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ABSTRACT!

The probability for errors to occur in electronic systems
is mot known in advance, but depends on many factors
including influence from the environment where the system
operates. In this paper, it is demonstrated that inaccurate
estimates of the error probability lead to loss of perfor-
mance in a well known fault tolerance technique, Roll-
back Recovery with checkpointing (RRC). To regain the lost
performance, a method for estimating the error probability
along with an adjustment technique are proposed. Using
a stmulator tool that has been developed to enable experi-
mentation, the proposed method is evaluated and the results
show that the proposed method provides useful estimates of
the error probability leading to near-optimal performance
of the RRC fault-tolerant technique.

I. INTRODUCTION

The rapid development in semiconductor technologies
makes it possible to fabricate integrated circuits (ICs) that
contain billions of transistors. The constant need of perfor-
mance, which traditionally has been met by higher clock
frequencies, is today also increasingly met by concurrency
whereas a number of processor cores are implemented on
the same silicon die; these ICs are often referred to as
multi-processor system-on-chips (MPSoCs).

The drawback of the rapid development in semiconduc-
tor technologies is the increasing susceptibility to soft er-
rors [4], [6]. Roll-back recovery with checkpointing (RRC)
is a technique designed to detect and recover from soft
errors. A checkpoint is a snapshot of the state of a
processor node. From the checkpoint, the job execution
can restart (roll-back) if an error is detected. Errors can
be detected by comparing checkpoints for two processor
nodes that are executing the same job. The combination
of detection of errors in jobs and re-execution when errors
are detected provides fault tolerance at the expense of not
only employing two processor nodes, but also comparing
checkpoints and re-executing.

If the error probability is known, it is possible to find an
optimal number of checkpoints so that the overhead of the
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RRC technique is minimized [8]. However, error probabil-
ity is not known in advance and is difficult to estimate. In
this paper, it is demonstrated that inaccurate estimates
of error probability lead to loss of performance and two
novel techniques are proposed to provide on-line estima-
tion of this probability to regain the lost performance.
The proposed techniques are (1) Periodic Probability Es-
timation (PPE) and (2) Aperiodic Probability Estimation
(APE). Thorough analysis on the proposed techniques
is presented. Furthermore, a simulator tool is presented
which has been developed to enable experimentation with
the proposed estimation techniques. The obtained results
show that both proposed approaches lead to near-optimal
average execution time.

While most work addressing RRC [1], [7], [8], [9], [10],
[11], [12], [13], [14], [15], focuses on finding strategies
and presenting analysis for optimal checkpoint placements,
these strategies depend on failure rate, which corresponds
to error probability. However, to the extent of the authors
knowledge, no work has jointly addressed the problem
of error probability estimation with on-line checkpoint
adjustment to optimize RRC.

This paper is organized as follows. In Section II we
present the preliminaries of our work. Section III demon-
strates the need of accurate error probabilities. Two es-
timation techniques are presented in Section IV. Section
V elaborates on the developed simulator, which is used
for presenting experimental results later in section VI. We
conclude with Section VII.

II. PRELIMINARIES

We assume an MPSoC architecture, described in Fig-
ure 1, which consists of n processor nodes, a shared mem-
ory, and a compare & control unit. The processor nodes
include private memory, and the shared memory, which is
common for all processor nodes, is used for communication
between processors. The compare & control unit, added
for fault tolerance, detects whether errors have occurred
by comparing the contexts (checkpoints) of two processors
executing the same job. We address errors that occur in the
processors, and we assume that errors that occur elsewhere
(buses and memories) can be handled by other techniques
such as error correction codes.



bus

L__Compare &

Shared Z
control unit

Nodey memory

Nodez| *°*° |Node,

Figure 1: MPSoC architecture with n processor nodes,
a shared memory and a compare & control unit

In RRC, each job is executed concurrently on two pro-
cessors and a number of checkpoints are inserted to detect
errors. A given job is divided into a number of execution
segments and between every execution segment there is a
checkpoint interval. The checkpoint interval represents the
time required to take a checkpoint. Figure 2 illustrates the
execution segments and the inserted checkpoint intervals.
When a job is executed and a checkpoint is reached, both
processors send their respective contexts to the compare
& control unit. The compare & control unit compares the
contexts. If the contexts differ, meaning that an error has
occurred during the last execution segment, this execution
segment is to be re-executed. In the case that the contexts
of the processors do not differ, meaning that there is
no error, the execution proceeds with the next execution
segment.

