
Schedulability Analysis for Distributed Heterogeneous
Time/Event Triggered Real-Time Systems

Traian Pop, Petru Eles, Zebo Peng
Department of Computer and Information Science, Linköping University, Sweden

{trapo,petel,zebpe}@ida.liu.se
Abstract

This paper deals with specific issues related to the design
of distributed embedded systems implemented with mixed,
event-triggered and time-triggered task sets, which
communicate over bus protocols consisting of both static and
dynamic phases. Such systems are emerging as a new
standard for automotive applications. We have developed a
holistic timing analysis and scheduling approach for this
category of systems. Three alternative scheduling heuristics
are presented and compared. We have also identified several
new design problems characteristic to such hybrid systems.
An example related to bus access optimization in the context
of a mixed static/dynamic bus protocol is presented.
Experimental results prove the efficiency of such an
optimization approach.

1. Introduction
Embedded systems very often have to satisfy strict tim-

ing requirements. In the case of such hard real-time appli-
cations, predictability of the timing behaviour is an
extremely important aspect. Frequently, such applications
are implemented as distributed systems. This is the case,
for example, with many applications in the automotive
industry. Predictability of such a system has to be guaran-
teed globally, considering both the task schedules deter-
mined for the particular processing units as well as the
timing of the communication between different compo-
nents of the system.

Task scheduling and schedulability analysis has been
intensively studied for the past decades. The reader is
referred to [2],[3] for surveys on this topic.

A few approaches have been proposed for a holistic
schedulability analysis of distributed real-time systems,
taking into consideration both task and communication
scheduling. In [23], Tindell provided a framework for
holistic analysis of event-triggered task sets intercon-
nected through an infrastructure based on a generic TDMA
protocol. In [15], the authors improve Tindell’s analysis by
allowing dynamic task offsets, which produced tighter
bounds for task response times. Work in the area of sched-
uling and schedulability analysis diversified significantly
by considering particular communication protocols, like
the Token Ring protocol [20][22], the ATM protocol
[8][11], CAN bus [7][24], or TTP bus[12]. In [17] and [18]
we have developed a holistic analysis allowing for either
time-triggered or event-triggered task sets communicating
over a TTP bus. In addition to schedulability analysis, this
work has also addressed the optimization of the TTP based

bus configuration in order to fit the particular application.
Two basic approaches for handling tasks in real-time

applications can be identified [13]: the event-triggered
(ET) and time-triggered (TT). There has been a long
debate in the real-time and embedded systems communi-
ties concerning the advantages of each approach and
which one to prefer [1], [13], [26]. Several aspects have
been considered in favour of one or the other approach,
such as flexibility, predictability, jitter control, processor
utilization, testability, etc.

The same duality is reflected at the level of the commu-
nication infrastructure, where communication activities
can be triggered either dynamically, in response to an event
(as is the typical case with the CAN bus [4]), or statically,
at predetermined moments in time (as in the case of
TDMA protocols and, in particular, the TTP [13]).

An interesting comparison of the TT and ET
approaches, from a more industrial, in particular automo-
tive, perspective, can be found in [14]. Their conclusion is
that one has to choose the right approach depending on the
particularities of the scheduled tasks. This means not only
that there is no single “best” approach to be used, but also
that inside a certain application the two approaches can be
used together, some tasks being time-triggered and others
event-triggered.

The fact that such an approach is considered for future
automotive applications is also indicated by the recent
activities related to the development and standardisation of
bus protocols which support both static (ST) and dynamic
(DYN) communication. Such a protocol has been sug-
gested in [16] and [21]. A mixed protocol has been also
proposed by a consortium, to be used as a standard in auto-
motive applications [10]. In [6], the authors describe the so
called Universal Communication Model (UCM), a frame-
work for modelling at a high level of abstraction the com-
munication infrastructure in automotive applications.

Efficient implementation of new, highly complex distrib-
uted automotive applications entails the use of TT task sets
together with ET ones, implemented on top of a communi-
cation infrastructure with a mixed ST/DYN protocol. Given
its flexibility, such an approach has the potential of highly
efficient, fine-tuned, and optimised implementations.

Our main contribution in this paper is related to the
scheduling and schedulability analysis of distributed
embedded systems implemented with both ET and TT task
sets, which are communicating through mixed ST/DYN
bus protocols. Such an analysis and scheduling procedure
constitutes the fundament for any synthesis approach aim-
ing at an efficient, highly optimised implementation of a

distributed application which is also guaranteed to meet
the timing constraints.

We also identified several design problems which offer
the potential of significant optimization and which can be
solved by efficient design space exploration, based on the
timing analysis mentioned above. In order to illustrate the
potential of such optimizations, we have looked more
closely at one particular communication synthesis problem.

In the next section we present the architecture of the dis-
tributed systems and the application model that we are
studying. Section 3 describes the holistic scheduling and
schedulability analysis we have developed. Some specific
optimization issues are presented in Section 4. Section 5
describes a particular optimization problem related to the
bus access, while Section 6 presents some experimental
results. The last section presents our conclusions.

2. System Architecture and Application Model

2.1 Hardware Architecture and Bus Access
We consider architectures consisting of nodes con-

nected by a unique broadcast communication channel.
Each node consists of a communication controller, a CPU,
memories (RAM, ROM), and an I/O interface to sensors
and actuators (see Figure 1).

We model the bus access scheme using the Universal
Communication Model [6]. The bus access is organized as
consecutive cycles, each with the duration Tbus. We con-
sider that the communication cycle is partitioned into static
and dynamic phases (Figure 1). Static phases consist of
time slots, and during a slot only one node is allowed to
send ST messages; this is the node associated to that par-
ticular slot. During a dynamic phase, all nodes are allowed
to send DYN messages and the conflicts between nodes
trying to send simultaneously are solved by an arbitration
mechanism based on priorities assigned to messages. The
bus access cycle has the same structure during each period
Tbus. Every node has a communication controller that
implements the static and dynamic protocol services. The
controller runs independently of the node’s CPU.

2.2 Software Architecture
For the systems we are studying, we have designed a

software architecture which runs on the CPU of each node.
The main component of the software architecture is a real-
time kernel which supports both time-triggered and event-
triggered activities. An activity is defined as either the exe-
cution of a task or as the transmission of a message on the

bus. For the TT activities, the kernel relies on a static
schedule table which contains all the information needed
to take decisions on activation of TT tasks or transmission
of ST messages. For the ET tasks, the kernel maintains a
prioritized ready queue in which tasks are placed when-
ever their triggering event has occurred and they are ready
for activation, or when they have been pre-empted.

The real-time kernel will always activate a TT task at
the particular time fixed for that task in the schedule table.
If at that moment, an ET task is running on that node, that
task will be pre-empted and placed into the ready queue
according to its priority. If no tasks are active, ET tasks are
extracted from the ready queue and are (re)activated. ET
tasks can pre-empt each other based on their priority.

