
Towards
Formal Verification in a

Component-based
Reuse Methodology

Daniel Karlsson

ISBN 91-7373-787-9, ISSN 0280-7971
PRINTED IN LINKÖPING, SWEDEN

BY LINKÖPING UNIVERSITY

COPYRIGHT © 2003 DANIEL KARLSSON

Abstract

MBEDDED SYSTEMS are becoming increasingly com-
mon in our everyday lives. As techonology progresses,
these systems become more and more complex. Design-

ers handle this increasing complexity by reusing existing compo-
nents (Intellectual Property blocks). At the same time, the
systems must still fulfill strict requirements on reliability and
correctness.

This thesis proposes a formal verification methodology which
smoothly integrates with component-based system-level design
using a divide and conquer approach. The methodology assumes
that the system consists of several reusable components. Each of
these components are already formally verified by their design-
ers and are considered correct given that the environment satis-
fies certain properties imposed by the component. What remains
to be verified is the glue logic inserted between the components.
Each such glue logic is verified one at a time using model check-
ing techniques.

The verification methodology as well as the underlying theo-
retical framework and algorithms are presented in the thesis.

Experimental results have shown the efficiency of the pro-
posed methodology and demonstrated that it is feasible to apply
it on real-life examples.

E

Acknowledgements

PECIAL THANKS go to my supervisors Petru Eles and
Zebo Peng for giving me support and guidance even in
the toughest moments of my graduate studies. They

patiently put me back on the right track when I am about to drift
away into a dead end or when I propose a relatively cumbersome
solution to a relatively simple problem.

Thank you all colleagues at IDA in general and ESLAB in par-
ticular for creating a nice and friendly working atmosphere.

I would also like to thank the master thesis students Henrik
Friman and Sriharsha Naidu for implementing algorithms
related to or are part of this work. Their efforts have simplified
or will simplify my work tremendously.

Dessutom vill jag tacka min familj, mamma, pappa, syster och
bror, för att ni alltid vill det bästa för mig.

