BIST SYNTHESIS: AN APPROACH TO RESOURCE OPTIMIZATION
UNDER TEST-TIME CONSTRAINTS!

Abdil Rashid Mohamed, Zebo Peng and Petru Eles
Embedded Systems Laboratory, Department of Computer Science
Linkoping University, S-581 83 Sweden
Emails: {abdmo, zebpe, petel}@ida.liu.se

Abstract. An approach at optimizing the BIST resource usage under test-time constraints
is introduced. The test-problem identification and BIST enhancement strategy during the
optimization process are assisted by symbolic testability analysis. Further, concurrent test
sessions are generated, while MISRs sharing conflicts as well as controllability and
observability constraints are considered.

1 Introduction

As Automatic Test Equipment (ATE) is slow and expengivé-in self-test (BIST) is the most suitable and
cheapmethod for at-speed testing of complex systems on silicon. A lot of work on BIST at high level has
been done [1], [2], [3], [4], [5], [6], [7], [9], [10] and [11], but BIST test time minimization at high level is
insufficiently explored. An approach to minimize testing time in a combined BIST and ATE environment
was presented [10]. However, the issue of sharing BIST circuitry among cores or functional modules was
not studied. The work did not explore parallelism inside the cores to reduce test time during high level
synthesis either. An efficient approach for BIST hardware insertion with short test application time is
proposed in [11]. It achieves concurrent testing of moduleshdnyng pattern generators. Both short test
application time and low BIST overhead are achieved, but BIST insertion is performed without testability
analysis and loss of randomness of test data may happen when some modules are deep in the design.

An ILP formulation for making simultaneous trade-off between test time and BIST resource
optimization is proposed in [12]. The approach results in very high BIST hardware overhead and test time
minimization is neither sufficiently discussed nor supported by experimental results.

Chen [13] proposed an approach for concurrent test scheduling in a BIST environment. First, he
assigned BIST registers to each CUT and then efficiently solved the test-scheduling problem to minimize
test time and improve BIST register utilization. BIST register selection is performed without testability
analysis; hence no optimal procedure for selecting BIST registers is given. Furthermore, selection of BIST
registers and test scheduling are independently performed. [14] Introduced an approach to find an optimal
register assignment for testing a design in a given number of test sessions.

Symbolic testability analysis (STA) [2] for BIST leads to very high fault coverage and low hardware
overhead. However, the trade-off between hardware overhead and test time still remains to be studied. Most
of the current approaches to BIST test time minimization are based on test scheduling optimizations, but
efficient test time minimization by sharing BIST components is not well addressed.

Our research on BIST synthesis at high level proposes a systematic approach for designing self-testable
SoCs by considering testability issues early in the design process. In this way, functionality and testing can
be optimized simultaneously at high abstraction level to reduce design costs and time dedicated to testing
effort. Our methodology analyzes the testability of the designs so that hard to test parts can be isolated early
during the design process and be optimized for testing.

We use STA to guide BIST synthesis and BIST hardware optimization under testing time constraints.
The contribution of this work is twofold. Firstly, STA results are used to guide BIST synthesis and
determine which operations can be tested concurrently. Secondly, design modifications are proposed to
optimize BIST hardware usage under testing time constraints.

The rest of the paper is organized as follows. In Section 2, the BIST optimization problem is formulated.
Section 3 describes STA idea. Our proposed methodology is described in section 4. Section 5 describes our
approach to BIST synthesis and resource optimization. In section 6 experimental results are presented and
conclusions are drawn in Section 7.

2 Problem Formulation

Initially, all primary input registers are converted into Pseudo-random Pattern Generators (PRPG) and alll
primary output registers to Multiple Input Signature Registers (MISR). More test registers for BIST
enhancement can be used, if necessary.

! The work is sponsored by the Swedish Foundation for Strategic Research under the INTELECT program.

The problem is to optimize BIST resources usage under sdf-test time congtraints. The aim isto creste a
tool to analyze the testability of the design and to determine the minimal possible testing time, 7., which
can be achieved as a result of the paralldism inherited by the nature of the design itsdf. Given a certain
required maximum testing time, 7., the following alternatives are taken:

o If 7%y < Ty, réturn no solution;

* If Tyoy=T 0 Optimize BIST hardware, so thet minimal overhead is |eft and return the current testing time,
T, and the modified RTL design;

 If Ty T, Optimize the BIST hardware, such that minimal overhead is Ieft and testing time is 757,
(Twisr approaches T,.,), and return 7’5y and the modified RTL design.

