Pattern Matching in OpenCL: GPU vs CPU Energy
Consumption on Two Mobile Chipsets

Elena Aragon!
Jim Rasmusson?

Juan M. Jiménez!
Unmesh D. Bordoloi!

Arian Maghazeh!

'Department of Computer and Information Science, Linkdpings Universitet, Sweden
2Sony Mobile Communications, Sweden
{elena.aragon, juan.jimenez, arian.maghazeh, unmesh.bordoloi}@liu.se
jim.rasmusson@sonymobile.com

ABSTRACT

Adaptations of the Aho-Corasick (AC) algorithm on high
performance graphics processors (also called GPUs) have
garnered increasing attention in recent years. However, no
results have been reported regarding their implementations
on mobile GPUs. In this paper, we show that implement-
ing a state-of-the-art Aho-Corasick parallel algorithm on
a mobile GPU delivers significant speedups. We study a
few implementation optimizations some of which may seem

counter-intuitive to standard optimizations for high-end GPUs.

More importantly, we focus on measuring the energy con-
sumed by different components of the OpenCL application
rather than reporting the aggregate. We show that there
are considerable energy savings compared to the CPU im-
plementation of the AC algorithm.

1. INTRODUCTION

Our work is motivated by the arrival of OpenCL-enabled
GPUs (sometimes called GPGPUs - General Purpose GPUs)
in mobile platforms that now gives us an opportunity to pro-
gram embedded and mobile devices in the spirit of heteroge-
neous computation. However, unless the full power of GPU
compute on low-power platforms can be utilized, the full po-
tential of heterogeneous computation will remain untapped.
Despite recent fledgling work in this direction, the question
— whether (and what kind of) non-graphics workloads may
benefit from mobile GPUs — has largely remained open.
This question must be studied while keeping in mind that
powerful multi-core CPUs are available on the same chip as
the GPUs, and the CPUs are already a promising choice.

Conventional application domains targeted for GPU com-
pute on mobiles include image processing, augmented real-
ity, and computational photography. In this work, however,
we study the suitability of GPU compute for an application
in the security domain. In this regard, we chose the Aho-
Corasick (AC) algorithm that is widely used in intrusion
detection. The AC algorithm is a pattern matching algo-
rithm that has been utilized in other domains as well, such
as detecting plagiarism, digital forensics, text mining and so
on. Given stringent requirement on energy consumption in
mobile platforms, studying the impact of our implementa-
tion on the energy consumption is a prominent component
of this paper.

2. RELATED WORK

Recently, there has been tremendous interest in develop-
ing parallel versions for the AC algorithm. The results by

Lin et al. [4] are the most recent ones and they have re-
ported improvements over others [12], [9], [10]. For our case
study, we implement the algorithm proposed by Lin et al. [4]
but our implementation differs in the following ways. First,
our implementation is in OpenCL in contrast to the origi-
nal CUDA implementation [4]. Second, if their algorithm is
implemented without any changes, it will lead to poor per-
formance on mobile GPUs. As such, we perform a series
of optimizations that are specific to mobile GPUs to max-
imize performance benefits. To the best of our knowledge,
no results have been reported regarding the implementation
of this algorithm on mobile GPUs.

In fact, it is only recently that, applications on mobile and
embedded GPUs have triggered interest. In a recent paper,
Gupta and Owens [2], discussed strategies for memory op-
timizations for a speech recognition application targeting a
low-end resource constrained GPU. We also note that Mu et
al. [6] implemented the benchmarks from High Performance
Embedded Computing Challenge Benchmark from MIT [7]
on a GPU. However, none of these papers discuss the impact
of their algorithms on power or energy consumption. In fact,
they evaluated their performance results on GPUs that are
not targeted towards low-power devices such as hand-held
smart phones.

Finally, we would like to mention that few papers have in-
deed reported energy consumption on mobile GPUs [1, 8,
11, 5, 3] but they did not focus on the AC pattern match-
ing algorithm. Moreover, unlike them, we study the power
consumption at a more fine-grain level rather than only re-
porting the aggregate values. Taking the AC algorithm as
an example, we show the variations in the energy consumed
during various phases of an OpenCL application.

