
Hybrid BIST Optimization for
Core-based Systems with Test Pattern Broadcasting

Raimund Ubar, Maksim Jenihhin
Department of Computer Engineering
Tallinn Technical University, Estonia

{raiub, maksim}@pld.ttu.ee

Gert Jervan, Zebo Peng
Embedded Systems Laboratory (ESLAB)

Linköping University, Sweden
{gerje, zebpe}@ida.liu.se

Abstract1

This paper introduces a technique for hybrid BIST time
optimization for testing core-based systems that use test
pattern broadcasting for both pseudorandom and
deterministic patterns. First we formulate the test time
minimization problem for such an architecture. Thereafter
we present algorithms for finding an efficient combination
of pseudorandom and deterministic test sets under given
memory constraints, so that the system testing time can be
shortened. We also analyze the significance of the
pseudorandom sequence quality for the final results. The
results are illustrated and the efficiency of the approach is
demonstrated by experimental results.

1. Introduction

Built-in self-test (BIST) has became increasingly

viable solution for testing complex systems-on-chip
(SoC). Although it is a promising technology it also has its
problems. Some of the problems are related to the fact that
BIST uses typically long sequences of pseudorandom test
patterns that may lead to the very long test times and
cannot guarantee sufficiently high fault coverage.
Therefore we have proposed hybrid BIST [1], [2] as a
possible improvement of a classical logic BIST for testing
SoCs. The key issue for the hybrid BIST is to find the best
balance between pseudorandom and deterministic test
patterns, such that the system design constraints are
satisfied and test cost is minimized.

Testing core-based systems is a complex problem in
general. The existing work has concentrated so far on test
scheduling, TAM design and testability analysis. This
assumes a fixed set of tests and test resources together
with an appropriate test access architecture. Some
approaches can also take into account test conflicts and

1 This work has been supported by the EC project EVIKINGS (IST-2001-
37592), Estonian Science Foundation Grants 4300 and 5649, and by the
Swedish Foundation for Strategic Research (SSF) under the Strategic
Integrated Electronic Systems Research (STRINGENT) program.

different constraints, e.g. power [3]-[8]. However there
hasn’t been any work to find the optimal test sets for
testing every individual core in such a manner that the
total system test time is minimized and the different
design constraints are satisfied.

In our earlier work it has been assumed that every core
has its own dedicated BIST logic that is capable to
produce a set of independent pseudorandom test patterns
[9]. We have also extended the same approach for multi-
core systems where both, combinatorial cores and
sequential cores with full scan may be used [2], [10]. This
however may lead to high area overhead and may require
redesign of the cores as not all cores may be equipped
with self-test structures. Therefore we have recently
proposed a novel self-test architecture that is based on test
pattern broadcasting [11]. In this approach only a single
pseudorandom test pattern generator is used and all test
patterns are broadcasted simultaneously for all cores in the
system. These patterns will be complemented with
dedicated deterministic patterns for every individual core,
if needed. Those deterministic test vectors are generated
during the development process and are stored in the
system.

The whole test process has to be carried out in such a
manner that the total testing time is kept minimal without
violating the design constraints, in particular, the amount
of on-chip resources. In this paper we will propose a
method to evaluate tradeoffs between the length of the
pseudorandom test sequences and the number of stored
deterministic patterns, under given memory constraints.
The problem of finding the exact solution is NP-complete.
To overcome the high complexity of the problem we will
propose in the following a simple and fast algorithm that
gives us a near-optimal solution with low computational
cost. Although the solution is not optimal it can be used
successfully for design space exploration and gives a
significant improvement compared to the ad-hoc designer
solution.

In the following section we will formulate the test time
minimization problem for hybrid BIST. It is followed by

the proposed test time minimization algorithm that is
followed by experimental results and conclusions.

2. Formulation of the test time minimization

problem

Let us assume a system S, consisting of cores C1, C2,
…, Cn. For this system a pseudorandom test sequence TP
with length LP is generated and applied in parallel to all
cores. This sequence should preferably achieve 100% fault
coverage for all cores. In this sequence we can specify
subsequences TPk with length LPk, k = 1, 2, …, n, for
each core, so that all the subsequences start in the
beginning of TP, and by the last pattern of a subsequence
TPk the 100% fault coverage for the core Ck is reached.

In a case when LPk is too long, we restrict the length of
the pseudorandom sequence to the maximum acceptable
length LPmax, thus reducing the length of the whole
pseudorandom sequence to LPmax. For all cores where
100% fault coverage has not been achieved with this test
set TP we generate complementary joint set of
deterministic test patterns TD, so that by applying to the
system both test sequences TP and TD with total length L,
the 100% fault coverage for all cores is achieved.

