
A Wiring-Aware Approach to Minimizing Built-in Self-Test Overhead
Abdil Rashid Mohamed, Zebo Peng and Petru Eles
Department of Computer and Information Science,

 Linköping University, S-581 83, Sweden
{abdmo, zebpe, petel} @ida.liu.se

Abstract

This paper describes a built-in self-test hardware
overhead minimization technique used during a BIST
synthesis process. The technique inserts a minimal amount
of BIST resources into a digital system to make it fully
testable. The BIST resource insertion is guided by the
results of symbolic testability analysis. It considers both
BIST register cost and wiring overhead in order to obtain
the minimal area designs. A Simulated Annealing algorithm
is used to solve the overhead minimization problem.
Experiments show that considering wiring area during
BIST synthesis results in smaller final designs as compared
to the cases when the wiring impact is ignored.

1. Introduction
Work on BIST insertion at the behavioral and RT-levels

can be classified in three different types:
i. BIST insertion at RT-level after high-level synthesis

(HLS) is performed without considering the geometrical
information (floor-planning and wiring area).

ii. BIST insertion during HLS without taking into account
floor-planning and wiring area.

iii. BIST insertion which takes into account floor-planning
and wiring area.
The first category of work [1], [2] inserts BIST such that

each RT module can receive test patterns from on chip test
pattern generators (TPG) and its responses can reach on
chip multiple input signature registers (MISR).

The second category of work [3] inserts BIST during
HLS such that the processes of scheduling, allocation and
testability enhancements are simultaneously carried out.
These approaches explore a bigger design space in search
for the optimal solutions, and potentially give better designs
with respect to area, testability and performance.

The approaches of these two categories ignore impact of
placement of the functional and BIST modules in the final
design. This usually leads to designs which are optimal in
terms of the numbers of functional and BIST resources, but
take more silicon area to implement since interconnects
take large silicon space in deep sub-micron VLSI designs.

In order to take wiring information of the final designs
into account during the BIST insertion process, it is needed
to predict the wiring area and lengths at higher levels.
Alvandpour [6] developed a heuristic to estimate wiring
lengths at RT level. His approach was deployed in [7] to

predict area increase due to wiring in a HLS system. Goel
et al. [8] have proposed a model for wiring length
computation for core based system-on-chip testing, where
they assume the layout of the modules is known
beforehand.

This work belongs to the third category. The problem of
optimizing BIST insertion at behavioral and RT levels
while taking into account geometrical information of the
design is addressed and solved. The problem is: given a
design represented as a scheduled data flow graph (SDFG)
along with allocation and binding information, insert BIST
modules into the design such that all functional modules are
self-testable and the total design area is minimized.

2. Our BIST Synthesis Approach
Simulated Annealing [10] has been used to optimize the

BIST structure in order to minimize the total design area.
Details of our approach are discussed in Section 2.4.

The approach is assisted by a symbolic testability
analysis (STA) methodology [4], [5] which identifies hard
to test operations. STA is performed at the behavioral level
on the SDFG representation of the design. Testability
enhancement is performed on the RT-level representation
of the design. The optimization process uses testability
design transformations (section 2.1) to explore a design
space in search of the smallest self-testable design. Since
the objective is to minimize the total area, maximal BIST
register sharing is also achieved.

2.1 Testability Design Transformations
A number of BIST design transformations have been

defined. They provide the optimization heuristic with a
mechanism for performing neighborhood search so as to
converge towards low area, self-testable designs. Some
transformations enhance testability while others reduce it.
Those, which reduce testability, enable the optimization
strategy to create intermediate solutions, which later, as a
result of further transformations, converge towards minimal
area designs while guaranteeing testability. Therefore, for
each type of testability enhancement transformation (TET) a
reverse TET (RTET), to cancel its effect is also defined. For
example, if TET(rk,TPGk) transforms a functional register
rk, to a TPGk, then its reverse transformation converts TPGk

to register rk. It eliminates the effect of TET(rk,TPGk) and
brings the design back to its original state.

Each testability transformation has advantages (reduced
area, reduced wiring, and/or improved testability) or
disadvantages (additional area, additional wiring, and/or
reduced testability).

A conversion for controllability transformation changes
controllability by converting an existing functional register
to a TPG, which generates on-chip test patterns or converts
one type of test pattern generator to another or back to a
functional register. The conversion changes design area by
±δA, (δA=ATPG-Areg). The TPG can be converted to a
BILBO (Built-in Logic Block Observer), which generates
test patterns and compresses test responses at different
times. The BILBO is, however, larger than the TPG.

A conversion for observability transformation changes
observability by converting an existing functional register
to a MISR or converting one type of signature register to
another or back to a functional register. A MISR can only
compress test responses on chip to a single signature. The
BILBO can enhance the observability, but it also improves
controllability. Thus, converting the MISR to the BILBO
improves both controllability and observability.