The transmission of messages is handled in a similar
way: for each node, the sending and receiving times of ST
messages are stored in the schedule table; the DYN mes-
sages are organized in a prioritized ready queue. ST mes-
sages will be placed at predetermined time moments into a
bus slot assigned to the sending node. DYN messages can
be potentially sent during any dynamic phase. Conflicts
due to simultaneous transmission of messages from differ-
ent nodes are avoided, based on message priorities, by the
communication controllers. In order to prevent the delay of
an ST message by a DYN frame or the retransmission of a
pre-empted DYN message, the DYN messages will be sent
only if there is enough time available for that message
before the dynamic phase ends.

TT activities are triggered based on a local clock avail-
able in each processing node. The synchronization of local
clocks throughout the system is provided by the communi-
cation protocol.

2.3 Application Model
We model an application as a set of task graphs. Nodes

represent tasks and arcs represent communication (and
implicitly dependency) between the connected tasks. Each
task is mapped on a certain node of the distributed applica-
tion.
• A task belongs either to the TT or to the ET domain.
• Communication between tasks mapped to different

nodes is performed by message passing over the bus.
Such a message passing is modelled as a communica-
tion task inserted on the arc connecting the sender and
the receiver tasks. The communication time between
tasks mapped on the same node is considered to be
part of the task execution time. Thus, such a commu-
nication activity is not modelled explicitly. For the
rest of the paper, when referring to messages, we con-
sider only the communication activity over the bus.

• A message belongs either to the static (ST) or to the
dynamic (DYN) domain.

• All tasks in a certain task graph belong to the same
domain, either ET, or TT, which is called the domain
of the task graph. However, the messages belonging
to a certain task graph can belong to any domain (ST
or DYN). Thus, in the most general case, tasks

Node 1

Static phase Dynamic phase Static phase Dynamic phase

Figure 1. System Architecture

D
Y

N
 m

sg.

D
Y

N
 m

sg.

D
Y

N
 m

sg.

D
Y

N
 m

sg.

D
Y

N
 m

sg.

slot 1

slot 2

slot 3

slot 4

slot 5

slot 6

slot 7

Node 2 Node 3

Bus cycle (Tbus)

communication
controller

CPU
IO

RAM

ROM

Node 7...

belonging to a TT graph, for example, can communi-
cate through both ST and DYN messages.

• Each task τij (belonging to the task graph Γi) is
mapped on processor Processor(τij), has a worst case
execution time Cij, a period Tij, and a deadline Dij

(which, in the case of ET tasks, can be longer than the
period). Each ET task also has an uniquely assigned
priority Prioij. Individual release times or deadlines
of tasks can be constrained by introducing dummy
tasks with an appropriate execution time (such
dummy tasks are not mapped on any of the nodes).

• All tasks τij belonging to a task graph Γi have the
same period Ti which is the period of the task graph.
For sporadic ET tasks, Ti represents the minimum
inter-arrival time.

• For each message we know its size (which can be
directly converted into communication time on the
particular communication bus). The period of a mes-
sage is identical with that of the sender task. DYN
messages also have an uniquely assigned priority.

Figure 2 shows an application modelled as two task
graphs mapped on two nodes (processors).

In order to keep the separation between the TT and ET
domains, which are based on fundamentally different trig-
gering policies, communication between tasks in the two
domains is not included in the model. Technically, such a
communication is implemented by the kernel, based on
asynchronous non-blocking send and receive primitives
(using proxy tasks if the sender and receiver are on differ-
ent nodes). The transmission and reception of such a mes-
sage are not considered as communication tasks or
respectively events in the context described by our model,
therefore they are outside the scope of our holistic analy-
sis. Such messages are typically non-critical and are not
affected by hard real-time constraints.

3. Holistic Scheduling
Given an application and a system architecture as pre-

sented in Section 2, the following problem has to be
solved: construct a correct static schedule for the TT tasks
and ST messages (a schedule which meets all time con-
straints related to these activities) and conduct a schedula-
bility analysis in order to check that all ET tasks meet their
deadlines. Two important aspects should be noticed:
1. When performing the schedulability analysis for the

ET tasks and DYN messages, one has to take into

consideration the interference from the statically
scheduled TT tasks and ST messages.

2. Among the possible correct schedules for TT tasks
and ST messages, it is important to construct one
which favours, as much as possible, the schedulabil-
ity of ET tasks and DYN messages.

In Section 3.1 we present the schedulability analysis for
a set of ET tasks and DYN messages, considering a fixed
given static schedule of TT tasks and ST messages. In Sec-
tion 3.2 we discuss the construction of the static schedule
which is driven by the objective of achieving global sched-
ulability of the system. Three alternative scheduling heu-
ristics are presented and they will be evaluated and
compared in Section 6.

In order to keep the presentation reasonably simple and
given the space limitations, we present here the analysis
for a restricted model, in the sense that TT tasks are com-
municating only through ST messages, while the commu-
nication between ET tasks is only through DYN messages.
This is not an inherent limitation of our approach and the
analysis we have developed and implemented supports the
general model (in [18] and [19], for example, we have pre-
sented an approach to schedulability analysis of ET tasks
communicating through ST messages).

3.1 Schedulability Analysis of the ET Sub-System
Considering the Influence of a Given Static
Schedule

An ET task graph Γi is activated by an associated event
which occurs with a period Ti. Each activity τij (task or
message) in an ET task graph has an offset φij which spec-
ifies the earliest activation time of τij relative to the occur-
rence of the triggering event. The delay between the
earliest possible activation time of τij and its actual activa-
tion time is modelled as a jitter Jij (Figure 3.a). Offsets and
jitters are the means by which dependencies among tasks
are modelled for the schedulability analysis. The response
time of an activity τij is the time measured from the occur-
rence of the associated event until the completion of τij.
Each ET activity τij has a best case response time Rb,ij. The
worst case response time Rij of an activity τij is determined
by creating first a critical instant tc, which represents the
starting point of the worst-case busy window wij, a time
interval which ends when τij finishes execution (Figure 3.b).

Figure 2. Application Model Example

Γ2:ET

τ2,3

Γ1:TT

τ1,1

τ1,5
τ1,3

τ1,6

τ1,4

τ1,2

τ2,1

τ2,5
τ2,4

τ2,2

Node1: τ1,1, τ1,3, τ2,1
Node2: τ1,2, τ1,4, τ2,2, τ2,3

Messages:
ST: τ1,5, τ2,4
DYN: τ1,6, τ2,5

Tasks:

ev
en

t

φij
ϕij wij

Rij

tc

Cij

Figure 3. Model of the ET Sub-System

Rij wij φij ϕ ij– p 1–()T i–+=

φij+1 φij+1 Jij+1

Ti

φij
τij τij+1

τij τij+1

a) Tasks with offsets

b) Response time and busy period w for task τij

Jij

φij Jij

During the busy window wij, Processor(τij) executes only
task τij or higher priority tasks. ϕij is the time interval
between the critical instant and the earliest time for the first
activation of the task after this instant.

