
A Heuristic for Wiring-Aware Built-In Self-Test Synthesis

Abdil Rashid Mohamed, Zebo Peng and Petru Eles
Department of Computer and Information Science,

 Linköping University, S-581 83, Sweden.
{abdmo, zebpe, petel}@ida.liu.se

Abstract

This paper addresses the problem of BIST synthesis
that takes into account wiring area. A technique for
minimizing BIST hardware overhead is presented. The
technique uses results of symbolic testability analysis to
guarantee testability of all modules in the design. New
behavioral-level BIST enhancement metrics are used to
guide synthesis in such a way that the number of
testability enhancements is minimized. The technique is
not only fast but also adds low BIST overhead.

Keywords: BIST insertion, test synthesis, wiring area.

1. Introduction

In deep-submicron VLSI implementation, wiring can
take substantial amount of the total chip area. With the
development of microelectronics technology, there is a
clear trend towards deep submicron implementation,
where the interconnecting wires dominate the silicon area
cost. It is, therefore, very important to consider the wiring
effect in the future deep submicron VLSI
implementations.

Since exact wiring information is only available after
physical design steps such as floor plan and placement are
performed, most of the existing high-level built-in self-test
(BIST) and other test synthesis approaches usually do not
consider wiring effect. These BIST synthesis approaches,
which do not consider the impact of placement of the
functional and BIST modules lead to designs which are
optimal in terms of the numbers of functional units and
BIST resources, but takes more silicon area to implement
since the interconnects take a lot of silicon space.
Therefore, it is important to take floor planning and wiring
cost into account during the BIST synthesis process. To
get area efficient designs, the impact of wiring area
contribution should be addressed as early as possible so
that both functional, BIST and wiring areas can be
simultaneously optimized. In this way, resulting designs
are likely to be better in terms of total area as compared to
the case when wiring is ignored during the synthesis.

Alvandpour and Svensson [1] have developed a
heuristic to estimate wiring lengths at register transfer
(RT) or higher level of abstraction. Their approach makes
use of a few technology dependent parameters, which can
be extracted from technology libraries. The approach was
later deployed by Hallberg et al. [5] to predict area
increase due to wiring in a high-level synthesis system
under local timing constraints. Recently, Goel and
Marinissen [4] have proposed a model for wiring length
computation for core based system-on-chip testing, where
they assume the layout of the modules to be known
beforehand.

The problem of optimizing BIST insertion at the
behavioral and RT levels while taking into account
geometrical information of the design has been addressed
by us in [6]. There positions of all modules on chip are
estimated, and the wire lengths of all interconnections are
computed using the technique discussed in [1] and [5].
The area of the design is then computed taking into
account the position of the modules, wire lengths and the
number of metal layers that are used for wiring with a
given VLSI process technology. Simulated Annealing [9]
is used to solve the overall BIST synthesis problem. The
approach results in very good designs in terms of area
since both geometrical information and testability are
simultaneously taken into account during BIST synthesis
process. On the other hand, since computation intensive
Symbolic Testability Analysis (STA) [7], [2], [3] is
performed in each optimization loop, the whole approach
is very slow.

The aim of this work is to propose and develop a fast
and accurate heuristic for addressing the problem of
wiring-aware BIST synthesis optimization. The heuristic
simultaneously takes into account geometrical information
(wiring) and testability during BIST synthesis, hence
results in near-optimal designs in terms of realistic area
cost. It also addresses the drawbacks of the Simulated
Annealing based BIST synthesis approach presented in
[6].

The exact problem is formulated as follows: given a
design represented as a scheduled data flow graph (SDFG)
along with allocation/binding information, insert BIST

modules into the design such that all functional modules
are self-testable and the total design area is minimized.

The rest of the paper is organized as follows. In Section
2 a short description of our design transformations for
BIST is given. In Section 3 some preliminary background
information for our approach is provided. In Section 4 our
BIST synthesis heuristic is described in detail.
Experimental results are presented in Section 5 and some
conclusions are drawn in Section 6.

