
Fault-Tolerant Average Execution Time Optimization for General-Purpose

Multi-Processor System-On-Chips

Mikael Väyrynen†, Virendra Singh‡ and Erik Larsson†

Department of Computer Science† Supercomputer Education and Research Centre‡

Linköping University Indian Institute of Science
Sweden India

Abstract1

Fault-tolerance is due to the semiconductor technology
development important, not only for safety-critical systems
but also for general-purpose (non-safety critical) systems.
However, instead of guaranteeing that deadlines always
are met, it is for general-purpose systems important to
minimize the average execution time (AET) while ensuring
fault-tolerance. For a given job and a soft (transient) error
probability, we define mathematical formulas for AET that
includes bus communication overhead for both voting (ac-
tive replication) and rollback-recovery with checkpointing
(RRC). And, for a given multi-processor system-on-chip
(MPSoC), we define integer linear programming (ILP)
models that minimize AET including bus communication
overhead when: (1) selecting the number of checkpoints
when using RRC, (2) finding the number of processors
and job-to-processor assignment when using voting, and
(3) defining fault-tolerance scheme (voting or RRC) per
job and defining its usage for each job. Experiments demon-
strate significant savings in AET.

I. Introduction

The semiconductor technology development makes it
possible to fabricate integrated circuits (ICs) with billions
of transistor. In order to enhance performance (the overall
throughput of jobs), it is increasingly common to use the
high transistor count to design ICs with multiple proces-
sors, so called multi-processor system-on-chips (MPSoCs).

Until recently, production test was sufficient to distin-
guish faulty ICs from fault-free ICs. However, for ICs fab-
ricated in recent semiconductor technologies, production
test only is no longer sufficient. Fault-tolerance, detection
and handling of errors that occur during operation, is
therefore increasingly important to consider [1]; not only
for safety-critical systems but also for general purpose (non
safety-critical) systems.

Fault-tolerance is an active area [2] [3], and has been
such for a long time [4]. However, most work has focused on
safety-critical systems. For example, the architecture for
the fighter JAS 39 Gripen contains seven hardware repli-
cas [5]. Much research has been proposed to optimize fault-
tolerance for safety-critical systems [6] [7] [8]. Al-Omari

1The research is supported by The Swedish Foundation for Inter-
national Cooperation in Research and Higher Education (STINT)
through Institutional Grant for Younger Researchers for collabora-
tion with Indian Institute of Science (IISc), Bangalore, India.

et al. proposed a technique to handle a single error in
multiprocessor systems while ensuring timing constraints,
and Izosimov et al. proposed for hard real-time safety-
critical applications the optimization of re-execution and
roll-back recovery under the assumption that errors are
detected and that the maximal number of faults are known
[8]. Ejlali et al. explore the resource conflict between time-
redundancy and dynamic voltage scaling [9] and Cai et al.
study fault-tolerant cache design [10].

For a general purpose system, for example a mobile
phone, redundancy such as the one used in JAS 39
Gripen, seven hardware replicas, is unimaginable. Further,
for general purpose systems, the average execution time
(AET) is more important than meeting hard deadlines.
For example, a mobile phone user can usually accept a
slight and temporary performance degradation in order to
be ensured fault-free operation.

In order to design a fault-tolerant general purpose MP-
SoC there is a need of a mathematical framework for anal-
ysis, evaluation and exploration of fault-tolerance versus
AET. In this paper we define a mathematical framework
where we assume given is a number of jobs to be executed
on an MPSoC and a soft (transient) error probability.

The main contributions of this paper are:

• given a job and an error probability, we define a
mathematical formula that makes it possible to find
the optimal number of checkpoints for the job in
respect to AET when employing rollback recovery with
checkpointing (RRC). The AET formulation includes
bus communication overhead.

• given a job and an error probability, we define a
mathematical formula that makes it possible to an-
alyze the AET for the job using various number of
processors (replicas). The AET formulation includes
bus communication overhead.

• given a set of jobs, an MPSoC with a number of
processors, and an error probability, we make an
integer linear programming (ILP) formulation to find
the optimal fault-tolerance scheme and AET for the
system. We define the problems Pv, Prrc, and Pv+rrc

where Pv assumes voting for each job, Prrc uses RRC
for each job, and Pv+rrc selectsvoting or RRC for
each job. The objective for Pv, Prrc, and Pv+rrc is
to optimize respective fault-tolerance scheme and bus
communication such that the system’s overall AET is
minimal.