Figure 1. Initial test sequence for
multi-core system

As an example, in Figure 1 a hybrid test sequence TH

= {TP, TD} is shown consisting of a pseudorandom test
set TP with length LP and a deterministic test set TD with
length LD (L=LP+LD). Here LPi denotes a moment where
100% fault coverage is reached for the core Ci, and LPj

denotes a moment where 100% fault coverage is reached
for the core Cj. In this example we assume that not for all
cores 100% fault coverage is achieved by the pure
pseudorandom test sequence TP and an additional
deterministic test set TD has to be applied to achieve
100% fault coverage. Those deterministic test patterns are
precomputed and stored in the system.

The main problem of the hybrid BIST is to find the
optimal balance between the pseudorandom test part TP
and the deterministic test part TD, so that the total testing
time is minimal, and that the memory constraints
COSTM.LIMIT for storing deterministic test patterns are
satisfied, COSTM ≤ COSTM,LIMIT . The memory cost can be
calculated as follows:

,)*(
1

∑
=

=
n

k
kkM INPLDCOST

where INPk is the number of inputs of the core Ck and LDk
is the length of the deterministic test set of the core Ck. If
the same deterministic pattern is needed simultaneously
for a subset S’ ⊆ S of cores, we say that it is dedicated for
the core Ck ∈ S’ with the highest number of inputs.

The task to be solved in this paper is to minimize the
total test length

∑
=

+=
n

k
kLDLPLH

1

 for a given memory constraint COSTM ≤ COSTM,LIMIT.
As all cores are tested in parallel, the problem is to find

a time moment when to switch from the parallel
pseudorandom test to the parallel deterministic test. The
problem of minimizing the hybrid test length at the given
memory constraints for parallel multi-core testing is
extremely complex. The main reasons of this complexity
are the following:
• The deterministic test patterns of one core are used as

pseudorandom test patterns for all other cores;
unfortunately there will be n(n-1) relationships for n
cores to analyse for finding the optimal interaction; on
the other hand the deterministic test sets are not readily
available and calculated only during the analysis
process;

• For a single core an optimal combination of
pseudorandom and deterministic patterns can be found
by rather straightforward algorithms [9]; but as the
optimal time moment for switching from
pseudorandom to deterministic test will be different for
different cores the existing methods cannot be used
and the parallel testing case is considerably more
complex.

• For each core the best initial state of the LFSR can be
found experimentally, but to find the best LFSR for
testing all cores in parallel is a very complex and time
consuming task.
To overcome the high complexity of the problem we

will propose a straightforward algorithm for calculating
TP and TD, where we neglect the optimal solutions for
individual cores in favour of finding a near-optimal
solution for the whole system.

3. Test time minimization procedure

We solve the test time minimization problem in three

consecutive steps: first, we find as good as possible initial
state for the LFSR for all cores; second, we generate a
deterministic test sequence if the 100% fault coverage
cannot be reached by a pure pseudorandom test sequence
for all cores; and third, we update the test sequence by
finding the quasi-optimal time moment for switching from
parallel pseudorandom testing to parallel deterministic
testing at the given memory constraint.

TD TP

LP=LPmax LPi
LPj

L

Finding the initial state for the LFSR.

To find the best initial state for the parallel
pseudorandom test generator, we carry out m experiments,
with randomly chosen initial states, for all n cores. Within
each jth experiment we calculate for each core Ck the
weighted length LPk,j * INPk of the test sequence which
achieves the 100% fault coverage for the core Ck. Then,
for all the experiments we calculate the average weighted
length

Lj = k

n

k
jk INPLP

n
*

1

1
,∑

=

as the quality merit of pseudorandom sequences for
parallel testing of all cores. The best pseudorandom
sequence is the one that gives as shortest Lj, j = 1,2,…, m.
Let us call this initial pseudorandom test TP0.

Generation of the initial deterministic test set.