In summary, the input to our BIST time analysis and resource optimization tool is an RTL design
represented in a high-level synthesis notation based on Control Dataflow Graphs. The outputs are: a test
schedule shorter than or equal to thetest time constraint, an RTL design with minimal added BIST resources
and amerged design and BIST controller.

3 Introduction to Symbolic Testability Analysis (STA)

Our gpproach uses STA to derive control and observation paths for all operations in the design. Since we
assume BIST, all judtification and propagation paths are computed with respect to the built-in PRPGs and
MISRs. Controller and data path are used to extract an intermediate Test Contral Data Flow (TCDF) [2]
representation that is suitable for deriving a set of symbalic justification and propagation paths, known as
Test Environments (TE), for testing amodule under test (MUT).

STA defines four Boolean values for controllablllty and observability of each TCDF variable. General
controllability, C,(#), of a TCDF variable on the n”-control cydle is the ability to control the variable to any
arbitrary value from the corresponding PRPGs. Similarly, contrallability to the constant value 1, C;(»), and
contrallahility to the constant value O, Cy(n), are defined. Observability, O,(n), of a TCDF variable is the
ability to observe any value of the variable at aMISR. If one or several of the controllability values needed
to test amodule, are false, then the associated variable is uncontrollable in the given control step.

The test environments for a MUT are obtained by looking at its input lines and tracing back the
propagation paths that can be used to set its values from the primary input ports or PRPGs. To derive the test
environments, it is necessary to force intermediate active functional modules to take particular values to
assist in propagating test data from PRPGsto MUT and from MUT to appropriate primary output or MISR.

4 Proposed Methodology

Simultaneous analysis of test responses from multiple functional modules requires as many MISRs as there
aremodules that areto be analyzed a the sametime. In addition, all these modules must have all their inputs
controlled simultaneoudly by setting appropriate values on the control variables as giveninther TE[2].

Tadlel: Alterndtive TESfor tesing *3and +5
For controlling operation For observing responses
TEs V1 V2 V3 V4 V5
TELfop*3 | G1) | C(D) | G(D) | Ci(d) 0)
TE20fop*3 | Cl) | Cyl) | CyD) | Cofl) Co(D)
TE3df p*3| C(1) | Cf1) | GfD) | (1) 0)
TEAdfp*3| C(1) | Cf1) | C(1) | 1) Col1)
TElSf opts | C(1) |. } G

Figure 1: TCDF example

To illustrate our idea, consider the TCDF in Fig. 1. Inputs and outputs of the operations are variables,
and the test environments of each operation are used to test the associated functional module that performs
the operation. Totest, for example, multiplier node *3 using PRPGs placed at the inputs of operations*1 and
*2, and a MISR at the output of +4, we need to control V6 and V7 to general controllability values in the
contral cycle 2 and observe the value of V8 in contral cycle 3. Therefore, test environments for operation *3
aregivenby "Cy(2)ys and Cy(2)y> and O,(3)ys" and are derived asfollows Co(2)ys={ Co(1)y1 AND Ci(1)15 }
OR {C](])V] AND Cg(])Vg }, Cg(2)V7:{ Cg(])VS AND C](])V4 } OR {C](])V3 AND Cg(])V4} and Ov(3)V8~.:
O,(4)wAND Cy(1)y5 Intota, there arefour different alternative test environments for testing *3 (Table 1).

Toillustrate the next ides, let us derive TEs for operation +5, see Fig.1, which are given as "Cy(2)y; and
Co2)ys and Oy(3) 110", For it input, Co(2)y7:=Cyof 1)1y, for right input, Cy(2)14:=Cy(1) 1, and for observability
Of Output, Ov(3)V10 ~.:Ov(4)V10

If a given TCDF variable, say 7, heeds to be contralled to the same value in the same control cyclein
test environments of different operations, say OPry;, OPrys, ..., OPry,, then this common controllability

value can be shared by those operations to perform their
concurrent testing. For example, consider variables V1
and V4 inthe TEs of *3 and +5 as discussed above.