Considering a set of data dependent ET tasks mapped
on a single processor, the analysis in [15] computes the
worst case response time Rij of a task τij, based on the
length of its busy period, considering all the critical
instants initiated by higher priority activities in Γi and by
τij itself, and all job instances p of τij which can appear in
the busy window wij:

where wijk(p) is the worst-case busy window of the p-th job
of τij, numbered from the critical instant tc initiated by τik;
ϕijk is the time interval between the critical instant initiated
by τik, and the earliest time for the first activation of τij
after this instant.

The value of wijk(p) is determined as follows:

where Bij represents the maximum interval during which
τij can be blocked by lower priority activities1, Wik(τij,t) is
the interference from higher priority activities in the same
task graph Γi at time t, and W*

a(τij,t) is the maximum inter-
ference of activities from other task graphs Γa on τij. One
problem that arises during the computation of response
times is that the length of the busy window depends on the
values of task jitters, which, in turn, are computed as the
difference between the response times of two successive
tasks (for example, if tij precedes tik in Γi, then Jik = Rij -
Rb,ij). Because of this cyclic dependency, the process of
computing Rij is an iterative one: it starts by assigning Rb,ij
to Rij and then computes the values for Jij, wijk(p) and then
again Rij, until the response times converge to their final
value.

Starting from the analysis in [15], we had to consider
the following additional aspects:
• The interference from the set of statically scheduled

tasks.
• The computation of worst case delays for the messages

communicated on the bus and the global schedulability
analysis of the distributed task set.

We solve both aspects using an analysis similar to the
one developed in [16]. First we introduce the notion of ET
demand associated with an ET activity τij as the amount of
CPU time or bus time which is demanded only by higher
priority ET activities and by τij during the busy window
wij. In Figure 4, the ET demand of the task τij during the
busy window wij is represented with Hij(wij), and it is the
sum of worst case execution times for task τij and two other
higher priority tasks τab and τcd. During the same busy
period wij, we define the availability as the processing time
which is not used by statically scheduled activities. In Fig-
ure 4, the CPU availability for the interval of length wij is
obtained by substracting from wij the amount of processing
time needed for the TT activities.

During a busy window wij, the ET demand Hij of a task
τij is equal with the length of the busy window which
would result when considering only ET activity on the sys-
tem:

During the same busy window wij, the availability Aij
associated with task τij is:

,

where Aq
ij(w) is the total available CPU-time on Proces-

sor(τij) in the interval [q Ti + φij− ϕijk, q Ti + φij − ϕijk + wij],
Ti is the period of Γi and TSS is the period of the static
schedule (see Section 3.2). Figure 4 presents how Aq

ij(w)
and the demand are computed for a task τij: the busy win-
dow of τij starts at the critical instant q Ti + tc initiated by
task τab and ends at moment qTi + tc + wij, when both
higher priority tasks (τab, τcd), all TT tasks scheduled for
execution in the analysed interval, and τij have finished exe-
cution.

The discussion above is, in principle, valid for both ET
tasks and DYN messages. However, there exist two impor-
tant differences. First, messages do not pre-empt each
other, therefore, the demand equation is modified so that it
will not consider the time needed for the transmission of
the message under analysis (once the message has gained
the bus it will be sent without any interference [16]). Sec-
ond, the availability for a message is computed by sub-
stracting from wij the length of the ST slots which appear
during the considered interval; moreover, because a DYN
message will not be sent unless there is enough time before
the current dynamic phase ends, the availability is further
decreased with CA for each dynamic phase in the busy win-
dow (where CA is the transmission time of the longest
DYN message).

Our schedulability analysis algorithm determines the
length of a busy window wij for an ET task or DYN message
by identifying the appropriate size of wij for which the ET
demand is satisfied by the availability: Hij(wij) ≤ Aij(wij).

1. Such blocking can occur at access to a shared critical resource.

Rij max max wijk p() ϕ ijk– p 1–()T i– φij+()[]()
k Prioik Prioij p∀,>∀

,=

wijk p() Bij p p
0 ijk,– 1+() Cij⋅ Wik τ ij wijk p(),()

W *
a τ ij wijk p)(),()

a i≠()∀
∑

+ + +=

φij
ϕij wijtc

Cij

Figure 4. Availability and Demand

Rij w φij ϕ ij– p 1–()T i–+=

T
T

Ccd
Cab

ET availability: Aq
ij(wij) = wij - Ttt

ET demand: Hij(wij) = Cij + Cab + Ccd

ac
tiv

ity

interval [tc, tc+w]{
qTi

Ttt

Hij wij() Bij p p
0 ijk,– 1+() Cij W ik τ ij wij,()

W *
a τab wij,()

a i≠()∀
∑

+ +⋅+=

Aij wij() min Aij
q

wij()[]= q 0
LCM T i T SS,()

T i
------------------------------------,=

This procedure for the calculation of the busy window is
included in the iterative process for calculation of response
times, presented earlier in this subsection. It is important to
notice that this process includes both tasks and messages
and, thus, the resulted response times of the ET tasks are
computed by taking into consideration the delay induced
by the bus communication.

After performing the schedulability analysis, we can
check if Rij ≤ Dij for all the ET tasks. If this is the case, the
set of ET activities is schedulable. In order to drive the glo-
bal scheduling process, as it will be explained in the next
section, it is not sufficient to test if the task set is schedula-
ble or not, but we need a metric that captures the “degree
of schedulability” of the task set. For this purpose we use
the function DSch, similar with the one described in [18]:

where N is the number of ET task graphs and Ni is the
number of activities in the ET task graph Γi.

If the task set is not schedulable, there exists at least one
task for which Rij > Dij. In this case, f1 > 0 and the function
is a metric of how far we are from achieving schedulability.
If the set of ET tasks is schedulable, f2 ≤ 0 is used as a met-
ric. A value f2 = 0 means that the task set is “just” schedu-
lable. A smaller value for f2 means that the ET tasks are
schedulable and a certain amount of processing capacity is
still available.

Now, that we are able to perform the schedulability
analysis for the ET tasks considering the influence from a
given static schedule of TT tasks, we can go on to perform
the global scheduling and analysis of the whole applica-
tion.

