
")34�39.4(%3)3��!.�!002/!#(�4/�2%3/52#%�/04)-):!4)/.

5.$%2�4%34
4)-%�#/.342!).43
�

Abdil Rashid Mohamed, Zebo Peng and Petru Eles
Embedded Systems Laboratory, Department of Computer Science

Linköping University, S-581 83 Sweden
Emails: {abdmo, zebpe, petel}@ida.liu.se

!BSTRACT��!N�APPROACH�AT�OPTIMIZING�THE�")34�RESOURCE�USAGE�UNDER�TEST
TIME�CONSTRAINTS

IS�INTRODUCED��4HE�TEST
PROBLEM�IDENTIFICATION�AND�")34�ENHANCEMENT� STRATEGY�DURING� THE

OPTIMIZATION�PROCESS�ARE�ASSISTED�BY�SYMBOLIC�TESTABILITY�ANALYSIS��&URTHER��CONCURRENT�TEST

SESSIONS� ARE� GENERATED�� WHILE� -)32S� SHARING� CONFLICTS� AS� WELL� AS� CONTROLLABILITY� AND
OBSERVABILITY�CONSTRAINTS�ARE�CONSIDERED�

��)NTRODUCTION

As Automatic Test Equipment (ATE) is slow and expensive, BUILT
IN�SELF
TEST��")34	�is the most suitable and
cheap method for at-speed testing of complex systems on silicon. A lot of work on BIST at high level has
been done [1], [2], [3], [4], [5], [6], [7], [9], [10] and [11], but BIST test time minimization at high level is
insufficiently explored. An approach to minimize testing time in a combined BIST and ATE environment
was presented [10]. However, the issue of sharing BIST circuitry among cores or functional modules was
not studied. The work did not explore parallelism inside the cores to reduce test time during high level
synthesis either. An efficient approach for BIST hardware insertion with short test application time is
proposed in [11]. It achieves concurrent testing of modules by�sharing pattern generators. Both short test
application time and low BIST overhead are achieved, but BIST insertion is performed without testability
analysis and loss of randomness of test data may happen when some modules are deep in the design.

An ILP formulation for making simultaneous trade-off between test time and BIST resource
optimization is proposed in [12]. The approach results in very high BIST hardware overhead and test time
minimization is neither sufficiently discussed nor supported by experimental results.

Chen [13] proposed an approach for concurrent test scheduling in a BIST environment. First, he
assigned BIST registers to each CUT and then efficiently solved the test-scheduling problem to minimize
test time and improve BIST register utilization. BIST register selection is performed without testability
analysis; hence no optimal procedure for selecting BIST registers is given. Furthermore, selection of BIST
registers and test scheduling are independently performed. [14] Introduced an approach to find an optimal
register assignment for testing a design in a given number of test sessions.

Symbolic testability analysis (STA) [2] for BIST leads to very high fault coverage and low hardware
overhead. However, the trade-off between hardware overhead and test time still remains to be studied. Most
of the current approaches to BIST test time minimization are based on test scheduling optimizations, but
efficient test time minimization by sharing BIST components is not well addressed.

Our research on BIST synthesis at high level proposes a systematic approach for designing self-testable
SoCs by considering testability issues early in the design process. In this way, functionality and testing can
be optimized simultaneously at high abstraction level to reduce design costs and time dedicated to testing
effort. Our methodology analyzes the testability of the designs so that hard to test parts can be isolated early
during the design process and be optimized for testing.

We use STA to guide BIST synthesis and BIST hardware optimization under testing time constraints.
The contribution of this work is twofold. Firstly, STA results are used to guide BIST synthesis and
determine which operations can be tested concurrently. Secondly, design modifications are proposed to
optimize BIST hardware usage under testing time constraints.

The rest of the paper is organized as follows. In Section 2, the BIST optimization problem is formulated.
Section 3 describes STA idea. Our proposed methodology is described in section 4. Section 5 describes our
approach to BIST synthesis and resource optimization. In section 6 experimental results are presented and
conclusions are drawn in Section 7.

�� 0ROBLEM�&ORMULATION

Initially, all primary input registers are converted into Pseudo-random Pattern Generators (PRPG) and all
primary output registers to Multiple Input Signature Registers (MISR). More test registers for BIST
enhancement can be used, if necessary.