2. BIST Transformations

The main idea of the BIST synthesis approach
proposed in this paper is based on a set of BIST design
transformations �WHVWDELOLW\� PRYHV�. Two classes of
transformations have been defined. The first class, known
as conversion for BIST, provides ways of modifying
existing functional registers to give them the capability of
test pattern generation or test response analysis. The
second class of transformations, known as connection for
BIST, provides ways to connect existing BIST registers to
uncontrollable or unobservable modules. In doing so,
controllability or observability of the given module can be
improved.

To illustrate the transformations for BIST we use a
very simple RT design, which is obtained from a DFG by
allocating a separate module for each DFG operation and
a separate register for each DFG variable. This example
design is depicted in Figure 1. To make the design self-
testable, registers u, x, c3, y and dx are converted to TPGs
(Test Pattern Generators) and registers t4, u1, y1 and x1 are
converted to MISRs (Multiple Input Signature Register).
These conversion transformations are enough to make the

design fully self-testable. However, alternative solutions
can be obtained if connection transformations are also
applied. For example, by making connections shown with
thick dashed lines, it is possible to observe modules *3,
+1 and +2 at the MISR M2 instead of MISRs M1, M4 and
M3 respectively. These connection transformations
introduce wiring and multiplexer overhead, but in this
case MISRs M1, M3 and M4 can be converted back to
functional registers. A BIST synthesis optimization
algorithm should use a cost function to decide which
enhancement transformations to apply.

3. Preliminaries

This paper describes a heuristic that performs
testability enhancement and guarantees complete
testability of each register-transfer (RT) level module
while keeping the design area minimum. The heuristic
uses behavioral information from a scheduled data-flow
graph (SDFG) to do testability analysis of the design and
identify operations with testability problems. From now
onwards, whenever we use a term DFG we will mean
SDFG, unless otherwise explicitly stated. By working at a
high-level of abstraction, testability problems can be
tackled very early in the design process to avoid
expensive and less optimal re-design iterations that can be
needed to eliminate testability problems late in the design
process. Testability enhancement is performed on the
corresponding RT level architectural implementation.

Our definition of testability of DFG operations is based
on the use of symbolic testability analysis [2], [3], which
asserts an operation to be testable if there is a guaranteed
transparent path from on-chip TPGs to the inputs of the
operation for supplying pure test patterns, and a
transparent path from the output of the operation to an on-
chip MISR or BILBO for observing test results. In other
words, a DFG operation is testable if its input operands
are controllable and its output observable at the same time.
For the case of the RT designs, a module m is considered
testable if at least one of the operations mapped to it is
testable.

Our approach provides a novel way to quickly explore
the design space in search of cheap, yet testable design
solutions. Since the optimization problem formulated in
Section 1 is NP-hard, a heuristic has been developed
which reduces the design space that has to be explored.
The proposed heuristic proceeds in the following steps:

A. Controllability enhancement.
B. Observability enhancement.
C. Global testability enhancement.
In each of these steps the following two actions are

repeated until complete controllability (step A),
observability (step B) and testability (step C) are
respectively achieved:

t1

*1 *2

u
x c3 y dx

+1

*3

t2

*4

t4 t5

*6

t7 t6

*5 -1

u1

+2 -2

t8

x1 y1

M2 M3 M4

M1

P1 P2 P3 P4 P5

Figure 1: Illustration of BIST transformations

i. Choose a module m that is not controllable (or
observable, testable respectively).

ii. Visit all possible enhancements for the module m
and choose the one, which incurs the lowest area
overhead.

In order to make the design space exploration efficient,
it is important to choose and enhance the modules in such
a sequence so as to minimize the overall number of
testability enhancements. This is made possible by using
our novel BIST enhancement metrics (Section 4.1) to help
decide in which sequence to enhance untestable modules.
Since the heuristic minimizes the overall number of
enhancements and the cheapest solution in each
enhancement step is chosen, the approach can lead to low
cost solutions.

4. Testability Improvement

4.1 BIST Enhancement Metrics

We need to choose uncontrollable (or unobservable,
untestable) modules and a sequence in which to enhance
them in such a way that the total number of enhancements
performed on the design is minimized. We can achieve
this objective by ensuring that each time we choose a
module to enhance, the enhancement will improve as
many other modules as possible.