3. THE AHO-CORASICK ALGORITHM

We provide a quick overview of the AC algorithm. As an
input, the algorithm is given several strings, also called the
dictionary and an input text stream. As the output, the
algorithm reports all matches in the text stream with the
strings in the dictionary.

The algorithm proceeds in the following fashion. First, the
AC algorithm combines all the input patterns and generates
an automaton. The algorithm, then, traverses the input text
character by character, and the finite state machine takes
a transition in the automaton corresponding to the input
character. Each state in the automaton is also associated



Figure 1: Automaton that accepts “nYe”, “Y”, “dina”
and “es”.

with a failure transition. Whenever there is no match with
the input character, the machine moves to the destination
pointed by the failure transition. When it reaches a “final”
state, the algorithm finds one matched pattern.

Figure 2: Failureless automaton for the GPU to accept
“nYe’7, 4‘Y7” ‘4dina77 and “es’7.

Figure 1 illustrates the automaton built for the patterns
“nYe”, “Y”, “dina” and “es”. The circles with double borders
are the final states, the solid lines are the transitions labeled
with the characters on which they are fired and the dotted
lines are the failure transitions. The states 9, 4, 5 and 11 are
the final states respectively for the patterns “dina”, “nYe”,
“Y” and “es”. Note that state 3 is also a final state. This
is because “Y”, a substring of “nYe” is a valid pattern. Each
state without a outgoing failure transition has a default fail-
ure transition to the root state 1. To avoid over-crowding,
these transitions are not explicitly shown.

Consider the input text as “nYeXs”. To start, the machine
will move from state 1 to state 2 and then from state 2 to
state 3 with the inputs “n” and “Y”. At state 3, it identifies
the match with character “Y”. With the next character “e”,
the machine moves to the next final state 4 and identifies a
match with the pattern “nYe”. However, with “X” in state 4,
the machine takes the failure transition and moves to state
10. Still there is no match and the machine moves back
to state 1. There are no further legal moves from the root
with “X” or with the last character “s” and the algorithm
terminates.

3.1 Parallel Failureless Automaton

In a recent paper, Lin et al. [4] proposed a parallel version
of the above algorithm. The main idea is to associate an
individual work-item (or thread in CUDA terminology) to
each character of the input stream and identify any pattern

that begins on that character. Looking at our example, 5
work-items will be involved for the input string “nYeXs”.
The work-items associated with the characters “n” and “Y”
will identify the patterns “nYe” and “Y” respectively. How-
ever, this parallel algorithm needs a new automaton where
failure transitions have been removed. Thus, the automaton
shown in Figure 1 will now appear as shown in Figure 2.

Removing the failure transitions is necessary to avoid redun-
dancy. Let us consider a string “dinY”. If we use the tradi-
tional automaton from Figure 1, the work-item associated
with character “d” will report a match “Y”. The work-item
starting at “Y” will also report a match. This duplication is
avoided with the new automaton. For more details on the
algorithm, we refer the interested reader to the paper [4].
Our OpenCL implementation on the GPU is based on the
above algorithm.

4. MOBILE CHIPSET ARCHITECTURES

The two mobile test devices on which we tested our OpenCL
implementation are the Sony Xperia Z Ultra and the Arn-
dale development board. These two devices have mobile
chipsets from two different vendors, Qualcomm and Sam-
sung. The Sony Xperia Z Ultra is based on the Qualcomm
MSM 8974 chipset (also called Snapdragon 800). It has a
2.26 GHz quad-core CPU, the Krait 400, and a quad-core
GPU, the Adreno 330 running at 450MHz. We will refer
to this board as Xperia in rest of the paper. The Arndale
board is based on the Samsung Exynos 5250 that has a 1.7
GHz dual-core CPU, the ARM Cortex-A15, and a quad-
core GPU clocked at 533MHz, the ARM Mali T604. We
will refer to this board as Arndale. Both chipsets have in-
teresting similarities and interesting differences. The CPUs
from the two vendors are both based on the ARMv7 ISA
(Instruction Set Architecture). ARMvT has been around for
a couple of years now but the implementations have evolved
significantly over the years. The quad-core Krait 400 CPU
is Qualcomm’s version of a modern ARMv7 design whereas
the dual-core Cortex-A15 is a modern ARMv7 design from
ARM themselves.

