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Abstract
Multi-mode systems are characterised by a set of interacting
operational modes to support different functionalities and stan-
dards. In this paper, we present a co-design methodology for
multi-mode embedded systems that produces energy-efficient im-
plementations. Based on the key observation that operational
modes are executed with different probabilities, i.e., the system
spends uneven amounts of time in the different modes, we develop
a novel co-design technique that exploits this property to signif-
icantly reduce energy dissipation. We conduct several experi-
ments, including a smart phone real-life example, that demon-
strate the effectiveness of our approach. Reductions in power
consumption of up to 64% are reported.

1 Introduction
The need for embedded systems continues to increase and power
consumption has become one of the most important design ob-
jectives. Over the last few year numerous methodologies for the
design of low power consuming embedded systems have been
proposed, among which we find approaches that leverage power
management techniques, such as dynamic power management
(DPM) and dynamic voltage scaling (DVS).

A key characteristic of many current and emerging embed-
ded systems is their need to work across a set of different in-
teracting operational modes. Such systems are called multi-mode
embedded systems. Three previous approaches have addressed
the problem of designing mixed hardware/software implementa-
tions of multi-mode systems [7, 9, 13]. The main principle be-
hind these approaches is to consider the possibility of hardware
sharing, i.e., computational tasks of the same type, which can
be found in different modes, utilise the same hardware compo-
nent. Thereby, multiple implementations of the same task type
are avoided, which, in turn, reduces the necessary hardware cost.

As opposed to these approaches, the presented work addresses
the design of low energy consuming multi-mode systems, hence,
it differs in several aspects from the previous works. The pa-
per makes the following contributions: a) We analyse the ef-
fects that the consideration ofmode execution probabilitieshas
on energy-efficiency. b) A co-design methodology for the design
of energy-efficient multi-mode systems is presented. We propose
a co-synthesis for multi-mode systems which maps and sched-
ules a system specification that captures both mode interaction
and mode functionality. c) We investigate dynamic voltage scal-
ing in the context of multi-mode systems and consider that not
only programmable processors might be DVS enabled, but addi-
tionally the hardware components.

2 Preliminaries
2.1 Functional Specification of Multi-Mode Systems
The abstract specification model we consider here is based on a
combination of finite state machines and task graphs, used to cap-
ture the interaction between different operational modes as well
as the functionality of each individual mode. We refer to this
model as operational mode state machine (OMSM). A similar
model was used in [4]. However, we extend this model towards
system-level design and include transition time limits as well as
mode execution probabilities. The following section explains this
model, using the smart phone example shown in Fig. 1a). This
smart phone combines three different functionalities within one
device: a GSM phone, a digital camera, and an MP3-player.
2.1.1 Top-level Finite State Machine
We consider that an application is given as a directed cyclic graph
ϒ(Ω,Θ), which represents a finite state machine. Within this top-
level model, each nodeO∈ Ω refers to an operational mode and
each edgeT ∈ Θ specifies a transition between two modes. If
the system undergoes a change from modeOx to modeOy, with
x 6= y, the transition timetmax

T associated with the transition edge
T = (Ox,Oy) has to be met. At any given time there is only one
active mode, i.e., the modes are mutually exclusive. Fig. 1a) ex-
emplifies the operational mode state machine for a smart phone
example with eight different modes. An activation scenario could
look like this: When switched on, the phone initialises intoNet-
work Search mode. Upon finding a network, the phone changes
into Radio Link Control (RLC) mode. In this mode it maintains
the connection to the network by handling cell handovers, radio
link failure responses, and adaptive RF power control. An in-
coming phone call necessitates to switch intoGSM codec + RLC
mode. This mode is responsible for speech encoding and decod-
ing while maintaining network connectivity. Similarly, the re-
maining modes have different functions and are activated upon
mode change events. Such events originate upon user requests
(e.g. MP3-player activation) or are initiated by the system itself
(e.g. loss of network–switch back intonetwork search mode).