To solve this problem, we propose an approach, which
uses our novel behavioral-level BIST enhancement
metrics to guide the testability enhancement process. The
BIST enhancement metrics are defined below.
Definition 1: Total Controllability Enhancement Potential
(TCEP) of a given DFG operation or variable node, ni, is
the number of operations and variables whose
controllability it can affect.
 Controllability of a node nj can be affected by the
controllability of a node ni if there is a path in the DFG
from ni to nj and the control step of ni precedes the control
step of nj. For instance, consider an operation *1 in Figure
2. It can be observed that starting from the operation *1, it
is possible to reach seven nodes namely t1, *3, t4, -1, t6, -2,

and u1. Therefore, the value of TCEP for the operation *1
is 7.
Definition 2: Total Observability Enhancement Potential
(TOEP) of a given DFG operation or variable node, ni, is
the number of operations whose observability it can
affect.

Observability of a node ni can be affected by the
observability of a node nj if there is a path in the DFG
from ni to nj and the control step of ni precedes the control
step of nj. For instance, consider an operation -1 in Figure
2. It can be observed that starting from the operation -1, it
is possible to traverse the graph upwards and reach 10
nodes namely u, t4, *3, t1, *1, dx, t2, *2, x, and c3.
Therefore, the value of TOEP for the operation -1 is 10.

The BIST enhancement metrics such as TCEP and
TOEP presented so far are computed with reference to the
DFG nodes. Controllability, observability and testability
enhancements are, however, performed on the RT level
architectural representation of the design. Therefore, we
need to extend the definitions of the BIST enhancement
metrics so that we can apply them to the RT designs.
Definition 3: RT Total Controllability Enhancement
Potential (RTCEP) of a given RT module, mi, which
implements a set of DFG operations SMi = {op1, op2, …,

+1

x1

u

t1

*1 *2

x c3 y dx

*3

t2

*4

t4 t5

*6

t7 t6

*5 -1

u1

+2 -2

t8

y1

Figure 2: Data Flow Graph Example

Table 1: BIST enhancement metrics: 1-to-1 mapping
Modules M1 M4 M5 M2 M3 M6 A1 A2 S1 S2

Operation binding *1 *4 *5 *2 *3 *6 +1 +2 -1 -2
TCEP 7 5 3 7 5 3 1 1 3 1
TOEP 2 2 5 2 8 2 2 5 10 17

RTCEP 7 5 3 7 5 3 1 1 3 1
RTOEP 2 2 5 2 8 2 2 5 10 17

Table 2: BIST enhancement metrics: realistic mapping
Modules Mult1 Mult2 Add1 Sub1

Operation binding *1 *4 *5 *2 *3 *6 +1 +2 -1 -2
TCEP 7 5 3 7 5 3 1 1 3 1
TOEP 2 2 5 2 8 2 2 5 10 17

RTCEP 7 7 1 3
RTOEP 5 8 5 17

opn} whose respective values of the TCEP are given by
the set STCEPi = {TCEP1, TCEP2, …, TCEPn} is defined
as the maximum TCEP value in the set STCEPi, i.e.

}{1 j
n
ji TCEPMaxRTCEP == .

Definition 4: RT Total Observability Enhancement
Potential (RTOEP) of a given RT module, mi, which
implements a set of DFG operations SMi = {op1, op2, …,
opn} whose respective values of the TOEP are given by
the set STOEPi = {TOEP1, TOEP2, …, TOEPn} is defined
as the maximum TOEP value in the set STOEPi, i.e.

}{1 j
n
ji TOEPMaxRTOEP == .

To explain our DFG and RT BIST enhancement
metrics, consider an example of a DFG shown in Figure 2.
If a 1-to-1 DFG to RT allocation is used, TCEP and
RTCEP metrics are the same. Similarly, TOEP and
RTOEP metrics are the same (see Table 1).