The GPU architectures are quite different though. Adreno
330 is based on recent compute capable (OpenCL capa-
ble) architecture from Qualcomm. Its architecture is some-
what similar to established desktop GPUs from vendors like
Nvidia and AMD. These architectures execute a cluster of
work-items, so-called sub-group, (warps in CUDA terminol-
ogy) together in lock-step (32 work-items for Adreno), and
have some advantages in that they have the potential to be
more silicon area- and power-efficient. On the downside,
warp based architectures experience performance degrada-
tion when running divergent code because different work-
items take different execution branches and the total execu-
tion time is determined by the sum of the execution times
of all branches.

The Mali 604 is a recent compute capable GPU design from
ARM. Unlike Adreno 330, it is not based on sub-groups.
Instead each thread has its own program counter, more like
a CPU, and it has no penalty executing divergent code.

5. OPTIMIZATIONS ON MOBILE GPUS

The original PFAC algorithm was optimized for a high-end
GPU. Some of the optimizations that were used are:



1-char per thread 2-chars per thread

Warp execution

Warp execution

Total time

TT10 B R\ Implicit

h synchronization point

Total time

RN, J .

Figure 3: Increasing the workload per work-item helps
to reduce the imbalance workload distribution between
the sub-groups (warps).

The input text is selectively and partially loaded from
the global memory to the local memory.

The transition graph is implemented in the form of a
look-up table instead of linked-list based graph imple-
mentation.

e The first row of the transition table is loaded into the
local memory.

e The transition table is stored in texture memory which
is a cache optimized memory.

However, using an implementation based on the above opti-
mization leads to a very poor speedup on our mobile GPUs.
Given the unique characteristics of our mobile GPUs, we
apply the following optimizations.

Reduce/Avoid data traffic between the CPU and
GPU: In high-end PC like systems, the CPU and the GPU
have (physically) separate main memories and data is trans-

ferred between them via the PCI Express bus. This is achieved

by the OpenCL function called clEnqueueWriteBuffer and
clEnqueueReadBuffer. However, in mobile GPUs, the CPU
and the GPU share a unified physical memory. Using clEn-
queueWriteBuffer and clEnqueueReadBufferin this case in-
jects an unnecessary overhead to copy the data from one
portion of the memory to another portion of the same phys-
ical memory. This overhead may be avoided by using clEn-
queueMapBuffer.

Local memory usage: For mobile GPUs, there is often
no dedicated on-chip local memory. In those cases, any
OpenCL access to the local memory is emulated in the global
memory. This often leads to performance deteriorations in-
stead of performance improvement. It may be noted that
Adreno 330 actually has 8KB local memory physically on-
chip and we carefully customized our code to exploit this
minimal amount of local memory. But in our application, it
did not bring any benefits, as we will show in Section 7.2.

Work-group size: We also experimented with different
work-group sizes for each mobile GPU.

Workload granularity: The original PFAC implementa-
tion launches one work-item to process one character of the
input text. This work-item follows the pattern in the tran-
sition graph that matches with the string starting with this
character. As a sub-group or warp (typically 32 work-items)
is executed in lock-step, the execution time for the sub-group
will be determined by the slowest work-item. As such, dif-
ferent sub-groups in the same work-group are highly likely
to consume different amount of execution times (Figure 3).

This imbalance between different sub-groups may be de-
creased, at least on average, if each work-item is process-
ing more than one character. This increases the total set
of characters processed by each sub-group and, given the
randomness of the typical text input, increases the chances
that the slowest work-item from two different sub-groups
take similar execution times and hence less resources are
wasted. Figure 3 illustrates a hypothetical scenario with
two characters workload per work-item reducing imbalance
between the work-items. We experiment with the number
of characters that is processed by each work-item to find the
one leading to optimized results. Interestingly, as we will see
in the results section, this optimization technique will bring
different results for the two GPU architectures.

6. METHODOLOGY

The main challenge in computing energy consumption is to
measure the current drawn as accurately as possible. To-
wards this, we utilize the following setup.

