Design Optimization of Multi-Cluster Embedded Systems for Real-Time Applications

Paul Pop, Petru Eles, Zebo Peng, Viaceslav Izosimov

Embedded Systems Lab (ESLAB) Linköping University, Sweden

Magnus Hellring, Olof Bridal

Dept. of Electronics and Software Volvo Technology Corp., Göteborg, Sweden

Heterogeneous Networks

Heterogeneous Networks
Multi-Cluster Systems

Automotive Electronics

Distributed Safety-Critical Applications

- Applications distributed over the heterogeneous networks
 - Reduce costs: use resources efficiently
 - Requirements: close to sensors/actuators

- Applications distributed over heterogeneous networks are difficult to...
 - Analyze (guaranteeing timing constraints)
 - Design (partitioning, mapping, bus access optimization)

This paper!

Outline

- Motivation
- → System architecture and application model
- Scheduling for multi-clusters [DATE'03]
- Design optimization problems
 - Partitioning
 - Mapping
 - Bus access optimization
- Optimization strategy
- Experimental results
- Contributions and Message

Hardware Architecture

Time-triggered cluster

- Static cyclic scheduling
- Time-triggered protocol

Gateway

Event-triggered cluster

- Fixed priority preemptive scheduling
- Controller area network protocol

Time Triggered Protocol (TTP)

- Bus access scheme: time-division multiple-access (TDMA)
- Schedule table located in each TTP controller: message descriptor list (MEDL)

Controller Area Network (CAN)

- Priority bus, collision avoidance
- Highest priority message wins the contention
- Priorities encoded in the frame identifier

Software Architecture

Multi-Cluster Scheduling [DATE'03]

- MultiClusterScheduling algorithm
 - Schedulability analysis: communication delays through the gateway
 - Scheduling: cannot be addressed separately for each cluster

Problem Formulation

Input

- System architecture
- Application
- Partial partitioning and mapping, based on the designer's experience

Output

- Design implementation such that the application is schedulable
 - Partitioning for each un-partitioned process
 - Mapping for each un-mapped process
 - Priorities for ET messages
 - TDMA slot sequence and sizes for the TT bus
 - Priorities for ET processes
 - Schedule table for TT messages

Partitioning and mapping

Communication infrastructure

Scheduling information

Motivational Example #1/1

In which cluster to place process P₄?

Motivational Example #1/2

In which cluster to place process P₄?

Motivational Example #1/3

In which cluster to place process P₄?

Motivational Example #2/1

Where to map process P_2 ?

Motivational Example #2/2

Where to map process P_2 ?

Motivational Example #3/1

What are the priorities on ETC?
Which slot should come first on the TTC?

Motivational Example #3/2

What are the priorities on ETC?
Which slot should come first on the TTC?

Motivational Example #3/3

What are the priorities on ETC?
Which slot should come first on the TTC?

Optimization Strategy

Multi-Cluster Configuration

1. Initial Partitioninig and Mapping

- Determines an initial partitioning and mapping
- List scheduling-based greedy approach
 - Priority of ready processes: critical path

2. Partitioning and Mapping Heuristic

- Iteratively improves on the initial partitioning and mapping
- Intelligent design transformations that improve schedulability
 - Based on feedback from MultiClusterScheduling

3. Bus Access Optimization

- Determines the slot sequence and lengths on the TTC, message priorities on the ETC
- Greedy optimization heuristic

Straightforward solution

- Partitioning and mapping that balances the utilization of processors and buses
- Could be produced by a designer without optimization tools

Experimental Results

Can we increase the number of schedulable applications?

Experimental Results, Cont.

How time-consuming is our optimization strategy?

Multi-Cluster Configuration

Partitioning and Mapping Heuristic

Initial Partitioning and Mapping

Bus Access Optimization

Contributions and Message

- Contributions
 - Addressed design problems characteristic to multi-clusters
 - Partitioning
 - Mapping
 - Bus Access Optimization
 - Proposed heuristics for design optimization

Analysis and optimization methods are needed for the efficient implementation of applications distributed over interconnected heterogeneous networks.