978-3-9810801-5-5/DATE09 © 2009 EDAA

2

The rest of the paper is organized as follows. The pre-
liminaries for the MPSoC, jobs, error probability, error
detection and error handling are described in Section II. In
Section III, the job-level optimization is presented. Given
is a job, an error probability, and a number of processors,
and we define formulas for AET for RRC and voting.
The system-level optimization is in Section IV. We assume
given is an MPSoC, a set of jobs, and an error probability,
and the objective is to assign jobs to the processors such
that AET is minimal while ensuring fault-tolerance. The
paper is concluded in Section V.

II. Preliminaries

For the MPSoC, we assume that n processors are con-
nected by a bus as shown in Figure 1. Each processor node
has its own private memory and there is a common shared
memory. Bus communication, processor to shared memory,
involves an overhead denoted by τb, which we assume to
be equal to 5µs.

We assume that given is Pτ , which denotes the proba-
bility of error-free execution for τ time units on any of the
processors in the MPSoC. The probability that a job with
longer execution time is impacted by an error is higher
than that of a shorter job. For each job, we assume given
is the error-free execution execution time T . And, for a
given job with error-free execution T , the probability of
fault-free execution P is given by:

P = P
T
τ

τ , 0 < Pτ < 1 (1)

In the paper, we make use of the fault-tolerant schemes
rollback-recovery with checkpointing (RRC) and voting
(both detailed in Section III). Both schemes require test
evaluation to determine if errors have occurred. For test
evaluation, we assume a common test evaluator for the
MPSoC, which is connected to the shared memory (as
shown in Figure 1). The test evaluator can compare the
contexts of two or more processors. A context is a snapshot
of a processor’s registers. Such snapshots are used by
operating systems when switching jobs, that is saving the
state of one job and restoring another preempted job. We
make use of the contexts to detect if errors have occurred.
For example, if a given job is executed on two processors,
the contexts of the processors should after the execution
in the error-free case not differ. However, if the contexts
differ, at least one error has occurred.

We use the following two assumptions regarding errors:

• An error may occur at any time during the execution
of a job on a processor. Hence, we do not consider
errors that occur during bus communication and test
evaluation. For such errors, we assume that error-
tolerant techniques can be applied.

• The fault effect (captured by the context of a pro-
cessor) from any error is different. We assume that
it is so extremely unlikely that the fault effect (the
context of a processor) of errors will be exactly the
same and will not differ in a single bit that such case
can be neglected. Hence, if a given job is executed on

Node1 Node2
q q q

Noden
Shared
memory

Test
evaluation

bus

Figure 1: MPSoC architecture with n processor nodes,
a shared memory and test evaluation

two processors, and if one error or more errors occur
in the two processors, we assume that the processor’s
contexts, which contain the fault effect, are different.

The overhead involved for comparing contexts is de-
noted by τc, which we in this paper assume to be equal to
10µs.

III. Job-level Optimization

In this section, we define formulas useful for the AET
analysis of a job’s requirements on fault-tolerance when
using rollback recovery with checkpointing (RRC) and vot-
ing (active replication).

A. Rollback-Recovery with Checkpointing (RRC)

In RRC, a given job with fault-free execution time T
is divided into nc execution segments (ESs). The error-
free execution time of an ES is therefore t = T/nc. In
conjunction to each ES, a checkpoint is inserted, hence nc

checkpoints are added. The job is simultaneously executed
on two processors. When an ES has been executed and
a checkpoint is reached, the status of the two processors
are compared against each other. As discussed above, we
assume that test evaluation (Figure 1) handles the error
detection by comparing the contexts of the two processors.

Checkpointing imposes an overhead that comes from
the bus communication for transferring the context of a
processor to the shared memory (τb), the time to compare
contexts (error detection)(τc), and the checkpoint over-
head (τoh), which is to load and start a new ES in case of
no error or to load and restart at the previous checkpoint
if one or more errors have been detected.

Figure 2 exemplifies the execution of ESs and check-
points. Execution segment ES1 is error-free and after
checkpoint overhead, execution segment ES2 is executed.
An error occurs during ES2, and the error is detected by
the test evaluation during the following checkpoint. Due
to the error, ES2 has to be re-executed, which means the
processors should start the execution from the previous
checkpoint, which is known to be error-free. Restarting at
a checkpoint means that the context of the processors have
to be loaded with context saved at the checkpoint.