Suppose there are k ≤ n cores where 100% fault
coverage cannot be achieved with TP0 because of the
practical constraints to the pseudorandom test length. Let
us denote this subset of cores with S´⊆ S. Let us denote
with FPi

0 fault coverage of the core Ci, achieved by TP0.
Let us order the cores in S´ as C1, C2, …, Ck, so that for
each i < j, 1 ≤ i,j ≤ k, we have FPi ≤ FPj. We assume
here that every deterministic test pattern, to be propagated
to the system, has to be as wide as the maximum width of
the TAM. If the core under test has less inputs than the
width of the TAM, all unused bits in the TAM are filled
with pseudorandom data. The deterministic patterns can
be generated by using the following algorithm:

Algorithm 1.
1. Start with core Ci in S’, i=1.
2. Generate a deterministic test set TD’i to

complement the TP0 to increase the fault
coverage FPi

0 of the core Ci to 100%.
3. Fill the unused bits of TD’i with pseudorandom

data by continuing the pseudorandom test TP0.
Denote this updated test by TDi.

4. Broadcast the test TDi for other cores in S’, fault
simulate it for the cores in S’, and update the fault
coverage FPj

0 for other cores in S’.
5. Take the next core Ci in S’ for i = i + 1.
6. If i > k, END.
7. If FPi

0 = 100%, repeat Step 5, else go to Step 2.

By using Algorithm 1 an initial hybrid BIST sequence
TH0= {TP0, TD0} can be generated. This sequence
guarantees 100% fault coverage for all cores in the
system.

Definition 1: A pattern in a joint pseudorandom test
sequence is called efficient if it detects at least one new
fault for at least one core that is not detected by previous

test patterns in the sequence nor by any pattern in the
deterministic test sequence.

Optimization of the test sequence.

After the previous 2 steps we have obtained a hybrid
BIST sequence TH0 = {TP0, TD0} with length LH0,
consisting of the pseudorandom part TP0 with length LP0,
and of the deterministic part TD0 with length LD0.

In special case TD0 may be an empty set.
Let us denote with COSTM(TD0) the memory cost of

the deterministic test set TD0. We assume that the memory
constraints are at this moment satisfied: COSTM(TD0) <
COSTM,LIMIT. In a opposite case, if COSTM(TD0) >
COSTM,LIMIT, the length of the pseudorandom sequence has
to be extended and the second step of the procedure has to
be repeated.

If COSTM(TD0) = COSTM,LIMIT the third step is
unnecessary, and the procedure is finished.

Under optimization of TH0 we mean the minimization
of the test length LH0 at the given memory constraints
COSTM,LIMIT.

It is possible to minimize LH0 by shortening the
pseudorandom sequence, i.e. by moving step-by-step
efficient patterns from the beginning of TP0 to TD0 and by
removing all other patterns between the efficient ones
from TP0, until the memory constraints will become
violated, COSTM(TD0) > COSTM,LIMIT.

We cannot remove patterns with the same goal from
the other end of TP0 because the pseudorandom sequence
will be extended and merged with the deterministic part
TD0 to update the free bits of deterministic test patterns
generated by Algorithm 1. In other words, by removing
pseudorandom patterns from the end of the TP0 would
brake the continuity of the pseudorandom test generation
process on the border between TP0 and TD0.

To find the efficient test patterns in the beginning of
the TP0 we have to fault simulate the whole test sequence
TH0 for all the cores in the opposite way from the end to
the beginning. As a result of the fault simulation we get
for each pattern the increments of fault coverage in
relation to each core ∆ = {∆1, ∆2,…, ∆n,}. According to
Definition 1, we call the pattern efficient if

0:,...,2,1, ≠∆=∃ knkk
The optimization procedure will be carried out by

using the following algorithm.

Algorithm 2.
1. Start with the first pattern Pi from the beginning

of TP0, i = 1.
2. If Pi is efficient, move it from TP0 to TD0.
3. Recalculate the memory cost COSTM(TD0) =

COSTM(TD0) + COSTM(Pi).

4. If COSTM(TD0) < COSTM,LIMIT go to Step 5,
else if COSTM(TD0) > COSTM,LIMIT go to Step 7,
else go to Step 8.

5. Take the next pattern Pi in TP0, i = i + 1.
6. If Pi is not efficient, remove it from TP0, and go

to Step 5;
else go to Step 2.

7. Remove Pi from TD0 back to TP0. Go to 10.
8. Take the next pattern Pi in TP0, i = i + 1.
9. If Pi is not efficient, remove it from TP0, and go

to Step 8.
10. END: take Pi as the new beginning of the

pseudorandom test sequence TP0 .
As the result of the Algorithm 2 we create a new

hybrid BIST sequence TH = {TP,TD} with total length LH
and with lengths LP ≤ LP0 and LD ≥ LD0 for the new
pseudorandom and deterministic parts correspondingly.
Due to removal of all non-efficient patterns LP - LP0
>>LD0 – LD. Hence, the total length of the new hybrid
BIST sequence will be considerably shorter compared to
its initial length, LH < LH0.

