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Abstract

Test scheduling and Test Access Mechanism (TAM) design are two important tasks in the
development of a System-on-Chip (SOC) test solution. Previous test scheduling techniques assume
a dedicated designed TAM which have the advantage of high flexibility in the scheduling process.
However, hardware overhead for implementing the TAM and additional routing is required of the
TAMs. In this paper we propose a technique that makes use of the existing functional buses for the
test data transportation inside the SOC. We have dealt with the test scheduling problem with this
new assumption and developed a technique to minimise the test-controller and buffer size for a bus-
based multi-core SOC. We have solved the problem by using a constraint logic programming (CLP)
technique and demonstrated the efficiency of our approach by running experiments on benchmark
designs.

1. Introduction

The need of short time-to-market windows together with the growth in the chip integration

capability has forced the designers to develop new design methodologies. One such method is to

place reusable cores, e.g. processors, memories, interface devices, etc., into a System-on-Chip

(SOC). This method has made it possible to design complex systems and satisfy the short time-to-

market requirements. However, more complex designs need more test data and hence longer test

time. Furthermore, since the cores are not directly accessible from the SOC’s input and output pins,

it is necessary to integrate special test access mechanisms (TAM) in order to transport the test data

inside the chip. Difficulties like these have made test time and design for test a major cost factor in

the design and production of SOCs. In order to lower this cost the application of the tests should be

scheduled to minimize the test time and the TAM should be designed with as low area overhead as

possible.

Different strategies have been proposed to solve the scheduling and/or the TAM-design problem

[1], [4], [7], [13], [14], [15], [16], and [18]. The main disadvantage with these approaches is that

they require additional wiring overhead. Three different scan chain architectures as TAM are

proposed in [1]. The use of different types of TAMs, e.g. test-buses, transparency, and other bypass

modes, are considered in [4]. In [5] it is described how a system, containing an AMBA-bus [2], can

be scan-tested using a scan-test harness. In [7] the test access technique of the AMBA bus is

discussed. In [15] a packet switching communication network as TAM is presented and in [18] a

dedicated test bus is proposed.

In this work we explore the possibility of using existing components of the design as TAM. We

have chosen to use the functional bus as TAM, since a large number of SOCs use a bus-based

architecture [9]. There exist several different bus standards; e.g. AMBA, Core Connect, Core

Frame, HIBI, VCI, and Wishbone [17]. Common for all is that they have a high bandwidth, e.g. the

AMBA bus which is 32-512 bits wide operating at high speed [2], which makes them suitable for



transporting test data. In order to shorten the test time by having concurrent application of the tests,

buffers are introduced. The buffers, which are placed between the core and the bus, are used for

temporary storage of the test vectors. A buffer also makes it possible to test the cores for other types

of faults. Besides the stuck-at fault the core can be tested for other types of faults which need at-

speed testing. This becomes possible since the tests are stored close to the core before being applied.

To keep the size of each buffer reasonably small, we assume that each test can be divided into a

number of test packages. This will also increase the flexibility in the scheduling of the tests.

The buffers are one part that is added in our approach, which should be considered during the

design process. Another issue considered by our approach is the test-controller, which is also

discussed in [6]. The test-controller is needed in order to implement the test schedule and to control

the transmissions of tests on the bus. In this paper we have solved the scheduling problem and

minimised the buffer size, and test-controller complexity. We have formulated the problem, solved

it, and demonstrated its significance using Constraint Logic Programming (CLP).

The rest of the paper is organized as follows. An overview of the SOC architecture and test access

is given in Section 2. The exact problem formulation is presented in Section 3. The CLP model is

described in Section 4 and it is followed by experimental results in Section 5. The paper is

concluded and future work is discussed in Section 6.