St al aereive As shown in table 1, both the second test
_ ___ TE options environment alternative of *3 (TE2 of op *3) and the test
| EX"a“M'SR“iOmPa'b"'tysas l HJ environment of +5 need V1 and V4 to be controlled to
Cy1). Therefore, V1 and V4 can be shared to perform

concurrent testing of both operations using the test

[Testability enhancement |
—————————»

|MISR based operation scheduling for conc. Testing, Tiux

environment TE2 of operation *3.
@ Yes o soluion Our approach is described in Fig.2. STA is usad to
sdect hard to test modules and initial testability
No enhancement is peformed. In the course of STA all
|Further testability enhancement, resource optimization and test pmb|e TEs for each opa‘ation are extracted. Then, s&s

responses redirection

of operations that cannot be tested concurrently due to
MISR sharing conflicts are identified. Heurigtics are used
to sdect concurrett test sessions based on test
environment options and MISR sharing conflicts. A near
optimal shortest schedule is generated and its associated
Figre2 Ovaview of theBIST timeandyssandreurceoptimizaion — time is denoted as 7,,,,.. After that, the time congtraints are
considered and appropriate steps taken as discussed in
section 2. To optimize resource usage, one basic idea is to redirect test responses from some operations to
other MISRsthan those originally assigned to, if the time congtraints are not violated and the MISRs allow.
This step is repeated until near optimal MISR usage is obtained. Finaly, a merged design and BIST
controller, and a BIST-ed data path are generated.

S BIST Synthesis

5.1 Initial Testability Enhancement

STA results show that among the uncontrollable nodes, there is atendency of certain uncontrollable nodes
to induce controllability problems to all successor nodes. Our controllability enhancement strategy, thus,
first enhances the node that is the source of controllability problems. Consequently, enhancing one node
can improve controllability of most of the successor nodes. We do this by multiplexing the uncontrollable
node with a node that is directly controllable from a primary input register or by adding a new dedicated
PRPG and multiplex it with the uncontrollable node.

PG1 PG2 PGs PGs
V3) (o] C2

| BIST engine generation

| BISTed datapath and controller (VHDL or RTL generation) |

/ Contradiction

\k guaranteed
\,

N
To be tested.
Unobservable, since
test responses can
not reach MISR

MSR es from +op1N30 to

Figure 3: Obsavability prodem due to P SR
contradictory vaues on intermedi ate nodes MISRx MISRw
Figure 4: Enhandng absarvability of unobservable chains and
MISR recovery Srategy
Unobservable modules are usually buried far from Signature Analysis Registers (SAR). Observability of
a node imposes restrictions on the values of other nodes in order for the test responses to be propagated to
SARs. Sometimes the restrictions are not able to force propagation of the values to SAR and in some cases
some nodes are forced to have contradictory values simultaneoudly to enable observability, thus, these
operations become unobservable as shown in Fig. 3.
If node N1 in Fig. 3 isto betested, controllability value C, isto be set & V; and V, while the output of
N2 has to be controlled to C, to enable observability of the output of N1 a a MISR. Since V, is aso
connected to N2, whatever value is s&t at V3, Cy can not be guaranteed at the output of N2, hence, test
responses at the output of N1 can not reechthe MISR.

One solution to the observability problem discussaed above is to introduce a MISR at the output of the
node N1 or redirect test responses from N1 to an existing MISR in the design. However, in more complex
designs, this has to be done in a way such that MISR resources are eficiently used. Therefore, our BIST
observability enhancement srategy is to add a dedicated MISR at the output of a node situated at the end of
a chain of unobservable nodes. If a MISR is added to an unobservable node that is not at the end of the
unohservable chain, then the downstream modules will till be unobservable This ideais illustrated in Fig.
4. Before BIST enhancement, the design has three primary input variables (V;, 7, and ;) and three constant
nodes (C;, C, and C;). STA reveals existence of two unobservable chains. The firgt one consists of nodes
*opN21, *opN24 and *opN22 whereas the second consists of *opN22, *opN28 and —opN25. To enhance
the observability of these chains, our approach selects to enhance observability afrlalygsvhich are at
the end of the first and second unobservable chains respectively. As a result, observability of all three nodes
in each of the two chains is enhanced. Had we, for example, enhanced observability ofdteas, only
observability of node *opN22 would have been enhanced. Consequently, it would have been necessary to
add more MISRs to improve the observability of the remaining four nodes. Therefore, our approach selects
places to enhance observability such that the smallest number of MISRs is added into the design.