There is a trade off when choosing the number of
checkpoints. Smaller number will increase the time spent
in re-execution and larger number will increase the overall
time due to the time required to process checkpoints.
Viéyrynen et al. addressed this problem considering the
average execution time (AET), which is the expected time
for a job to complete for a given error probability [8].
They proposed a mathematical framework for the analysis
of AET, and presented an equation for computing the
optimal number of checkpoints. The AET when applying
RRC on a job is given as:

T+ ne X (2X 75+ Te + Ton)
/(1 —P)?

where P is the error probability per time unit, T is the

fault-free execution time, n. is the number of checkpoints,

and 7y, T. and 7, are time parameters due to checkpoint

overhead. Given Eq. (1), Védyrynen et al. showed that the
optimal number of checkpoints (n.) is given as:

AET(P,T) = (1)

2xT x1In(l-P)

2X T+ Te + Ton

@)
Using the optimal number of checkpoints, n., (Eq. (2)),
the optimal AET can be calculated with Eq. (1).

The computation of optimal number of checkpoints
requires the following parameters: error probability (P),
fault-free execution time (7T'), and parameters for check-
point overhead (73, 7. and 7). The parameters for check-
point overhead can be estimated at design time; however
it is difficult to accurately estimate error probability. The

ne(P,T) = —1n(1—P)+\/(ln(1 — P))?

ES : execution segment

7: checkpoint interval

ES T ES T |*°°

time

Figure 2: Execution segments and checkpoint intervals

real error probability cannot be known at design time, it is
different for different ICs, and it is not constant through
the lifetime of an IC due to for example aging and the
environment where the IC is to be used [1] [2] [3] [5].

III. IMPORTANCE OF ACCURATE ERROR PROBABILITY
ESTIMATES

In this section we demonstrate the importance of having
accurate error probability estimates by presenting the im-
pact of inaccurate error probability estimates on the num-
ber of checkpoints and the resulting AET. The optimal
number of checkpoints (n.) depends on error probability.
However, the real (actual) error probability is not known
at design time and further it can vary over the product’s
life time (time in operation). Because of this fact, it is
common that the initial chosen error probability used for
calculating the optimal number of checkpoints, and thus
obtain the optimal AET, will differ from the real error
probability. The nitial chosen error probability value is
an inaccurate error probability estimate.

The inaccurate estimate on error probability, results in
a value for n, which will differ from the optimal, and thus
lead to an AET larger than the optimal. Eq. (3) denotes
AET when the estimated error probability p is used to
obtain the number of checkpoints n. (Eq. (2)).

T+ (2 X Tp + Tc + 7—oh) X nc(paT)
nc(P«T)/(l _ P)Z
(3)

It should be noted in Eq. (3) that the AET is equal
to the optimal AET when estimated error probability,
p, is equal to the real error probability, P, and thus
AETs,(P,T,P) = AET(P,T).

To quantify the impact of inaccurate error probability
we use:

AETestp (Pa Tv p) =

AETestp (P7 Ta p) - AET(Pa T)
AET(P,T)

AET e, = x 100%

(4)
where P is the real error probability and p is the estimated
error probability. This equation represents the relative de-
viation in AET compared to the optimum, when estimate
on error probability is used for obtaining the number of
checkpoints.

To illustrate the impact of inaccurate estimation of error
probability we have taken three jobs, all with the fault-free
execution time 7'=1000 time units but different real error
probabilities, that is P to be 0.5, 0.2 and 0.1. Figure 3
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Figure 3: Impact of inaccurate error probability
estimation relative to optimal AET (%)

shows the three cases at various estimated error probabil-
ities versus the performance degradation (AETge,). The
x-axis represents the estimated error probabilities and the
y-axis shows the relative deviation in AET (Eq. (4)). Each
curve shows no deviation in AET when the estimated
error probability (p) is equal to the real error probability
(P). However, as soon as p # P, AETg., is increased.
This means that assuming an error probability other than
the real one, leads to AET which is not the optimal.
The increase in AET due to inaccurate error probability
estimation represents the loss of performance.

IV. APPROACHES FOR ERROR PROBABILITY
ESTIMATION AND CORRESPONDING ADJUSTMENT

In this section we present approaches that estimate error
probability with the aim to adjust and optimize RRC
during operation. To make use of the estimates on error
probability, we need to estimate error probability during
operation. One way to achieve this is to extend the archi-
tecture described earlier (Figure 1) by employing a history
unit that keeps track on the number of successful (no error)
executions of execution segments (n) and the number
of erroneous execution segments (execution segments that
had errors) (n.). Having these statistics, error probability
can be estimated during time, periodically or aperiodically.
Thus we come up with one periodic approach, which we
address as Periodic Probability Estimation (PPE), and
one aperiodic, which we address as Aperiodic Probability
Estimation (APE). For both approaches we need some
initial parameters, i.e. initial estimate on error probability
and adjustment period. It should be noted, that the
adjustment period is kept constant for PPE, while for APE
it is tuned over time.