3.2 Static Schedule Construction and Holistic
Analysis

For the construction of the cyclic static schedule for TT
tasks and ST messages, we use a list-scheduling based
algorithm [5]. Assuming that in our application we have N
time-triggered task graphs Γ1, Γ2, ..., ΓΝ, the static sched-
ule will be computed over a period TSS = LCM(T1, T2, ...,
TN). The input to the list scheduling algorithm is a graph
consisting of ni instances of each Γi, where ni=TSS/Ti. A
ready list contains all TT tasks and ST messages which are
ready to be scheduled (they have no predecessors or all
their predecessors have been scheduled). From the ready
list, tasks and messages are extracted one by one to be
scheduled on the processor they are mapped to, or into a
static bus-slot associated to that processor on which the
sender of the message is executed, respectively. The prior-
ity function which is used to select among ready tasks and
messages is a critical path metric, modified for the partic-
ular goal of scheduling tasks mapped on distributed sys-
tems [17]. Let us consider a particular task τij selected

from the ready list to be scheduled. We consider that
ASAPij is the earliest time moment which satisfies the con-
dition that all preceding activities (tasks or messages) of τij
in graph Γi are finished and Processor(τij) is free. The
moment ALAPij is the latest time when τij can be sched-
uled. With only the TT tasks in the system, the straightfor-
ward solution would be to schedule τij at ASAPij. In our
case, however, such a solution could have negative effects
on the schedulability of ET tasks. What we have to do is to
place task τij in such a position inside the interval [ASAPij,
ALAPij] so that the chance to finally get a globally sched-
ulable system is maximised.

In order to consider only a limited number of possible
positions for the start time of a TT task τij, we take into
account the information obtained from the schedulability
analysis described in Section 3.1, which allows us to com-
pute the response times of ET tasks. We started from the
obvious observation that statically scheduling τij after an
ET task τkl has finished its execution will guarantee that
task τij will not interfere with τkl. Thus, we consider as
alternative start times for τij the response times of all ET
tasks which finish their execution inside the [ASAPij,
ALAPij] interval:

The moment referred by ASAPij was added to
alternative_start_times so that the set of alternative start
times of a TT task will not be empty even if no ET tasks
finish their execution during the interval [ASAPij, ALAPij].

We illustrate the choice of possible start times of a TT
task τij in Figure 5 where three ET tasks τk,l, τk,l+1, τk,l+2
finish their execution inside [ASAPij, ALAPij] leading to
alternative_start_times(τij) = {ASAPij, Rk,l, Rk,l+1, Rk,l+2}.
Statically scheduling τij at time Rk,l avoids the interfer-
ences from τij to τkl., while scheduling τij even later, at
Rk,l+1, will guarantee that τij does not interfere with either
τkl or τk,l+1.

After identifying the set of candidate start times of a
task, we have to select one of them as the static schedule for
that task. Two aspects have to be considered in this context:
1. The interference with the ET activities should be

minimised;
2. The deadlines of TT activities should be satisfied.

In order to evaluate the first goal, the value of the func-
tion DSch (see Section 3.1) is computed for each alterna-
tive start time t after performing the schedulability analysis
of the ET task set considering the influence from the TT

f 1 m
j 1=

Ni

∑ ax 0 Rij Dij–,()
i 1=

N

∑=

f
2

Rij Dij–()
j 1=

N i

∑
i 1=

N

∑=

DSch =

, if f1 = 0

, if f1 > 0

alternative_start_times τ ij() ASAPij
Rkl τkl ETdomain Processor τkl() Processor τ ij()=,∈{ }

ASAPij ALAPi j),[]
∩(

)

∪=

ASAPij ALAPij

ASAPij Rk,l Rk,l+1 Rk,l+2

Figure 5. Selection of Alternative Start Times

τk,l τk,l+1 τk,l+2

τi,j τi,j τi,j τi,j

time on
Processor(τij)

tasks, with τij scheduled at t. As will be shown in the fol-
lowing section, a global cost function is computed, which
combines both goals defined above, and, based on a greedy
approach, the start time of the task will be selected.

The scheduling algorithm is presented in Figure 6. If the
selected TT activity extracted from the ready_list is a task
τij, then the alternative_start_times are evaluated and the
algorithm selects the one which generates the smallest
value of the cost function. When scheduling an ST mes-
sage extracted from the ready list, we place it into the first
bus-slot associated with the sender node in which there is
sufficient space available. If all TT tasks and ST messages
have been scheduled and the schedulability analysis for the
ET tasks indicates DSch ≤ 0, then the global system sched-
uling has succeeded.

For the case that no correct schedule has been produced,
we have implemented a backtracking mechanism in the list
scheduling algorithm, which allows to turn back to previ-
ous scheduling steps and to try alternative solutions. In
order to avoid excessive scheduling times, the maximum
number of backtracking steps can be limited.

In the following subsections we present three alternative
ways to compute the cost function which drives the heuris-
tic in Figure 6. The three alternatives are identified as
MxS1, MxS2 and MxS3 (from mixed scheduling).

3.2.1 MxS1
Scheduling a TT task τij inside its [ASAPij, ALAPij]

interval will, of course, guarantee that deadlines related to
this particular task are satisfied, and that there exists the
possibility that a valid static schedule can be constructed
for the system. However, due to the data dependencies,
scheduling τij later inside [ASAPij, ALAPij] decreases the
probability of finding a feasible static schedule for the
tasks further down. This is why, for the evaluation of the
alternative start times of a TT task τij (line 08 in Figure 6),
we introduced a cost function which combines the degree
of schedulability of the ET activities (DSch in Section 3.1)
with a second metric which captures the “risks” taken by
scheduling τij at later times:

where t is one of the alternative start times, A and B are

normalization constants, and slack(t, τij) represents the
available cpu-time on Processor(τij) (the processing time
inside the interval [t + Cij, TSS] which is not used by any
of the ET or TT tasks). The value of slack is computed as
follows:

where UnschHTT represents the sum of execution times of
all yet unscheduled TT tasks mapped on Processor(τij).
The term HET represents the time demanded by ET tasks
in the interval [t + Cij, TSS] on Processor(τij) and is com-
puted in the following steps:
1. For each ET task τab mapped on Processor(τij) con-

sider its worst case response interval Iab = [φab, Rab]
using the response times computed in line 08 of the
algorithm in Figure 6.

2. For each scheduled TT task τab mapped on Proces-

sor(τij), we know the start time tab and consider the
associated execution interval Iab = [tab, tab + Cab].

3. Compute the unions of intervals in which ET and
scheduled TT activities take place:

 and .

4. Compute HET as the sum of lengths of each of the

intervals in .

It is easy to notice that if the slack has a very small value
(even negative), then the first term in function f (the one
depending on time t) has a much greater weight on the
value of f. Consequently, earlier start times for τab will be
preferred. On the other hand, if there is more available
processor time than needed (in other words, slack has a
high value), the function f will depend mainly on the value
of the second term, thus the main aspect taken into consid-
eration will be the influence of TT activities on the ET
ones, which is captured by DSch.

The static scheduling algorithm will select, among the
alternative start times, that time t for which the value of the
cost function f is minimum.

