
Level of Confidence Study for Roll-back Recovery
with Checkpointing

Dimitar Nikolov† Urban Ingelsson† Virendra Singh‡ and Erik Larsson†

dimitar.nikolov@liu.se urban.ingelsson@liu.se viren@serc.iisc.ernet.in erik.larsson@liu.se

†Department of Computer Science ‡ Supercomputer Education and Research Centre,
Linköping University, Sweden Indian Institute of Science, India

Abstract

Increasing soft error rates for semiconductor devices man-
ufactured in later technologies enforces the use of fault
tolerant techniques such as Roll-back Recovery with Check-
pointing (RRC). However, RRC introduces time overhead
that increases the completion (execution) time. For non-
real-time systems, research have focused on optimizing RRC
and shown that it is possible to find the optimal number of
checkpoints such that the average execution time is minimal.
While minimal average execution time is important, it is
for real-time systems important to provide a high probabil-
ity of meeting given deadlines. Hence, there is a need of
probabilistic guarantees that jobs employing RRC complete
before a given deadline. Therefore, in this paper we present
a mathematical framework for the evaluation of level of
confidence, the probability that a given deadline is met, when
RRC is employed.

I. Introduction

Computer systems can be classified as real time systems
and non-real-time systems depending on the requirement of
meeting time constraints, i.e. deadlines. Real-time systems
can be further classified into soft and hard depending on
the consequences when not meeting the given deadlines. For
a hard real-time system, it is a catastrophe not meeting
the deadline, while for soft real-time systems, violating the
deadlines usually degrades the quality of service and the
consequences are not catastrophic.

As semiconductor technologies are increasingly suscep-
tible to soft errors, it is for computer systems becoming
important to employ fault-tolerant techniques to detect
and recover from soft errors during operation. However,
fault tolerance comes at a cost and usually degrades the
performance of the system. To minimize the performance
degradation it is important to analyze and optimize the us-
age of fault tolerance such that the performance degradation
is minimized. In this paper we study Roll-back Recovery
with Checkpointing (RRC).

Instead of executing the complete job and in case of
errors, re-execute the complete job, RRC makes use of
checkpoints such that if an error is detected, a job is
rolled back from the most recently saved checkpoint. Saving
checkpoints, introduces a time overhead.The time overhead
depends on the number of checkpoints. A high number of
checkpoints leads to early error detection, and thus the
penalty of re-execution from the recently saved checkpoint

becomes less expensive in time. However, a high number of
checkpoints causes more time overhead due to checkpoint-
ing, which increases the total execution time for the job. It
is a problem to find the optimal number of checkpoints.

RRC has been the subject of research for both non real-
time [3], [6] [7], [2] and real-time systems [4], [10], [9], [8], [5].
While for non real-time systems, it is important to minimize
the average execution time when RRC is applied, it is for
real-time systems important to maximize the probability
that a job completes before a given deadline, [1]. When
using RRC in real-time systems, both hard and soft, it is
important to provide a reliability metric that indicates the
probability of meeting deadlines. However, to the extent
of our knowledge no such reliability metrics have been
presented. Therefore, we focus in this paper on the analysis
of RRC for real-time systems and we derive an expression
to evaluate the probability that a job completes before a
given deadline, i.e. the level of confidence.

II. System model

In this section we detail the Roll-back Recovery with
Checkpointing (RRC) scheme and we provide some basic
assumptions regarding the occurrence of soft errors.

The RRC scheme that we adopt assumes that a job is
duplicated and concurrently executed on two processors
(illustrated in Figure 1). During the execution of a job,
a number of checkpoints are taken and compared against
each other. If the checkpoints match, they are saved as a
safe point from which a job can be restarted. If the check-
points mismatch, this indicates that errors have occurred
and therefore the job is restarted in both processors from
the most recently saved checkpoint. In the scheme, RRC
provides fault tolerance at expense of hardware redundancy,
i.e two processors execute the same job, and time redun-
dancy, i.e. taking and comparing checkpoints introduces a
time overhead. We define checkpointing overhead, τ (see
Figure 1), as the time required to carry out checkpoint
operations, i.e. to load/store a checkpoint and compare the
checkpoints from the two processors. We assume that τ
takes a constant amount of time for any checkpoint.

We define the portion of a job’s execution between two
successive checkpoints as an execution segment (see Fig-
ure 1). We refer to an execution segment as successful
execution segment if no errors have occurred during the ex-
ecution in both processors, or erroneous execution segment
otherwise, i.e. if errors have occurred.