A. Periodic Probability Estimation
PPE assumes a fixed Ty,4; and elaborates on pes: as:
Te
Pest = Ne + Ng (5)

where n; is the number of successful (no error) executions
of execution segments and n. is the number of erroneous
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Figure 4: Graphical presentation of PPE

execution segments. As can be seen from Figure 4 esti-
mates on error probability, p.s:, are calculated periodically
at every T,q;. The value of p.s is used to obtain the
optimal number of checkpoints, n.. During an adjustment
period, n. equidistant checkpoints are taken. So the check-
point frequency, i.e. number of checkpoints during time
interval, changes according to the changes of the error
probability estimates.

B. Aperiodic Probability Estimation

APE elaborates on both T,4 and pes:. The idea for
this approach comes from the following discussion. As this
approach is an estimation technique, it is expected that
during operation the estimates will converge to the real
values, so we should expect changes on the estimated error
probability during time. These changes can guide how
to change the checkpointing scheme. If the estimates on
error probability start decreasing, that implies that less
errors are occurring and then we want to do less frequent
checkpointing, so we increase the adjustment period. On
the other hand, if the estimates on error probability start
increasing, that implies that errors occur more frequently,
and to reduce the time spent in re-execution we want more
frequent checkpointing, so we decrease the adjustment
period.

If the control & compare unit encounters that error
probability has not changed in two successive adjustment
periods, it means that during both adjustment periods the
system has done a number of checkpoints which is greater
than the optimal one. This can be observed by:

2 X TLC(P, Tadj) > TLC(P72 X Tadj) (6)

In APE, error probability is estimated in the same manner
as PPE, i.e. using Eq. (5). What distinguishes this ap-
proach from PPE, is that the adjustment period is updated
during time. Eq. (7) describes the scheme for updating the
adjustment period.

if Pest;yq > Dest; then

Tadj,;+1 = Tadjl - Tadj, X«
else

Todjisr = Tadj; + Tagj;, X @ (7)
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Figure 5: Graphical presentation of APE

The APE approach is illustrated in Figure 5. After every
Tuq; time units, the control & compare unit, computes a
new error probability estimate (pest,,,) using the Eq. (5).
The latest estimate (pess,,,) is then compared against
the recent value (pest;). If estimation of error probability
increases, meaning that during the last adjustment period,
(Taaj;), more errors have occurred, the next adjustment
period, (T,4j,.,), should be decreased to avoid expensive
re-executions. However, if the estimation of error probabil-
ity decreases or remains the same, meaning that less or no
errors have occurred during the last adjustment period,
(Tagj,), the next adjustment period, (Tagj,,,), should be
increased to avoid excessive checkpointing.

V. EXPERIMENTAL SETUP

To conduct experiments, we have developed a simulator
that emulates the execution of a job. There are two types of
inputs to the simulator, designer inputs and environmental
inputs. The designer inputs refer to inputs that initialize
the system, i.e. the initial estimated error probability, p,
and the adjustment period, Tgq;. Environmental inputs
refer to the real error probability, P, and the expected
fault-free execution time, T. The real error probability
is modeled as a function that can change over time as
error probability is not constant. This input is used for
generating errors while simulating the approaches. The
output of the simulator is the AET.

VI. EXPERIMENTAL RESULTS

We have simulated three approaches: Periodic Proba-
bility Estimation (PPE) IV-A, Aperiodic Probability Es-
timation (APE) IV-B, and Baseline Approach (BA). The
BA takes the designer inputs, i.e. the initial estimated
error probability, p, and the adjustment period, T4, and
computes an optimal number of checkpoints, n., for these
inputs using Eq. (2). Further, it takes checkpoints at a
constant frequency n./T,q4;, and no adjustments are done
during execution.

We made experiments to determine an appropriate value
for a parameter in APE. The experiment was repeated for
different values for the real error probability and for the
adjustment period T,q4;, and it was found that out of the
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Figure 6: Relative deviation from optimal AET (%) for
constant real error probability P = 0.01

considered values, o = 0.15 provided the best results, i.e.
the lowest deviation from optimal AET.

