Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-Time Systems

Paul Pop
Dept. of Computer and Information Science,
Linkoping University, Sweden
http://www.ida.liu.se/~paupo

1. Motivation

Communication-intensive heterogeneous real-time systems are
systems where communication between the functions imple-
mented on different nodes has an important impact on the over-
all system properties such as performance, cost,
maintainability, etc.

The application software running on such distributed archi-
tectures is composed of several functions. The way the functions
have been distributed on the architecture has evolved over time.
Initially, in automotive applications, for example, each function
was running on a dedicated hardware node, allowing the system
integrators to purchase nodes implementing required functions
from different vendors, and to integrate them together into their
system. The number of such nodes in the architecture has ex-
ploded, reaching more than 100 in a high-end car. This has cre-
ated a huge pressure to reduce the number of nodes, use the
resources available more efficiently, and thus reduce costs.

However, in order to use the resources more efficiently and
reduce costs, several functions have been integrated in one
node and, at the same time, certain functionality has to be dis-
tributed over several nodes. Although an application is typical-
ly distributed over one single cluster, we also begin to see
applications that are distributed across several clusters. This
trend is driven by the need to further reduce costs, improve re-
source usage, but also by application constraints like having to
be physically close to particular sensors and actuators. More-
over, not only are these applications distributed across several
nodes or even network clusters, but their functions can ex-
change critical information through the gateway nodes.

Such safety-critical hard real-time distributed applications
running on heterogeneous distributed architectures are inherent-
ly difficult to analyze and implement. Due to their distributed na-
ture, the communication has to be carefully considered during
the analysis and design in order to guarantee that the timing con-
straints are satisfied under the competing objective of reducing
the cost of the implementation.

A characteristic of the research efforts concerning the design
of embedded systems is that authors concentrate on the design,
from scratch, of a new system optimized for a particular appli-
cation. For many application areas, however, such a situation is
extremely uncommon and only rarely appears in design prac-
tice. It is much more likely that one has to start from an already
existing system running a certain application and the design
problem is to implement new functionality (including also up-
grades to the existing one) on this system. In such a context it is
very important to operate no, or as few as possible, modifica-
tions to the already running application. The main reason for
this is to avoid unnecessarily large design and testing times. Per-
forming modifications on the (potentially large) existing appli-
cation increases design time and, even more, testing time
(instead of only testing the newly implemented functionality,

the old application, or at least a part of it, has also to be retested).
However, this is not the only aspect to be considered. Such an
incremental design process, in which a design is periodically up-
graded with new features, is going through several iterations.
Therefore, after new functionality has been introduced, the re-
sulting system has to be implemented such that additional func-
tionality, later to be mapped, can easily be accommodated.

2. Contributions

In this thesis, a safety critical application is viewed as a set of
interacting processes mapped on heterogeneous networks con-
sisting of several interconnected programmable processors.
Process interaction is not only in terms of dataflow but also
captures the flow of control.

We have considered both the non-preemptive static cyclic
scheduling and the static priority preemptive scheduling ap-
proaches for the scheduling of processes and messages.

The scheduling and mapping strategies are based on a realistic
communication model and execution environment. We take into
consideration the overheads due to communication and the exe-
cution environment, and consider the requirements of the com-
munication protocol during the scheduling and mapping tasks.

In addition, the mapping and scheduling techniques are con-
sidered inside an incremental design process, where the modifi-
cation of existing applications has to be minimized, and the
resulted system has to be structured in such a way that future ap-
plications can also be accommodated.

The main contributions of this thesis are:

* a less pessimistic schedulability analysis technique that
bounds the worst-case response time of a hard real-time ap-
plication with both control and data dependencies;

* a schedulability analysis in the context of a communication
protocol employing a time-division multiple access scheme,
considering four different approaches to message scheduling;
a schedulability analysis for hard real-time applications
mapped across multi-cluster distributed real-time systems
consisting of time-triggered and event-triggered clusters,
interconnected via gateways, including communication
buffer size and worst case queuing delay analysis for the
gateways responsible for routing inter-cluster traffic;
static scheduling algorithms for systems with both data and
control dependencies, that take into consideration the over-
heads due to the communication and the execution environ-
ment, and consider the requirements of the communication
protocol during the scheduling process;
several optimization strategies for the synthesis of the bus
access scheme in order to fit the communication particular-
ities of a given application;
approaches to mapping and scheduling for hard real-time
applications within an incremental design process, such that
the already running applications are disturbed as little as
possible and there is a good chance that, later, new function-
ality can easily be added to the resulted system.