3.2.2 MxS2
The schedulability analysis algorithm described in Sec-

tion 3.1 is applied very often during the static scheduling
procedure presented in Figure 6, both in order to compute
the values of the possible start times (line 04) and the Cost
associated with each such start time (line 08). In order to
reduce the amount of time needed for scheduling, we
experimented with an algorithm which uses the schedula-
bility analysis only for determining the set of
start_times(line 04), while the evaluation process in line
08 is based on a simpler version of function f. In MxS1,
when the alternative start times of a TT task are evaluated,
running the schedulability analysis returns the value DSch
which reflects the amount of new interference that has
been introduced in the ET subsystem at a global level. The
simpler function f, which we use in this second algorithm,
avoids calling the global schedulability analysis for each

Figure 6. Static Scheduling Algorithm

00 compute [ASAP,ALAP] for each TT activity
01 while ready_list is not empty
02 select TT activity τij
03 if τij is a task
04 Schedulability Analysis -> Compute

response times of ET activities
05 compute alternative_start_times(τij)
06 for t in alternative_start_times(τij)
07 schedule τij at t
08 Schedulability Analysis ->

Compute DSch ->
Compute CostFunction

09 endfor
10 schedule τij at t for which

the CostFunction is minimum
11 else // τij is a message
12 ASAP schedule τij in sloti
13 endif
14 update ready_list
15 endwhile

f t τ ij,() A e
slack t τ ij,()–

t B DSch⋅+⋅ ⋅=

slack t τ ij,() TSS t Cij+()–[] HET t Cij T SS Procij, ,+()–
UnschHTT Procij()

–=

I ET I ab
τab ET∈∀
∪= I schedTT I ab

τab schedTT∈∀
∪=

I ET ITT∪() tij Cij T SS,+[]∩

possible start time of a TT task τij and considers only the
interferences produced by τij on the ET tasks mapped on
Processor(τij):

where the value of DSch (as expressed in Section 3.1) is
computed (on line 4, Figure 6) before τij has been sched-
uled, and ∆DSch is the amount of interference introduced
by τij on the ET tasks mapped on Processor(τij):

,

where Rkl is the response time of an ET task τkl before τij
has been scheduled and R’kl is an approximation of the
response time of τkl after τij has been scheduled at time t.
We estimate that, depending on the time t when a TT task
τij is scheduled, the response time of an ET task τkl mapped
on the same Processor(τij) either remains unchanged (is
not influenced at all) or is increased with a value up to the
worst case execution time Cij of the TT task. Figure 7
presents which are the situations when the response time
of an ET task τkl remains unchanged and when it is
increased because of the influence of a TT task τij. The
cases represented in Figure 7.a) show that when a TT task
τij is scheduled at time t so that its associated execution
interval [t, t + Cij] does not intersect with the time interval
where an ET task executes in the worst case [φkl, Rkl], then
we estimate that after scheduling τij at t, the response time
for τkl will be the same, Rkl’ = Rkl. However, if the intersec-
tion is not empty (like in the cases in Figure 7.b), then
Rkl’= Rkl + ∆DSchkl. The value for the increment used in
the function f ’(t,τij) will be computed as ∆DSch =
Σ∆DSchkl, for all τkl in the ET domain and Processor(τkl)
= Processor(τij).

In MxS2, the schedulability analysis of the system is
called only once for each TT task (step 04), which will lead,
as we will see in Section 6, to faster computation times.

3.2.3 MxS3
List scheduling, which is the basis for our scheduling

algorithm, is a constructive method that builds the static

schedule table incrementally, by adding one TT task or ST
message at a time. In the previous two versions of the algo-
rithm (Section 3.2.1 and Section 3.2.2), at each step, the
effect of the static schedule, including the newly intro-
duced task, on the ET subsystem is measured by function
DSch. However, the problem is that the available static
schedule is not complete when estimating, for a given task
τij, the global influence of TT activities on the set of ET
ones. For the alternatives MxS1 and MxS2 we have chosen
the following simple approach: for evaluating the influ-
ence of the decision of which alternative start time to select
for τij, we consider only that part of the static schedule
which already has been built, up to that particular moment.
The selection is fair, as the same conditions are applied to
all alternative times; however, it is inaccurate, since a part
of the final static schedule is ignored when taking the deci-
sion. For the alternative MxS3 we have considered a solu-
tion which tries to improve on this lack of accuracy by
considering the whole set of TT activities when evaluating
the degree of schedulability of the ET tasks and messages.
This is solved by considering an approximate static sched-
ule for the yet unscheduled TT activities. Therefore, a pre-
liminary step is performed in preparation of the algorithm
in Figure 6.

First, we build an initial static schedule by using a sim-
pler and faster version of the algorithm in Figure 6. In this
version, the response times of the ET activities are com-
puted only once in the beginning of the algorithm and the
evaluation of possible start times is performed using a sim-
ple function like in MxS2. This step allows us to rapidly
obtain a static schedule which will be at the basis of the
second step of our approach.

After the preparation step, we run the algorithm in Fig-
ure 6, but whenever schedulability analysis of the ET sub-
system is performed, we consider that the interfering static
schedule not only contains the TT activities which were
scheduled so far, but all the TT tasks and ST messages in
the system. We obtain such a complete static schedule by
considering:

• the start times of the TT tasks/ STmessages scheduled
so far in this second step;

• for the unscheduled TT tasks/ ST messages, we con-
sider their start times as identified in the first step of
the algorithm

Figure 8 illustrates the way we obtain such a complete
static schedule. The static schedule considered during the
schedulability analysis of the ET subsystem (Figure 8.c)
contains all the TT tasks and ST messages in the system.
Such a complete schedule is obtained by putting together

f ′ t τ ij,() e
slack t τ ij,()–

t B DSch ∆DSch+()⋅+⋅=

∆DSch R ′kl Rkl–()
τkl ET∈

Processor τkl() Processor τ ij()=

∑=

τkl τij

τij

τij

τijτkl

τkl

τkl

b) Rkl is increased with ∆DSch

∆DSchkl = Cij

∆DSchkl = t + Cij - φkl

φkl

t

Figure 7. Estimation of ET Response Times in
MxS2 Algorithm

a) Rkl remains unchanged

Proc 1

Proc 2

Bus

τ1 τ2 τ3

τ4 τ5

m1

τ1

τ4

τ1 τ2 τ3

τ4 τ5

m1

a) Initial static schedule b) Current static schedule c) Static schedule considered for
system evaluation(ALAP list scheduling)

Figure 8. Construction of a Static Schedule for Complete Evaluation

the start times for tasks τ1 and τ4 (which have been sched-
uled already, see Figure 8.b) and the start times identified
in the first step for the unscheduled tasks τ2, τ3, τ5 and
message m1 (Figure 8.a).