The memory constraints, according to the Algorithm 2,
remain satisfied: COSTM(TD) < COSTM,LIMIT.

The described procedure doesn’t guarantee absolute
minimum of the test length, however, the procedure is
rather straightforward (similar to the greedy algorithm)
and fast and therefore suitable for use in the design
process. The method can be used to find a cheap practical
solution as well as for a fast reference for comparison with
more sophisticated optimization algorithms to be
developed in the future.

4. Experimental data

We have performed experiments with three systems

composed from different ISCAS benchmarks as cores.
The data of these systems are presented in Table 1 (the
lists of used cores in each system)

To show the importance of the first step of the
procedure, i.e. the significance of the quality of the initial
state of the LFSR, a comparison of the best and worst
initial states of the LFSR for all 3 experimental systems
has been carried out. The lengths of a complete
pseudorandom test sequence (100% fault coverage),
starting from the best and worst initial state, are depicted
in Table 2. In case of system S3 the pseudorandom
sequence was unacceptably long. Therefore the
pseudorandom test generation was interrupted and an
initial set of deterministic test patterns was generated in
order to achieve 100% fault coverage.

The best initial state for the
pseudorandom test

The worst initial state for the
pseudorandom test

System
Name Pseudorandom

test length
(clocks)

Deterministic
test length
(clocks)

Pseudorandom
test length
(clocks)

Deterministic
test length
(clocks)

S1 2 520 0 23 482 0

S2 7 060 0 23 482 0

S3 14 524 26 25 000 33

Table 2. Quality of different
pseudorandom sequences

The experimental results for three different systems are
presented in Table 3. The lengths of the pseudorandom
test sequence, the number of additional deterministic test
patterns and the total length of the hybrid test sequence is
calculated for three different memory constraints and for

System
 name

S1
6 cores

S2
7 cores

S3
5 cores

c5315 c432 c880
c880 c499 c5315
c432 c880 c3540
c499 c1355 c1908
c499 c1908 c880

c5315 c5315

List of
used
cores

 c6288
Table 1. Systems used for experiments

The best initial state for the pseudorandom test The worst initial state for the pseudorandom test
System
Name

Number
of cores

Memory

Constraint
(bits)

Pseudorandom
test length
(clocks)

Deterministic
test length
(clocks)

Total test
length

(clocks)

CPU time
(sec)

Pseudorandom
test length
(clocks)

Deterministic
test length
(clocks)

Total test
length

(clocks)

CPU time
(sec)

 20 000 85 181 266 2 990 138 3128
S1 6 10 000 232 105 337 187, 64 4 446 73 4519 228.67

 5 000 520 55 575 5 679 40 5719
 20 000 92 222 314 3 015 151 3166

S2 7 10 000 250 133 383 718.49 4 469 82 4551 969.74
 5 000 598 71 669 5 886 49 5935
 20 000 142 249 391 3 016 200 3216

S3 5 10 000 465 161 626 221,48 4 521 121 4642 318.38
 5 000 1 778 88 1866 8 604 72 8676

Table 3. Experimental results

the best and worst initial states of the LFSR for all 3
systems. The CPU time needed for the analysis is
presented as well.

For the first two systems S1 and S2 the cost of the
procedure is determined only by the CPU time for the
pseudorandom test pattern generation and by subsequent
simulation of the test patterns for all cores in the system.
For the third system S3 the CPU time includes also the
time needed to generate the additional deterministic test
patterns.
The full overview about the all possible hybrid BIST
solutions for the three systems is presented in Figure 2
representing the memory cost as the function of the total
test length. Based on these curves for an arbitrary memory
constraint the corresponding total testing time can be
found. The three constraints presented in Table 3 are also
highlighted in Figure 2. It can be seen that the memory
cost will increase very fast when reducing the length of
the test sequence. It can be explained by the fact that in the
beginning of the pseudorandom sequence nearly all test
patterns are efficient, and nearly each pattern that is
excluded from the pseudorandom part should be included
into the deterministic part.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 251 501 751 1001 1251 1501 1751 2001 2251 2501

Total test length (clocks)

Memory

S1
S2
S3

Figure 2. Memory usage as the function of the total

test length for all three systems

A comparison of the curves of the memory cost as the
function of the total test length for the best and for the
worst initial pseudorandom sequences is depicted for the
system S2 in Figure 3. This illustrates the importance of
choosing best possible pseudorandom sequence for testing
the system.