2. SOC test architectures

A common way to design SOC communication is to use a shared bus, which is connected to all

cores. A dedicated TAM for the transportation of test data has the advantage of high flexibility. It

also offers the possibility of a trade-off between the test time and the number of wires used in the

TAM. A large number of wires requires extra silicon area to the design, but it enables parallel

transportation of test vectors, which will shorten the test time. A design with a dedicated TAM and

a shared bus can be implemented as illustrated in Figure 1(a). This example shows two cores that

are tested with one test per core. In this example the cores are scan tested by two scan-chains per

core. The buses are not used during the test mode. By occupying four TAM-wires each, the two tests

can be applied concurrently, as illustrated in Figure 1(b).

Figure 1. Test architecture and scheduling with TAM

One of the ideas behind our work is to use the functional bus for transportation of test data. The

advantage is that the TAM can be excluded, as shown in Figure 2(a). In the example it is possible

to connect the scan-chains and the wrapper cells into four chains. The disadvantages with using the

bus are the need for special control and buffers. It can also be difficult to have other types of

communication than sequential, shown in Figure 2(b).
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Figure 2. Test tranportation and scheduling using the functional bus

Since it is common to have a high transfer rate on the bus and a width of 32 bits or more, it is

possible to transport the test vectors at a very high speed on the bus. Placing a buffer between each

core and bus makes it possible to take advantage of the high speed transportation. In the small

example in Figure 3(a), the tests can be sent on the four wires of the bus, and in the buffer, the test

is converted from parallel to serial in order to fit the scan chains (load). This means that it will take

longer time to apply the test than to transport it. The test is transported in parallel on the bus and

when the test reach the core it is serialized into the scan- chains. Since the test is stored in the buffer

while applying it to the core, another test can be transported on the bus. This is illustrated in Figure

3(b).

Figure 3. Functional bus and buffers

The buffers can also be used for other purposes. For example, they may be complemented with

logic that supports at-speed testing, parallel to serial conversions or other types of manipulations

needed to adjust the test before applying it to the core.

The position of the buffers in the system is illustrated by a small example in Figure 4. The system

consists of three cores, c1, c2, and c3, all connected to the bus b. Each core ci is associated with a

buffer bfi, which is placed between the core and the bus. Also connected to the bus are two test

components, Tsrc and Tctrl. In this paper we assume that the tests are all produced in the test-source

Tsrc. The test-controller, Tctrl, is responsible for the invocation of transmissions of the tests on the

bus. The system is tested by applying the tests, generated or stored in the test source, to the cores.

We assume that the core itself handles the evaluation of the test results. This can be done by, for

example, a signature analyser. Information needed for the final test result evaluation is also sent via

the bus.

Figure 4. Bus-based architecture
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Figure 5. Test transportation and application

In our approach, each test, Ti, can be divided into packages (a set of test vectors). The

designer decides the size of the packages (the number of vectors). There are two reasons for

dividing the tests into packages. The first reason is to shorten the test time of the system by giving

more flexibility to the scheduling, and the second is to decrease the buffer size needed at each core.

We assume that the transportation-time, Ti
send-p

, of a package on the bus is shorter than the

application-time, Ti
appl-p. The reason for this can, for example be, that the test data consists of scan

test that is transported in parallel on the bus and then applied in serial to the core. The example

indicates again the need of storing the test in a buffer while it is applied so that another test can be

transported on the bus. The size of the buffer, however, does not have to be equal to the size of the

packages. This is explained by the fact that the test data in a package can be applied immediately

when it arrives at the core. The buffer size bsi, associated to a core ci, is calculated by the following

formula:

where the constant ki represents the rate of which the core can apply the test, the time is the

scheduled start time of the application of the package j from test Ti at the core, and is the

start time for sending the package on the bus. The constant represents the leftover package size,

which is the size of the test vectors that remain in the buffer after the transportation of the package

terminates. This constant is determined by the difference between and , which

is multiplied by the constant ki.
The calculation of the buffer size is further illustrated in Figure 5, which shows the bus schedule

and the application of a test T1 to core c1, with , , , and . In this
small example the core has not finished the testing of the package sent at time
point before the package sent at arrives at the core. This forces the buffer

size to be increased. For this example the buffer size will be equal to , which is

the difference between the termination of applying the last test package and the end point of

transporting this package.