5.2 Alternative Test Environment Options
STA revedls the existence of possibly more than one TE for contralling input operands and observing test

responses for each operation.
If we wart to observe node N1 in Fig.5, we need to observe arc Ay, (44, and Ay, stand for arc to be

: ™ observed and arc to be constrained to controllability value C,, respectively).
-/ \ -/ Based on STA, this implies constraining 4. to C,, and observing the value
@ of Ay, at any of the observable output arc (4, Ao ..., A.,) a the output of
Ay, } node N3. Therefore, the number of observability alternatives increases when
the the node N3 has multiple observability paths, which, in this case, are aso

inherited by the node N1, provided that A4, can be constrained to C,.

AX % 4 Definitions: _ _ _

o Aoz o #Co(4) is ddfined as the number of compatible alternative test
Figure’s: Multiple atemative environment options (ATEO) that can be used to st ac 4; to a
obsavability paths controllability value Cy,. Similarly, we define ,,Ci(4;), and ,,C,(A,)).

#0A) is ddfined as the number of compatible dternative test

environment options that can be used to enable observahility of anarc 4; at some signatureregisters.

Two TE alternatives are compatible if and only if each of the Test Control Data Flow (TCDF) variables
that are included in both of them needs to be controlled to the same value and at the same control step.
However, two ATEOSs need not necessarily have exactly the same number and type of variables. They can
have some different variables, but the common ones haveto be consistent. Therefore, the total number of
observability alternative options for arc A, can be derived asfallows,

afO(Awo) = alCo(And) X atO(Aor) + alColAnd) X atlO(Aox) + ...+ alColAmwe) X atO(Aon) .. (1)
= Co(dy)% Z1 a O (4,)

Out of these alternatives, that particular TE alternative option which minimizes MISR conflicts and can
lead to packing as many operations as possible in each test session will be chosen. Consequently, the total
number of test sessions will be minimized. In addition, TEs of al operations in a test session must be
simultaneoudly supported. When the best choice of TE alternatives that give the smallest feasible number of
test sessions is achieved, the associated testing time is known as minimal testing time, 7. The best choice
among alternative TE options is the one targeted to favor maximum paralldism in testing operations. Section
5.4 discuses a heuristic enhanced with constraints on alternative TE options for concurrent test set sdection.

5.3 MISR Incompatibility Sets (MISRISS)

MISR incompatibility sets consist of operations that cannot be tested concurrently due to MISR sharing
conflicts. Two operations are contained in the same st if they share the same MISR for test response analysis
and, therefore, cannot betested concurrently. STA results give sufficient informetion for extracting MISRISs.

To extract MISRISs we group operations based on the signature registers that are used to analyze their
responses. Each signature analysis register, M, corresponds to one s&t, G, which will include all operations
that are analyzed by it. All operations in the same sat are known as incompatible operations with respect to
their corresponding MISR.

The number of incompatible operationsin the largest MISRIS determines alower bound on the minimal
number of test sessions that are needed for testing the whole design. In redlity, the total testing time is not
only determined by MISR sharing incompatibilities, but also is constrained by the choice of good TE
options, which determine whether the TEs are conflict free

5.4 Concurrent Test Session Selection

Oncethe MISRISs areavailable, the next step isto sdect concurrent test sessions. A group consisting of one
operation from each MISRIS can possibly be tested concurrently if the operations will not violate the test
environment constraints.

If the test environment congtraints are not considered, it can be possible to schedule a minimal number
of test sessions equal to the maximum number of operations in the most congested MISRIS. However, these
may hot be correct test sessions because the availability of MISRs for concurrent observation of responses
does not guarantee that those operations can be properly controlled and the responses properly propagated to
the corresponding MISR registers at the same time for al tested operations in a given test session. In this
way, controllability constraints imposed by the test environments of individual operations may cause an
increased number of test sessions. This is due to the fact that there may exist operations that use different
MISRs for signature analysis, but compete for the same variables to contral their inputs or propagate test
response to the appropriate MISR, hence cannot be simultaneoudly controlled.

Test environments have two components. The first component consists of the controllability values
necessary to contral the inputs of the operations and the second component consists of the controllability
values necessary to force propagation of test responses to the corresponding MISR. Thus, when congtraints
dueto both contrallability of theinput operands and those imposed to propagate test responses to appropriate
MISR are taken into account during the test session sdection process, an increase in the number of test
sessions will be noticed and the MISRs will be less effectively used, with some of them remaining idle
during several test sessions. After all congtraints are taken into consideration, the resulting number of test
sessions represents the minimal testing time, 7, Thus, it is possible to test the designin 7, test sessions as
aresult of the nature of paralldism inherited from the design itsdlf.

