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Extended Abstract

In this paper we present an algorithm for system level hardware/soft-
ware partitioning of heterogeneous embedded systems. The system is
represented as an abstract graph which captures both data-flow and
the flow of control. Given an architecture consisting of several proces-
sors, ASICs and shared busses, our partitioning algorithm finds the
partitioning with the smallest hardware cost and is able to predict and
guarantee the performance of the system in terms of worst case delay.

1 Introduction
A great deal of research has been done on hardware/software partitioning
[1]. Several research groups consider hardware/software architectures con-
sisting of a single programmable processor and an ASIC. In this case, the
behaviour is partitioned into one software partition and one hardware par-
tition. However, for complex systems, such a restricted architecture doesn’t
allow an efficient design space exploration, and therefore we will concen-
trate on more general architectures. As the predictability of the systems in
terms of performance is becoming increasingly important, timing con-
straints have also to be considered.[2]

2 Problem Formulation and the Process Graph
We consider embedded systems specified as a set of interacting processes.
Our goal is to develop a partitioning algorithm that, given an implementa-
tion architecture consisting of several programmable processors, ASICs and
interconnection busses, together with an end-to-end deadline1on the execu-
tion time of the system, will generate a partitioning of processes and com-
munication tasks that implies the smallest possible system cost. The
resulted partitioning will specify for each process if it will be implemented
in software and on which programmable processor or if it has to be synthe-
sized to hardware on an ASIC. Communication between processes mapped
to different processors or ASICs is modelled by so called communication

1. multiple deadlines and release times can also be handled



tasks. The final partitioning will indicate to which bus each communication
task is mapped. The end-to-end deadline will be guaranteed by a worst case
delay and the execution of the final system will proceed according to a stat-
ically generated schedule [4].

As an abstract model for system representation we use a directed, acy-
clic, polar graph with conditional edges (Fig.1). Each node in this graph rep-
resents one process. An edge from process Pi to Pj indicates that the output
of Pi is the input of Pj. Unlike a simple edge, a conditional edge (depicted
with thicker lines in Fig.1) has an associated condition. Transmission on a
conditional edge will take place only if the associated condition is satisfied
and not, like on simple edges, for each activation of the input process Pi.

The architecture is given as a set of programmable processors, ASICs
and memories interconnected by busses. An end-to-end deadline on the ex-
ecution time of the system is imposed and an upper bound on the total hard-
ware cost of ASICs is given. For each process we have an estimation of the
execution time if implemented on any of the programmable processors (pro-
grammable processors can be of different types) as well as the execution
time of the process if implemented on an ASIC. For a given communication
task (depicted with black dots in Fig.1) connecting processes Pi and Pj we
have an estimation of the corresponding communication time, based on the
amount of information exchanged by the two processes.

The estimation of the hardware cost if a process is implemented on an
ASIC is also given.

The designer, based on his previous experience, is allowed to express sev-
eral constraints on the placement of a certain process or group of processes
in the final partitioning.
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Fig. 1. Process Graph



3 Branch and Bound (BB) Partitioning
Finding the optimal partitioning is a problem of exponential complexity.
However, for most of the real life problems, the imposed design constraints
and the restrictions imposed by the designer will reduce the number of fea-
sible partitions, thus a search algorithm like branch and bound can be
used.[3]

In order to apply a BB strategy, the state space corresponding to the
problem is organized as a state tree (Fig.2). The main characteristics of a BB
algorithm are the branching rule, the selection rule, and the bounding rule.
Their definition has a decisive influence on the number of visited states and,
thus, on the performance of the algorithm.

3.1 The Branching Rule

The branching rule defines the steps which are performed for generation of
new states starting from a given parent state. The generation of new states
is realized by moving one task from the list of yet unmapped tasks into the
partitions corresponding to each of the programmable processors or the
hardware. For example, new states to be generated from the node <P1,φ,P2>
correspond respectively to nodes <P1P3,φ,P2>, <P1,P3,P2> and <P1,φ,P2P3>.
This generation is restricted by design constraints and user imposed restric-
tions.
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Fig. 2. Partial solution tree with three partitions: two programmable processors and
one ASIC. A partitioning corresponds to a node in the state tree and it is depicted by
a triplet. For example, the triplet <P1, P3, P2> means that P1 is mapped on the first
programmable processor, P3 on the second, and P2 will be an ASIC. For each node
we also know its corresponding hardware cost and worst case execution time, depict-
ed as a pair. Also, for this design the end-to-end deadline is 9 and the upper bound
on total hardware cost is 11.

...



3.2 The Selection Rule
From the children generated by a certain node one should be selected in or-
der to continue the branching operation. Our approach is to select the node
which has the smallest hardware cost while meeting the deadline.

3.3 The Bounding Rule
The efficiency of a BB algorithm depends on how large part of the state tree
is effectively generated. Before branching from a node a decision is taken if
exploration has still to continue on the subtree or the subtree can be cut.

Our approach is to compare the performance estimation of a given design
alternative with the deadline. If the deadline is not met, the subtree origi-
nating in the current node is cut (shaded nodes in Fig.2). Otherwise, the cost
information is used for further bounding. If the estimated cost is bigger than
the upper bound on the total hardware cost, the subtree is also cut (node
<P1,φ,P2P3>).

Our estimation strategy is based on an incremental approach consider-
ing small changes performed at each decision. After a set of mapping deci-
sions have been taken a new estimation basis is generated using the
scheduling algorithm presented in [4].

4 Conclusions
We have presented an approach to system level hardware/software parti-
tioning of embedded systems aiming at fulfilment of timing constraints.
Timing constraints are given as an end-to-end deadline imposed on the ex-
ecution time of the system. A worst case delay for execution time is estimat-
ed using scheduling techniques tailored for our problem. We are currently
working on the implementation of this algorithm, and real-life examples
will be used to test the final implementation.
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