ES1 τ ES2 τ ES3 τ q q q ESnc τ

ES1 τ ES2 τ ES3 τ q q q ESnc τ

P1 :

P2 :

P1, P2 : processor notations

τ : checkpointing overhead

ESi : execution segment

Figure 1: Graphical presentation of RRC scheme

For a job, we assume given is the processing time, T ,
which is the time required for a job to complete when RRC
is not used and no errors have occurred during the execution
of the job. When RRC is employed, a number of checkpoints
are taken, nc. Having nc checkpoints, implies nc execution
segments and each segment is of length of T

nc
.

Next, we elaborate on the occurrence of soft errors. We
assume that occurrence of soft errors is an independent
event. In our work, given is the probability, PT , that no
errors occur in a processor within an interval equal to the
processing time of the job, T . Due to the fact that the oc-
currence of soft errors is an independent event, we calculate
Pε, the probability of successful execution segment, with the
following expression:

Pε = nc
√
PT · nc

√
PT = nc

√
PT

2 (1)

Eq. 1 takes into account that no errors occur within an
interval of length T

nc
in both processors.

III. Evaluation of level of confidence

In this section we provide analysis and derive an ex-
pression to evaluate the level of confidence that a job that
employs RRC will meet a given deadline. The level of confi-
dence, with respect to a given deadline D, is the probability
that a job completes before D. The level of confidence, is
determined as the sum of intermediate terms that represent
the probability that a job completes at a given discrete
point in time. These terms are calculated according to
a probability distribution function. Thus, to compute the
level of confidence we need to derive an expression for the
probability distribution function.

To derive the probability distribution function, we start
by analyzing the expected completion time when RRC is
employed. The expected completion time can be described
by a discrete variable due to the fact that an integer number
of execution segments (each followed by a checkpointing
overhead) must be executed before a job completes. As-
suming that nc checkpoints are to be taken, a job can
complete only when nc successful execution segments have
been executed. Thus, in the best case scenario, when no
errors have occurred, a job completes after nc executions
segments. Each execution segment is of length T

nc
plus the

checkpointing overhead, τ . We denote the case when zero
erroneous execution segments are executed with t0 and it is
defined as :

t0 = nc · (
T

nc
+ τ) = T + nc · τ (2)

If errors occur, and these errors only affect the execution of
one execution segment, this segment will be re-executed.
There will be nc + 1 execution segments executed (one
erroneous and nc successful execution segments). We denote
the case when one execution segment is re-executed with t1
and it is defined as:

t1 = (nc + 1) · (T
nc

+ τ) = T + nc · τ + (
T

nc
+ τ) (3)

In the general case, when there are k erroneous execution
segments, tk denotes the expected completion time and tk
is defined as:

tk = T + nc · τ + k · (T
nc

+ τ) (4)

Next, we analyze the number of cases that a job completes
exactly at time tk. First, let us study the case that a job
completes at time t0. This can happen if and only if all the
execution segments were successful, no errors have occurred.
This is the only possible alternative for a job to complete
at time t0. Now, let us assume that a job completes at
time t1. If a job completes at time t1, a single execution
segment has been re-executed. This can be any of the nc
different execution segments. Thus, there are nc possible
cases that a job completes at time t1. If a job completes at
time t2, two execution segments have been re-executed. It
can be either two out of all nc different execution segments
were re-executed, or a single execution segment was re-
executed twice (an error was again detected after the first
re-execution). In general, if a job completes at time tk, a
total of nc + k execution segments have been executed,
that is nc successful execution segments and k erroneous
execution segments. Note that the last execution segment
among all nc + k execution segments must have been a
successful execution segments otherwise it contradicts the
assumption that the job has completed at tk. Hence, the
k erroneous execution segments are any of the nc + k − 1
(any execution segment except for the last one). Therefore,
the number of different cases that exists such that a job
completes at time tk is the number of all the combinations
of k execution segments out of nc+k−1 execution segments.
N(tk) denotes the number of possible cases that a job
completes at time tk, and N(tk) is defined as:

N(tk) =
(
nc + k − 1

k

)
(5)

In Figure 2(a) we illustrate N(tk) (Eq. 5) for nc = 3,
PT = 0.5 and tk ∈ [t0, t5]. For example, N(t1) = 3 shows
that there are three cases that a job completes at t1, since
any one of the three execution segments(nc = 3) could have
been re-executed.

Next, to calculate the probability that a job completes
at time tk, we need a probability metric for each case (tk).
This probability metric is closely related to the probability
that no errors will occur during execution of an execution
segment, Pε (Eq. 1). When a job completes at time tk,
nc+k execution segments were executed, nc successful and
k erroneous execution segments. Since Pε represents the
probability of successful execution segment, the probability
of erroneous execution segment is evaluated as (1− Pε).