Given a job with error-free execution time T , the prob-
ability of no error P is given from Eq. (1). The error-
free execution time of any of the nc execution segments is
t = T/nc and the probability of error-free execution of an
ES executed on one processor is given by:

P = pnc ⇔ p =
nc
√

P , 0 < P < 1 (2)

3

ESi: Execution segment i

τoh: Time for checkpoint overhead

τc: Time for comparision (error detection)

τb: Time for data transfer (bus communication)

τoh ES1 τb τc τoh ES2 τb τc τoh ES2 τb τc q q q

@@R

Error occur

@@R

Error detected

��	

Reexecution of ES2

Figure 2: Error occurance, detection and handling

jobA

jobA

processor2

processor1

Ps

p, t p, t p, t p, t p, t p, t

p, t p, t p, t p, t p, t p, t

Figure 3: Rollback recovery with checkpointing

The probability of error-free execution of an ES implies
that both processors are error-free, hence Ps = p2 (Ps is
illustrated in Figure 3). Given Ps, the error probability is
given as: Qs = 1 − Ps.

A high number of checkpoints gives less time in each exe-
cution segment (t), and in case of an error there is therefore
a lower re-execution penalty as less instructions are to
be re-executed. However, a high number of checkpoints
increases the bus communication overhead. In order to be
able to analyze the AET for RRC, we need expressions for
the AET (E[Texe,rr]) of a job executed with nc checkpoints
and total AET (E[Ttot,rr]) when also bus communication
overhead is included.

The AET (E[ES]) for one execution segment is com-
puted by Eq. (3) and Eq. (4).

E[N] =

∞∑

k=1

k × (1 − Ps)
k−1 × Ps =

Ps ×
d

dQs

∞∑

k=1

Qk
s = Ps ×

d

dQs

Qs

1 − Qs

=

Ps ×
1

1 − Qs

+ Ps ×
Qs

(1 − Qs)2
=

1 +
Qs

1 − Qs

=
1

1 − Qs

=
1

Ps

(3)

where k is an iteration variable as an error may occur at
any time.

E[ES] = t × E[N] =
t

Ps

(4)

Given AET for one ES (Eq.(4)), the AET (E[Texe,rr])
for a job at nc checkpoints is:

E[Texe,rr] = nc × E[ES] =
nct

Ps

=
nct

p2
=

T
nc
√

P
2

(5)

Checkpoints impose communication overhead. At each
of the nc checkpoints, each of the two processors has over-
head corresponding to τb + τc + τoh (as discussed above).
Given Eq. (5), the communication overhead E[Tcom,rr] is
given as:

E[Tcom,rr] = nc ×
2 × τb + τc + τoh

nc
√

P
2

(6)

by exchanging T to 2×τb+τc+τoh (overhead) and multiply
by nc (checkpoints).

The total AET including communication overhead
(E[Ttot,rr]) is given by combining Eq. (5) and Eq. (6) as:

E[Ttot,rr] =

E[Texe,rr] + E[Tcom,rr] =

T
nc
√

P
2

+ (2 × τb + τc + τoh) × nc

nc
√

P
2

(7)

As Eq. (7) is in explicit form, the optimal number
of checkpoints is given by finding the derivative. The
derivative of Eq. (7) is given as:

dTtot,rr

dnc

=
d

dnc

T
nc
√

P
2

+

C
︷ ︸︸ ︷

(2 × τb + τc + τoh)× nc

nc
√

P
2

 =

= C × P
−2
nc + (T + C × nc) ×

d

dnc

(

P
−2
nc

)

=

=

{

x =
−2

nc

⇒ dx

dnc

=
2

n2
c

⇔ dnc =
n2

c

2
dx

}

=

= C × P
−2
nc + (T + C × nc) ×

2

n2
c

× d

dx
(P x) =

= C × P
−2
nc + (T + C × nc) ×

2

n2
c

× lnP × P x =

= C × P
−2
nc + (T + C × nc) ×

2

n2
c

× lnP × P
−2
nc =

= P
−2
nc × (C + (T + C × nc) ×

2

n2
c

× lnP)