4. System Optimization
Considering a hard real-time system like the one

described in Section 2, several design problems emerge.
There are, of course, the classical issues as selection of an
architecture (e.g. number and kind of nodes), the mapping
of tasks on the processing nodes, or the assignment of pri-
orities to ET tasks and DYN messages [1],[9],[25]. How-
ever, due to the heterogeneous ET and TT nature of the
application and the mixed synchronous/dynamic bus proto-
col, some new, very interesting problems can be identified:
• Partitioning of the system functionality into TT and

ET activities. During the design process, a decision
should be made on which tasks and messages will be
implemented as TT/ET and ST/DYN activities,
respectively. Typically, this decision is taken, based
on the experience and preferences of the designer,
considering aspects like the functionality imple-
mented by the task, the hardness of the constraints,
sensitivity to jitter, etc. There exists, however, a sub-
set of tasks/messages which could be assigned to any
of the domains. Decisions concerning the partition-
ing of this set of activities can lead to various trade-
offs concerning, for example, the size of the sched-
ule table or the schedulability properties of the sys-
tem.

• Determining the optimal structure of the bus access
cycle. The configuration of the bus access cycle has a
strong impact on the global performance of the system.
The parameters of this cycle have to be optimised
such that they fit the particular application and the
timing requirements at the task level. Parameters to be
optimised are the number of static and dynamic phases
during a communication cycle, as well as the length
and order of these phases. Considering the static
phases, parameters to be fixed are the order, number,
and length of slots assigned to the different nodes.

The optimization problems identified above can be
approached once the holistic scheduling technique pre-
sented in Section 3 is available. In the next section we
illustrate this by considering a particular problem related
to bus access optimization.

5. Bus Access Optimization
We consider an application and an architecture like the

one described in Section 2. The designer has mapped the
tasks on the nodes of the system and has set the bus cycle
according to his best knowledge. After running the holistic
scheduling presented in Section 3, it turns out that a correct
static schedule for the TT tasks and ST messages has been
generated, but the ET task set is not schedulable. One of
the reasons for this could be that there is not sufficient
bandwidth allocated for the communication of messages
between ET tasks. The problem to be solved is to find a
structure of the bus cycle such that more bandwidth is allo-
cated to the dynamic phases with the goal to improve the
schedulability of ET tasks while maintaining a correct
static schedule.

As a first step, the optimization algorithm transforms
some parts of the static phases into dynamic phases. For
each static slot in the bus cycle and for each round in the
static schedule we transform the periodically unused part
of the slot into a dynamic phase (see Figure 9).

After this initial step, various bus cycle configurations
are explored by splitting and merging bus phases. Figure
10 illustrates the operations on dynamic phases. Three
possible outcomes are shown for both the splitting and the
merging example. We have implemented a simulated
annealing based algorithm which applies successive split-
ting and merging transformations with the goal to improve
the schedulability of the ET task set and the constraint of
achieving a correct static schedule for TT tasks. The objec-
tive function driving the algorithm is the function DSch
introduced in Section 3.1

6. Experimental Results
For evaluation of our scheduling and analysis algorithm

we generated a set of 3600 tests representing systems of 2
to 10 nodes. The number of tasks mapped on each node
varied between 10 and 30, leading to applications with a
number of 20 up to 300 tasks. The tasks were grouped in
task-graphs of 5, 10 or 15 tasks. Between 20% and 80% of
the total number of tasks were considered as event-trig-
gered and the rest were set as time-triggered. The execu-
tion times of the tasks were generated in such a way that
the utilization on each processor was between 20% and
80%. In a similar manner we assured that 20% and up to
60% of the total utilization on a processor is required by
the ET activities. All experiments were run on an AMD
Athlon 850MHz PC.

slot1 slot2
dynamic

slot1 slot2
dynamic

Cycle1 Cycle2

new dynamic phase

Figure 9. Transformation of Unused Static
Bandwidth into Dynamic Phases

phasephase
static phase static phase

unused unused

slot1 slot2 slot1 slot2 b) New bus cycle

a) Initial bus cycle

dyn.ph.2

dyn.ph.2

dyn.ph.1

dyn.ph.1

a) Phase Splitting b) Phase Merging

st.ph.1 st.ph.2dyn.phase dyn.ph.1 dyn.ph2st. ph.1 st.ph.2

dyn.phase1+2st. ph.1 + st.ph.2dyn.ph.2st.ph.1

st.ph.1

st.ph.2

st.ph.2 dyn.phase1+2st. ph.1 st.ph.2

dyn.ph.1 st.ph.1 + st.ph.2 dyn.phase1+2 st. ph.1 + st.ph.2

Figure 10. Operations on Dynamic Phases

The first set of experiments compares the three versions
of the holistic scheduling algorithm we proposed in Sec-
tion 3.2. In Figure 11.a) we illustrate the capacity of MxS1
and MxS2 to produce schedulable systems, compared to
that of MxS3. For example, in the case of a 60% load,
MxS2 was able to generate 18% and MxS1 16% less
schedulable solutions than MxS3. In addition, for each
heuristic, we computed the quality of the identified solu-
tions, as the percentage deviation of the schedulability
degree (DSchMxS) of the ET activities in the resulted sys-
tem, relative to the schedulability degree of an ideal solu-
tion (DSchref) in which the static schedule does not
interfere at all with the execution of the ET activities:

In other words, we used the function DSch as a measure
of the interference introduced by the TT activities on the
execution of ET activities. In Figure 11.b), we present the
average quality of the solutions found by the three algo-
rithms. For this graph we used only those results where all
three algorithms managed to find a schedulable solution. It
is easy to observe that the solutions obtained with MxS3
are constantly at a minimal level of interference. The heu-
ristics MxS1 and MxS2 produce solutions in which the TT
interference is considerably higher, resulting in signifi-
cantly larger response times of the ET activities and con-
sequently to a decrease of the schedulability degree by 7-
13%. Not surprisingly, our experiments prove that the heu-
ristic MxS3 is the most accurate and consequently pro-
duces results of the best quality. MxS2, which uses local
approximation for the evaluation of the ET schedulability,
has a slightly lower quality than MxS1.

In Figure 12 we illustrate the average execution times of
the three scheduling heuristics. According to expectations,
MxS2 is the fastest of the three heuristics, while MxS3 is
slightly slower than MxS1. In conclusion, the heuristic
MxS3 is the one which offers the best solutions at an
acceptable computation time. MxS2 is very fast and can be
used in certain particular cases like, for example, inside a
design space exploration loop with an extremely large
number of iterations. MxS3 has been used for the set of
experiments presented in the rest of this section.