In the example in Figure 5 there is only one core and one test and the example does not show the

impact of the scheduling of packages on the complexity of the test controller. The following

example illustrates the minimisation of the buffer size and the test controller complexity. We make

use of the example system from Figure 4, which consists of three cores c1, c2, and c3 which are

tested with three tests, T1, T2, and T3, respectively. We have divided the tests into a total number of

8 packages, all with the same application-time and minimum package size, but different

transportation-times. The characteristics of the tests are given in Table 1. In this work we assume

that the total test time of the system is given as a constraint by the designer. In this example the total

test time is set to 90 time units, which is the minimal time for applying these tests. This time is the

sum of the transportation times plus the smallest value of all .

 Table 1. Test characteristics

Test Nr packages Application-time (Ti
appl) Transportation- time (Ti

send)

T1 3 60 30 10

T2 2 60 20 10

T3 3 60 30 10

∆
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Figure 6. Scheduling example

Two different schedules for the 8 packages derived from the three tests are illustrated in Figure

6. In the first schedule, shown in Figure 6(a), the packages are sent in such a way that the application

of the previous package has finished before a new one arrives. This leads to small buffers since every

package can be applied immediately as they arrive, that is for all packages. The

buffer sizes for this schedule are, bs1 =10 ( ), bs2 =20, and bs3 =10. In the second

schedule, Figure 6(b), some packages are grouped together in pairs, which will produce larger

buffers, bs1 =20 ( ), bs2 =40, and bs3 =20.

The advantage of having larger buffers is the decreasing complexity of the test-controller. In this

work we assume that the test-controller is implemented as a finite state machine, where each state

is responsible for the transmission of packages to a single core on the bus. A transition between two

states represents a change of test to be transported on the bus from one core to another core. Figure

6 illustrates the difference in the number of states between a schedule with small buffers, Figure

6(a), and a schedule with larger buffers, Figure 6(b). If only one package is sent in each state, the

number of states will be equal to the total number of packages in the system, as illustrated in Figure

6(a). If the maximum number of packages is sent from each state, the number of states will be equal

to the number of tests.

3. Problem formulation

In this section an exact problem formulation is given.

A given system consists of a set of cores C = {c1, c2, ..., cN}, where N is the total number of cores.

Each core ci, has a buffer, bfi of size bsi, . The system also consists of a test-controller,

Tctrl, with a number of states, NrStates. A maximum allowed test time for the system, Tmax, is given

as a constraint by the designer. Also given is a set of tests T={T1, T2, ...,TN}1, where Ti is a set of

test vecors, which is to be applied to the core ci. For each test Ti, the following information is given:

 • the application-time Ti
appl is the time to apply the test,

 • the transportation-time Ti
send is the time to transport Ti from Tsrc via the bus to core ci,

 • the size (the number of test vectors) of the test, Ti
size

,

 • and the size of a package, .

A test Ti, is divided into packages, each of the same size, , P={p11, p12, ..., p21, p22,
..., }.

1. It is possible that a test for a core can be composed of test-vetors from different tests.
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The package size is determined by the following formula:2

The time to apply a package, , is determined by:

Associated to each package pij of test Ti where , are three time points, , , and

. The time to send, , represents the start of the transmission of package, pij, on the bus.

The time, , is the start time of the test at the core ci. Finally, is the time when the whole

package has been applied. The finish time, is computed by the following formula:

The objective of our proposed technique is to find and for each package in such way

that the total cost is minimised while satisfying the test time constraint, Tmax. The total cost for the

test is computed by a cost-function, that consists of the system’s total buffer size and the complexity

of the controller given as follows:

where and are two coefficients which can be used to set the weight of the controller and the

buffer costs and

where the constants and are the base costs, which is the basic cost for having a controller

and buffers, respectively and and are design-specific constants that represents the

implementation cost parameters for the number of states and the buffer size.The total buffer size in

the system is determined by:

The complexity of the test-controller, Tctrl, is determined by the number of states, NrStates.