6.1 Experimental Setup

Our setup for energy measurement is shown in Figure 4.
To measure the current, the input voltage passes through a
precision resistor of 10 milliOhms that is connected in series
with the device — the Xperia phone or the Arndale board.
Any variation in the current drawn by the device will be
reflected in the voltage drop across the precision resistor.
Note that the amount of the voltage drop is very small and
hence, we amplify the voltage 100 times with an amplifier
before sending it to the oscilloscope. We then connect the
oscilloscope (PicoScope 5243A) to a computer terminal via
a USB connection so that all data may be viewed, recorded
and manipulated by the PicoScope 6 software.

To perform our measurements for the Xperia phone, we re-
move the battery from the phone and instead plug in a spe-
cial adapter board called the dummy battery to the battery
connector of the phone. This adapter board has the proper
circuitry to allow for an external regulated power supply. As
shown in the figure, an external DC power source supplies
the voltage (5 Volts) required by the target device.

Given the above, we know that the oscilloscope displays the
amplified voltage V,. Given the resistance value (10 mil-
liOhms) and the voltage magnification factor (100 times),
we use the following equation to compute the current drawn
by the device:

a0 Volis
lievice = 10 miLOhms — Vo milliAmperes (1)



Dummy Battery

Sony Xperia Z

DC Power

Computer

Oscilloscope

Figure 4: The experimental setup.

We know that energy is given by the product of the current
drawn by the application, voltage supply and the execution
time of the application. The current drawn is measured as
above. The voltage is known because we supply a regulated
voltage of 5 Volts while the execution time can be logged
in the application itself. It should be noted that we are
interested in comparing the relative energy consumptions
between the GPU implementation and the sequential CPU
implementation.

6.2 Measuring the energy

Our goal is to measure the energy consumed by the OpenCL
code of the AC pattern matching application on the GPU
and compare it to the energy consumed by the corresponding
C code on the CPU. Moreover, we aim to perform a more
fine-grained study rather than report the aggregate energy.

Whenever the application executes, there is a spike in the
current drawn and this is reflected in the higher voltage lev-
els displayed on the oscilloscope. As the code executes, the
oscilloscope records and displays the voltage V, on the y-
dimension as a function of time on the x-dimension. The
main challenge is to establish, as accurately as possible,
the connection between these spikes and the source of these
spikes in the execution of the code. As such, as a first step,
we let the device be idle without invoking our code or any
other application. This shows the “base” energy consump-
tion by the phone. Hence, when we proceed to measure the
energy consumed by the application, we subtract this base
energy consumption.

To isolate the energy consumed by different phases of the
OpenCL application, we put the device to sleep before and
after every phase that we want to measure. For our study,
we divide the OpenCL application into four phases. The
first phase is related to the administrative part of finding
the device, setting up the context and compiling the kernel.
The second phase is regarding the transfer of data from the
CPU to the GPU, the third phase is related to the execution
of the kernel itself and the final phase is writing the data
back from the GPU. Finally, we also measure the energy
consumption on the CPU.

If the current drawn by these phases is sufficiently high rel-
ative to the “base” current, it becomes feasible to measure it

more accurately. To assist us in this, we insert sleep modes
between every phase. The sleep modes ensure that the phone
is back in the base phase and makes it feasible to identify the
current drawn by the phase. To be more accurate, for each
phase, we first measure the execution time as logged by the
application. This time window is then superimposed with
the results plotted on the Oscilloscope. For each OpenCL
phase, we validate the execution time reported by the appli-
cation and the width of the corresponding spike. This helps
us to validate that we have correctly identified each of the
phase on the plot. Thereafter, we export the data to Matlab
where we identify the points where the spikes corresponding
to each phase start and end. The area under this curve is
computed (giving us the product of current and time) and
when multiplied with the supply voltage, it yields the en-
ergy consumed by the device for this phase of the OpenCL
application. Recall that we subtract the base current drawn
by the device during the same window.

We used the test patterns from Snort V2.8 as input bench-
mark [4]. We generated 1000 test patterns with a maximum
size of 128 characters and input text of size 10MB. The finite
state machine that was generated contained 27,570 nodes
and the GPU required 44MB of memory.