Based on the key observation that many multi-mode systems
spend their operational timenot evenlyin each of the modes, we
assume that for each operational modeO its execution probabil-
ity ΨO is given, i.e., we know what percentage of the operational
time the device spends in each mode. For instance, in accordance
to Fig. 1 a), the smart phone stays 74% of this operational time in
Radio Link Control (RLC) mode, 9% inGSM codec + RLC mode,
and 1% inNetwork Search mode. The left over 16% of the op-
eration time are associated with the remaining modes. Of course,
in reality the mode probabilities vary from user to user. Never-
theless, it is possible to derive an “average” usage profile based
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Figure 1. Architectural and Specification Model

on statistical information collected from several different users.
Taking this information into account will prove to be important
when designing systems with a prolonged battery life-time.
2.1.2 Functional Specification of Individual Modes
The functional specification of each modeO∈ Ω in the top-level
finite state machine is expressed by a task graphGO

S(T ,C ); see
Fig. 1b). Here, each nodeτ ∈ T represents a task, an atomic unit
of functionality that needs to be executed without preemption. We
consider a coarse level of granularity where tasks refer to func-
tions such as Huffman decoders, de-quantizers, FFTs, IDCTs, etc.
Therefore, each task is further associated with a task typeη∈ ΓO.
A distinctive feature of multi-mode systems is that task type sets
ΓO of different modesO ∈ Ω can intersect, i.e., tasks of identi-
cal type can share the same hardware resource. Of course, re-
source sharing is also possible for multiple tasks of identical type
which are found in a single mode, however, due to task commu-
nalities among different modes the chances to share resources are
increased. Edgesγ ∈ C in the task graph refer to precedence con-
straints and data dependencies between the computational tasks,
i.e., if two tasks,τi andτ j , are connected by an edge, then taskτi
must have finished and transfered its data to taskτ j , beforeτ j can
be executed. A feasible implementation needs to obey all timing
constraints and precedence relations.

2.2 Architectural Model and System Implementation
Our system-level synthesis approach targets distributed architec-
tures that possibly consist of several heterogeneous processing el-
ements (PEs), such as general purpose processors (GPPs), ASIPs,
ASICs, and FPGAs. These components are connected through an
infrastructure of communication links (CLs). A directed graph
GA(P ,L) captures such an architecture, where nodesπ ∈ P and
edgesλ ∈ L denote PEs and CLs, respectively; Fig. 1c) shows an
example architecture.

Since each task might have multiple implementation alterna-
tives, it can be potentially mapped onto several different PEs that
are capable to perform this type of task. However, if a task is
mapped to a hardware component, i.e., ASIC or FPGA, a core
for this task type needs to be allocated, involving the usage of
area. Tasks assigned to GPPs or ASIPs (software tasks) need
to be sequentialised whilst the tasks mapped onto FPGAs and
ASICs (hardware tasks) can be performed in parallel if the nec-
essary resources (cores) are not already engaged. However, con-
tention between two or more tasks assigned to the same hardware
core necessitates a sequential execution order, similar to software
tasks. Cores implemented on FPGAs can be dynamically recon-
figured during a mode change, involving a time overhead which

needs to respect the imposed maximal mode transition times.
Further, PEs might feature dynamic voltage scaling to enable a

tradeoff between power consumption and performance which can
be exploited during run-time. For such PEs a voltage schedule
needs to be derived, additionally to a timing schedule [10].

To implement a multi-mode application captured as OMSM,
the tasks and communications of all operational modes need to be
mapped onto the architecture, and a valid schedule for these activ-
ities ε ∈ (A = T ∪C ) needs to be constructed. Further, for tasks
mapped to DVS enabled components an energy reducing voltage
schedule has to be determined. Hence, an implementation candi-
date can be expressed through four functions which need to be de-
rived for each operational modeO∈Ω: MO

τ : T → π, MO
γ : C → λ,

SO
ε : A → R+

0 , andVO
τ : TDVS→ Vπ, whereMO

τ andMO
γ denote

task and communication mapping, respectively. Activity start
times are specified by the scheduling functionSO