Our heurigtic for sdection of concurrent test sessions is based on an equal length test-scheduling
algorithmin [6], which provides a minima humber of test sessions. We extended the algorithm to take into
consideration controllability and observability constraints when choosing operations to be included in a
given test session. Therefore, operations are included in the same concurrent test session not only if they do
not share MISR, but also if controllability and observability constraints are satisfied for all of them at the
sametime

5.5 BIST Resources Optimization

As it has been emphasized in the previous discussion, several MISRs are not effectively used in some test
sessions; hence, our approach recovers some of them and converts them back to normal registers. The
operations that userecovered MISRs are redirected to other free MISRsin the sametest session.

Let L, representsaMISR that isleast used in all test sessions. Thismeans that L, remains idlein most of
the test sessions as compared to other MISRs. Let U be a st consisting of test sessions in which L, is used.
During execution of the algorithm, A, is the s&t of currently used MISRs. When a MISR is recovered and
converted back to a normd register, it is removed from A1, I is a s&t consisting of MISRs that are free in
every test session in which L, is used. Among the free MISRs in sa I, P is the one that is mostly packed,
which means, P analyzes responses from the greatest number of operations as compared to the other MISRs
in I. Let G bethe sat of all MISR incompatibility sats. Given a certain MISR called X, Gy represents the
incompatibility sat corresponding to MISR X.

The agorithm bdow minimizes the s M, of used MISRs and produces the corresponding
incompatibility sets. This optimization is performed without increasing the number of test sessions.

Begi

G gnﬁof dl incompetibility sets Best selection obtained €FALSE;

While(best selection obtained I= TRUE) begin
Lu €X, X OMcandXisleest used; U € All tes sessonsinwhich 7, isused;, F < FreeMISRsinsessonsU;
If £ begin

P €X X0FadXismos packed G €G—{ Gp Guj G €GpUGr; G €GU{Gp}: Me €Me-{L.);
end
debest selection obtained € TRUE;
end
reunMe, G;
End.

When 7,.,>7,,., our approach increases the testing time from 7, to 757 by stretching the test schedule
such that the required time congtraints are satisfied (77, <7 sisr<T ;). In this case, we can recover more BIST
hardware resources that may not necessarily be needed. The success of this depends on test environment
conflicts of the operations and on how large 7', is compared to 75,,;,.

Additional multiplexers and wiring will be needed in order to redirect test responses for analysis by
different MISRs. After some MISRs are disabled as BIST registers, they will still remain in the design as
normal registers far ther functional storage use, hence not adding any BIST overhead.

6 Experimental Results
We manually tested our approach on four high-level benchmarks, which were synthesized by CAMAD [15].

In our results, testability is computed as a percentage of controllable or observable operations/modules.
Contrallahility, therefore is the ratio of the number of controllable operations to the total number of
operations in the design. Similarly, observability is defined as the ratio of the number of observable
operations to the total number of operations in the design. In order for an operation to be counted as
controllable, both its |&ft and right hand operands must be simultaneoudly contrallable. If any input operand
is not fully controllable, the associated operation is assumed to be not controllable.

Table 2 shows results before testability enhancement and optimization, whereas Table 3 shows results
after testability enhancement and optimization. In Table 2, the first column shows the names of the designs
and the number and type of functional modules in the designs, the second column shows the number of test
sessions required to test the design, and the third column summarizes the number of PGs, MISRs and
testability of the design as proposed after the original application of STA, but before our testability
enhancement is applied. Testahility is depicted in two separate sub-columns. The first one depicts the
percentage of modul es/operations that are fully controllable and the second sub-column gives the percentage
of operations that are observable The total number of PGs and MISRs after enhancement to 100%
testability is shown in table 3 whose second column depicts the number of PGs and MISRs after initial
straightforward testability enhancement is performed and the third column gives the number of PGs and
MISRs that remain in the design after our BIST resource optimization and MISR recovery strategy is
applied. Inall our experimental results we have considered that 7', = 7.