7. RESULTS

This section reports the results obtained by carrying out
a wide range of experiments with our implementations on
both platforms — Arndale and Xperia. The first set of re-
sults (Section 7.1) are related to the plots that are obtained
from the oscilloscope and the inferences that may be drawn
from them. In Section 7.2, we discuss the second set of ex-
periments that highlights the impact of optimizations that
we pursued for the mobile GPUs on execution times and en-
ergy consumption. We also report results that compare the
mobile GPU with multi-core implementations on the same
platform (Section 7.3). Finally, we include a few comments
on the CPU cores on both platforms in Section 7.4.

7.1 Energy

Figure 5 shows a snapshot from the oscilloscope for our ex-
periment for two runs of the application on the Arndale
board — before and after the optimizations that we dis-
cussed in Section 5. The x-axis denotes time and the y-axis
denotes the voltage drop across the resistor. As shown in



ARNDALE BOARD

time units are in milliseconds

OPTIMIZATIONS RESULTS
DATA_TX | USE_LOCAL | WG_SIZE | THR_GRAN | WRDEV | KERNEL_EXE | RDDEV |TX_OVH|GPU_TOT| SPEED UP IME”;%V.
no map yes 128 1 91 295 60 34% 446 4,7 3,3
map yes 128 1 91 295 6 25% 392 54 3,6
map yes 128 1 91 295 6 25% 392 54 3,6
map no 128 1 91 150 6 39% 247 8,5 82
map no 64 1 91 155 6 38% 252 8.3 8,2
map no 128 1 91 150 6 39% 247 85 8,2
map no 256 1 91 143 6 40% 240 8,8 8,3
map no 256 4 91 114 6 46% 211 10,0 9,0
map no 256 8 91 104 6 48% 201 10,4 9,3
map no 256 12 91 101 6 49% 198 10,6 93
map no 256 16 91 97 6 50% 194 10,8 9,5

Figure 7:

SONY XPERIA Z ULTRA

The impact of optimizations on the running times and the energy consumed by the Mali T-604 (Arndale).

time units are in milliseconds

OPTIMIZATIONS RESULTS

DATA_TX [USE_LOCAL| WG_SIZE | THR_GRAN | WRDEV KERNELiEXEI RDDEV | TX_OVH |GPU_TOT| SPEED UP IME”;‘{(CEBV.

no map yes 128 1 113 208 171 58% 492 2,1 2,7
ma yes 128 1 34 208 0 14% 242 43 7.2
map yes 128 1 34 208 0 14% 242 4,3 7.2
map no 128 1 34 150 0 18% 184 57 10,7
map no 64 1 34 168 0 17% 202 5.2 10,0
map no 128 1 34 150 0 18% 184 57 10,7
map no 256 1 34 140 0 20% 174 6,0 113
map no 256 4 34 99 0 26% 133 7.9 13,3
map no 256 8 34 80 0 30% 114 9.2 15,1
map no 256 12 34 202 0 14% 236 4.4 10,6
map no 256 16 34 198 0 15% 232 45 10,7

Figure 8:

The impact of optimizations on the running times and the energy consumed by the Adreno 330 (Xperia).

ARNDALE BOARD SONY XPERIA Z ULTRA
. Kernel execution
. (OpenCL) Current *°
Initialization s (amp) .
current (OpencL) Data writing P o nitialiati Data writing Data reading
(amp) (OpencL) Data reading AC on CPU Initialization (OpenCL) Kernel execution (OpenCL) ACon CPU
o, (Opencl) e (OpenCL) Jl (OpencL)
05
of
02 Preparation Preparation o L. J ..m ﬂ ﬂ ﬂ
(cpu) (CPU) . Preparation
0 Preparation (cPU)
00 2,0 20 60 80 10,0 12,0 14,0 (CPU)
Time (sec)
Before optimization 00
Before optimization
1
Current
Current” (amp) 22
(amp)
o8l 08|
h . ;| . A 0z

After optimization

Figure 5: Results showing the energy consumed by dif-
ferent application phases on the Arndale board. The
results are shown for OpenCL implementations before
and after our GPU optimizations discussed in Section 5.

Equation 1, the voltage translates into the current drawn
by the device. Recall that the area under each spike repre-
sents the energy consumed by the corresponding application
phases responsible for that spike.

The first spike in the graph, labeled as “Initialization”; is
associated with the OpenCL context creation and compila-
tion of the OpenCL application. The next spike is related
to reading the input text and patterns, as well as generating
the automaton. These functions are performed on the CPU
and are called before launching the GPU. In the figure, this
stage is labeled as “Preparation”. Both of these stages, “Ini-
tialization” and “Preparation”, need to be performed only

Time (sec)

After optimization

Figure 6: Results showing the energy consumed by dif-
ferent application phases on the Xperia Z Ultra. The
results are shown for OpenCL implementations before
and after our GPU optimizations discussed in Section 5.

once and hence, the related energy cost must be paid only
once. Thereafter, the three spikes highlighted in green show
the energy consumed during data transfer and kernel ex-
ecution on the GPU. Once the GPU run is over, another
spike may be observed that is related to “Preparation” on
the CPU prior to the sequential invocation of the algorithm.
The area under curves marked by green borders and red
borders refer to the energy consumed by the GPU and the
CPU respectively.

Similarly, Figure 6 shows a snapshot from the oscilloscope



for two runs of the application — before and after the op-
timizations — on the Xperia mobile platform. The x-axis
denotes time but it has been broken down to accommodate
the long ’sleep’ intervals that were inserted to isolate the
different application phases. Unlike the Arndale board, this
was necessary here because the current spikes do not fall
back to base levels. As such, relatively longer sleep intervals
allow the current to settle down to base levels after which
we may proceed to the next stage.

The following inferences may be made from these results.
First, the overall energy consumed decreases significantly
when we compare the optimized and the non-optimized ver-
sions. The use of map, i.e., the OpenCL function clEn-
queueMapBuffer, leads to almost negligible energy consump-
tion on Xperia during both writing and reading phases while
on Arndale, this is more pronounced only during the reading
phase. Actually, it turns out that Arndale also benefits sig-
nificantly from map during writing if the data size is small.
Unfortunately, this does not scale to larger inputs. As our
experiments are carried out on a relatively large benchmark,
our application does not benefit from this optimization dur-
ing the write phase on Arndale board.

Second, it may be noticed that for both platforms, the peak
current consumption during the GPU kernel execution re-
mains the same for both optimized and non-optimized ver-
sions of the code.

Finally, it may be also noted that the CPU execution con-
sumes significantly more energy than the GPU. This is mostly
the result of the fact that the CPU takes longer time to com-
plete. On Xperia platforms, the peak current drawn by the
CPU is higher than the GPU and this may also contribute to
the higher energy consumptions. On the Arndale, however,
the CPU consumes more energy despite the fact that the
peak current drawn by the CPU is less than the one drawn
by the GPU.

7.2 Impact of optimizations

Detailed results obtained from the various optimizations that
we applied are reported in Figure 7 and Figure 8. Each row
shows the impact of the four optimizations (Section 5) on
the running times and the energy consumption. The column
DATA_TX shows whether memory copy is avoided or not.
The column USE_LOCAL shows whether the local memory
was used or not. WG_SIZE refers to the work-group size.
THR_GRAN refers to the work-item (thread level) granu-
larity that was applied.

The results in the next three columns show the breakdown in
the times consumed by writing to GPU memory (WRDEV),
the kernel execution time (KERNEL_EXE) and the reading
back from GPU (RDDEV). TX_OH shows the overhead due
to data transfer times (as a percentage of the total time)
and GPU_TOT shows the total time.

The last two columns show the relative speedup with re-
spect to the running times and the relative improvement
with respect to the energy consumption when compared to
the sequential CPU implementation.

Reduce/Avoid data traffic between the CPU and
GPU: Our first optimization is related to the use of map
(clEnqueueMapBuffer) to avoid data transfer. Looking at

the results from the Arndale platform in Section 5, the
speedup goes up to 5.4x from 4.7x and energy improve-
ment reaches 3.6x from 3.3x. Even higher improvements
are noticed in Xperia as the speedup goes up to 4.3x and
energy improvement reaches 7.2x. The reason is that, on the
Arndale board, map operation reduced the overhead only in
the reading phase (see RDDEV column) and did not reduce
the overhead in writing phase (see WRDEV column) On the
other hand, on Xperia, map helped reduce the overhead on
both phases. This is also reflected in the TX_OH column.
On Arndale, the transfer overhead reduces from 34% to 25%
while on Xperia this reduction is much more dramatic —
58% to 14%.

Local memory usage: Next, as we re-write the code to
avoid usage of local memory the speedup goes up to 8.5x
and 5.7x respectively on the Arndale and Xperia platforms.
Corresponding energy improvements reach 8.2x and 10.7x.
For the Adreno GPU this result is a bit strange as it ac-
tually has dedicated physical local RAMs implemented on
chip. Normally on desktop GPUs, using the local RAMs,
is a common optimization technique that often brings quite
significant speed-ups. For the Mali GPU, this result was
more expected as it does not have a local RAM physically
implemented on the chip.

Work-group size: The next optimization is related to
work-group size and the best results are obtained with a
work-group size of 256 on both platforms.

Workload granularity: Finally, we experiment with the
workload granularity and as the results show the best results
are obtained with a granularity of 16 and 8, respectively on
the Arndale and Xperia platforms. A further increase in
workload granurality results in saturated performance on
Arndale, while on Xperia, a number greater or smaller than
8 yields poorer performance. Interestingly this optimiza-
tion technique works well for the Adreno GPU which was
inline with our expectations. However, above 8 characters
per work-item, the execution slows down significantly. Most
likely, this is due to the fact that we hit some kind of per-
formance cliff, maybe we run out of registers, and the run-
time will have to spill the content of the registers to global
memory, and this causes overhead which slows down the ex-
ecution.

To summarize, on Xperia the most optimized version gives
us a speedup of 9.2x and energy savings of 15.1x over se-
quential implementation. The respective numbers on Arn-
dale are 10.8x and 9.5x.

It should be noted that, in the above discussion, other com-
binations of the work-group size and the thread granulatiry
are possible and we, in fact, explored them. As they turned
out to be non-optimal, for the sake of clarity, we have re-
stricted the discussion to the particular work-group size that
led to the best results.

7.3 Comparison with multi-core

As Arndale also has a dual-core CPU, we proceeded to com-
pare the Mali GPU with a multi-core implementation. Sim-
ilarly, Xperia also has a quad-core CPU, and we compared
the Adreno GPU with a multi-core implementation. To-
wards this, we implemented an OpenMP version of our PFAC
code. Note that when our OpenMP code runs on a single



PFAC OPENMP
ARNDALE Teeoe TEORE MOST OPTIMIZED on GPU
TIME (ms) 680 620
KERNEL SPEED UP 7,0 6,4 GPU_KERNEL TIME = 97 (ms)
OVERALL SPEED UP 35 3,1 GPU_OVERALL TIME = 194 (ms)
ENERGY IMPROV. 33 4,9

Figure 9: Comparison of the PFAC implementation on
Mali GPU with OpenMP implementation on the dual-
core CPU.

SONY Z ULTRA 1 CORE 2 C;;AEC OPEZA(A;)RE 2 CORE MOST OPTIMIZED on GPU
TIME (ms) 348 175 118 89
KERNEL SPEED UP 4,4 2,2 15 1,1 GPU_KERNEL TIME = 80 (ms)
OVERALL SPEED UP 3,0 15 1,0 0,8 GPU_OVERALL TIME = 114 (ms)
ENERGY IMPROV. 5 4 4 4

Figure 10: Comparison of the PFAC implementation
on Adreno GPU with OpenMP implementation on the
quad-core CPU.

core, this is a different version than the sequential imple-
mentation that we had used so far.

The results are shown in Figure 9 and Figure 10. The GPU
provides better speedups and energy savings compared to
the dual-core CPU on the Arndale platform. On the Xpe-
ria platform, the GPU beats the single-core and dual-core
implementations. The GPU is slightly slower than the quad-
core implementation. Despite this, from an energy perspec-
tive, the GPU is still better than the quad-core CPU by a
factor of 4 times.