1 The work is sponsored by the Swedish Foundation for Strategic Research under the INTELECT program.

The problem is to optimize BIST resources usage under self-test time constraints. The aim is to create a
tool to analyze the testability of the design and to determine the minimal possible testing time, 4MIN, which
can be achieved as a result of the parallelism inherited by the nature of the design itself. Given a certain
required maximum testing time, 4REQ, the following alternatives are taken:
• If 4REQ���4MIN, return no solution;
• If 4REQ�4MIN��optimize BIST hardware, so that minimal overhead is left and return the current testing time,
4MIN, and the modified RTL design;

• If 4REQ�4MIN��optimize the BIST hardware, such that minimal overhead is left and testing time is 4")34≤4REQ

(4")34 approaches 4REQ), and return 4")34�and the modified RTL design.
In summary, the input to our BIST time analysis and resource optimization tool is an RTL design

represented in a high-level synthesis notation based on Control Dataflow Graphs. The outputs are: a test
schedule shorter than or equal to the test time constraint, an RTL design with minimal added BIST resources
and a merged design and BIST controller.

��)NTRODUCTION�TO�3YMBOLIC�4ESTABILITY�!NALYSIS��34!	
Our approach uses STA to derive control and observation paths for all operations in the design. Since we
assume BIST, all justification and propagation paths are computed with respect to the built-in PRPGs and
MISRs. Controller and data path are used to extract an intermediate Test Control Data Flow (TCDF) [2]
representation that is suitable for deriving a set of symbolic justification and propagation paths, known as
Test Environments (TE), for testing a module under test (MUT).

STA defines four Boolean values for controllability and observability of each TCDF variable. General
controllability, #G�N	� of a TCDF variable on the NTH-control cycle is the ability to control the variable to any
arbitrary value from the corresponding PRPGs. Similarly, controllability to the constant value 1, #��N	��and
controllability to the constant value 0, #��N	� are defined. Observability, /V�N	��of a TCDF variable is the
ability to observe any value of the variable at a MISR. If one or several of the controllability values needed
to test a module, are FALSE, then the associated variable is uncontrollable in the given control step.

The test environments for a MUT are obtained by looking at its input lines and tracing back the
propagation paths that can be used to set its values from the primary input ports or PRPGs. To derive the test
environments, it is necessary to force intermediate active functional modules to take particular values to
assist in propagating test data from PRPGs to MUT and from MUT to appropriate primary output or MISR.

�� 0ROPOSED�-ETHODOLOGY
Simultaneous analysis of test responses from multiple functional modules requires as many MISRs as there
are modules that are to be analyzed at the same time. In addition, all these modules must have all their inputs
controlled simultaneously by setting appropriate values on the control variables as given in their TE [2].

Table 1: Alternative TEs for testing *3 and +5
&OR�CONTROLLING�OPERATION &OR�OBSERVING�RESPONSES

4%S 6� 6� 6� 6� 6�

TE1 of op *3 Cg(1) C1(1) Cg(1) C1(1) C0(1)
4%��OF�OP�
� #G��	 #���	 #���	 #G��	 #���	

TE3 of op *3 C1(1) Cg(1) Cg(1) C1(1) C0(1)
TE4 of op *3 C1(1) Cg(1) C1(1) Cg(1) C0(1)

TE1of op+5 Cg(1) - - Cg(1) -

Y C L E �� �

 � �
 � �

 � �

Y C L E �� �

Y C L E �� �

Y C L E �� �

� � �

�6 � � � � � � � �6 � � � � � �6 � � � � � � �6 � � � � � � � � � � � � �6 � � � �

� � �6 � � � � � � �6 � �

6 � �

6 � �
4 O �BE �T ES TED �

� � �

6 � � �

&IGURE����TCDF example.
 To illustrate our idea, consider the TCDF in Fig. 1. Inputs and outputs of the operations are variables,
and the test environments of each operation are used to test the associated functional module that performs
the operation. To test, for example, multiplier node *3 using PRPGs placed at the inputs of operations *1 and
*2, and a MISR at the output of +4, we need to control V6 and V7 to general controllability values in the
control cycle 2 and observe the value of V8 in control cycle 3. Therefore, test environments for operation *3
are given by �#G��	6��AND�#G��	6��AND�/V��	6���and are derived as follows��#G��	6���[�#G��	6��!.$�#���	6���]