ε , while VO
τ de-

fines the voltage schedule for all tasksτ ∈ TDVS mapped to DVS-
PEs, whereVπ is the set of the possible discrete supply voltages of
PEπ. Clearly, the mappings as well as the corresponding sched-
ules are defined for every mode separately, i.e., during the change
from modeOx to modeOy, the execution of activities found in
modeOx are finished, and the activities of modeOy are activated.
2.3 Motivational Example
The influence of mapping in the context of multi-mode systems
with different mode execution probabilities is demonstrated in the
following example. For simplicity we neglect timing and commu-
nication issues here. Consider the application shown in Fig. 2 a)
which consists of two operational modes,O1 andO2, each spec-
ified by a task graph with three tasks. The system spends 10%
of its time in modeO1 and the remaining 90% in modeO2, i.e.,
the execution probabilities are given byΨ1 = 0.1 andΨ2 = 0.9.
The specification needs to be mapped onto an architecture built
of a general purpose processor (PE0) and an ASIC (PE1), linked
by a bus (CL0). Depending on the task mapping to either of the
components, the execution properties of each task are given in the
following table. It can be observed that all tasks are of different

PE0 (SW) PE1 (HW)
task exec. dyn. energy exec. dyn. energy area
type time (ms) (mWs) time (ms) (mWs) (cells)

A 20 10 2 0.010 240
B 28 14 2.2 0.012 300
C 32 16 1.6 0.023 275
D 26 13 3.1 0.047 245
E 30 15 1.8 0.015 210
F 24 14 2.2 0.032 280

type, therefore, if a task is mapped to HW, a suitable core needs to
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Figure 2. Example 1: Mode Execution Probabilities

be allocated explicitly for that task. Hence, in this particular ex-
ample, we do not consider hardware sharing. Each allocated core
uses area on the hardware component which offers 600 cells, i.e.,
at most 2 cores can be allocated at the same time without violating
the area constraint (see above table, column 6). Note, although
the two modes execute mutually exclusive, the task types imple-
mented in hardware (cores) cannot be changed during run-time,
since their implementation is static (non-reconfigurable ASIC).

Consider the mapping shown in Fig. 2b). This represents
the optimal solution in terms of energy dissipation when ne-
glecting the execution probabilities, since the highest energy
dissipating task (τ3 and τ5) are executed using a more energy-
efficient hardware implementation. Nevertheless, taking the real
behaviour into account, modeO1 is active for 10% of the op-
erational time, i.e., its energy dissipation can then be calculated
as 0.1 · (10mWs+ 14mWs+ 23µWs) = 2.4023mWs. Similarly,
modeO2 is active 90% of the time, hence, its energy is given by
0.9·(13mWs+15µWs+14mWs) = 24.3135mWs. Based on both
modes, the total energy dissipation results in 26.7158mWs.

Fig. 2c) shows an alternative mapping which represents the
optimal assignment of tasks when mode execution probabil-
ities are considered. In this configuration tasksτ5 and τ6
use a hardware implementation. According to this solution,
the energy dissipation of mode 1 and mode 2 are given by
0.1 · (10mWs+ 14mWs+ 16mWs) = 4mWsand 0.9 · (13mWs+
15µWs+32µWs) = 11.7423mWs, respectively. The total energy
for this mapping is 15.7423mWs, hence, it is 41% lower com-
pared to the first mapping shown in Fig. 2b), which is not op-
timised for an uneven task execution probability. Furthermore,
the second task mapping, shown in Fig. 2c), allows to switch-off
PE1 and CL0 during modeO1, since all tasks of this mode are as-
signed to PE0. This results in a significant reduction of the static
power, further increasing the energy savings.

An important characteristic of multi-mode systems is that
tasks of the same type might be found in different operational
modes, i.e., resources can be shared among the different modes.
To increase the possibility of component shut-down, it might be
necessary to implement the same task type multiple times, how-
ever, on different components. The following example, shown in
Fig. 3, clarifies this aspect. Here tasksτ1 andτ4 are of type A,
allowing resource sharing. In the first mapping, given in Fig. 3 b),
both tasks utilise the same HW core. However, additionally im-
plementing taskτ4 as software, as shown in Fig. 3c), allows
to shut-down PE1 and CL0 during the execution of modeO2.
Hence, multiple implementations of task types can help to reduce
power dissipation.

These two examples show that it is essential to guide the syn-
thesis process by an energy model that takes into account the ex-
ecution probability and allows multiple task implementations.
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3 Problem Formulation
Our goal is an energy-efficient and feasible implementation of ap-
plicationϒ, modelled as an OMSM. This involves the derivation
of the mapping and schedule functions (MO

τ , MO
γ , SO

ε , andVO
τ ),

see Section 2.2, under the consideration of static and dynamic
power dissipations as well as mode execution probabilities. The
average power consumption ¯p of an implementation alternative is
given by:

p̄ = ∑
O∈Ω

(p̄dyn
O + p̄stat

O ) ·ΨO (1)

where p̄dyn
O , p̄stat

O , andΨO refer to the dynamic power consump-
tion, the static power consumption, and execution probability of
modeO, respectively. The power consumptions are given as,

p̄dyn
O =

(
∑

ε∈AO

E(ε)

)
· 1
hpO

and p̄stat
O = ∑

ξ∈KO

P̄stat(ξ)

whereAO andhpO are all activities and the hyper-period of mode
O, respectively.P̄stat(ξ) refers to the static power consumption
of a componentξ, found in the set of all active components
KO ⊆ P ∪L of modeO. With respect to the type of activities,
the dynamic energy consumptionE(ε) is calculated as,

E(ε) =


Pmax(ε) · tmin(ε) ·

V2
dd(ε)

V2
max(ε)

if ε ∈ TDVS

Pmax(ε) · tmin(ε) if ε ∈ T \TDVS
PC(ε) · tC(ε) if ε ∈ C

wherePmax is the dynamic power dissipation andtmin the execu-
tion time of tasks when executed at nominal supply voltageVmax.
Tasksτ ∈ TDVS mapped to DVS-PEs can execute at a scaled sup-
ply voltageVdd, resulting in a reduced power consumption. Fur-
ther, communications consume powerPC over a timetC.

The synthesis goal is to find a task mappingMO
τ , a commu-

nication mappingMO
γ , a time scheduleSO

ε , and a voltage sched-
ule VO

τ for each operational modeO, such that the total average
power p̄, given in Equation (1), is minimised. A feasible imple-
mentation candidate needs to fulfil the following requirements:
a) The mapping of tasksMO

τ does not violate area constraints,
i.e., (∑η∈Γπ aη) ≤ amax

π , ∀π ∈ P ; where Γπ is the set of all
task types implemented on PEπ, andaη and amax

π refer to the
area used by task typeη and the available area on PEπ, respec-
tively. b) The timing scheduleSO

ε and the voltage scheduleVO
τ ,

based on task and communication mapping, do not exceed any
task deadlinesθτ or task graph repetition periodsφ, therefore,
tS(τ)+ texe(τ) ≤ min(θτ,φ) , ∀τ ∈ T ; wheretS(τ) andtexe refer
to task start time and task execution time (potentially based on
voltage scaling), respectively. c) The system reconfiguration time
tT between mode changes does not exceed the imposed maximal
mode transition timestmax

T . Hence,tT ≤ tmax
T , ∀T ∈ Θ, needs to

be respected for all mode transitions.

4 Synthesis of Low Power Multi-Mode Systems
Our co-synthesis approach for energy-efficient multi-mode sys-
tems is based on two nested optimisation loops. The outer loop



Input: - OMSM (finite state machine + task graphs), Technology
Library, Allocated Architecture

Output: - Outer loop: Core Allocation, Task Mapping
- Inner loop: Comm. Mapping, Scheduling, Scaled Voltages

01: Pop=CreateInitialPopulation // randomly
02: while (NoConvergence(Pop))
03: forall map∈ Pop
04: mob=ComputeMobilities(map) //ASAP+ALAP
05: cores=ImplementHWcores(map,mob)
06: ap=CalcAreaPenalty(map,cores)
07: PstatPE=CalcStaticPowerPE
08: trp=CalcTransitionPenalty(cores)
09: forall mode∈Ω
10: CommMappingScheduling(mode) // inner loop
11: tp(mode)=CalcTimingPenalty(mode)
12: Pdyn(mode)=CalcDynPower(mode) // incl. DVS
13: PstatCL=CalcStaticPowerCL
14: FM=MappingFitness(Pdyn,tp,PstatCL,PstatPE,ap,trp)
15: ran=RankingIndividuals(FM)
16: mat=SelectedMatingIndividuals(ran)
17: TwoPointCrossover(mat)
18: OffspringInseration(Pop)
19: ShutdownImprovementMutation(Pop)
20: AreaImprovementMutation(Pop)
21: TimingImprovementMutation(Pop)
22: TransistionImprovementMutation(Pop)

Figure 4. Pseudo Code: Multi-Mode Task Mapping GA

optimises task mapping and core allocation while the inner loop is
responsible for the optimisation of communication mapping and
scheduling. Due to the space limitations we focus here on the
mapping and core allocation, which are explained next, and refer
the interested reader to [12] were communication mapping and
scheduling are outlined.

4.1 Task Mapping and Core Allocation Approach
The presented task mapping approach, which determinesMτ for
all modes of applicationϒ, is based on a genetic algorithm (GA).
More exactly, we have extended a GA mapping technique for sin-
gle mode systems [11] to suit the particular problems of multi-
mode systems. These problems include resource sharing, compo-
nent shut-down, and mode transition issues.

In general, GAs optimise a population of individuals over sev-
eral generations by imitating and applying the principles of natu-
ral selection. I.e., the GA iteratively evolves new populations by
mating (crossover) the fittest individuals (highest quality) of the
current population pool until a certain convergency criterion is
met. In addition to mating, mutation, that is, the random change
of genes in the genome (string), provides the opportunity to push
the optimisation into unexplored search space regions. An excel-
lent introduction to GA can be found in [3]. In our case, each
mapping candidate is encoded into a multi-mode mapping string
as shown in Fig. 2b) and Fig. 2c). A detailed description of the
proposed mapping GA is outlined in Fig. 4.

Starting from an initial random population (line 1), the opti-
misation runs until the convergency criterion is met (line 2). The
criterion we use is based on the diversity in the current popula-
tion and the number of elapsed iterations without any improved
individual. To judge the quality of mapping candidates, i.e., the
fitness which guides the genetic algorithm, it is necessary to es-
timate important design objectives, including static and dynamic
power dissipation, area usage, and timing behaviour (lines 03–
13). The following explains each of the estimations. The hard-
ware area depends on the allocated cores. Of course, for each task
type mapped to hardware at least one core of this type needs to be
allocated. However, if too many cores are placed onto an ASIC
or FPGA, the available area is exceeded and an area penalty is
introduced (line 6). On the other hand, if multiple tasks of the
same type are mapped to the same hardware component and the
hardware area is not violated, it is possible to implement cores

multiple times. In our approach, we allocated additional cores
(line 5) for parallel tasks with low mobility (line 4), therefore, the
chance to exploit application parallelism is increased. Clearly,
from an energy point of view, this is also preferable, especially
in the presence of DVS, where a decreased execution time can be
exploited. At this point it is possible to compute the static power
consumption of the implementation (line 7), taking into account
component shut-down. Components can be shut-down during the
execution of a certain mode, whenever no tasks belonging to that
mode are mapped onto these components. Another aspect is the
reconfigurability of FPGAs which allows to exchange the cores
to suit the active mode. However, this reconfiguration during a
mode change takes time, hence, we introduce a transition penalty
if the maximal transition times are exceeded (line 8). Having de-
termined the cores to be implemented (line 5), it is now possible
to schedule each mode of the application and to derive a feasible
communication mapping (line 10). Since the modes are mutually
exclusive, it is possible to employ a communication mapping and
scheduling optimisation for a single mode system. We utilise the
technique outlined in [12]. If timing constraints are violated by
the found schedule, a timing penalty is introduced (line 11). Fur-
ther, based on the communication mapping and scheduling, the
dynamic power consumption of the application can be computed,
taking into account DVS (line 12). Similarly to the shut-down of
PEs, it is also possible to switch-off a CL when no communica-
tions are mapped to that link (line 13). Based upon all estimated
power consumptions and penalties, a fitness is calculated (line
14) as,FM = p̄ · t p · (1+ wA ·∑π∈Pv(a

U
π − amax

π )/(amax
π · 0.01)) ·

(wR ·∏T∈Θv tT/tmax
T ), where the energy consumption ¯p is given

by Equation (1) andt p introduces a timing penalty. Further, an
area penalty is applied for all PEs with area violationPv by relat-
ing used areaaU

π and area constraintamax
π . Similarly, a transition

time penalty is applied for all transitions that exceed their maxi-
mal transition time limitΘv, i.e., transition timetT exceeds maxi-
mal allowed transition timetmax

T . Both area and transition penalty
are weighted (wA andwR) which allows to adjust the aggressive-
ness of the penalty. Having assigned a fitness to all individuals of
the population, they are ranked using linear scaling (line 15). A
tournament selection scheme picks individuals (line16) for mat-
ing (line 17). The produced offsprings are inserted into the pop-
ulation (line 18). In order to push the GA away from infeasible
and low quality design space regions, we apply four new genetic
mutation operators (lines 19–22), introduced next.

Shut-down Improvement: To increase the chances of compo-
nent shut-down, which leads to a reduction of static power con-
sumption, we employ a simple yet effective strategy during the
optimisation. Out of the current population randomly picked in-
dividuals (probability 2% was found to lead to good results) are
modified as follows. A single modeOx and a non-essential PE
πa are selected. Non-essential PEs are considered to be PEs that
implement task types that have alternative implementations on
other PEs, hence, they are not fundamental for a feasible solu-
tion. Our goal is to switch-off PEπa during the execution of
modeOx. Therefore, all tasks of modeOx which are mapped to
πa are randomly re-mapped to the remaining PEs (P \πa), hence,
PEπa can be shut-down during modeOx.

Area Improvement: To avoid convergency towards area infeasi-
ble solutions we employ a second strategy. If only infeasible area
mappings have been produced for a certain number of generations
we try to push the search away from this region by randomly map-
ping hardware tasks onto software programmable PEs.
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Timing Improvement: In contrast to the area improvement strat-
egy, if a certain amount of timing infeasible solutions have been
produced, software tasks are randomly mapped to faster hardware
implementations. Thereby, the chance to find timing feasible im-
plementations is increased.
Transition Improvement: As mentioned above, cores imple-
mented on FPGAs can be dynamically reconfigured, involving
a time overhead. If this overhead exceeds the imposed transition
time limits, the mapping is infeasible. Hence, after generating for
a certain number of generations solely solutions that violate the
transition times, tasks are randomly re-mapped away from the
FPGAs that cause the violations.

Although some of the produced genomes might be infeasible
in terms of area and timing behaviour, all these strategies have
been found to improve the search process significantly by intro-
ducing individuals that evolve into high quality solutions.

4.2 Dynamic Voltage Scaling in Multi-Mode Systems
Dynamic voltage scaling is a powerful technique to reduce en-
ergy consumption by exploiting temporal performance require-
ments through dynamically adapting processing speed and sup-
ply voltage of PEs. The applicability of DVS to embedded dis-
tributed systems was demonstrated in [5, 8, 10]. However, these
papers concentrated on dynamically changing the performance
of software PEs only, while parallel execution of tasks on hard-
ware resources has been neglected. Nevertheless, in the context
of energy-efficient multi-mode systems, where performance re-
quirements of each operational mode can vary significantly, DVS
needs to be considered carefully. For instance, consider an in-
verse DCT algorithm, used by the MP3 decoder and the JPEG
image decoder, implemented in fast hardware. Clearly, the JPEG
decoder should restore images as quickly as possible (maximal
clock frequency), while the MP3 decoder works at a fixed sam-
pling rate of 25ms(reduced clock). Using DVS it is possible to
adapt the HW core speed to suit both needs and reduce the energy
dissipation to a minimum.

In this work, we consider that hardware components might em-
ploy DVS. However, due to the area and power overhead involved
in additional DVS hardware (DC/DC converter), we take into ac-
count that all cores allocated to the same hardware component are
fed by a single voltage supply, i.e., dynamically scaling the sup-
ply voltage simultaneously affects the performance of all cores on
that component.

To cope with this, we transform the potentially parallel exe-
cuting tasks on a single scalable hardware resource into an equiv-
alent set of sequentially executing tasks, taking into account the
dynamic power dissipation on each core. Note that this is done to
calculate the scaled supply voltages only, i.e., this virtual trans-
formation does not affect the real implementation. Fig. 5 shows
the transformation of 5 hardware tasks, executing on two cores,
to 3 sequential tasks on a single core. This sequential execution
is equivalent to the behaviour of software tasks, hence, a voltage

Example without probab. with probab. (proposed)
(No. of Powerp̄ CPU time Powerp̄ CPU time Reduc.
modes) (mW) (s) (mW) (s) (%)

mul1 (4) 8.131 20.7 7.529 24.7 7.29
mul2 (4) 3.404 15.5 2.771 18.2 18.61
mul3 (5) 10.923 23.4 10.430 23.0 4.17
mul4 (5) 7.975 21.0 6.726 25.2 15.50
mul5 (3) 5.186 18.4 4.668 22.1 10.01
mul6 (4) 1.677 20.6 1.301 19.9 22.46
mul7 (4) 3.306 11.6 1.250 21.4 62.18
mul8 (4) 1.565 32.1 1.329 28.0 15.06
mul9 (4) 3.081 6.0 1.901 5.8 38.28
mul10 (5) 1.105 28.3 0.941 32.1 14.83
mul11 (3) 2.199 9.3 1.304 16.6 40.70
mul12 (4) 7.006 25.4 5.975 34.2 14.69

Table 1. Considering Execution Probabilities (w/o DVS)
scaling technique for software processors can be applied.

5 Experimental Results
Our co-synthesis approach for energy-efficient multi-mode sys-
tems has been implemented on a Pentium III/1.2GHz Linux PC.
In order to evaluate its capability to produce high quality solutions
in terms of energy consumption, timing behaviour, and hardware
area requirements, a set of experiments has been carried out on
12 automatically generated examples (mul1 –mul12 ) and one
real-life benchmark (smart phone ). All reported results were
obtained by running the optimisation processes 40 times and av-
eraging the outcomes.

Each of the 12 generated examples is specified by 3 to 5 oper-
ational modes, each consisting of 8 to 32 tasks. The used target
architectures contain 2 to 4 heterogeneous PEs, some of which
are DVS enabled. These PEs are connected by 1 to 3 CLs.

To illustrate the importance of taking mode execution prob-
abilities into account during the synthesis process, we compare
an execution probability neglecting approach with our synthesis
technique. Tab. 1 shows this comparison for the 12 generated
benchmarks. Columns 2 and 3 give the dissipated average power
and optimisation time for the execution probability neglecting ap-
proach while Columns 4 and 5 show the same for the proposed
approach. Take, for instance, examplemul6 . Ignoring the ex-
ecution probabilities during the optimisation an average power
of 1.677mW is achieved. However, the optimisation under the
consideration of the real-world characteristic that modes execute
with uneven probabilities the average power can be reduced by an
appropriate task mapping and core allocation to 1.301mW. This
is a significant reduction of 22.46%. Furthermore, it can be ob-
served that the proposed technique was able to reduce the energy
dissipation of all examples with up to 62.18%. Note that these
reductions are achieved without a modification of the underlying
hardware architectures, i.e., the system costs are not increased.
It is also important to note that the achieved energy reductions
are solely introduced by taking the mode execution probabilities
into account during the synthesis process, i.e., both compared ap-
proaches allow the same resource sharing and rely on the same
scheduling technique. Comparing the optimisation times for both
approaches it can be observed that the proposed technique shows
a slight increased CPU time for most examples, which is mainly
due to the design space structure.

We were also interested to see how the proposed technique
compares to DVS and if further savings can be achieved by tak-
ing the mode probabilities and DVS simultaneously into account.
Tab. 2 reports our findings. The DVS technique we use here is
an extended version of the one presented in [10]. This extension



Example without probab. with probab. (proposed)
(No. of Powerp̄ CPU time Powerp̄ CPU time Reduc.
modes) (mW) (s) (mW) (s) (%)

mul1 (4) 4.271 526.6 3.964 768.6 10.92
mul2 (4) 1.568 860.4 1.273 687.4 18.82
mul3 (5) 4.012 1053.5 3.344 1192.2 16.66
mul4 (5) 2.914 1135.2 2.320 1125.4 20.39
mul5 (3) 1.394 967.7 1.315 932.1 5.68
mul6 (4) 0.689 472.9 0.465 593.7 32.53
mul7 (4) 1.331 540.3 0.479 820.7 64.02
mul8 (4) 0.564 1262.1 0.436 1412.0 22.64
mul9 (4) 0.942 161.2 0.648 177.1 34.66
mul10 (5) 0.480 1456.3 0.394 1361.9 17.88
mul11 (3) 0.396 318.1 0.255 403.2 35.53
mul12 (4) 2.857 1384.7 2.460 1450.7 13.91