For the evaluation of the bus access optimization heuris-
tic in Section 5, we generated a total of 400 applications,
each of them consisting of 100 tasks mapped on 10 proc-
essor nodes. The percentage of ET tasks was 20%, 40%,

60%, or 80% of the total number of tasks. Processor utili-
sation was 60% or 80%. The bus bandwidth was equally
divided between the dynamic and the static phases and the
static phase was equally divided in a number of slots iden-
tical with the number of nodes. This set of experiments
concerns the potential of the bus access optimization dis-
cussed in Section 5. For this purpose we selected that part
of the generated applications for which the ET component
resulted unschedulable. Table 1 shows the results after run-
ning our optimization heuristic for this application set. As
can be observed, the average improvement of the schedula-
bility obtained by bus access optimization is between 22%
and 29% for the tests with balanced numbers of ET and TT
activities (the two central columns), with an average opti-
mization time below 6 minutes. For unbalanced distribu-
tions, the improvement can be even much larger. As
discussed in Section 5, these improvements have been
obtained considering only a very limited optimization
issue, namely the distribution of bandwidth between the
static and the dynamic phases. This demonstrates the huge
optimization potential of the different design problems dis-
cussed in Section 4.

Finally, we considered a real-life example implement-
ing a vehicle cruise controller and a control application
related to the Anti Blocking System. The cruise controller
consists of 42 TT tasks mapped over 5 nodes. The second
control system consists of 30 ET tasks which are mapped
on 3 of the same 5 nodes. Initially, the bandwidth on the
communication bus is equally divided between the static
and dynamic phases. The scheduling of the system took 4
seconds and resulted in a correct static schedule and an

Interference
DSchref DSchMxS–

DSchref
--- 100⋅=

a) Deviation of Number of solutions (smaller is better)

0

5

10

15

20

20% 40% 60% 80% Processor

P
er

ce
nt

ag
e

de
vi

at
io

n
re

la
ti

ve
 t

o
M

xS
3

MxS1

MxS2

P
er

ce
nt

ag
e

de
vi

at
io

n
re

l.
to

 t
he

 id
ea

l c
as

e

utilization

14
12
10
8
6
4
2
0

2 4 6 8 10 No.Processors

MxS1

MxS2

MxS3

b) Degree of interference (smaller is better)

Figure 11. Evaluation of Scheduling Heuristics MxS1, MxS2 and MxS3

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

MxS1
MxS2
MxS3

Figure 12. Average Computation Times

T
im

e
(s

)

Number of Tasks

unschedulable ET domain. After running the bus access
optimization, the schedulability (expressed in terms of the
function DSch) has improved by more than one order of
magnitude, resulting in a completely schedulable system.
The optimization was solved in aproximatively 4 minutes.

7. Conclusions
Distributed embedded systems based on mixed static/

dynamic communication protocols are becoming a new
standard for automotive applications. Such systems typi-
cally run applications consisting of both ET and TT tasks.
We have presented a holistic scheduling and timing analy-
sis approach for this class of systems. A static cyclic sched-
ule is constructed for TT tasks and ST messages and the
schedulability of ET tasks and DYN messages is verified.
The static schedule is constructed in such a way that it fits
the schedulability requirements of the ET domain. We have
identified a new class of system optimization issues typical
for the heterogeneous systems considered in the paper. In
particular, we have considered a bus access optimization
problem and have shown that the system performance can
be improved by carefully adapting the bus cycle to the par-
ticular requirements of the application.

8. References
[1] N. Audsley, K. Tindell, A. et. al., “The End of Line for

Static Cyclic Scheduling?”, 5th Euromicro Works. on Real-
Time Systems, 1993.

[2] N. Audsley, A. Burns, et. al., “Fixed Priority Preemptive
Scheduling: An Historical Perspective”, Real-Time
Systems, 8(2/3), 1995.

[3] F. Balarin, L. Lavagno, et. al., “Scheduling for Embedded
Real-Time Systems”, IEEE Design and Test of Computers,
January-March,1998.

[4] R. Bosch GmbH, “CAN Specification Version 2.0”, 1991.
[5] E.G. Coffman Jr., R.L. Graham, “Optimal Scheduling for

two Processor Systems”, Acta Informatica, 1, 1972.
[6] T. Demmeler, P. Giusto, “A Universal Communication

Model for an Automotive System Integration Platform”,
DATE, 2001.

[7] R. Dobrin, G. Fohler, “Implementing Off-Line Message
Scheduling on Controller Area Network (CAN)”,
Proceedings of the 8th IEEE International Conference on
Emerging Technologies and Factory Automation, 1, 2001.

[8] H. Ermedahl, H. Hansson, M. Sjödin, “Response Time
Guarantees in ATM Networks”, Proceedings of Real-Time
Systems Symposium, 1997.

[9] R. Ernst, “Codesign of Embedded Systems: Status and
Trends”, IEEE Design&Test of Comp., April-June, 1998.

[10] FlexRay homepage: http://www.flexray-group.com/.
[11] H. Hansson, M. Sjödin, K. Tindell, “Guaranteeing Real-

Time Traffic Through an ATM Network”, Proceedings of
the 30th Hawaii International Conference on System
Sciences, 5, 1997.

[12] H. Kopetz, G. Fohler, et. al., “The Programmer’s View of
MARS”, Proceedings of Real-Time Systems Symposium,
1992.

[13] H. Kopetz, “Real-Time Systems - Design Principles for
Distributed Embedded Applications”, Kluwer Academic
Publisher, 1997.

[14] H. Lönn, J. Axelsson, “A Comparison of Fixed-Priority and
Static Cyclic Scheduling for Distributed Automotive
Control Applications”, Euromicro Conf. on RTS, 1999.

[15] J. C. Palencia, M. Gonzaléz Harbour, “Schedulability
Analysis for Tasks with Static and Dynamic Offsets”,
Proceedings of the 19th IEEE Real-Time Systems
Symposium, 1998.

[16] L. Almeida, P. Pedreiras, J. A. G. Fonseca, “The FTT-CAN
Protocol: Why and How”, IEEE Transactions on Industrial
Electronics, 49(6), 2002.

[17] P. Pop, P. Eles, Z. Peng, A. Doboli, “Scheduling with Bus
Access Optimization for Distributed Embedded Systems“,
IEEE Transactions on VLSI Systems, 8(5), 2000.

[18] P. Pop, P. Eles, Z. Peng, “Bus Access Optimization for
Distributed Embedded Systems Based on Schedulability
Analysis“, DATE, 2000.

[19] P. Pop, P. Eles, Z. Peng, “Schedulability-Driven
Communication Synthesis for Time-Triggered Embedded
Systems”, Real-Time Systems Journal (accepted for
publication)

[20] P. Pleinevaux, “An Improved Hard Real-Time Scheduling
for the IEEE 802.5”, Journal of Real-Time Systems, 4(2),
1992.

[21] P. Raja, G. Noubir, “Static and Dynamic Polling
Mechanisms for Fieldbus Networks”, ACM Operating
Systems Review, 27(3), 1993.