(8)

In order to find the minimum of Eq. (7), we set the
derivative (Eq. (8)) equal to zero and we get:

4

0 = P
−2
nc × (C + (T + C × nc) ×

2

n2
c

× lnP) =

C + (T + C × nc) ×
2

n2
c

× lnP =

C

lnP
+ (T + C × nc) ×

2

n2
c

=

C × n2
c

lnP
+ 2 × T + 2 × C × nc =

n2
c + 2 × lnP × nc +

2 × T × lnP

C
=

(nc + lnP)2 − (lnP)2 +
2 × T × lnP

C
⇔

nc = − lnP +

√

(lnP)2 − 2 × T × lnP

C
=

− lnP +

√

(ln P)2 − 2 × T × lnP

2 × τb + τc + τoh

(9)

We have now defined an expression for finding the
optimal number of checkpoints when using RRC for a
given job and an error probability.

For a given job with T = 500µs and a processor with
Pτ = 0.85, Figure 4 shows the AET for RRC at various
number of checkpoints. Figure 4 clearly shows that there
is a trade-off between the number of checkpoint and the
bus communication in respect to AET. A high number of
checkpoints reduces the AET; however, only to a given
point where bus communication starts to dominate the
AET.

The formulas defined in this section make it possible to
define the optimal number of checkpoints for a given job
and an error probability.

0 5 10 15 20 25 30
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

E
[T

to
t]

u
s

checkpoints

Figure 4: Average execution time including bus
communication for rollback recovery with checkpointing at

various number of check-points

B. Voting (Active replication)

In voting, a given job is executed on three or more
processors, and at the end of the execution, majority

voting determines the correct response. If triple modular
redundancy is used, the job is executed on three proces-
sors, and if an error occur in one of the processors and
no error occur in the others, the correct result is given by
majority voting. If two errors occur in one processor and
the other two operate correctly, a final result is produced.
However, if two errors occur in two different processors,
three different responses exist, and no final result can be
produced. For safety-critical applications, the redundancy
can be increased such that the probability of not being
able to determine correct response is very low. However,
for general purpose systems such redundancy is too costly
and re-execution is the alternative. However, formulas for
re-execution using voting for AET is needed.

We assume given is a job with error-free execution time
T , an error probability P (computed by Eq. (1)), and
a number of np processors, and we define expressions
for AET (E[Texe,vot]) when not including communication
overhead and the AET (E[Ttot,vot]) when communication
overhead is included.

The probability that voting cannot be used is when the
result from all processors are different. It occurs in two
cases:

• an error in all np processors and
• an error in all but one processor,

and it is given as:

Qs = (1 − P)np

︸ ︷︷ ︸

all fail

+ np × P × (1 − P)np−1

︸ ︷︷ ︸

only one success

(10)

Eq. (10) gives all cases when voting cannot be used,
hence re-execution is required. We use this to compute
the expected execution time (AET), which is:

E[Texe,vot] = T × E[N] =
T

1 − Qs

=

T

1 − ((1 − P)np + np × P × (1 − P)np−1)

(11)

for the execution of a job with error-free execution time of
T on np processors.

The communication overhead is given by:

E[Tcom,vot] =
np × τb + τc + τoh

1 − ((1 − P)np + np × P × (1 − P)np−1)
(12)

where np × τb is due to that each processor needs to
communicate its response over the bus to the shared
memory.

The total expected execution time is given from Eq. (11)
and Eq. (12) as:

E[Ttot,vot] = E[Texe,vot] + E[Tcom,vot] =

=
T + np × τb + τc + τoh

1 − ((1 − P)np + np × P × (1 − P)np−1)

(13)

Figure 5 shows for a job with T = 500µs and processors
with Pτ = 0.85, the AET for voting at various number

5

of processors. It comes clear that in voting there is a
trade-off between the number of processors and the bus
communication overhead. A high number of processors
reduces the AET; however, only to a given point where bus
communication starts to be the dominant contributer to
AET. By the formulas defined in this section, it is possible
to find the optimal number of processors for a given job
at a certain error probability.