Since execution segments are independent, the probability
of having nc successful execution segments is Pnc

ε , and the
probability of having k erroneous execution segments is
(1− Pε)k. Combining these two probabilities, probability
of nc successful and k erroneous execution segments, we
get Pnc

ε · (1 − Pε)k, which is the probability metric per
possible case when a job completes at time tk. In Fig-
ure 2(b), we illustrate the probability metric per possible
case, Pnc

ε · (1− Pε)k, for nc = 3, PT = 0.5 and tk ∈ [t0, t5].
From Figure 2(b) it can be observed that the probability
metric, Pnc

ε · (1−Pε)k, has the highest value at t0 and it is
evaluated as Pnc

ε = nc
√
PT

2 = 0.25. The probability metric
per case, Pnc

ε · (1− Pε)k, drops rapidly by increasing tk.
To calculate the probability that a job completes at

time tk, we need to multiply the number of possible cases,
N(tk), with the probability metric per case. We denote the
probability that a job completes at time tk with p(tk), and
it is defined as

p(tk) = N(tk) · Pnc
ε · (1− Pε)k

=
(
nc + k − 1

k

)
· Pnc

ε · (1− Pε)k
(6)

Eq.6 defines the probability distribution function. In Fig-
ure 2(c) we illustrate the probability distribution function
for nc = 3, PT = 0.5, and tk ∈ [t0, t5]. To evaluate the
level of confidence it is required to sum all terms from the
probability distribution function p(tk) for which the discrete
variable tk has a value which is lower or equal to the given
deadline, D. We denote the level of confidence of meeting
the deadline, D, with Λ(D), and we evaluate it by using the
following expression:

Λ(D) =
tk≤D∑
k=0

p(tk)

=
tk≤D∑
k=0

(
nc + k − 1

k

)
· Pnc

ε · (1− Pε)k
(7)

IV. Results

In this section we demonstrate the mathematical frame-
work to evaluate the level of confidence that a job employing
RRC completes before a given deadline. For the result set
we used two input scenarios, Scenario A and Scenario B,
presented in Table I. For each scenario, the following inputs
are given: the processing time of a job (T), checkpointing
overhead (τ), and the probability (PT) that no errors occur
in the processors within an interval equal to T .

For the presented result set, we assume given is a dead-
line D = 1500t.u. (time units). The results represent the
computed level of confidence that the job meets the dead-
line (D) when RRC is employed with different number of

Scenario A Scenario B
T = 1000t.u. T = 1000t.u.
τ = 20t.u. τ = 20t.u.

PT = 0.99999 PT = 0.9

Table I: Input Scenarios

 0

 5

 10

 15

 20

 25

t5t4t3t2t1t0

N
(t

k)

(a) Number of cases N(tk)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

t5t4t3t2t1t0

P
εn c

(1
-P

ε)
k

(b) Probability metric per case Pnc
ε (1− Pε)k

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

t5t4t3t2t1t0

p(
t k

)

(c) Probability distribution function p(tk)

Figure 2: Illustration of defined functions for nc = 3 and
PT = 0.5.

D = 1500
nc Λ(D) nc Λ(D)
1 0.999980000100000000 14 0.999999999999998367
2 0.999980000100000000 15 0.999999999999998388
3 0.999999999733334814 16 0.999999999999998406
4 0.999999999750001250 17 0.999999999999998422
5 0.999999999760001120 18 0.999999999788889670
6 0.999999999999997925 19 0.999999999789474459
7 0.999999999999998040 20 0.999999999790000770
8 0.999999999999998125 21 0.999999999790476955
9 0.999999999999998189 22 0.999980000100000000
10 0.999999999999998240 23 0.999980000100000000
11 0.999999999999998280 24 0.999980000100000000
12 0.999999999999998314 25 0.999980000100000000
13 0.999999999999998343 26 0

Table II: Level of confidence for meeting deadline D
using input Scenario A

D = 1500
nc Λ(D) nc Λ(D)
1 0.810000000000000000 14 0.998386333221060871
2 0.810000000000000000 15 0.998405709197021325
3 0.974827503159636872 16 0.998422589149847735
4 0.976266114316335439 17 0.998437425722750770
5 0.977137362167560214 18 0.979688847172390437
6 0.997980204415657095 19 0.979741032210778210
7 0.998085015474654920 20 0.979788017059326005
8 0.998162202793752259 21 0.979830542116846522
9 0.998221387037794418 22 0.810000000000000000
10 0.998268194669895683 23 0.810000000000000000
11 0.998306132813719019 24 0.810000000000000000
12 0.998337499909652013 25 0.810000000000000000
13 0.998363864473716882 26 0

