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Abstract1 

This paper introduces a technique for hybrid BIST time 
optimization for testing core-based systems that use test 
pattern broadcasting for both pseudorandom and 
deterministic patterns. First we formulate the test time 
minimization problem for such an architecture. Thereafter 
we present algorithms for finding an efficient combination 
of pseudorandom and deterministic test sets under given 
memory constraints, so that the system testing time can be 
shortened. We also analyze the significance of the 
pseudorandom sequence quality for the final results. The 
results are illustrated and the efficiency of the approach is 
demonstrated by experimental results. 
 
1. Introduction 

 
Built-in self-test (BIST) has became increasingly 

viable solution for testing complex systems-on-chip 
(SoC). Although it is a promising technology it also has its 
problems. Some of the problems are related to the fact that 
BIST uses typically long sequences of pseudorandom test 
patterns that may lead to the very long test times and 
cannot guarantee sufficiently high fault coverage. 
Therefore we have proposed hybrid BIST [1], [2] as a 
possible improvement of a classical logic BIST for testing 
SoCs. The key issue for the hybrid BIST is to find the best 
balance between pseudorandom and deterministic test 
patterns, such that the system design constraints are 
satisfied and test cost is minimized.  

Testing core-based systems is a complex problem in 
general. The existing work has concentrated so far on test 
scheduling, TAM design and testability analysis. This 
assumes a fixed set of tests and test resources together 
with an appropriate test access architecture. Some 
approaches can also take into account test conflicts and 
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different constraints, e.g. power [3]-[8]. However there 
hasn’t been any work to find the optimal test sets for 
testing every individual core in such a manner that the 
total system test time is minimized and the different 
design constraints are satisfied.  

In our earlier work it has been assumed that every core 
has its own dedicated BIST logic that is capable to 
produce a set of independent pseudorandom test patterns 
[9]. We have also extended the same approach for multi-
core systems where both, combinatorial cores and 
sequential cores with full scan may be used [2], [10].  This 
however may lead to high area overhead and may require 
redesign of the cores as not all cores may be equipped 
with self-test structures. Therefore we have recently 
proposed a novel self-test architecture that is based on test 
pattern broadcasting [11]. In this approach only a single 
pseudorandom test pattern generator is used and all test 
patterns are broadcasted simultaneously for all cores in the 
system. These patterns will be complemented with 
dedicated deterministic patterns for every individual core, 
if needed. Those deterministic test vectors are generated 
during the development process and are stored in the 
system.  

The whole test process has to be carried out in such a 
manner that the total testing time is kept minimal without 
violating the design constraints, in particular, the amount 
of on-chip resources. In this paper we will propose a 
method to evaluate tradeoffs between the length of the 
pseudorandom test sequences and the number of stored 
deterministic patterns, under given memory constraints. 
The problem of finding the exact solution is NP-complete. 
To overcome the high complexity of the problem we will 
propose in the following a simple and fast algorithm that 
gives us a near-optimal solution with low computational 
cost. Although the solution is not optimal it can be used 
successfully for design space exploration and gives a 
significant improvement compared to the ad-hoc designer 
solution.  

In the following section we will formulate the test time 
minimization problem for hybrid BIST. It is followed by 



the proposed test time minimization algorithm that is 
followed by experimental results and conclusions. 

 
2. Formulation of the test time minimization 

problem 
 

Let us assume a system S, consisting of cores C1, C2, 
…, Cn. For this system a  pseudorandom test sequence TP 
with length LP is generated and applied in parallel to all 
cores. This sequence should preferably achieve 100% fault 
coverage for all cores. In this sequence we can specify 
subsequences TPk  with length LPk,  k = 1, 2, …, n, for 
each core, so that all the subsequences start in the 
beginning of TP, and by the last pattern of a subsequence 
TPk  the 100% fault coverage for the core Ck is reached.  