0 5 10 15 20 25 30
500

600

700

800

900

1000

1100

1200

1300

processors

E
[T

to
t]

u
s

Figure 5: Average execution time including bus
communication for voting at various number of processors

IV. System-level Optimization

Above, we defined formulas to optimize the AET using
RRC and voting for a given job and an error probability.
In this section, we assume given is the formulas defined
above, a set of jobs, an MPSoC, and an error probability.
We define three problems, Pv, Prrc, and Pv+rrc, as:

• Pv: Given that voting is to be used, the problem Pv

is to define the groups (clusters) of processors and
assign jobs to each group (cluster),

• Prrc: Given that RRC is to be used, the problem Prrc

is to select processor and the number of checkpoints
for each job, and

• Pv+rrc: The problem Pv+rrc is to select voting or RRC
for each job, and for each job using voting define
clusters and assign jobs to the clusters, and for each
job using RRC select the number of checkpoints and
assign jobs to processors

where the objective for each problem is to optimize the
fault-tolerance such that the overall AET including bus
communication is minimized.

The problems Pv, Prrc, and Pv+rrc are NP-complete as
equivalence between them and multiprocessor scheduling
problem (MSP), which is known to be NP-complete [11],
can be shown as: a job is a job and a machine is a cluster
of processors (group of processors).

We make use of integer linear programming (ILP) to
exactly solve the problem. An ILP model can be described
as follows:

minimize: cx,
subject to: Ax≤ b, such that x≥ 0,

where c is a cost vector, A is a constraint matrix, b is
a column vector of constants and x is a vector of integer
variables.

We make use of the following ILP model:

minimize: T
subject to:

∑n

j=1
Aij × xij − T ≤ 0, 1 ≤ i ≤ m

∑m

i=1
xij=1, 1 ≤ j ≤ n

xij ∈ {0, 1} , 1 ≤ i ≤ m, 1 ≤ j ≤ n
T ≥ 0

where
Aij = processing time if cluster i is assigned job j
xij = 1, if cluster i is assigned job j, otherwise 0
T = average execution time (AET).

From the model, m clusters and n jobs need m × n + 1
variables and m × n constraints. The problem size grows
with m and n; however, in practice there is a limit on the
number of jobs and especially on the number of processors
in an MPSoC. And therefore ILP is justified.

For the experiments we assume: ten jobs with fault-free
execution time (T) of 500, 600, 700,..., 1400 µs per job,
respectively, an MPSoCs where the number of processors
(proc) is ranging from two to nine, the overhead to be: τb =
τoh = 5µs and τc = 10µs, and the probability of no error
Pτ=0.96. We make use of lp solve for the optimization [12].

As reference point in the experiments, called Pref , we
make use of a scheme using RRC with minimal bus
communication; a single checkpoint (at the end of the job).
We compare the results from the three problems (Pv, Prrc

and Pv+rrc) against Pref .

The results are collected in Tables 1 and 2, and Figures
6 and 7. There is no result for Pv at two processors as
voting requires a minimum of three processors. Table 1
and Figure 6 show the AET for Pv, Prrc, Pv+rrc and Pref .
The results show that Pv, Prrc and Pv+rrc produce better
results than Pref . The results for Pv is slightly better and
in some cases much better than those of Pref , while the
results for Prrc and Pv+rrc are significantly better than
the results from Pref .

Table 2 and Figure 7 show the relative improvement of
Pv, Prrc and Pv+rrc against Pref . Prrc and Pv+rrc produce
results that are almost 50% better than those produced by
Pref . The results from Pv are in some cases almost as good
as the results produced by Prrc and Pv+rrc. However, often
the results are only slightly better than Pref . The results
indicate that voting is a costly fault-tolerant technique;
hence Pv does not generate as good results as Prrc, and
the combination of voting and RRC (Pv+rrc) does not
result in significantly better AET than Prrc. However,
the results show that effective usage of Prrc significantly
reduces AET.

6

proc Pref Pv Prrc Pv+rrc

2 23251 ——– 12521 12521
3 23251 13744 12521 12521
4 11627 11363 6325 6325
5 11627 10536 6325 6325
6 7785 6878 4218 4218
7 7785 6145 4218 4217
8 5871 5692 3164 3164
9 5871 4623 3164 3163

Table 1: AET for Pref , Pv, Prrc, and Pv+rrc at various
number of processors

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5
x 10

4

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
A

E
T

)

Number of processors

Reference

Voting

RRC

Voting+RRC

Figure 6: AET for Pref , Pv, Prrc, and Pv+rrc

V. Conclusions

As semiconductor technology, on the one hand, makes
it possible to increase the performance (throughput) by
enabling multi-processor System-on-Chip (MPSoC), but,
on the other hand, increases the sensitivity to errors,
especially soft (transient) errors, there is a need of math-
ematical framework for cost-effective fault-tolerance anal-
ysis for MPSoCs that are to be used in general purpose
applications.