4. CLP modelling

In this section we describe the problem formulated as a constraint logic programming (CLP)

problem.

The development of CLP [10] started in the late 80’s and is descended from logic programming.

It combines constraint solving with logic programming and uses an exhaustive method in the search

for the best solution to a problem. CLP is a declarative language, which means that the program

contains a description of the solution to the problem. The description is composed of a set of

constraints (relations between objects), which limits the search space thus making CLP suitable for

solving combinatorial problems such as scheduling and resource allocation.

In this work we have modelled the system in a CLP program, consisting of two main components,

Test and Package. The Test component contains all given information for the tests and is used as the

input to the program. In order to find a feasible solution that minimises the total cost the program

ensures that a number of different constraints are fulfilled. These constraints are:

 • the packages belonging to the same test have to be sent in a given order, i.e., ,

 • the start-time of a package should be later or equal to the time of transmission on the

bus: ,

 • the time when a package has been completely applied to the core is equal to the time it starts

2. This means that the last test package may have a smaller number of test vectors than . We assume that this

package is filled up with empty vectors.
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the application plus the time used for the application: ,

 • the finish time of any test can not exceed the total test time limit, Tmax: .

The buffer size at a core is determined by the following formula :

.

The cost of a test is given by ,

where is connected to the number of states and is connected to the buffer

size as described in section 3 Problem formulation.

With the above constraint set, the constraint solver searches for a schedule that minimises the cost

of the test.

5. Experimental results

We have used four different designs in our experiments. One small example, Ex1, which has been

described in Section 2, and three benchmarks, ASIC Z [19], [3], Kime [11] and System L [13].

Kime consists of 6 cores, while ASIC Z and System L consists of 9 respectively 13 cores. Detailed

information for these benchmarks can be found in [12]. The main characteristics of the four designs

are presented in Table 2.

We have used the CLP-tool CHIP (V 5.2.1) [8] for the implementation. The experiments have

been performed in two steps. In the first step the minimal test time is obtained assuming no division

of the tests into packages, which corresponds to the traditional approach assumed by several test

scheduling techniques. For experimental purposes we have used the obtained testing time as the

time constraint in the second step, where the cost is minimised using our CLP approach. In this

particular experiments, the cost is minimised according to the following cost function:

where  and .

For simplicity, we have, in the experiments, set the size of each test, Ti
size, to be equal to the

application time, Ti
appl.

The experimental results are presented in Table 3, where the cost from our approach has been

compared to the cost obtained by a straightforward approach. The result shows a decrease with 35

to 61 percent of the cost, which demonstrates that our approach can decrease the cost by minimising

the buffer and the controller, without exceeding the test time limitation.

6. Conclusions and future work

We have approached the problem of test application of multiple-core systems, both in terms of

test time and considering the trade-off between the test controller complexity and the size of the

buffers. We have used constraint logic programming to model and solve our problem. Since

constraint logic programming uses an exhaustive search approach, execution times can become

large for complex examples. A natural extension of the work is to find a heuristic that would work

for larger examples. The problem could be extended to include sharing of test evaluation

mechanism and scheduling on multiple buses or networks on chip.

 Table 2. Design characteristics

Design Nr Tests
Nr

Packages

 Min

Buffer size

Max

Buffer size

Ex1 3 8 40 100

Kime 6 20 93 340

ASIC Z 9 38 111 419

System L 13 39 280 988
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 Table 3. Experimental results

Design
Test

Time

Straightforward Approach

(Sequential Scheduling)
Our Approach

Cost

Comparison

Nr States Buffer size Cost Nr States Buffer size Cost

Ex1 111 3 100 135 8 40 100 -35%

Kime 257 6 340 390 14 215 305 -28%

Asic Z 294 9 419 484 34 128 318 -52%

System L 623 13 987 1072 37 460 665 -61%