A connection for controllability is a transformation
whereby an existing TPG or BILBO is connected directly to
an input of the functional module to improve its
controllability. The transformation necessitates addition of
a test multiplexer in front of the functional module. Thus,
wiring and multiplexer cost are incurred (δA=Awire+Amux).
Reverse transformation that disconnects the TPG or the
BILBO from the module results in reduced testability, but
the test multiplexer and wiring can be removed.

A connection for observability is an observability
enhancement transformation that connects the output of a

module directly to an existing MISR or BILBO. Though the
transformation adds wiring and a test multiplexer, it can
enhance the observability of any chosen module. Reverse
transformation disconnects the MISR or BILBO from the
module resulting in reduced observability and a saving of
test multiplexer and wiring.

2.2 Wiring Area Estimation
Wiring area, Aw, is estimated using the heuristics in [6]

and [7] (see eq.1). They estimate the placement of modules
on the chip based on their interconnection relationship and
sizes, and computes the lengths of all interconnections.

metalnodesor
i

aviiw NAkWwlA /









×−










××= ∑ eq. 1

The sum over i is for all interconnections. li, and wi are
the length and width (in bits) of interconnection i. Wav is the
average width of wires (including the space between them),
kor is the over-route factor (fraction of the area above the
datapath nodes and controller units in the metal layers that
can be used for routing), Anodes is the area of the datapath
nodes, and Nmetal is the number of metal layers.

2.3 Cost and Objective Functions
The objective is to minimize the total design area, which

is the sum of the areas of functional modules and registers,
functional and test multiplexers, BIST registers, and total
wiring area as depicted in eq. 2.

Eq. 3 gives the cost function used to drive the
optimization heuristic, where k is a constant and Nuntest is
the number of untestable modules. If a transformation
guarantees 100% testability, the total design area is used as
cost (eq. 3a). Otherwise either the transformation is rejected
or a penalty is paid eq. 3ab). The penalty is a function of the
number of untestable modules and discourages
transformations that do not guarantee testability. Testability
constraints must be satisfied in the final solution generated.





×
+=

untest
total Nk

ACost
0 eq. 3a

 eq. 3b

2.4 BIST Optimization Heuristic
Our Simulated Annealing (S.A.) based optimization

framework is depicted in Figure 1. A fully testable initial
solution, X0, is an input to the heuristic. To get X0, all
constant nodes and primary input (PI) registers are
converted into TPGs, all primary output (PO) registers to
MISRs and all internal registers to BILBOs.

Testability transformations, which modify the design to
produce neighboring solutions, are randomly applied.
Although the aim is to converge towards minimal area, in
order to escape from local minima, S.A. can
probabilistically accept expensive transformations hoping
that subsequent transformations may enable the
optimization strategy to converge towards a global

 G enerate in itia l testable so lution

Choose and im plem ent a m ove
(m od ify des ign)

Com pute w iring and total area

Technology
 library

RTL design
library

D iscard
 changes

STA

 Testable?

K eep m od ifed des ign

Cm odified<Cbest?

Best design Å m od ified design

 F in ish?

O utput best R T design

y

n

y

n

y

n

 Cost
 reduced?

n

y

 Probabilistic
 accept?

d d?

n

y

Reduce
tem perature

Figure 1. Framework for BIST analysis and optimization

wiretMUXBISTfMUXffregtotal AAAAAAA +++++= mod Eq. 2

optimum. As an optimization parameter, called
temperature, decreases, the probability of accepting
expensive transformations decreases [10]. At low
temperatures only the cheap solutions are accepted and the
annealing converges towards minimum area designs. After
each transformation, the testability status (testable, not
testable) is checked by STA.

3. Experimental Results
Technology dependent parameters used are: average

width of a 1-bit wire including spacing between the wires is
0.8µm. The number of metal layers is 2 and over routing
factor is 0.5. Sizes of the functional registers and modules
are extracted from [9]. The areas of the 16-bit modules in
µm2 are: Multiplier-250000, adder-50000, subtractor-
50000, register-15000, TPG-20000, MISR-30000, BILBO-
40000, CBILBO is 50000 and multiplexer is 1000 +
number_of_inputs * 500.

Tables 1 through 3 summarize the experimental results.
Columns P, M and B represent the number of TPGs, MISRs
and BILBOs respectively. Anodes is the sum of the node
areas, Awires is the sum of all wiring areas, Nmux is the
number of test multiplexers, Amux is the area of test
multiplexers and %Aw/At is the percentage of wiring area
with respect to total design area. Atotal represents the total
area of the design after synthesis including wiring area. In
Table 3, At_with_wire and At_no_wire are the respective total
design areas with and without considering wiring during
BIST optimization. %Aloss is the percentage of area that is
lost if wiring is not considered as compared to the case
when wiring is considered.

The BIST synthesis process was run in two different
ways: In the first case we have ignored wiring area (Aw=0)

during BIST synthesis optimization. The minimized cost is
the total node area (data-path nodes, BIST registers and test
multiplexers). The results are shown in Table 1. In the
second case, we have taken into account wiring area during
the BIST synthesis. The minimized cost is the sum of total
node area and wiring area. Table 2 summarizes the results.

When wiring area is considered during BIST synthesis,
we get smaller total design area (see Table 3), but the BIST
registers occupy larger area than what they occupy if wiring
is not considered. Since the designs obtained when wiring
area is considered occupy smaller total area, this shows that
ignoring wiring cost produces less efficient designs.

4. Conclusion
We have developed an approach for BIST resources

optimization that takes into account wiring area. The
heuristic uses Simulated Annealing to optimize designs
towards minimum area. Experimental results indicate that
when wiring area is considered during the optimization
process the total area of the resulting designs is smaller
compared to cases when wiring is not considered. The
number of BIST registers can be smaller in the latter case.

5. References
[1] “A built-in self-testing approach for minimizing hardware

overhead”, Chiu, S.S.K., Papachristou, C.A., Computer Design:
VLSI in Computers and Processors. ICCD '91. Proc., 1991 IEEE
International Conference on, 14-16 Oct 1991 Page(s): 282 -285.

[2] “BIST hardware synthesis for RTL data paths based on test
compatibility classes Nicolici”, N.; Al-Hashimi, B.M.; Brown,
A.D.; Williams, A.C.; Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, Volume: 19 Issue:
11, Nov 2000 Page(s): 1375 -1385

[3] L. Avra, “Allocation and assignment in high-level synthesis for
self-testable data paths”, in Proc. Int. Test Conf., p.463-472,
1991.

[4] Ghosh, I.; Jha, N.K.; Bhawmik, S, ”A BIST Scheme for RTL
Circuits Based on Symbolic Testability Analysis”, IEEE
Transactions on CAD of Integrated Circuits and Systems,
Volume: 19 Issue: 1, Jan. 2000 Page(s): 111 –128.

[5] Ghosh, I.; Jha, N.; Bhawmik, S., “A BIST Scheme for RTL
Controller-Data Paths Based on Symbolic Testability Analysis”,
ACM, 1998.

[6] A.Alvandpour and C.Svensson, "A Wire Capacitance Estimation
Technique for Power Consuming Interconnects at High Levels of
Abstraction”, Workshop on Power And Timing Modeling,
Optimization and Simulation (PATMOS97), Louvain-la-Neuve,
Belgium, 1997.

[7] Jonas Hallberg, Zebo Peng, “Estimation and Consideration of
Interconnection Delays during High Level Synthesis”, 24th
EUROMICRO Conf., 1998.

[8] Goel, S.K.; Marinissen, E. J., ”Layout-Driven SoC Test
Architecture Design for Test Time and Wire Length
Minimization”, Design Automation & Test in Europe, 2003.

[9] Vasily G. Moshyaga, Keikichi Tumaru, “A Placement Driven
Methodology for High-Level Synthesis of Sub-Micron ASICS”,
International Symposium on Circuits and Systems, May 1996,
Page(s) 572-575.

[10] Reeves, C. “Modern Heuristic Techniques for Combinatorial
Problems”, Blackwell Scientific Publications, 1993.

Table 3. Area loss if wiring is not considered
Design At_no_wire (µm2) At_with_wire (µm2) %Aloss

Paulin 2,529,067 2,296,569 10.12

Real 2,601,625 2,421,214 7.45

Ovenctrl 1,392,628 1,294,624 7.57

EX2 1,886,040 1,804,166 4.54

EWF 5,904,345 5,006,007 17.95

Table 1. Wiring area ignored during optimization
Design P M B Anodes(µm2) Awire(µm2) Atotal(µm2) %Aw/At Nmux Amux

Paulin 2 1 0 1,971,000 558,067 2,529,067 22.07 9 21,000

Real 2 1 0 2,051,500 550,125 2,601,625 21.15 10 21,500

Ovenct
rl

2 1 0 1,054,500 338,128 1,392,628 24.00 9 19,500

EX2 2 1 0 1,586,000 300,040 1,886,040 15.91 8 16,000

EWF 2 2 1 4,088,000 1,816,345 5,904,345 30.76 36 78,000

Table 2. Wiring area considered during optimization
Design P M B Anodes(µm2) Awire(µm2) Atotal(µm2) %Aw/At Nmux Amux

Paulin 5 1 0 1,968,000 328,569 2,296,569 14.03 1 3,000

Real 6 1 1 2,081,000 340,214 2,421,214 14.05 3 6,000

Ovenct
rl

6 1 0 1,058,500 236,124 1,294,624 18.24 1 3,500

EX2 5 1 0 1,589,000 215,166 1,804,166 11.93 2 4,000

EWF 10 2 0 4,034,500 971,507 5,006,007 19.41 4 9,500