[22] J.K. Strosneider, T.E. Marchok, “Responsive, deterministic
IEEE 802.5 Token Ring Scheduling”, Journal of Real-Time
Systems, 1(2), 1989.

[23] K. Tindell, J. Clark, “Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems”, Microprocessing &
Microprogramming, Vol. 50, Nos. 2-3, 1994.

[24] K. Tindell, H. Hansson, A.J. Wellings, “Analysing Real-
Time Communications: Controller Area Network (CAN)”,
Proceedings of the Real-Time Systems Symposium, 1994

[25] W. Wolf, “Hardware-Software Co-Design of Embedded
Systems”, Proceedings of the IEEE, V82, N7, 1994.

[26] J. Xu, D.L. Parnas, “On satisfying timing constraints in
hard-real-time systems”, IEEE Transactions on Software
Engineering, 19(1), 1993.

Processor
utilisation

80% ET tasks 60% ET tasks 40% ET tasks 20% ET tasks

schedulability
improvement

optimization
time

schedulability
improvement

optimization
time

schedulability
improvement

optimization
time

schedulability
improvement

optimization
time

60% 15% 301 s 23% 316 s 29% 275 s 82% 139 s

80% 26% 479 s 25% 294 s 22% 320 s 102% 145 s

Table 1: Bus Optimization Results

	Schedulability Analysis for Distributed Heterogeneous
	Time/Event Triggered Real-Time Systems
	Traian Pop, Petru Eles, Zebo Peng
	Department of Computer and Information Science, Linköping University, Sweden
	{trapo,petel,zebpe}@ida.liu.se
	Abstract
	This paper deals with specific issues related to the design of distributed embedded systems imple...
	1. Introduction
	2. System Architecture and Application Model
	2.1 Hardware Architecture and Bus Access
	Figure 1. System Architecture

	2.2 Software Architecture
	2.3 Application Model
	Figure 2. Application Model Example

	3. Holistic Scheduling
	1. When performing the schedulability analysis for the ET tasks and DYN messages, one has to take...
	2. Among the possible correct schedules for TT tasks and ST messages, it is important to construc...
	3.1 Schedulability Analysis of the ET Sub-System Considering the Influence of a Given Static Sche...
	Figure 3. Model of the ET Sub-System
	Figure 4. Availability and Demand

	3.2 Static Schedule Construction and Holistic Analysis
	Figure 5. Selection of Alternative Start Times
	1. The interference with the ET activities should be minimised;
	2. The deadlines of TT activities should be satisfied.

	Figure 6. Static Scheduling Algorithm
	3.2.1 MxS1
	1. For each ET task tab mapped on Processor(tij) consider its worst case response interval Iab = ...
	2. For each scheduled TT task tab mapped on Processor(tij), we know the start time tab and consid...
	3. Compute the unions of intervals in which ET and scheduled TT activities take place: and .
	4. Compute HET as the sum of lengths of each of the intervals in .

	3.2.2 MxS2
	Figure 7. Estimation of ET Response Times in MxS2 Algorithm
	Figure 8. Construction of a Static Schedule for Complete Evaluation

	3.2.3 MxS3

	4. System Optimization
	Figure 9. Transformation of Unused Static Bandwidth into Dynamic Phases

	5. Bus Access Optimization
	Figure 10. Operations on Dynamic Phases

	6. Experimental Results
	Figure 11. Evaluation of Scheduling Heuristics MxS1, MxS2 and MxS3
	Figure 12. Average Computation Times

	7. Conclusions
	8. References
	[1] N. Audsley, K. Tindell, A. et. al., “The End of Line for Static Cyclic Scheduling?”, 5th Euro...
	[2] N. Audsley, A. Burns, et. al., “Fixed Priority Preemptive Scheduling: An Historical Perspecti...
	[3] F. Balarin, L. Lavagno, et. al., “Scheduling for Embedded Real-Time Systems”, IEEE Design and...
	[4] R. Bosch GmbH, “CAN Specification Version 2.0”, 1991.
	[5] E.G. Coffman Jr., R.L. Graham, “Optimal Scheduling for two Processor Systems”, Acta Informati...
	[6] T. Demmeler, P. Giusto, “A Universal Communication Model for an Automotive System Integration...
	[7] R. Dobrin, G. Fohler, “Implementing Off-Line Message Scheduling on Controller Area Network (C...
	[8] H. Ermedahl, H. Hansson, M. Sjödin, “Response Time Guarantees in ATM Networks”, Proceedings o...
	[9] R. Ernst, “Codesign of Embedded Systems: Status and Trends”, IEEE Design&Test of Comp., April...
	[10] FlexRay homepage: http://www.flexray-group.com/.
	[11] H. Hansson, M. Sjödin, K. Tindell, “Guaranteeing Real- Time Traffic Through an ATM Network”,...
	[12] H. Kopetz, G. Fohler, et. al., “The Programmer’s View of MARS”, Proceedings of Real-Time Sys...
	[13] H. Kopetz, “Real-Time Systems - Design Principles for Distributed Embedded Applications”, Kl...
	[14] H. Lönn, J. Axelsson, “A Comparison of Fixed-Priority and Static Cyclic Scheduling for Distr...
	[15] J. C. Palencia, M. Gonzaléz Harbour, “Schedulability Analysis for Tasks with Static and Dyna...
	[16] L. Almeida, P. Pedreiras, J. A. G. Fonseca, “The FTT-CAN Protocol: Why and How”, IEEE Transa...
	[17] P. Pop, P. Eles, Z. Peng, A. Doboli, “Scheduling with Bus Access Optimization for Distribute...
	[18] P. Pop, P. Eles, Z. Peng, “Bus Access Optimization for Distributed Embedded Systems Based on...
	[19] P. Pop, P. Eles, Z. Peng, “Schedulability-Driven Communication Synthesis for Time-Triggered ...
	[20] P. Pleinevaux, “An Improved Hard Real-Time Scheduling for the IEEE 802.5”, Journal of Real-T...
	[21] P. Raja, G. Noubir, “Static and Dynamic Polling Mechanisms for Fieldbus Networks”, ACM Opera...
	[22] J.K. Strosneider, T.E. Marchok, “Responsive, deterministic IEEE 802.5 Token Ring Scheduling”...
	[23] K. Tindell, J. Clark, “Holistic Schedulability Analysis for Distributed Hard Real-Time Syste...
	[24] K. Tindell, H. Hansson, A.J. Wellings, “Analysing Real- Time Communications: Controller Area...
	[25] W. Wolf, “Hardware-Software Co-Design of Embedded Systems”, Proceedings of the IEEE, V82, N7...
	[26] J. Xu, D.L. Parnas, “On satisfying timing constraints in hard-real-time systems”, IEEE Trans...