/2�[�#���	6��!.$�#G��	6���]��#G��	6���[�#G��	6��!.$�#���	6���]�/2�[�#���	6��!.$�#G��	6��]�AND�/V��	6���
/V��	6��!.$�#���	6����

In total, there are four different alternative test environments for testing *3 (Table 1).
To illustrate the next idea, let us derive TEs for operation +5, see Fig.1, which are given as �#G��	6��AND

#G��	6��AND�/V��	6���� For left input, #G��	6���#G��	6���
for right input, #G��	6���#G��	6��

and for observability
of output, /V��	6�����/V��	6���

If a given TCDF variable, say 6K, needs to be controlled to the same value in the same control cycle in
test environments of different operations, say /0&5���/0&5��� ��/0&5N�� then this common controllability

value can be shared by those operations to perform their
concurrent testing. For example, consider variables V1
and V4 in the TEs of *3 and +5 as discussed above.

As shown in table 1, both the second test
environment alternative of *3 (TE2 of op *3) and the test
environment of +5 need V1 and V4 to be controlled to
#G��	��Therefore, V1 and V4 can be shared to perform
concurrent testing of both operations using the test
environment TE2 of operation *3.
 Our approach is described in Fig.2. STA is used to
select hard to test modules and initial testability
enhancement is performed. In the course of STA all
possible TEs for each operation are extracted. Then, sets
of operations that cannot be tested concurrently due to
MISR sharing conflicts are identified. Heuristics are used
to select concurrent test sessions based on test
environment options and MISR sharing conflicts. A near
optimal shortest schedule is generated and its associated
time is denoted as 4MIN. After that, the time constraints are
considered and appropriate steps taken as discussed in

section 2. To optimize resource usage, one basic idea is to redirect test responses from some operations to
other MISRs than those originally assigned to, if the time constraints are not violated and the MISRs allow.
This step is repeated until near optimal MISR usage is obtained. Finally, a merged design and BIST
controller, and a BIST-ed data path are generated.

�� ")34�3YNTHESIS

����)NITIAL�4ESTABILITY�%NHANCEMENT
STA results show that among the uncontrollable nodes, there is a tendency of certain uncontrollable nodes
to induce controllability problems to all successor nodes. Our controllability enhancement strategy, thus,
first enhances the node that is the source of controllability problems. Consequently, enhancing one node
can improve controllability of most of the successor nodes. We do this by multiplexing the uncontrollable
node with a node that is directly controllable from a primary input register or by adding a new dedicated
PRPG and multiplex it with the uncontrollable node.

0'�

6�

#G

6�

Contradiction

needed, but not
guaranteed

0'�

6�

+

+

X

#G #G

Test
responses

-)32

To be tested.
Unobserv able, since
test responses can

not reach MISR

.� .�

.�

#�

&IGURE� �� Observability problem due to
contradictory values on intermediate nodes

0'� 0'�

OP.��

OP.��

OP.��

�

OP.��

OP.��

OP.��

OP.��

OP.��

F

C

-)32F

-)32C

0'� 0'� 0'� 0'�

-)32W-)32X

2EDIRECT�RESPONSES�FROM��OP.���TO

-)32X�AND �RECOVER�-)32W

B

6� 6� 6�#�#�#�

&IGURE� ��� Enhancing observability of unobservable chains and
MISR recovery strategy

Unobservable modules are usually buried far from Signature Analysis Registers (SAR). Observability of
a node imposes restrictions on the values of other nodes in order for the test responses to be propagated to
SARs. Sometimes the restrictions are not able to force propagation of the values to SAR and in some cases
some nodes are forced to have contradictory values simultaneously to enable observability, thus, these
operations become unobservable as shown in Fig. 3.

If node N1 in Fig. 3 is to be tested, controllability value #G�is to be set at V1 and V2 while the output of
N2 has to be controlled to #� to enable observability of the output of N1 at a MISR. Since V2 is also
connected to N2, whatever value is set at V3, #� can not be guaranteed at the output of N2, hence, test
responses at the output of N1 can not reach the MISR.