In a case when LPk is too long, we restrict the length of 
the pseudorandom sequence to the maximum acceptable 
length LPmax, thus reducing the length of the whole 
pseudorandom sequence to LPmax. For all cores where 
100% fault coverage has not been achieved with this test 
set TP we generate complementary joint set of 
deterministic test patterns TD, so that by applying to the 
system both test sequences TP and TD with total length L, 
the 100% fault coverage for all cores is achieved. 

 

Figure 1. Initial test sequence for  
multi-core system 

 
As an example, in Figure 1 a hybrid test sequence TH 

= {TP, TD} is shown consisting of a pseudorandom test 
set TP with length LP and a deterministic test set TD with 
length LD (L=LP+LD). Here LPi denotes a moment where 
100% fault coverage is reached for the core Ci, and LPj 

denotes a moment where 100% fault coverage is reached 
for the core Cj. In this example we assume that not for all 
cores 100% fault coverage is achieved by the pure 
pseudorandom test sequence TP and an additional 
deterministic test set TD has to be applied to achieve 
100% fault coverage. Those deterministic test patterns are 
precomputed and stored in the system.  

The main problem of the hybrid BIST is to find the 
optimal balance between the pseudorandom test part TP 
and the deterministic test part TD, so that the total testing 
time is minimal, and that the memory constraints 
COSTM.LIMIT for storing deterministic test patterns are 
satisfied, COSTM ≤ COSTM,LIMIT . The memory cost can be 
calculated as follows: 
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where INPk is the number of inputs of the core Ck and LDk 
is the length of the deterministic test set of the core Ck. If 
the same deterministic pattern is needed simultaneously 
for a subset S’ ⊆ S of cores, we say that it is dedicated for 
the core Ck ∈ S’ with the highest number of inputs. 

The task to be solved in this paper is to minimize the 
total test length   
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 for a given memory constraint COSTM ≤ COSTM,LIMIT. 
As all cores are tested in parallel, the problem is to find 

a time moment when to switch from the parallel 
pseudorandom test to the parallel deterministic test. The 
problem of minimizing the hybrid test length at the given 
memory constraints for parallel multi-core testing is 
extremely complex. The main reasons of this complexity 
are the following:  
• The deterministic test patterns of one core are used as 

pseudorandom test patterns for all other cores; 
unfortunately there will be n(n-1) relationships for n 
cores to analyse for finding the optimal interaction; on 
the other hand the deterministic test sets are not readily 
available and calculated only during the analysis 
process; 

• For a single core an optimal combination of 
pseudorandom and deterministic patterns can be found 
by rather straightforward algorithms [9]; but as the 
optimal time moment for switching from 
pseudorandom to deterministic test will be different for 
different cores the existing methods cannot be used 
and the parallel testing case is considerably more 
complex. 

• For each core the best initial state of the LFSR can be 
found experimentally, but to find the best LFSR for 
testing all cores in parallel is a very complex and time 
consuming task. 
To overcome the high complexity of the problem we 

will propose a straightforward algorithm for calculating 
TP and TD, where we neglect the optimal solutions for 
individual cores in favour of finding a near-optimal 
solution for the whole system. 

 
3.  Test time minimization procedure 

 
We solve the test time minimization problem in three 

consecutive steps: first, we find as good as possible initial 
state for the LFSR for all cores; second, we generate a 
deterministic test sequence if the 100% fault coverage 
cannot be reached by a pure pseudorandom test sequence 
for all cores; and third, we update the test sequence by 
finding the quasi-optimal time moment for switching from 
parallel pseudorandom testing to parallel deterministic 
testing at the given memory constraint. 

TD TP 

LP=LPmax LPi 
LPj 

L 



Finding the initial state for the LFSR.  