 Suppose however, a more realistic allocation as shown
in row 1 and row 2 in Table 2 is used. Row 3 shows TCEP
values and row 4 shows TOEP values for the DFG. After
applying the definitions above, the values of RTCEP and
RTOEP are shown in rows 5 and 6 respectively in Table 2.

Once testability analysis has identified a set of modules
that have to be enhanced, we use the BIST enhancement
metrics in order to decide which particular module out of
them is to be enhanced first. The actual metric we use is
RTCEP for the case of controllability and RTOEP for the
case of observability. For the case of controllability
enhancement, our criterion is to prioritize enhancement of
the module, which has the greatest value of the RTCEP
among all uncontrollable modules. Similarly, for the case
of observability enhancement, we prioritize enhancement
of the module, which has the greatest value of the RTOEP
among all unobservable modules.

Let us now consider a more general description of
using our BIST enhancement metrics. We discuss the
enhancement procedure with respect to controllability
enhancement. Suppose that SMi = {op1, op2, …, opn} is a
set of operations that are implemented by the RT module
Mi. Suppose also that respective values of the TCEP for
the operations in the set SMi are given by the set STCEPi
= {TCEP1, TCEP2, …, TCEPn}. Since any RT level
functional module Mi implements one or more DFG
operations, it follows that 1≥iSM and 1≥iSTCEP .

Suppose that after testability analysis is performed on the
design, the set of uncontrollable RT modules is found to
be URT = {M1, M2, .., Mm}. An uncontrollable RT module
Mx∈ URT is chosen to be enhanced if there is an operation
py∈ SMx, which it implements such that the operation py
has the greatest value of TCEP among all the operations
that are in the union set STCEP1∪ STCEP2∪ ... ∪
STCEPm. This means that the module that is enhanced
first is the one, whose RTCEP value satisfies the criterion,

}}{{ ,11 ji
n
j

m
i TCEPMaxMaxMaxRTCEP === .

4.2 BIST Synthesis Heuristic

A general overview of our BIST synthesis heuristic is
depicted in Figure 3. In the first step, all modules are
made controllable, while in the second step all modules
are made observable. After controllability and
observability are enhanced, testability of the design is re-
checked. If there are still some untestable modules, then
their testability has to be enhanced. There should be only
a few modules that will remain untestable after the
controllability and observability enhancement steps are
finished. We remind that a module is considered testable
if it is simultaneously controllable and observable. It is,
therefore, possible that a controllable and observable
module can be untestable. This can happen if a DFG
variable is required to be set to different values at the
same time, one for enabling controllability and another for
enabling observability. Consequently, the associated
module becomes untestable since two different values
cannot be set to the same variable at the same time [7].

 Our controllability enhancement algorithm, shown in
Figure 4, takes as input an SDFG and allocation
information and returns a fully controllable RTL design.
In a similar way, the algorithm depicted in Figure 5 is
used to enhance observability.

Symbols and notations used in the pseudo-code of our
algorithms are described as follows: R is the RTL design
representation, G is the corresponding SDFG of the
design, and A is the allocation information depicting the
relationship between G and R. UCP and UOP are
respective sets of all uncontrollable and unobservable
operations. They are obtained by performing testability
analysis of the SDFG. UCM and UOM are respective sets
of all uncontrollable and unobservable RTL modules.
They are computed based on the definition of RTL module
controllability and observability as presented in Section 3.

Procedure GetTCEP(G, pi), where pi ∈ UCP, computes
the TCEP value for the operation pi. DFGEP is the set
consisting of TCEP values of all the uncontrollable or
unobservable operations in the DFG. Procedure
GetRTCEP(mi, DFGEP, A), where mi ∈ UCM, computes
the RTCEP value for the module mi. RTEP is the set
consisting of RTCEP values of all the uncontrollable
modules.

Controllability enhancement

Observability enhancement

Global testability enhancement

Figure 3: Steps of BIST synthesis heuristic

Algorithm: EnhanceControllability
Begin:

Controllable := False;
While Controllable = False do

DFGEP := φ; RTEP := φ;
UCP := STA(G);
UCM := UncontrollableModules(UCP, R, A);
If UCM = φ then

Controllable := True;
Else

For i Å 1, 2, , ..|UCP| do
ti := GetTCEP(G, pi) | pi ∈ UCP;
DFGEP := DFGEP ∪ { ti };

end for
For i Å 1, 2, , ..|UCM| do

ti := GetRTCEP(mi,DFGEP, A) | mi ∈ UCM;
RTEP := RTEP ∪ { ti };

end for
MTE := ModuleToEnhance(UCM, RTEP);

 ψ := ControllEnhancements (MTE, R);
C := φ;
For i Å 1, 2, , ..|ψ| do
 Ci := EnhancementCost(Ei) | Ei ∈ ψ;
 C := C ∪ { Ci };
end for

 SE : = Ei ∈ ψ | }{)(cos ||
1 j

C
ji CMinEt == ;

 R := Modify(R, SE);
end if

end while
End.

Algorithm: EnhanceObservability
Begin:

Observable:= False;
While Observable= False do
 DFGEP := φ; RTEP := φ;

UOP := STA(G);
UOM := UnobservableModules(UOP, R, A);
If UOM = φ then

Observable := True;
Else

For i Å 1, 2, , ..|UOP| do
ti := GetTOEP(G, pi) | pi ∈ UOP;
DFGEP := DFGEP ∪ { ti };

end for
For i Å 1, 2, , ..|UOM| do

ti := GetRTOEP(mi, DFGEP, A) | mi ∈ UOM;
RTEP := RTEP ∪ { ti };

end for
MTE := ModuleToEnhance (UOM, RTEP);

 ψ := ObserveEnhancements(MTE, R);
C := φ;
For i Å 1, 2, , ..|ψ| do
 Ci := EnhancementCost(Ei) | Ei ∈ ψ;
 C := C ∪ { Ci };
end for

 SE : = Ei ∈ ψ | }{)(cos ||
1 j

C
ji CMinEt == ;

 R := Modify(R, SE);
end if

end while
End.

Figure 4: Controllability enhancement Figure 5: Observability enhancement

The procedure ModuleToEnhance(UCM, RTEP)
searches for a suitable module to be enhanced, MTE.
Procedure ControllEnhancements(MTE, R) returns ψ,
which is the set of all possible enhancements for the
uncontrollable module to be enhanced (MTE). The
procedure EnhancementCost(Ei) returns the cost of
applying the enhancement Ei. C is a set, which stores the
costs of all the potential enhancements for the module
MTE. The procedure Modify(R, SE) uses the selected
enhancement SE∈ ψ, to modify the RT design.

Many of the notations used in the controllability
enhancement algorithm are also used in the observability
enhancement algorithm, Figure 5. In addition, this
algorithm deploys a procedure GetTOEP(G, pi), where pi

∈ UOP, to compute TOEP value for the operation pi and
procedure GetRTOEP(mi, RTEP, A), where mi ∈ UCM, to
compute the RTOEP value for the module mi. In the
observability enhancement algorithm, the set RTEP
consists of RTOEP values for all the unobservable
modules. ObserveEnhancements(MTE, R) is the
procedure, which finds all potential observability
enhancements (ψ) for the unobservable module to be
enhanced MTE.

4.2.1 Enhancement Selection

We need to get the cheapest solution when a given
module to enhance has been decided.

Let M = {m1, m2, .., mk} be a set of k functional
modules that compose an RT level design. Suppose that
PTD represents a partially testable RT design at a certain
moment during our controllability (or observability,
testability) enhancement process. Suppose that after
testability analysis is performed a module m ∈ M is
selected for enhancement (see enhancement algorithm).
Such a module can have multiple controllability
(observability, testability) enhancement options that can
be used. For example convert its input register to a TPG,
connect its input to an existing TPG or built-in logic block
observer (BILBO) and so on. Suppose that E = {e1, e2, …,
en} is a set consisting of n enhancements available for the
module m. Each of the enhancements ei ∈ E is separately
applied to the partially testable design PTD to get a
corresponding enhanced design di. Suppose after these
enhancements are respectively applied to the partially
testable design PTD the respective corresponding
resulting enhanced designs form a set D={d 1, d2,…, dn}.

In order to decide which enhancement option (BIST
design transformation) to use for the module m (see
Section 2), we evaluate the cost of each improved partially

testable design di ∈ D. Out of all the enhancements in the
set E, that enhancement ei ∈ E which leads to the cheapest
improved design)}({cosmin)(cos 1 j

n
jii dtdtDd ==∈ is

chosen. The cost that we use is the total design area,
which consists of the areas of the functional modules,
functional registers, BIST modules, test multiplexers as
well as area contribution due to wiring. Wiring area
contribution is computed based on the estimation
algorithm introduced in [1] and [5].

4.2.2 Global Testability Enhancement

After controllability and observability of all the
modules are enhanced, it is still possible for some of them
to be untestable. To address this problem, we propose a
procedure to fix the remaining testability problems. The
algorithm is described in Figure 6.

Algorithm: Global Testability Enhancement
Begin:
 // Fix global testability problems

Ω := φ;
 UTM := UntestableModules(G, R, A);
 While UTM != φ do
 M := FirstUntestable(UTM);
 Enh := Enhance(M, Left, Contr);

UTM := UntestableModules(G, R, A);
 If UTM != φ then

DiscardEnhancement(R, Enh);
 Enh := Enhance(M, Right, Contr);

UTM := UntestableModules(G, R, A);
If UTM != φ then

DiscardEnhancement(R, Enh);
 Enh := Enhance(M, Output, Observ);

 UTM := UntestableModules(G, R, A);
If UTM != φ then

Enh := Enhance(M, Left, Contr);
 Enh1 := Enhance(M, Right, Contr);
 Ω := Ω ∪ {Enh} ∪ {Enh1};
End if

Else
 Ω := Ω ∪ {Enh};

 End if
 Else

 Ω := Ω ∪ {Enh};
 End if

UTM := UntestableModules(G, R, A);
End for

 // Remove unnecessary BIST overhead
For i Å 1, 2, , ..|Ω | do

Ei := GetEnhancement | Ei ∈ Ω;
DiscardEnhancement(R, Ei);
UTM := UntestableModules(G, R, A);
If UTM != φ then
 PutBackEnhancement(R, Ei);
End if

end for
End.

Figure 6: Global testability enhancement

After all the modules are enhanced and the design

becomes testable, it is likely that we have added too much

BIST overhead. Therefore, we propose a BIST resources
minimization (redundancy removal) phase, whereby we
try to remove each enhancement we have added and check
if the design remains testable. If the design remains
testable after removal, the change is made permanent.
Otherwise the enhancement is put back. In this way BIST
overhead is reduced while testability is guaranteed.
Pseudo-code of our global testability enhancement and
redundant BIST hardware removal algorithm is presented
in Figure 6.

Symbol Ω represents a set of all testability
enhancements that are done on the design. Procedure
UntestableModules(G, R, A) takes the DFG, the RT
design and allocation information, then uses STA to find a
list of all the untestable modules, UTM. The first
untestable module from the list UTM, denoted as M, is
usually the first one to be enhanced.
 Procedure Enhance(M, operand, enhanceType) adds a
BIST enhancement for the module M. It is used to
enhance output observability or controllability of the left
or right input of the module. DiscardEnhancement(R,
Enh) is used to remove the enhancement, Enh, from the
design. Procedure PutBackEnhancement(R, Ei) puts back
the enhancement Ei if its removal renders the design
untestable.

5. Experimental Results

Efficiency of BIST insertion approach is evaluated
based on the amount of BIST hardware introduced. This is
usually computed as the number of TPGs, MISRs,
BILBOs and CBILBOs added. Our approach is one of the
few which not only shows how many TPGs, MISRs,
BILBOs and CBILBOs are added, but also performs
quantitative estimation of the wiring cost during the BIST
synthesis process. It takes the overall design cost as the
optimization objective. Other approaches, since they
ignore wiring overhead, do not guarantee efficient designs
in terms of total design area.

We have evaluated our approach on several HLS
benchmarks. The following technology dependent
parameters are used: Wiring pitch (the average width of a
1-bit wire including spacing between the wires) is 0.8µm.
The number of metal layers is 2 and wire over routing
factor [5] is 0.5.

Sizes of the functional registers and functional modules
are extracted from [8]. For the BIST registers, we have
assumed a simple relationship between the size of the
functional and BIST registers: Register < TPG < MISR <
BILBO < CBILBO. The areas of the 16-bit modules used
in the experiments are: Multiplier is 250000µm2, adder is
50000µm2, subtractor is 50000µm2, functional register is
15000µm2, TPG is 20000µm2, MISR is 30000µm2,

BILBO is 40000µm2, CBILBO is 50000µm2 and
multiplexer is 1000 + number_of_inputs * 500.

Characteristics of the designs we used in our
experiments are summarized in Table 3. The first set of
designs (Ex2_Simp, Real_Simp, Paulin_Simp,
Ovenctrl_Simp and Ewf_simp) has been synthesized using
a very simple HLS algorithm such that each DFG
operation is implemented using a separate functional
module. The second set of designs (Ex2, Real, Paulin,
Ovenctrl and Ewf) has been synthesized using the
algorithm presented in [10].

Our experimental results are summarized in Table 4.
Columns P, M and B represent the number of TPGs,

MISRs and BILBOs respectively. The column titled
“Design Area” represents area of the designs before and
after our BIST synthesis heuristic is applied. The column
titled “Overhead” shows the hardware overhead of our
approach. The last column represents time taken by our
heuristic.

The experiments were run on a Sun Solaris workstation
with 440MHz CPU and 256MB RAM.

In our experiments, we have taken into account wiring
area during the BIST optimization process, as described in
this paper. The design cost minimized is the total data
path area including area of functional and BIST modules,
test multiplexers and wiring.

Table 3: Characteristics of the designs

Design name #Adders #Subtractors #Multipliers #Dividers #Multiplexers
Ex2_Simp 0 2 5 0 0
Real_Simp 3 2 4 2 0
Paulin_Simp 2 2 6 0 0
Ovenctrl_Simp 5 1 1 1 0
Ewf_Simp 26 0 8 0 0

Ex2 0 1 2 0 7
Real 1 1 1 2 8
Paulin 1 1 2 0 12
Ovenctrl 2 1 1 1 7
Ewf 3 0 1 0 17

Table 4: Experimental Results using our heuristic

Design Area (Pm2) Design Name P M B
Before After

Overhead
(%)

CPU time
(Sec)

Ex2_Simp 6 1 1 1735615.58 1810091.63 4.29 84

Real_Simp 6 2 1 2301672.03 2393161.13 3.97 109

Paulin_Simp 5 3 1 2201614.97 2303690.91 4.64 114

Ovenctrl_Simp 6 2 0 1187965.25 1253342.36 5.50 45

Ewf_Simp 10 5 0 4738211.13 4875811.81 2.90 608

Ex2 3 0 1 911001.77 955196.31 4.85 38

Real 2 0 2 1362466.09 1430911.97 5.02 51

Paulin 2 0 2 1114450.72 1183608.25 6.21 42

Ovenctrl 4 0 2 1112465.0 1191276.02 7.08 51

Ewf 3 0 2 1478206.38 1564085.94 5.81 282

Average 5.03

Table 5: Performance comparison

 Simulated Annealing
(Wire considered)

Our Heuristic
(Wire considered)

Comparison

Design Name Area

(Pm2)

Time
(Sec)

Area

(Pm2)

Time
(Sec)

Time reduction
(#Times)

Area overhead
(%)

Ex2_Simp 1804166 531.99 1810091.63 84 6.33 0.33

Real_Simp 2421214 1085.93 2393161.13 109 9.96 -1.16

Paulin_Simp 2260897 800.66 2303690.91 114 7.02 1.89

Ovenctrl_Simp 1294624 786.07 1253342.36 45 17.47 -3.19

Ewf_Simp 5006007 3118 4875811.81 608 5.13 -2.60

Average 9.18 -0.95

The importance of considering wiring during the BIST
synthesis process is already experimentally justified in our
previous work presented in [6]. The importance of the
work presented in this paper is on getting a faster
approach that can be more applicable to realistic large
designs instead of the slow Simulated Annealing based
approach presented in [6]. We have, therefore, compared
our approach with the Simulated Annealing based
approach that we presented in [6]. Comparison results are
depicted in Table 5. As can be observed from the table,
the proposed approach is efficient in terms of run time
and, at the same time it also produces good quality results.
While run times are on average one order of magnitude
faster, the quality of the results produced by the heuristic
is on average 1% better than that generated with our
implementation based on Simulated Annealing.

6. Conclusions

We have presented a greedy heuristic for wiring-aware
BIST synthesis. The approach provides two ways to
converge towards testable and cheap solution while
keeping computational effort low. It minimizes the overall
number of testability enhancements done on the design.
This is assisted by our novel BIST enhancement metrics
which are used to guide the synthesis process in such a
way that each controllability or observability enhancement
targets to improve as many modules as possible. This is
complemented by a thorough local search of the cheapest
solution for each enhancement performed. The cheapest
alternative enhancement for a given module is used.

We found out that the heuristic is able to find good
solutions at a relatively short computational effort. The
heuristic introduces relatively low hardware overhead, 5%
on average. It is also one order of magnitude faster
compared to a simulated annealing based approach.

7. References

[1] A. Alvandpour and C. Svensson, "A Wire Capacitance
Estimation Technique for Power Consuming
Interconnections at High Levels of Abstraction”, Workshop
on Power and Timing Modeling, Optimization and
Simulation (PATMOS97), Louvain-la-Neuve, Belgium,
1997.

[2] I. Ghosh, N. K. Jha, and S. Bhawmik, ”A BIST Scheme for
RTL Circuits Based on Symbolic Testability Analysis”,
IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, Vol. 19, Issue 1, pp. 111–
128, Jan. 2000.

[3] I. Ghosh, N.K. Jha, and S. Bhawmik, “A BIST Scheme for
RTL Controller-Data Paths Based on Symbolic Testability
Analysis”, Proceedings of the 35th ACM IEEE Design
Automation Conference, pp.554-559, San Francisco, CA;
U.S.A., 1998.

[4] S. K. Goel and E. J. Marinissen, ”Layout-Driven SoC Test
Architecture Design for Test Time and Wire Length
Minimization”, Proceedings of Design Automation and Test
in Europe, pp. 738-743, 2003.

[5] J. Hallberg and Z. Peng, “Estimation and Consideration of
Interconnection Delays during High-Level Synthesis”,
Proceedings of the 24th Euromicro Conference, Vol. 1, pp.
349-356, Västerås, Sweden, Aug. 1998.

[6] A. R. Mohamed, Z. Peng and P. Eles, “A Wiring-Aware
Approach to Minimizing Built-In Self-Test Overhead”,
Proceedings of the IEEE International Workshop on
Electronic Design, Test and Applications (DELTA 2004),
pp. 413-415, Perth, Australia, Jan. 28-30, 2004.

[7] A. R. Mohamed, Z. Peng and P. Eles, “BIST Synthesis: An
Approach to Resources Optimization under Testing Time
Constraints”, Proceedings of the IEEE 5th Design and
Diagnostic of Electronic Circuits and Systems Workshop
(DDECS2002), pp. 346-351, Brno, Czech Republic, April
17-19, 2002.

[8] V.G. Moshnyaga and K. Tumaru, “A Placement Driven
Methodology for High-Level Synthesis of Sub-Micron
ASICS”, Proceedings of the International Symposium on
Circuits and Systems (ISCAS’96), pp. 572-575, May 1996.

[9] C. R. Reeves, “Modern Heuristic Techniques for
Combinatorial Problems”, Blackwell Scientific
Publications, 1993.

[10] M. Tien-Chien Lee, “High-Level Test Synthesis of Digital
VLSI Circuits”, Artech House, 1997.