Extract all alternative
TE options

STA

Extract MISR incompatibility sets

Testability enhancement

BIST engine generation

Further testability enhancement, resource optimization and test
responses redirection

MISR based operation scheduling for conc. Testing, 4MIN

Figure 2: Overview of the BIST time analysis and resource optimization

BISTed datapath and controller (VHDL or RTL generation)

.O�SOLUTION

Yes

No

4REQ���4MIN

One solution to the observability problem discussed above is to introduce a MISR at the output of the
node N1 or redirect test responses from N1 to an existing MISR in the design. However, in more complex
designs, this has to be done in a way such that MISR resources are efficiently used. Therefore, our BIST
observability enhancement strategy is to add a dedicated MISR at the output of a node situated at the end of
a chain of unobservable nodes. If a MISR is added to an unobservable node that is not at the end of the
unobservable chain, then the downstream modules will still be unobservable. This idea is illustrated in Fig.
4. Before BIST enhancement, the design has three primary input variables (6���6��and�6�) and three constant
nodes (C���#��and�#�). STA reveals existence of two unobservable chains. The first one consists of nodes
*opN21, *opN24 and *opN22 whereas the second consists of *opN22, *opN28 and –opN25. To enhance
the observability of these chains, our approach selects to enhance observability of lines C and F� which are at
the end of the first and second unobservable chains respectively. As a result, observability of all three nodes
in each of the two chains is enhanced. Had we, for example, enhanced observability of lines B�instead, only
observability of node *opN22 would have been enhanced. Consequently, it would have been necessary to
add more MISRs to improve the observability of the remaining four nodes. Therefore, our approach selects
places to enhance observability such that the smallest number of MISRs is added into the design.

���� !LTERNATIVE�4EST�%NVIRONMENT�/PTIONS

STA reveals the existence of possibly more than one TE for controlling input operands and observing test
responses for each operation.

If we want to observe node N1 in Fig.5, we need to observe arc !TBO�(!TBO�and !TBC�stand for arc to be
observed and arc to be constrained to controllability value #� respectively).
Based on STA, this implies constraining !TBC�to #�, and observing the value
of !TBO at any of the observable output arc (!O���!O�� ��!ON) at the output of
node N3. Therefore, the number of observability alternatives increases when
the node N3 has multiple observability paths, which, in this case, are also
inherited by the node N1, provided that !TBC can be constrained to #�.
Definitions:

ALT#��!I	� is defined as the number of compatible alternative test
environment options (ATEO) that can be used to set arc !I to a
controllability value #�. Similarly, we define ALT#��!I	� and ALT#G�!I	.

ALT/�!I	 is defined as the number of compatible alternative test
environment options that can be used to enable observability of an arc !I at some signature registers.

Two TE alternatives are compatible if and only if each of the Test Control Data Flow (TCDF) variables
that are included in both of them needs to be controlled to the same value and at the same control step.
However, two ATEOs need not necessarily have exactly the same number and type of variables. They can
have some different variables, but the common ones have to be consistent. Therefore, the total number of
observability alternative options for arc !TBO�can be derived as follows,
ALT/�!TBO	���ALT#��!TBC	�×��ALT/�!O�	���ALT#��!TBC	�×��ALT/�!O�	��� ��ALT#��!TBC	�×��ALT/�!ON	� ���	

∑
=

×=
N

I

OIALTTBCALT
!/!#

1
0)()(

Out of these alternatives, that particular TE alternative option which minimizes MISR conflicts and can
lead to packing as many operations as possible in each test session will be chosen. Consequently, the total
number of test sessions will be minimized. In addition, TEs of all operations in a test session must be
simultaneously supported. When the best choice of TE alternatives that give the smallest feasible number of
test sessions is achieved, the associated testing time is known as minimal testing time, 4MIN��The best choice
among alternative TE options is the one targeted to favor maximum parallelism in testing operations. Section
5.4 discuses a heuristic enhanced with constraints on alternative TE options for concurrent test set selection.

����-)32�)NCOMPATIBILITY�3ETS��-)32)3S	
MISR incompatibility sets consist of operations that cannot be tested concurrently due to MISR sharing
conflicts. Two operations are contained in the same set if they share the same MISR for test response analysis
and, therefore, cannot be tested concurrently. STA results give sufficient information for extracting MISRISs.

To extract MISRISs we group operations based on the signature registers that are used to analyze their
responses. Each signature analysis register, -I, corresponds to one set, 'I��which will include all operations
that are analyzed by it. All operations in the same set are known as incompatible operations with respect to
their corresponding MISR.