To find the best initial state for the parallel 
pseudorandom test generator, we carry out m experiments, 
with randomly chosen initial states, for all n cores. Within 
each jth experiment we calculate for each core Ck the 
weighted length LPk,j * INPk of the test sequence which 
achieves the 100% fault coverage for the core Ck. Then, 
for all the experiments we calculate the average weighted 
length  
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as the quality merit of pseudorandom sequences for 
parallel testing of all cores. The best pseudorandom 
sequence is the one that gives as shortest Lj, j = 1,2,…, m. 
Let us call this initial pseudorandom test TP0. 

Generation of the initial deterministic test set.  

Suppose there are k ≤ n cores where 100% fault 
coverage cannot be achieved with TP0 because of the 
practical constraints to the pseudorandom test length. Let 
us denote this subset of cores with S´⊆ S. Let us denote 
with FPi

0 fault coverage of the core Ci,  achieved by TP0. 
Let us order the cores in  S´ as C1, C2, …, Ck, so that for 
each i < j,  1 ≤  i,j ≤  k, we have FPi ≤ FPj. We assume 
here that every deterministic test pattern, to be propagated 
to the system, has to be as wide as the maximum width of 
the TAM. If the core under test has less inputs than the 
width of the TAM, all unused bits in the TAM are filled 
with pseudorandom data. The deterministic patterns can 
be generated by using the following algorithm: 

Algorithm 1. 
1. Start with core Ci in S’, i=1. 
2. Generate a deterministic test set TD’i to 

complement the TP0 to increase the fault 
coverage FPi

0 of the core Ci to 100%. 
3. Fill the unused bits of TD’i with pseudorandom 

data by continuing the pseudorandom test TP0. 
Denote this updated test by TDi.  

4. Broadcast the test TDi for other cores in S’, fault 
simulate it for the cores in S’, and update the fault 
coverage FPj

0 for other cores in S’. 
5. Take the next core Ci in S’ for i = i + 1.  
6. If  i > k, END. 
7. If  FPi

0 = 100%, repeat Step 5, else go to Step 2. 

By using Algorithm 1 an initial hybrid BIST sequence 
TH0= {TP0, TD0} can be generated. This sequence 
guarantees 100% fault coverage for all cores in the 
system. 

Definition 1: A pattern in a joint pseudorandom test 
sequence is called efficient if it detects at least one new 
fault for at least one core that is not detected by previous 

test patterns in the sequence nor by any pattern in the 
deterministic test sequence.  

Optimization of the test sequence.  

After the previous 2 steps we have obtained a hybrid 
BIST sequence TH0 = {TP0, TD0}  with length LH0, 
consisting of the pseudorandom part TP0 with length LP0, 
and of the deterministic part TD0 with length LD0.  

In special case TD0 may be an empty set.  
Let us denote with COSTM(TD0) the memory cost of 

the deterministic test set TD0. We assume that the memory 
constraints are at this moment satisfied:  COSTM(TD0) < 
COSTM,LIMIT. In a opposite case, if COSTM(TD0) > 
COSTM,LIMIT, the length of the pseudorandom sequence has 
to be extended and the second step of the procedure has to 
be repeated.  

If COSTM(TD0) = COSTM,LIMIT the third step is 
unnecessary, and the procedure is finished. 

Under optimization of TH0 we mean the minimization 
of the test length LH0 at the given memory constraints 
COSTM,LIMIT.   

It is possible to minimize LH0 by shortening the 
pseudorandom sequence, i.e. by moving step-by-step 
efficient patterns from the beginning of TP0 to TD0 and by 
removing all other patterns between the efficient ones 
from TP0, until the memory constraints will become 
violated, COSTM(TD0) > COSTM,LIMIT.  

We cannot remove patterns with the same goal from 
the other end of TP0 because the pseudorandom sequence 
will be extended and merged with the deterministic part 
TD0 to update the free bits of deterministic test patterns 
generated by Algorithm 1. In other words, by removing 
pseudorandom patterns from the end of the TP0 would 
brake the continuity of the pseudorandom test generation 
process on the border between TP0 and TD0. 