0

10000

20000

30000

40000

50000

60000

1 2001 4001 6001 8001 10001 12001 14001

Total test length (clocks)

Memory

The best

The worst

Figure 3. Memory usage as the function of the

total test length for the best and the worst initial
pseudorandom sequences

5. Conclusions

We have presented a new approach for the hybrid

BIST in multi-core systems where the hybrid BIST idea is
extended with the concept of test pattern broadcasting,
where the deterministic test set of each core is applied in
parallel to all other cores in a similar way as the
pseudorandom test patterns. For this new architecture we
have formulated the task to minimize the total test time of
the hybrid BIST at given memory limitations for storing
deterministic test patterns. We have proposed a
straightforward algorithm for calculating a possible
combination between pseudorandom and deterministic test
sequences, where we neglect the optimal solutions for
individual cores in favour of finding a near-optimal
solution for the whole system. The described procedure
doesn’t guarantee minimal test length, however, the
procedure is simple (similar to the greedy algorithm) and
fast. The latter is demonstrated also by corresponding
experimental results. We have also analyzed the impact of
pseudorandom test quality for the overall test solution and
the result was illustrated with the experimental results as
well.

Although the current work covers only combinatorial
circuits, it can easily be extended also for full-scan
sequential circuits and can be considered as a future work.

The method proposed can be used first, as a cheap
practical solution, and second, as a quickly computable
reference for comparison with more sophisticated
optimization algorithms to be developed in future.

References

[1] G. Jervan, Z. Peng, R. Ubar, “Test Cost Minimization for
Hybrid BIST,” IEEE Int. Symp. on Defect and Fault
Tolerance in VLSI Systems (DFT’00), pp.283-291,
Yamanashi, Japan, October 2000.

[2] G. Jervan, P. Eles, Z. Peng, R. Ubar, M. Jenihhin, ”Test
Time Minimization for Hybrid BIST of Core-Based
Systems,” IEEE Asian Test Symposium 2003 (ATS’03),
Xian, China, November 2003 (accepted for publication).

[3] Y. Zorian, “A distributed BIST control scheme for complex
VLSI devices”, Proceedings of the IEEE VLSI Test
Symposium (VTS), pp. 4-9, Atlantic City, NJ, April 1993.

[4] R. Chou, K. Saluja, and V. Agrawal, Scheduling Tests for
VLSI Systems Under Power Constraints, IEEE
Transactions on VLSI Systems, Vol. 5, No. 2, pp. 175-185,
June 1997.

[5] M. Sugihara, H. Date, H. Yasuura, “Analysis and
Minimization of Test Time in a Combined BIST and
External Test Approach,” Design, Automation & Test In
Europe Conference (DATE 2000), pp. 134-140, Paris,
France, March 2000.

[6] K. Chakrabarty, “Test Scheduling for Core-Based Systems
Using Mixed-Integer Linear Programming”, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 19, No. 10, pp. 1163-1174,
October 2000.

[7] V. Iyengar, K. Chakrabarty, E. J. Marinissen, ”Test
Wrapper and Test Access Mechanism Co-Optimization for
System-on-chip,” Journal of Electronic Testing; Theory
and Applications (JETTA), Vol. 18, no. 2, pp. 213-230,
April 2002.

[8] E. Larsson, Z. Peng, “An Integrated Framework for the
Design and Optimization of SOC Test Solutions”, Journal
of Electronic Testing; Theory and Applications (JETTA),
for the Special Issue on Plug-and-Play Test Automation for
System-on-a-Chip, Vol. 18, no. 4/5, pp. 385-400, August
2002.

[9] G. Jervan, Z. Peng, R. Ubar, H. Kruus, “A Hybrid BIST
Architecture and its Optimization for SoC Testing,” IEEE
2002 3rd International Symposium on Quality Electronic
Design (ISQED'02), pp. 273-279, San Jose, CA, March
2002.

[10] G. Jervan, P. Eles, Z. Peng, R. Ubar, M. Jenihhin, ”Hybrid
BIST Time Minimization for Core-Based Systems with
STUMPS Architecture,” IEEE Int. Symposium on Defect
and Fault Tolerance in VLSI Systems (DFTS'03), pp. 225-
232, Cambridge, Mass, USA, November 2003.

[11] R. Ubar, M. Jenihhin, G. Jervan, Z. Peng, “Test Time
Minimization for Hybrid BIST with Test Pattern
Broadcasting,“ 21th Norchip Conference, Riga, Latvia,
November 2003 (accepted for publication).