The number of incompatible operations in the largest MISRIS determines a lower bound on the minimal
number of test sessions that are needed for testing the whole design. In reality, the total testing time is not
only determined by MISR sharing incompatibilities, but also is constrained by the choice of good TE
options, which determine whether the TEs are conflict free.

.�
���

!TBO

.� .�

Figure 5: Multiple alternative
observability paths

!TBC

!O� !O�
!ON

����#ONCURRENT�4EST�3ESSION�3ELECTION

Once the MISRISs are available, the next step is to select concurrent test sessions. A group consisting of one
operation from each MISRIS can possibly be tested concurrently if the operations will not violate the test
environment constraints.

If the test environment constraints are not considered, it can be possible to schedule a minimal number
of test sessions equal to the maximum number of operations in the most congested MISRIS. However, these
may not be correct test sessions because the availability of MISRs for concurrent observation of responses
does not guarantee that those operations can be properly controlled and the responses properly propagated to
the corresponding MISR registers at the same time for all tested operations in a given test session. In this
way, controllability constraints imposed by the test environments of individual operations may cause an
increased number of test sessions. This is due to the fact that there may exist operations that use different
MISRs for signature analysis, but compete for the same variables to control their inputs or propagate test
response to the appropriate MISR, hence cannot be simultaneously controlled.

Test environments have two components. The first component consists of the controllability values
necessary to control the inputs of the operations and the second component consists of the controllability
values necessary to force propagation of test responses to the corresponding MISR. Thus, when constraints
due to both controllability of the input operands and those imposed to propagate test responses to appropriate
MISR are taken into account during the test session selection process, an increase in the number of test
sessions will be noticed and the MISRs will be less effectively used, with some of them remaining idle
during several test sessions. After all constraints are taken into consideration, the resulting number of test
sessions represents the minimal testing time, 4MIN� Thus, it is possible to test the design in 4MIN test sessions as
a result of the nature of parallelism inherited from the design itself.

Our heuristic for selection of concurrent test sessions is based on an equal length test-scheduling
algorithm in [6], which provides a minimal number of test sessions. We extended the algorithm to take into
consideration controllability and observability constraints when choosing operations to be included in a
given test session. Therefore, operations are included in the same concurrent test session not only if they do
not share MISR, but also if controllability and observability constraints are satisfied for all of them at the
same time.

����")34�2ESOURCES�/PTIMIZATION
As it has been emphasized in the previous discussion, several MISRs are not effectively used in some test
sessions; hence, our approach recovers some of them and converts them back to normal registers. The
operations that use recovered MISRs are redirected to other free MISRs in the same test session.

Let ,U represents a MISR that is least used in all test sessions. This means that ,U remains idle in most of
the test sessions as compared to other MISRs. Let 5 be a set consisting of test sessions in which ,U�is used.
During execution of the algorithm, -C is the set of currently used MISRs. When a MISR is recovered and
converted back to a normal register, it is removed from -C. &�is a set consisting of MISRs that are free in
every test session in which ,U�is used. Among the free MISRs in set &, 0 is the one that is mostly packed,
which means, 0 analyzes responses from the greatest number of operations as compared to the other MISRs
in &. Let ' be the set of all MISR incompatibility sets. Given a certain MISR called X, '8 represents the
incompatibility set corresponding to MISR 8.

The algorithm below minimizes the set -#� of used MISRs and produces the corresponding
incompatibility sets. This optimization is performed without increasing the number of test sessions.

"EGIN

'�Æ�set of all incompatibility sets; "EST?SELECTION?OBTAINED�Æ�&!,3%�

While (BEST?SELECTION?OBTAINED����425%) BEGIN
,U�Æ�8��8�∈�-#�and 8�is least used; 5�Æ All test sessions in which ,U�is used; &�Æ Free MISRs in sessions 5�
If &�≠φ��BEGIN �

0�Æ�8��8�∈�&�and 8�is most packed; '�Æ�'� �[�'0��',U�]���'0�Æ�'0�5�',U���'�Æ�'�5�[�'0�]��-#�Æ�-#�
�[�,U�]�

END
else BEST?SELECTION?OBTAINED�Æ�425%�

END

return -#��'�

%ND�

When 4REQ�4MIN, our approach increases the testing time from 4MIN�to 4")34 by stretching the test schedule
such that the required time constraints are satisfied (4MIN�4")34�≤4REQ). In this case, we can recover more BIST
hardware resources that may not necessarily be needed. The success of this depends on test environment
conflicts of the operations and on how large 4REQ�is compared to 4MIN.