To find the efficient test patterns in the beginning of 
the TP0 we have to fault simulate the whole test sequence 
TH0 for all the cores in the opposite way from the end to 
the beginning. As a result of the fault simulation we get 
for each pattern the increments of fault coverage in 
relation to each core ∆ = {∆1, ∆2,…, ∆n,}. According to 
Definition 1, we call the pattern efficient if 

0:,...,2,1, ≠∆=∃ knkk  
The optimization procedure will be carried out by 

using the following algorithm. 

Algorithm 2. 
1. Start with the first pattern Pi from the beginning 

of TP0, i = 1. 
2. If Pi is efficient, move it from TP0 to TD0. 
3. Recalculate the memory cost COSTM(TD0) = 

COSTM(TD0) + COSTM(Pi). 



4. If COSTM(TD0) < COSTM,LIMIT go to Step 5, 
else if COSTM(TD0) > COSTM,LIMIT go to Step 7, 
else go to Step 8. 

5. Take the next pattern Pi in TP0, i = i + 1. 
6. If Pi is not efficient, remove it from TP0, and go 

to Step 5; 
else go to Step 2. 

7. Remove  Pi  from TD0 back to TP0. Go to 10. 
8. Take the next pattern Pi in TP0, i = i + 1. 
9. If Pi is not efficient, remove it from TP0, and go 

to Step 8. 
10. END: take Pi as the new beginning of the 

pseudorandom test sequence TP0 . 
As the result of the Algorithm 2 we create a new 

hybrid BIST sequence TH = {TP,TD} with total length LH 
and with lengths LP ≤ LP0 and LD ≥ LD0 for the new 
pseudorandom and deterministic parts correspondingly. 
Due to removal of all non-efficient patterns LP - LP0 
>>LD0 – LD. Hence, the total length of the new hybrid 
BIST sequence will be considerably shorter compared to 
its initial length,  LH < LH0.  

The memory constraints, according to the Algorithm 2, 
remain satisfied:  COSTM(TD) < COSTM,LIMIT. 

The described procedure doesn’t guarantee absolute 
minimum of the test length, however, the procedure is 
rather straightforward (similar to the greedy algorithm) 
and fast and therefore suitable for use in the design 
process. The method can be used to find a cheap practical 
solution as well as for a fast reference for comparison with 
more sophisticated optimization algorithms to be 
developed in the future. 

 
4.  Experimental data 

 
We have performed experiments with three systems 

composed from different ISCAS benchmarks as cores. 
The data of these systems are presented in Table 1 (the 
lists of used cores in each system) 

To show the importance of the first step of the 
procedure, i.e. the significance of the quality of the initial 
state of the LFSR, a comparison of the best and worst 
initial states of the LFSR for all 3 experimental systems 
has been carried out. The lengths of a complete 
pseudorandom test sequence (100% fault coverage), 
starting from the best and worst initial state, are depicted 
in Table 2. In case of system S3 the pseudorandom 
sequence was unacceptably long. Therefore the 
pseudorandom test generation was interrupted and an 
initial set of deterministic test patterns was generated in 
order to achieve 100% fault coverage.  

 

The best initial state for the 
pseudorandom test 

The worst initial state for the 
pseudorandom test 

System 
Name Pseudorandom 

test length 
(clocks) 

Deterministic 
test length 
(clocks) 

Pseudorandom 
test length 
(clocks) 

Deterministic 
test length 
(clocks) 

S1 2 520 0 23 482 0 

S2 7 060 0 23 482 0 

S3 14 524 26 25 000 33 

Table 2. Quality of different  
pseudorandom sequences 

The experimental results for three different systems are 
presented in Table 3. The lengths of the pseudorandom 
test sequence, the number of additional deterministic test 
patterns and the total length of the hybrid test sequence is 
calculated for three different memory constraints and for 

System 
 name 

S1 
6 cores 

S2  
7 cores 

S3  
5 cores 

c5315 c432 c880 
c880 c499 c5315 
c432 c880 c3540 
c499 c1355 c1908 
c499 c1908 c880 

c5315 c5315  

List of  
used  
cores 

 c6288  
Table 1. Systems used for experiments 

 

The best initial state for the pseudorandom test The worst initial state for the pseudorandom test  
System 
Name 

 
Number 
of cores 

 
Memory 

Constraint 
(bits) 

Pseudorandom 
test length 
(clocks) 

Deterministic 
test length 
(clocks) 

Total test 
length 

(clocks) 

CPU time 
(sec) 

Pseudorandom 
test length 
(clocks) 

Deterministic 
test length 
(clocks) 

Total test 
length 

(clocks) 

CPU time 
(sec) 

  20 000 85 181 266  2 990 138 3128  
S1 6 10 000 232 105 337 187, 64 4 446 73 4519 228.67 

  5 000 520 55 575  5 679 40 5719  
  20 000 92 222 314  3 015 151 3166  

S2 7 10 000 250 133 383 718.49 4 469 82 4551 969.74 
  5 000 598 71 669  5 886 49 5935  
  20 000 142 249 391  3 016 200 3216  

S3 5 10 000 465 161 626 221,48 4 521 121 4642 318.38 
  5 000 1 778 88 1866  8 604 72 8676  

Table 3. Experimental results 



the best and worst initial states of the LFSR for all 3 
systems. The CPU time needed for the analysis is 
presented as well.  

For the first two systems S1 and S2 the cost of the 
procedure is determined only by the CPU time for the 
pseudorandom test pattern generation and by subsequent 
simulation of the test patterns for all cores in the system. 
For the third system S3 the CPU time includes also the 
time needed to generate the additional deterministic test 
patterns. 
The full overview about the all possible hybrid BIST 
solutions for the three systems is presented in Figure 2 
representing the memory cost as the function of the total 
test length. Based on these curves for an arbitrary memory 
constraint the corresponding total testing time can be 
found. The three constraints presented in Table 3 are also 
highlighted in Figure 2. It can be seen that the memory 
cost will increase very fast when reducing the length of 
the test sequence. It can be explained by the fact that in the 
beginning of the pseudorandom sequence nearly all test 
patterns are efficient, and nearly each pattern that is 
excluded from the pseudorandom part should be included 
into the deterministic part. 
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Figure 2. Memory usage as the function of the total 

test length for all three systems 

A comparison of the curves of the memory cost as the 
function of the total test length for the best and for the 
worst initial pseudorandom sequences is depicted for the 
system S2 in Figure 3. This illustrates the importance of 
choosing best possible pseudorandom sequence for testing 
the system. 
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Figure 3. Memory usage as the function of the  

total test length for the best and the worst  initial 
pseudorandom sequences 

5.  Conclusions 
 
We have presented a new approach for the hybrid 

BIST in multi-core systems where the hybrid BIST idea is 
extended with the concept of test pattern broadcasting, 
where the deterministic test set of each core is applied in 
parallel to all other cores in a similar way as the 
pseudorandom test patterns. For this new architecture we 
have formulated the task to minimize the total test time of 
the hybrid BIST at given memory limitations for storing 
deterministic test patterns. We have proposed a 
straightforward algorithm for calculating a possible 
combination between pseudorandom and deterministic test 
sequences, where we neglect the optimal solutions for 
individual cores in favour of finding a near-optimal 
solution for the whole system. The described procedure 
doesn’t guarantee minimal test length, however, the 
procedure is simple (similar to the greedy algorithm) and 
fast. The latter is demonstrated also by corresponding 
experimental results. We have also analyzed the impact of 
pseudorandom test quality for the overall test solution and 
the result was illustrated with the experimental  results as 
well. 

Although the current work covers only combinatorial 
circuits, it can easily be extended also for full-scan 
sequential circuits and can be considered as a future work. 

The method proposed can be used first, as a cheap 
practical solution, and second, as a quickly computable 
reference for comparison with more sophisticated 
optimization algorithms to be developed in future. 
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