Table 2 BIST resources after goplying STA, but beforetedtability enhancement . Table 3 BIST resources dfter tedtability

and optimizetion enhencement and optimizetion to 100% testablity
Design Test sessions Applying original STA Design | 100% Testability enhancement approaches
(Toi) %7 estability Straightforward Optimized
Name Operations #PG | #MISR | Con. | Obs. Name | #PGs | #MISRs #PGs #MISRs
Ex 1+ 3, 4* 5 3 2 125 | 375 Ex 6 4 6 3
Tsng | 4+,251/,1& 4 5 3 100 375 Tsng 5 5 5 3
Pauin 2+,2-,6* 6 4 3 50 50 Paulin 5 5 5 3
Diff 2+,2-,6* 7 4 3 40 70 Diff 5 4 5 2

7 Conclusion

An approach to use STA to guide BIST synthesis under testing time constraints has been proposed. STA
reveals hard to test parts whose testability needs to be enhanced. The testability enhancement technique we
use chooses one module to enhance contrallability so as to improve controllability of a number of others.
Similarly, observability of one moduleis normally enhanced to improve observability of a number of others.
Further, the design is modified such that the use of BIST resources is optimized under the given testing time
congtraints.

References

[1] Boubezari, S.; Cemy, E.; Kaminska, B.; Nadeaw-Dostie, B., “Testability Analysis and Test-Point Insertion in RTL, VHDL Specifications
forScan-Based BIST”, IEEE Trans. on CAD of ICs and Systems, Vol. 18 9, Sept. 1999, Page(s): 1327 —1340.

[2] Ghoshl,; Jha, NK.; BhawmiksS, ~A BIST Scheme for RTL Circuits Based on Symbolic Testability Analysis”, IEEE Transactions on
CAD of Integrated Circuits and Systems, Volume: 19 Issue: 1, Jan. 2000 Page(s): 111 —128.

[3] Ravi, S.; Jha, NK.; Lakshminarayana, G., “TAO-BIST: A Framework for Testability Analysis and Optimisation of RTL Circuits for
BIST”, In Proc. 17th IEEE VLSI Test Symposium., 1999, Pages: 398 —406.

[4] Ghosh, L, Jha, N.; Bhawmik, S., *“ A BIST Scheme for RTL Controller-Data Paths Based on Symbolic Testability Analysis”, DAC, 1998
Page(s): 554 -559.

[3] RaviS.; Lakshminarayana,G.; Jha, NK, * TAO: Regular Expression based High-Level Testability Analysis and Optimization”, In Proc.,
ITC, 1998, Page(s): 331 -340.

[6] GaryL. Craig, C. R. Kime and K. Saluja, “Test Scheduling and Control for VL.SI Built-In Self-Test”, IEEE Tr. on Computers, Volume:
37 Issue: 9, Sept. 1988 Page(s): 1099 —1109.

[7] Vahidi, M., Orailoghy, A, “Testability Metrics for Synthesis of Self Testable Designs and Effective Test Plans”, In Proc., VISI Test
Symposium, 13th IEEE, 95, Page(s): 170-175.

[8] Vahidi, M.; Orailogly, A, “Metric-Based Transformations for Self-testable VI.SI Designs with High test Concurvency”, In Proc. EURO-
DAC 95, 1995, Page(s): 136-141.

[9] Harvis, LG.; Orailogly, A., Fine-Grained Concurvency in Test Scheduling for Partial-Intrusion BIST”, EDATC 1994, P. 119-123.

[10] Sugihara, M.; Date, H.; Yasuwra, H, “Analysis and Minimization of Test Time in a combined BIST and External Test Approach”, In
Proc., Design, Automation and Test in Europe 2000, Pages: 134—140.

[11] Nicolici, N.; Al-Hashini, BM., "Efficient BIST Hardware Insertion with Low Test Application Time for Synthesized Data Paths”, In
Proc., Design, Automation and Test In Europe Conference and Exhibition 1999, page(s) 289-295.

[12] Li, X; Cheung, P.Y.S., “Exploiting Test Resource Optimization in Data Path Synthesis for BIST”, In Proc., 9" Great Lakes Symposium
on VLSI, 1999 Page(s): 342-343.

[13] Chen, C. H.; Yuen, J.T., ,,Concurrent test Scheduling in Built-In Self-Test Environment ", In Proc. ICCD’92 VILSI in Computers and
Processors, 1992, Page(s): 256 —259.

[14 [Kim, H. B.,; Takahashi, T.; Ha, D. S., “Test Session Built-In Self-testable Data Path Synthesis”, ITC, 1998, Page(s): 154—163.

[15] Peng,Z.; Kuchcinski K., “Automated Transformation of Algorithms into Register-Transfer Level Implementations”, IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, Vol. 13, 150-166, 1994.