7.4 Comparing the ARM CPUs

As discussed in Section 4, both two mobile chipsets have
CPUs based on ARMv7 ISA. Given that (i) they have dif-
ferent specifications, e.g., clock frequencies, and (ii) the fact
Xperia ARM cores have been modified and adapted by Qual-
comm, we believe it is not fair to compare them. How-
ever, for the interested reader and the sake of completeness,
we would like to provide the results of our OpenMP imple-
mentations on both platforms. On Xperia, the single-core,
the dual-core and the quad-core implementations consumed
0.64, 0.49 and 0.48 Joules, respectively, while on Arndale
the single-core and the dual-core implementations consumed
0.94 and 1.41 Joules. It may be observed that the current
levels during the CPU execution in Figure 6 and Figure 5, it
may be observed that the silicon process node used for the
Qualcomm MSM 8974 chipset (TSMC 28nm HPM) proba-
bly has higher power consumption than that of the Samsung
Exynos 5250 (Samsung’s own 32nm HKMG). Inspite of this,
the overall energy consumption on Xperia is less than Arn-
dale because the Qualcomm ARM cores on Xperia execute
faster. The execution times on Xperia for the single-core,
the dual-core and the quad-core are 345, 175, and 89 mil-
liseconds, respectively, while on Arndale the single-core and
the dual-core took 680 and 610 milliseconds.

8. DISCUSSION

In this work, we selected the AC algorithm and showed
that it also benefits from GPU computing in mobile de-
vices. Our work shows that mobile GPUs are not only suit-
able for achieving accelerations in running times but they
are a promising alternative to save energy. In particular,
inspite of the fact that a multi-core CPU implementation
might slightly outperform the GPU in terms of speedups,

the GPU implementation may still deliver far improved en-
ergy efficiency.

This work may be extended in several directions. First, we
need to investigate if further optimizations can improve per-
formance. Second, it will be worthwhile to investigate opti-
mization techniques that minimize power and temperature
as well, and not just the overall energy consumption. We
are also interested in developing scheduling techniques that
will automatically leverage the heterogeneous computational
resources while optimizing power or temperature.

9. REFERENCES

[1] K.T. Cheng and Y.C. Wang. Using mobile GPU for
general-purpose computing - a case study of face
recognition on smartphones. In International
Symposium on VLSI Design, Automation and Test,
2013.

[2] K. Gupta and J. D. Owens. Compute and memory
optimizations for high-quality speech recognition on
low-end GPU processors. In International Conference
on High Performance Computing, 2011.

[3] M. Huang and C. Lai. Accelerating applications using
GPUs on embedded systems and mobile devices. In
International Conference on Embedded and Ubiquitous
Computing, 2013.

[4] C.H. Lin, C.H. Liu, L. S. Chien, and S.C. Chang.
Accelerating pattern matching using a novel parallel
algorithm on GPUs. Transactions on Computers,
62(10):1906-1916, Oct 2013.

[5] A. Maghazeh, U.D. Bordoloi, P. Eles, and Zebo Peng.
General purpose computing on low-power embedded
GPUs: Has it come of age? In International
Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation, 2013.

[6] S. Mu, C. Wang, M. Liu, D. Li, M. Zhu, X. Chen,

X. Xie, and Y. Deng. Evaluating the potential of
graphics processors for high performance embedded
computing. In Design Automation and Test in Europe,
2011.

[7] J. Kepner R. Haney, T. Meuse and J. Lebak. The
HPEC challenge benchmark suite. In
High-Performance Embedded Computing Workshop,
2005.

[8] B. Rister, Guohui Wang, M. Wu, and J.R. Cavallaro.
A fast and efficient sift detector using the mobile
GPU. In International Conference on Acoustics,
Speech and Signal Processing, 2013.

[9] A. Tumeo, S. Secchi, and O. Villa. Experiences with
string matching on the Fermi architecture. In
International Conference on Architecture of
Computing Systems, 2011.

[10] G. Vasiliadis and S. Ioannidis. Recent advances in
intrusion detection. Lecture Notes in Computer
Science, pages 79-96. Springer Berlin Heidelberg,
2010.

[11] G. Wang, Y. Xiong, J. Yun, and J.R. Cavallaro.
Accelerating computer vision algorithms using
OpenCL framework on the mobile GPU - a case study.
In International Conference on Acoustics, Speech and
Signal Processing, 2013.

[12] X. Zha and S. Sahni. GPU-to-GPU and host-to-host
multipattern string matching on a GPU. Transactions
on Computers, 62(6):1156-1169, June 2013.