Table III: Level of confidence for meeting deadline D
using input Scenario B

checkpoints, nc. The results are summarized in Table II and
Table III. For each nc, first we calculate K, the number of
re-executions that can be accommodated within the interval
[t0, D], and then we sum all terms from the probability
distribution function (Eq. 6) for tk ∈ [t0, tK]. As can be seen
from Table II and Table III, the level of confidence, Λ(D),
for meeting a given deadline, D, depends on the number
of checkpoints, nc. When the number of checkpoints is low,
the level of confidence is not sufficiently high. The level of
confidence increases as the number of checkpoints increases.
However, at a certain number of checkpoints, increasing
the number of checkpoints further results in decreased level
of confidence or even leads to a zero level of confidence.
The reason is that when the number of checkpoints is low,
the execution segments are longer, which means that it is
difficult to accommodate many re-executions while meeting
the deadline. This implies that only a small number of
terms from the probability distribution function (Eq. 6) will
be summed and therefore the level of confidence(Eq. 7) is
low. Increasing the number of checkpoints, decreases the
length of the execution segments and thus allows more re-
executions to be accommodated before the deadline on one
hand, but increases the total checkpointing overhead on
the other hand. Having a high number of checkpoints may
result in a zero level of confidence. As t0, the case when zero
erroneous execution segments are executed, depends on the
number of checkpoints, nc, (Eq. 2), having a high number
of checkpoints may result in that t0 violates the deadline

D, i.e. t0 > D. For example, for the given input scenarios
when nc = 26, t0 = 1000 + 26 · 20 = 1520 and the level
of confidence Λ(D) = 0, (see Table II and Table III). With
this result set we want to point out that it is useful to have
a framework to calculate the level of confidence because it
makes it possible to optimize the RRC scheme such that an
optimal number of checkpoints that results in the highest
level of confidence for meeting the given deadline can be
obtained. From the presented results in Table II and Table
III, we note the number of checkpoints that provides the
highest level of confidence for the job to meet the deadline
D is nc = 17 for both Scenario A and Scenario B. However,
the level of confidence for Scenario A is much higher than
the level of confidence for Scenario B and it is due to the
different values for PT .

V. Conclusion

Due to the increasing soft error rates, fault tolerance
becomes important in system design. One well studied fault-
tolerant technique is Roll-back Recovery with Checkpoint-
ing (RRC) that copes with soft errors at the expense of
introducing time overhead. This time overhead can be the
reason of violating deadlines in real-time systems.

In this paper we have focused on analyzing RRC for real-
time systems. We presented a mathematical framework to
evaluate the level of confidence that a job employing RRC
meets a given deadline. Our mathematical framework is
important not only for computing the level of confidence
and therefore getting a reliability metric, but also it is useful
to acquire knowledge on how to adjust the RRC scheme, i.e.
adjust the number of checkpoints to be taken, such that the
level of confidence is maximized.

References

[1] I. Koren and C.M. Krishna, “ Fault-Tolerant Systems”, Morgan
Kaufman, 1979

[2] M. Väyrynen, V. Singh, and E. Larsson, “ Fault-Tolerant Av-
erage Execution Time Optimization for General-Purpose Multi-
Processor System-on-Chips”, Design Automation and Test in Eu-
rope (DATE 2009), Nice, France, April, 2009.

[3] D. Nikolov, U. Ingelsson, V. Singh, and E. Larsson, “Estimating
Error-probability and its Application for Optimizing Roll-back
Recovery with Checkpointing”, delta, pp.281-285, 2010 Fifth IEEE
International Symposium on Electronic Design, Test & Applica-
tions, 2010

[4] S. Punnekkat, A. Burns, and R. Davis “Analysis of Checkpoint-
ing for Real-Time Systems”,The International Journal of Time-
Critical Computing Systems,20, pp.83-102, 2001

[5] S. W. Kwak, B. J. Choi, and B. K. Kim Ling, “An Optimal
Checkpointing-Strategy for Real-Time Control Systems Under
Transient Faults”, IEEE Transactions on reliability, vol. 50, no.3,
September 2001.

[6] A. Ziv and J. Bruck, “Analysis of Checkpointing Schemes with
Task Duplication”, IEEE Transactions on computers, vol. 47, no.2,
February 1998.

[7] A. Ziv and J. Bruck,“An On-Line Algorithm for Checkpoint Place-
ment”, IEEE Transactions on computers, vol. 46, no.9, September
1997.

[8] V. Grassi, L. Donatiello and S. Tucci,“On the Optimal Checkpoint-
ing of Critical Tasks and Transaction-Oriented Systems”, IEEE
Transactions on software engineering, vol. 18, no.1, January 1992.

[9] K. G. Shin, T. Lin, and Y. Lee, “Optimal Checkpointing of Real-
Time Tasks”, IEEE Transactions on computers, vol. C-36, no.11,
November 1987.

[10] Y. Zhang and K. Chakrabarty, “Fault Recovery Based on Check-
pointing for Hard Real-Time Embedded Systems”, IEEE Interna-
tional Symposium on Defect and Fault Tolerance in VLSI Systems
(DFT’03), 2003.