Table 2. Experimental Results with DVS

enables the consideration of DVS not only for software proces-
sor but also for parallel executing cores on hardware PEs (see
Section 4.2.) As in the first experiments, we compare two ap-
proaches, one neglecting the mode execution probabilities during
optimisation, while the second takes them into account through-
out the synthesis. Similar to Tab.1, Column 2 and 3 of Tab. 2
show the results without consideration of execution probabilities,
whilst Column 4 and 5 present the results achieved by the pro-
posed approach. Lets consider againmul6 . Although the exe-
cution probabilities are neglected in Column 2, we can observe
a reduced average power dissipation (0.689mW) when compared
to the results given in Tab. 1. This clearly demonstrates the high
energy reduction capabilities of DVS. Nevertheless, it is possible
to further minimise the average power to 0.465mW by consider-
ing the execution probabilities together with DVS. This is an im-
provement of 32.53%. For all other benchmarks, savings of up to
64.02% were achieved. Due to the computation of scaled supply
voltages and the influence of scheduling on the energy dissipa-
tion, the optimisation times are higher when DVS is considered.

To further validate the proposed co-synthesis technique in
terms of real-world applicability, we applied our approach to a
smart phone real-life example. This benchmark is based on three
publicly available applications: a GSM codec [1], a JPEG de-
coder [2], and an MP3 decoder [6], Based on these applications,
the smart phone offers three different services to the user, namely,
a GSM cellular phone, an MP3-player, and a digital camera.
Of course, the used applications do not specify the whole smart
phone device, however, a major digital part of it. The OMSM
for this example is shown in Fig. 1a). For each of the eight op-
erational modes we have extracted the corresponding task graphs
from the above given references. These have been software pro-
filed to extract the necessary execution characteristics of each
task. On the other hand, the hardware estimations are not based
on direct measurements but have been based on realistic assump-
tions, such that hardware tasks typically executed 5 to 100 times
faster than their software counterparts. Depending on the oper-
ational mode, the number of tasks and communications varies
between 5–88 nodes and 0–137 edges, respectively. The given
system architecture consists of one DVS enabled GPP and two
ASICs which are connected through a single bus.

Table 3 shows the results of our experiments. Similar to the
previous experiments, we compare an execution probabilities ne-
glecting approach with the proposed technique. The first row in
Table 3 shows this comparison for a fixed voltage system. Syn-
thesising the system without consideration of execution proba-
bilities, results in an average power of 2.602mW. Nevertheless,

without probab. with probab. (proposed)
Smart Powerp̄ CPU time Powerp̄ CPU time Reduc.
phone (mW) (s) (mW) (s) (%)

w/o DVS 2.602 80.1 1.801 96.9 30.76
with DVS 1.217 3754.5 0.859 4344.8 29.41

Table 3. Results of Smart Phone Experiments

taking into account the mode usage profile, this can be reduced by
30.76% to 1.801mW. We have also applied DVS to this bench-
mark, considering that the GPP of the given architecture supports
DVS functionality (see second row in Table 3). We can observe
that the power dissipation drops to 1.217mW, even when neglect-
ing mode execution probabilities. However, the combination of
applying DVS and taking execution probabilities into account,
results in the lowest power dissipation of 0.859mW, a 29.41%
reduction. Overall, decreasing the average power from 2.602mW
to 0.859mW. This is a significant reduction of nearly 67%.

6 Conclusions
We have proposed a novel co-design methodology for energy-
efficient multi-mode embedded systems. Unlike previous ap-
proaches, the presented co-design technique optimises mapping
and scheduling not only towards hardware cost and timing be-
haviour, but additionally reduces power consumption. The key
contribution was the development of an effective mapping strat-
egy that considers uneven mode execution probabilities as well as
several other important power reduction aspects, such as multiple
task implementations. For this purpose, we have introduced a GA
based mapping approach along with four improvement strategies
that guide the mapping optimisation towards high quality solu-
tions in terms of power consumption, timing feasibility, and area
usage. We have validated our approach using several experiments
including a smart phone real-life example. These experiments
have demonstrated that it is important to take mode execution
probabilities into account.
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