We conducted two sets of experiments. In the first set,
we have examined the behavior of the approaches when the
real error probability is constant during time, while in the
second set, the real error probability changes over time,
following a predefined profile. Each approach is simulated
for 1000 times with the same inputs.

In the first set of experiments, we compare the three
simulated approaches: PPE, APE and BA against the op-
timal solution in terms of AET (%). The optimal solution
is obtained by using the equations proposed by Véyrynen
et al. [8] and using the environmental inputs as inputs
for these equations. We have made several experiments,
by varying both the designer and environmental inputs.
In Figure 6 we present (1) on the y-axis the deviation of
the AET, from the simulated approaches, relative to the
optimal AET in %, and (2) on the x-axis the difference
between the initial estimated error probability, p, and
the real error probability, P. We assume a constant real
error probability, P = 0.01, and fault-free execution time
T = 1000000 time units. We choose the adjustment period
to be Tgq; = 1000 time units, and then simulate the
approaches with different values for the initial estimated
error probability, p. One can observe from Figure 6 that
APE and PPE do not depend significantly on the initial
estimated error probability, p. Both APE and PPE always
perform better than the BA approach. The small deviation
in the AET for PPE and APE, relative to the optimal
AET, shows that both approaches make a good estimation
on the real error probability. Furhter, Figure 6 shows that
APE performs slightly better than PPE.

In the second set of experiments, we show how the ap-
proaches behave when real error probability changes over
time. For this purpose, we define different error probability
profiles showing how error probability changes over time,
and then we run simulations for each of these profiles.
Three probability profiles are presented in Table I. We as-



0.01, 0< t< 200000
0.02, 200000 < ¢ < 400000
Pi(t)={ 0.03, 400000 < t < 600000
0.02, 600000 < ¢ < 800000
0.01, 800000 < £ < 1000000
0.02, 0 << 350000
P2(t)={ 0.01, 350000 < t < 650000
0.02, 650000 < ¢ < 1000000
_ {001, 0<t< 90000
P3(t) = { 0.10, 90000 < ¢ < 100000

Table I: Error probability profiles

Probability Profile ﬁppli‘;féhes P
P1 55.93% | 4.50% | 2.84%
P2 50.60% | 4.53% | 2.74%
P3 56.02% | 4.65% | 2.50%

Table II: Relative deviation from fault-free execution
time (%) for variable real error probability

sume that the probability profiles are repeated periodically
over time. The results in Table IT present the deviation
of the AET, from the simulated approaches, relative to
the fault-free execution time in %. For these simulations,
we choose the adjustement period to be T,4; = 1000 time
units and the initial estimated error probability to be equal
to the real error probability at time 0, i.e. p = P(0).
We assume fault-free execution time of 7" = 1000000 time
units. As can be seen from Table II, both PPE and APE
perform far better than BA, with a very small deviation in
average execution time relative to the fault-free execution
time. Again we notice that APE gives slightly better
results than PPE approach.

VII. CONCLUSION

Fault tolerance becomes a challenge with the rapid de-
velopment in semiconductor technologies. However, many
fault tolerance techniques have a negative impact on
performance. For one such technique, Roll-back Recovery
with Checkpointing, which inserts checkpoints to detect
and recover from errors, the checkpointing frequency is to
be optimized to mitigate the negative impact on perfor-
mance. However, the checkpointing frequency depends on
error probability which cannot be known in advance.

In this paper we have analyzed the impact of error
probability estimates on the performance, and we have
proposed two techniques to estimate error probability with
the aim to reduce the average execution time. These
two techniques are a periodic approach that continuously
collects information and periodically estimates the error
probability given an adjustment period, and an aperi-
odic approach where the adjustment period is tuned and
the error probability is estimated after every adjustment
period. To perform experiments we have implemented a

simulator. The simulator runs the proposed approaches
given designer inputs, (the initial estimated error prob-
ability, and the adjustment period), and environmental
inputs, (the real error probability and the expected fault-
free execution time). To realistically model the real error
probability, we model it as a function that may vary over
time. Using the simulator, we have conducted experiments
that demonstrate the benefits of the proposed approaches,
which are:

o Given an initial error probability estimate, which dif-
fers from the real error probability, both approaches
achieve results comparable to the theoretical opti-
mum,

o Both approaches perform well even in the scenario
where real error probability changes over time.

From the results we also notice, that the proposed
aperiodic approach gives slightly better results than the
periodic approach, in terms of average execution time.
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