For general purpose applications the average execution
time (AET) for a system is most important while ensuring
fault-tolerance. In this paper, we have defined formulas for
the AET for a job using two fault tolerance techniques,
rollback recovery with checkpointing (RRC) and voting
(active replication) where we for each scheme include
bus communication overhead. We also take the system

proc Pv Prrc Pv+rrc

2 ——– 46.15% 46.15%
3 40.88% 46.15% 46.15%
4 2.27% 45.60% 45.60%
5 9.38% 45.60% 45.60%
6 11.65% 45.82% 45.82%
7 21.07% 45.82% 45.83%
8 3.05% 46.11% 46.11%
9 21.26% 46.11% 46.12%

Table 2: Relative AET (%) for Pv, Prrc, and Pv+rrc at
various number of processors against Pref

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

R
e

la
ti
v
e

 i
m

p
ro

v
e

m
e

n
t

c
o

m
p

a
re

d
 t

o
 r

e
fe

re
n

c
e

 (
%

)

Number of processors

Voting

RRC

Voting+RRC

Figure 7: Relative AET (%) savings for Pv, Prrc, and
Pv+rrc against Pref

perspective and optimize using ILP the usage of fault-
tolerance such that the overall AET is minimal. The
results show that voting is a costly fault-tolerant technique
while RRC is shown to be a technique that if optimized
properly can lead to significant savings of AET.

References

[1] S. Borkar, “Design challenges of technology scaling,” Micro,
IEEE, vol. 19, no. 4, pp. 23–29, Jul-Aug 1999.

[2] I. Koren and C. M. Krishna, Fault-Tolerant Systems. Morgan
Kaufmann, 2007.

[3] S. Mukherjee, Architecture Design for Soft Errors. Morgan
Kaufmann, 2008.

[4] J. von Neumann, Probabilistic logics and synthesis of reliable
organisms from unreliable components, C. Shannon and J. Mc-
Carthy, Eds. Princeton University Press, 1956.

[5] K. Alstrom and J. Torin, “Future architecture for flight control
systems,” Proceedings of the The 20th Conference on Digital
Avionics Systems, vol. 1, pp. 1B5/1–1B5/10, 2001.

[6] A. Bertossi, A. Fusiello, and L. Mancini, “Fault-tolerant
deadline-monotonic algorithm for scheduling hard-real-time
tasks,” Proceedings of Parallel Processing Symposium, pp. 133–
138, April 1997.

[7] R. Al-Omari, A. Somani, and G. Manimaran, “A new fault-
tolerant technique for improving schedulability in multiproces-
sor real-time systems,” IPDPS ’01: Proceedings of the 15th
International Parallel and Distributed Processing Symposium
(IPDPS’01), p. 10032.1, 2001.

[8] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Design optimization
of time-and cost-constrained fault-tolerant distributed embed-
ded systems,” in DATE ’05: Proceedings of the conference on
Design, Automation and Test in Europe, 2005, pp. 864–869.

[9] A. Ejlali, B. M. Al-Hashimi, M. T. Schmitz, P. Rosinger, and
S. G. Miremadi, “Combined time and information redundancy
for seu-tolerance in energy-efficient real-time systems,” IEEE
Transactions on Very Large Scale Integrated Circuits and Sys-
tems, vol. 14, no. 4, pp. 323–335, 2006.

[10] Y. Cai, M. T. Schmitz, A. Ejlali, B. M. Al-Hashimi, and
S. M. Reddy, “Cache size selection for performance, energy
and reliability of time-constrained systems,” in ASP-DAC ’06:
Proceedings of Asia South Pacific design automation, 2006, pp.
923–928.

[11] M. Garey and D. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman and
Company, 1979.

[12] M. Berkelaar, “lpsolve 3.0,” Eindhoven Univer-
sity of Technology, Eindhoven, The Netherlands,
ftp://ftp.ics.ele.tue.nl/pub/lp solve.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