Additional multiplexers and wiring will be needed in order to redirect test responses for analysis by
different MISRs. After some MISRs are disabled as BIST registers, they will still remain in the design as
normal registers for their functional storage use, hence not adding any BIST overhead.

�� %XPERIMENTAL�2ESULTS
We manually tested our approach on four high-level benchmarks, which were synthesized by CAMAD [15].

In our results, testability is computed as a percentage of controllable or observable operations/modules.
Controllability, therefore, is the ratio of the number of controllable operations to the total number of
operations in the design. Similarly, observability is defined as the ratio of the number of observable
operations to the total number of operations in the design. In order for an operation to be counted as
controllable, both its left and right hand operands must be simultaneously controllable. If any input operand
is not fully controllable, the associated operation is assumed to be not controllable.

Table 2 shows results before testability enhancement and optimization, whereas Table 3 shows results
after testability enhancement and optimization. In Table 2, the first column shows the names of the designs
and the number and type of functional modules in the designs, the second column shows the number of test
sessions required to test the design, and the third column summarizes the number of PGs, MISRs and
testability of the design as proposed after the original application of STA, but before our testability
enhancement is applied. Testability is depicted in two separate sub-columns. The first one depicts the
percentage of modules/operations that are fully controllable and the second sub-column gives the percentage
of operations that are observable. The total number of PGs and MISRs after enhancement to 100%
testability is shown in table 3 whose second column depicts the number of PGs and MISRs after initial
straightforward testability enhancement is performed and the third column gives the number of PGs and
MISRs that remain in the design after our BIST resource optimization and MISR recovery strategy is
applied. In all our experimental results we have considered that 4REQ���4MIN.
Table 2. BIST resources after applying STA, but before testability enhancement
and optimization

Table 3. BIST resources after testability
enhancement and optimization to 100% testability

!PPLYING�ORIGINAL�34! �����4ESTABILITY�ENHANCEMENT�APPROACHES$ESIGN

�4ESTABILITY

$ESIGN

3TRAIGHTFORWARD /PTIMIZED

.AME /PERATIONS

4EST�SESSIONS

�4MIN	

�0' �-)32 #ON� /BS� .AME �0'S �-)32S �0'S �-)32S

Ex 1+, 3-, 4* 5 3 2 12.5 37.5 Ex 6 4 6 3
Tseng 4+, 2*, 1 /, 1 & 4 5 3 100 37.5 Tseng 5 5 5 3
Pauln 2+, 2-, 6* 6 4 3 50 50 Paulin 5 5 5 3
Diff 2+, 2-, 6* 7 4 3 40 70 Diff 5 4 5 2

�� #ONCLUSION

An approach to use STA to guide BIST synthesis under testing time constraints has been proposed. STA
reveals hard to test parts whose testability needs to be enhanced. The testability enhancement technique we
use chooses one module to enhance controllability so as to improve controllability of a number of others.
Similarly, observability of one module is normally enhanced to improve observability of a number of others.
Further, the design is modified such that the use of BIST resources is optimized under the given testing time
constraints.

2EFERENCES

;�=� "OUBEZARI��3���#ERNY��%���+AMINSKA��"���.ADEAU
$OSTIE��"��� 4ESTABILITY�!NALYSIS�AND�4EST
0OINT�)NSERTION�IN�24,�6($,�3PECIFICATIONS
FOR�3CAN
"ASED�")34 ��)%%%�4RANS��ON�#!$�OF�)#S�AND�3YSTEMS��6OL��������3EPT��������0AGE�S	������� �����

;�=� 'HOSH�)���*HA��.�+���"HAWMIK�3�� !�")34�3CHEME�FOR�24,�#IRCUITS�"ASED�ON�3YMBOLIC�4ESTABILITY�!NALYSIS ��)%%%�4RANSACTIONS�ON
#!$�OF�)NTEGRATED�#IRCUITS�AND�3YSTEMS��6OLUME�����)SSUE������*AN�������0AGE�S	������ ����

;�=� 2AVI��3���*HA��.�+���,AKSHMINARAYANA��'��� 4!/
")34��!�&RAMEWORK�FOR�4ESTABILITY�!NALYSIS�AND�/PTIMISATION�OF�24,�#IRCUITS�FOR
")34 ��)N�0ROC����TH�)%%%�6,3)�4EST�3YMPOSIUM����������0AGES������ ����

;�=� 'HOSH��)���*HA��.���"HAWMIK��3��� �!�")34�3CHEME�FOR�24,�#ONTROLLER
$ATA�0ATHS�"ASED�ON�3YMBOLIC�4ESTABILITY�!NALYSIS ��$!#������
0AGE�S	������ ����

;�=� 2AVI�3���,AKSHMINARAYANA�'���*HA��.�+�� �4!/��2EGULAR�%XPRESSION�BASED�(IGH
,EVEL�4ESTABILITY�!NALYSIS�AND�/PTIMIZATION ��)N�0ROC��
)4#��������0AGE�S	������ ����

;�=� 'ARY�,��#RAIG��#��2��+IME�AND�+��3ALUJA�� 4EST�3CHEDULING�AND�#ONTROL�FOR�6,3)�"UILT
)N�3ELF
4EST ��)%%%�4R��ON�#OMPUTERS��6OLUME�
���)SSUE������3EPT�������0AGE�S	������� �����

;�=� 6AHIDI��-���/RAILOGLU��!�� 4ESTABILITY�-ETRICS�FOR�3YNTHESIS�OF�3ELF�4ESTABLE�$ESIGNS�AND�%FFECTIVE�4EST�0LANS���)N�0ROC���6,3)�4EST
3YMPOSIUM����TH�)%%%������0AGE�S	������ ����

;�=� 6AHIDI��-���/RAILOGLU��!��� -ETRIC
"ASED�4RANSFORMATIONS�FOR�3ELF
TESTABLE�6,3)�$ESIGNS�WITH�(IGH�TEST�#ONCURRENCY ��)N�0ROC��%52/

$!#��������������0AGE�S	�����
����

;�=� (ARRIS��)�'���/RAILOGLU��!��� &INE
'RAINED�#ONCURRENCY�IN�4EST�3CHEDULING�FOR�0ARTIAL
)NTRUSION�")34 ��%$!4#��������0�����
����
;��=�3UGIHARA��-���$ATE��(���9ASUURA��(��� !NALYSIS�AND�-INIMIZATION�OF�4EST�4IME�IN�A�COMBINED�")34�AND�%XTERNAL�4EST�!PPROACH ��)N

0ROC���$ESIGN��!UTOMATION�AND�4EST�IN�%UROPE�������0AGES������ ����
;��=�.ICOLICI��.���!L
(ASHIMI��"�-��� %FFICIENT�")34�(ARDWARE�)NSERTION�WITH�,OW�4EST�!PPLICATION�4IME�FOR�3YNTHESIZED�$ATA�0ATHS ��)N

0ROC���$ESIGN��!UTOMATION�AND�4EST�)N�%UROPE�#ONFERENCE�AND�%XHIBITION�������PAGE�S	����
����
;��=�,I��8���#HEUNG��0�9�3��� %XPLOITING�4EST�2ESOURCE�/PTIMIZATION�IN�$ATA�0ATH�3YNTHESIS�FOR�")34 ��)N�0ROC����TH�'REAT�,AKES�3YMPOSIUM

ON�6,3)�������0AGE�S	������ ����
;��=�#HEN��#��(���9UEN��*�4��� #ONCURRENT�TEST�3CHEDULING�IN�"UILT
)N�3ELF
4EST�%NVIRONMENT ��)N�0ROC��)##$ ���6,3)�IN�#OMPUTERS�AND

0ROCESSORS��������0AGE�S	������ ����

;��=�+IM��(��"���4AKAHASHI��4���(A��$��3��� 4EST�3ESSION�"UILT
)N�3ELF
TESTABLE�$ATA�0ATH�3YNTHESIS ��)4#��������0AGE�S	������ ����
;��=�0ENG�:���+UCHCINSKI�+��� !UTOMATED�4RANSFORMATION�OF�!LGORITHMS�INTO�2EGISTER
4RANSFER�,EVEL�)MPLEMENTATIONS ��)%%%�4RANS�

ON�#OMPUTER
!IDED�$ESIGN�OF�)NTEGRATED�#IRCUITS�AND�3YSTEMS��6OL���������
����������

