to the solution and we also had only one possible

alternative per test. Since the first alternative is better than the

second, the first one is selected. A new test schedule and a

TAM layout are created where both testA1 and testB1 are

236 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006

Fig. 13. An illustrative example with a simplified specification where power grids, memory limitations, and general constraint list are not considered.

TABLE 1
Design Data

scheduled to start at time 0 and there are two TAMs, one

connecting TG2->coreA->TA2 with a length 20 and one

connecting TG1->coreB->TA1 with length 40. The total cost is

60þ 72 ¼ 132 (an improvement from 192 to 132).

6 EXPERIMENTAL RESULTS

The objective with the experiments is to check that the

proposed technique produces high quality solutions at a

reasonable computational cost (CPU time). For comparison

purposes, we compare the proposed technique with the

LARSSON AND PENG: POWER-AWARE TEST PLANNING IN THE EARLY SYSTEM-ON-CHIP DESIGN EXPLORATION PROCESS 237

TABLE 2
Results

technique [11] that does not support core selection and two
techniques that do support selection, an estimation-based
technique [10] and a pseudoexhaustive algorithm. The
technique [11] that does not support core selection is used
as a reference point to show that the test solution can be
improved by allowing selection of tests and cores; the
estimation-based technique, which tries to predict the cost
at a low computational cost, is used to demonstrate that
finding a high quality test solution is not trivial; and the
pseudoexhaustive algorithm, which basically tries all
possible solutions, is used to demonstrate that the search
space is enormous in size.

We have created a set of nine designs with data as in
Table 1. The experimental results are collected in Table 2,
where we have used � ¼ � ¼ 1 for the cost function, and the
total cost is therefore the sum of the two. Table 2 reports test
application time, the TAM cost, and the CPU time. Note
that the total cost is optimized, which means that the
combination of test time and TAM cost are optimized. It can
lead to cases where one of the optimization parameters (test
time or TAM cost) is not minimal since the algorithm can
find a solution where the most optimization can be gained
from the other parameter and, most importantly, the
combination of the two, which is optimized, is minimal.
In the experiments, we compared the test scheduling and
TAM design technique [11], the estimation-based technique,
and the pseudoexhaustive technique with the proposed
technique for test set selection. For the test scheduling and
TAM design technique [11] that does not allow core
selection and test set selection, we assumed preselected
cores and test per testable unit for the experiments. We
explored different strategies for the preselection. In experi-
ments 1, 2, and 3, we selected the cores with the lowest test
time of an ATE test as well as BIST test. In experiments 8
and 9, we selected the cores that consumed the lowest test
time and, also, the lowest power. The results show that, by
allowing selection, it is possible to select cores and tests in a
such a way that the total cost of the test solution is reduced.
The results show that the proposed technique produces
results that are better than the results produced by the
estimation-based technique and near the results produced
by the pseudoexhaustive technique. The computational
costs (CPU time) for each of the experiments are all
reasonable, but, for the pseudoexhaustive technique on
experiments 4, 6, and 7, we terminated after 12 hours;
hence, the total cost for each one is the best found until
abortion time.

7 CONCLUSIONS

Test design is traditionally considered as a final step in the
system design-flow. However, as test design is becoming a
significant part in terms of cost in the design-flow, it is
important to consider test design as early as possible in the
design-flow. Technology development has made it possible
to design high-speed system chips that are shrinking in size
but include an increasing number of transistors. In these
system chips, the number of fault sites increases drastically
and, therefore, a high test data volume is required. It is
becoming important to consider test planning as early as
possible in the design-flow. In this paper, we propose a
technique where system test design is included in the core
selection phase. The advantage is that the technique makes

it possible to explore the impact of test design already
taking a system’s global perspective when deciding on
which cores to be used to implement the system. The
proposed technique can be used to explore the impact of
1) the core selection on the test solution, 2) the test set
partitioning (BIST size versus ATE size) on the test solution,
and/or 3) the placement of test resources (test source and
test sink) on the test solution.

Prior works assume a system where cores, tests, and
placement of test resources are already fixed when test
planning is to be performed. It means that test scheduling
and TAM design are the main problems. Our approach
includes the interdependent problems of test scheduling,
TAM design, test set selection, and test resource placement,
together with core selection. Our technique defines a test
solution where the test time and the TAM routing cost are
minimized while test conflicts and power limitations are
considered.

Test power consumption is becoming an important
aspect to be considered; however, previously proposed
power models have all been rather simplistic and have only
focused on the global power budget. We have improved
test power modeling by introducing a three level power
budget model: system-level, power-grid (local hot-spot)
level, and core-level. The advantage is that, with such a
model, it is possible to have more elaborate power
constraints on where the power is consumed in the system,
at cores, at certain hot-spot areas, and at the global level.

The design space is enormous when integrating core
selection, test set selection, test resource placement, and
TAM design and, in order to limit it, we make use of Gantt
charts to find the limiting resources (bottlenecks). For
validation of the proposed technique, we have implemen-
ted the proposed technique, an estimation-based technique,
and a pseudoexhaustive technique. We have compared the
three techniques with a technique where cores and tests are
selected prior to scheduling and TAM design and the
results show that the total cost can be reduced by including
core selection and test selection. Further, the experimental
results show that the pseudoexhaustive technique cannot
produce solutions within a reasonable CPU time and the
estimation-based technique does not produce high quality
solutions. The proposed technique can, on the other hand,
produce high quality solutions at a reasonable CPU time.

ACKNOWLEDGMENTS

This research is partially supported by the Swedish
National Program STRINGENT. A preliminary version of
this paper was presented at the International Test Con-
ference in 2004 [16].

REFERENCES

[1] R.M. Chou, K.K. Saluja, and V.D. Agrawal, “Scheduling Tests for
VLSI Systems under Power Constraints,” IEEE Trans. VLSI
Systems, vol. 5, no. 2, pp. 175-185, June 1997.

[2] Y. Bonhomme, P. Girard, L. Guiller, C. Landrault, and S.
Pravossoudovitch, “A Gated Clock Scheme for Low Power Scan
Testing of Logic ICs or Embedded Cores,” Proc. Asian Test Symp.
(ATS), pp. 253-258, Nov. 2001.

[3] P. Brucker, Scheduling Algorithms. Springer-Verlag, 1998.
[4] A.L. Crouch, Design for Test. Prentice Hall PTR, 1999.
[5] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan,

and J. Rajski, “Logic BIST for Large Industrial Designs: Real Issues
and Case Studies,” Proc. Int’l Test Conf. (ITC), pp. 358-367, Sept.
1999.

238 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006

[6] V. Iyengar, K. Chakrabarty, and E.J. Marinissen, “Test Access
Mechanism Optimization, Test Scheduling, and Tester Data
Volume Reduction for System-on-Chip,” IEEE Trans. Computers,
vol. 52, no. 12, pp. 1619-1632, Dec. 2003.

[7] V. Iyengar, K. Chakrabarty, and E.J. Marinissen, “Co-Optimiza-
tion of Test Wrapper and Test Access Architecture for Embedded
Cores,” J. Electronic Testing; Theory and Applications (JETTA),
pp. 213-230, Apr. 2002.

[8] G. Jervan, Z. Peng, R. Ubar, and H. Kruus, “A Hybrid BIST
Architecture and Its Optimization for SoC Testing,” Proc. Int’l
Symp. Quality Electronic Design (ISQED ’02), pp. 273-279, Mar.
2002.

[9] G. Jervan, P. Eles, Z. Peng, R. Ubar, and M. Jenihhin, “Test Time
Minimization for Hybrid BIST of Core-Based Systems,” Proc. Asian
Test Symp. (ATS ’03), pp. 318-323, Nov. 2003.

[10] E. Larsson and H. Fujiwara, “Test Resource Partitioning and
Optimization for SoC Designs,” Proc. VLSI Test Symp. (VTS ’03),
pp. 319-324, Apr. 2003.

[11] E. Larsson, K. Arvidsson, H. Fujiwara, and Z. Peng, “Efficient Test
Solutions for Core-Based Designs,” IEEE Trans. CAD of Integrated
Circuits and Systems, pp. 758-775, May 2004.

[12] J. Saxena, K.M. Butler, and L. Whetsel, “An Analysis of Power
Reduction Techniques in Scan Testing,” Proc. Int’l Test Conf. (ITC),
pp. 670-677, Oct. 2001.

[13] M. Sugihara, H. Date, and H. Yasuura, “Analysis and Minimiza-
tion of Test Time in a Combined BIST and External Test
Approach,” Proc. Design and Test in Europe (DATE), pp. 134-140,
Mar. 2000.

[14] Y. Zorian, “A Distributed BIST Control Scheme for Complex VLSI
Devices,” Proc. VLSI Test Symp. (VTS), pp. 4-9, Apr. 1993.

[15] Y. Zorian, E.J. Marinissen, and S. Dey, “Testing Embedded-Core
Based System Chips,” Proc. Int’l Test Conf. (ITC), pp. 130-143, Oct.
1998.

[16] E. Larsson, “Integrating Core Selection in the SoC Test Solution
Design-Flow,” Proc. Int’l Test Conf. (ITC), pp. 1349-1358, 2004.

[17] R.K. Gupta and Y. Zorian, “Introducing Core-Based System
Design,” IEEE Design and Test, vol. 14, no. 4, pp. 15-25, 1997.

Erik Larsson received the MSc, Tech. Lic, and
PhD degrees from Linköping University in 1994,
1998, and 2000, respectively. From October
2001 to December 2002, he held a Japan
Society for the Promotion of Science (JSPS)
funded postdoctoral position at the Computer
Design and Test Laboratory at the Nara Institute
of Science and Technology (NAIST), Nara,
Japan. Currently, he is an assistant professor
and director of Studies of the Division for

Software and Systems in the Department of Computer and Information
Science, Linköping Universitet, Sweden. His current research interests
include the development of tools and design for testability methodolo-
gies to facilitate the testing of complex digital systems. The main
focuses are on system-on-chip test scheduling and test infrastructure
design. He is the author of the book Introduction to Advanced System-
on-Chip Test Design and Optimization (Springer 2005) and is a coguest
editor for the IEE Computers & Digital Techniques special issue on
resource-constrained testing of system chips. He received the best
paper award for the paper “Integrated Test Scheduling, Test Paralleliza-
tion and TAM Design” at the IEEE Asian Test Symposium (ATS) 2002
and he supervised the thesis which was selected as the best thesis by
Föreningen Svenskt Näringsliv, 2002, and the thesis which was selected
as the best thesis in the Department of Computer Science, 2004. He is a
member of the program committee of Design and Test Automation in
Europe (DATE) 2004, 2005, 2006, the IEEE Workshop on Design and
Diagnostics of Electronic Circuits and Systems (DDECS) 2004, 2005,
2006, and the Workshop on RTL ATPG & DFT (WRTLT) 2005, 2006. He
is a member of the IEEE.

Zebo Peng (M’91-SM’02) received the BSc
degree in computer engineering from the South
China Institute of Technology, China, in 1982
and the Licentiate of Engineering and PhD
degrees in computer science from Linköping
University, Sweden, in 1985 and 1987, respec-
tively. Currently, he is a professor of computer
systems, director of the Embedded Systems
Laboratory, and chairman of the Division for
Software and Systems in the Department of

Computer Science, Linköping University. His research interests include
design and test of embedded systems, electronic design automation,
SoC testing, design for testability, hardware/software codesign, and
real-time systems. He has published more than 180 technical papers in
these areas and coauthored the books System Synthesis with VHDL
(Kluwer, 1997), Analysis and Synthesis of Distributed Real-Time
Embedded Systems (Kluwer, 2004), and System-Level Test and
Validation of Hardware/Software Systems (Springer, 2005). Professor
Peng was a corecipient of two best paper awards at the European
Design Automation Conferences (1992 and 1994), a best paper award
at the IEEE Asian Test Symposium (2002), a best paper award at the
Design Automation and Test in Europe Conference (2005), and a best
presentation award at the IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (2003). He has
served on the program committees of a dozen international conferences
and workshops, including ATS, ASP-DAC, DATE, DDECS, DFT, ETS,
ITSW, MEMOCDE, and VLSI-SOC. He was the general chair of the
Sixth IEEE European Test Workshop (ETW ’01), the program chair of
the Seventh IEEE Design & Diagnostics of Electronic Circuits &
Systems Workshop (DDECS ’04), and the test track chair of the 2006
Design Automation and Test in Europe Conference (DATE ’06). He is
the vice-chair of the IEEE European Test Technology Technical Council
(ETTTC). He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LARSSON AND PENG: POWER-AWARE TEST PLANNING IN THE EARLY SYSTEM-ON-CHIP DESIGN EXPLORATION PROCESS 239