Daniel Karlsson
Linköping, November 2003

S

Contents

1. Introduction 1

1.1. Motivation 1

1.2. Problem formulation 3

1.3. Contributions 4

1.4. Thesis Overview 5

2. Background 7

2.1. Design of Embedded Systems 7

2.2. IP Reuse 10

2.2.1. IP Provider 10

2.2.2. IP User 12

2.3. Formal Verification 14

2.3.1. Model Checking 14

2.3.2. Equivalence Checking 16

2.3.3. Theorem Proving 17

2.4. Formal Verification of IP Interconnection 18

2.4.1. Assume-Guarantee Reasoning 18

2.4.2. Modelling the Environment in the Property Formulas
19

2.4.3. Constructing Tableaux for Modelling the Environ-
ment 19

3. Preliminaries 21

3.1. The Design Representation: PRES+ 21

3.1.1. Standard PRES+ 22

3.1.2. Dynamic Behaviour 23

3.1.3. Forced Safe PRES+ 25

3.1.4. Component Aspects of PRES+ 26

3.2. Computation Tree Logic 28

3.3. Partial Orders and Lattices 31

4. The Verification Methodology 35

4.1. Explanatory Example 35

4.2. Objective and Assumptions 39

4.3. Methodology Overview 42

4.3.1. The Impact on Verification Using Different Stubs 43

4.3.2. Verification Methodology Roadmap 47

5. Verification of Component-based Designs 51

5.1. Definitions 51

5.2. Relations between Stubs 56

5.3. Verification Environment 59

5.4. Formal Verification with Stubs 65

5.4.1. Discussion 69

5.5. Experimental Results 70

5.5.1. General Avionics Platform 71

5.5.2. Split Transaction Bus 72

5.6. Verification Methodology Roadmap 76

6. Automatic Generation of Stubs 81

6.1. Pessimistic Stubs 82

6.2. The Naïve Approach 84

6.3. Stub Generation Algorithm 86

6.3.1. Dataflow Analysis 86

6.3.2. Identification of Stub Nodes 89

6.3.3. Compensation 93

6.3.4. Complexity Analysis 99

6.4. Reducing Pessimism in Stubs 99

6.4.1. Complexity Analysis 105

6.5. Experimental Results 105

6.5.1. General Avionics Platform 105

6.5.2. Cruise controller 107

6.6. Verification Methodology Roadmap 109

7. Inclusion of the Surrounding into the Verification
Process 115

7.1. Preliminaries 117

7.1.1. Introductory Example 117

7.1.2. Formula Normalisation 118

7.2. The Algorithm 119

7.2.1. Place Generation 120

7.2.2. Timer Insertion for U Operators 129

7.2.3. Transition Generation 134

7.2.4. Insertion of Initial Tokens 146

7.2.5. Summary 147

7.3. Examples 148

7.3.1. Place with One Non-timer Repeating U Formula 149

7.3.2. Place with One Timer Repeating U Formula 151

7.3.3. Place with More than One Timer Repeating U Formu-
la 153

7.3.4. Guards on Transitions 155

7.4. Verification Methodology Roadmap 157

8. Example 161

8.1. The Mobile Telephone System 161

8.1.1. Buttons and Display 163

8.1.2. Controller 164

8.1.3. AMBA Bus 166

8.1.4. Glue Logics 168

8.2. Verification of the Model 172

8.2.1. Property 1 172

8.2.2. Property 2 174

8.2.3. Property 3 175

8.3. Discussion 177

9. Conclusions and Future Work 179

9.1. Conclusions 179

9.2. Future Work 181

References 183

INTRODUCTION
Chapter 1
Introduction

HIS THESIS DEALS WITH issues related to formal veri-
fication, in particular model checking, of embedded sys-
tems designed with reusable components.

The introductory chapter presents the motivation behind our
work, problem formulation and contributions. In the end follows
an overview of the thesis.

1.1 Motivation
It is a well-known fact that we increasingly often interact with
electronic devices in our everyday lives. Such electronic devices
are for instance cell phones, PDAs and portable music devices
such as Mp3-players. Moreover, other, traditionally mechanical,
devices are becoming more and more computerised. Examples of
such devices are cars or washing machines. In fact, in 1999, 99%
of all microprocessors were used in the type of systems men-
tioned above (embedded systems). Only the remaining 1% was
used in general purpose computers [Tur99]. This situation indi-
cates the big importance of embedded systems.

T

1

CHAPTER 1
There is no single definition of an embedded system. Different
people have their own opinions about what an embedded system
really is. However, many people seem to agree that the following
features are common to most embedded systems [Cam96]:

 • They are part of a larger system with which they continu-
ously or frequently interact.

 • They have a dedicated functionality and are not intended to
be reprogrammable. Once an embedded system is built, its
functionality does not change throughout its lifetime. For
example, a device controlling the engine of a car will proba-
bly never be reprogrammed to decode Mp3s, while a desktop
computer has a wide range of functionalities.

 • They have real-time behaviour. The systems must in general
respond to their environment in a timely manner.

 • They consist of both hardware and software components.

It is quite evident that it is both very error-prone and time-con-
suming to design such complex systems. At the same time there
is a strong economical incentive to decrease the time-to-market.

In order to manage the design complexity and to decrease the
development time, designers usually resort to reusing existing
components (so called IP blocks) so that they do not have to
develop certain functionality themselves from scratch. These
components are either developed in-house by the same company
or acquired from specialised IP vendors [Haa99], [Gaj00].

Not discovering a fault in the system in time can be very
costly. Reusing such predesigned IP blocks introduces the addi-
tional challenge that the exact behaviour of the block is unfamil-
iar to the designer, which can lead to design errors that are
difficult to detect. Discovering such faults only after the fabrica-
tion of the chip can easily cause unexpected costs of US$500K -
$1M per fault [Sav00]. This suggests the importance of a struc-
tured design methodology with a formal design representation,
and in particular it suggests the need for formal verification. In
highly safety-critical systems, such as airplanes or medical
2

INTRODUCTION
equipment, it is even more evident that errors are not tolerable
since it is not only for economic reasons, but human lives are
jeopardised.

Formal verification tools analyse the system model, captured
in a particular design representation, to find out whether it sat-
isfies certain properties. In this way, the verification tool can
trap many design mistakes at early stages in the design.

1.2 Problem formulation
Since the trend is that systems are built more and more with
reusable components, it becomes increasingly important to
develop verification methodologies which can effectively cope
with this situation and take advantage of it.

There are several aspects which make this task difficult. One
is the complexity of the systems, which makes simulation based
techniques very time consuming. On the other hand, formal ver-
ification of such systems suffers from state explosion. However,
it can often be assumed that the design of each individual com-
ponent has been verified [See02] and can be supposed to be cor-
rect. What remains to be verified is the interface logic and the
interaction between components. Such an approach can handle
both the complexity aspects (by a divide and conquer strategy)
and the lack of information concerning the internals of prede-
fined components.

In order to be able to formally verify the interface logic, it is
also necessary to model the environment with which it is sup-
posed to interact. In general, the part of the system with most
influence on the interface logic to be verified is the components
surrounding the logic. We assume that we have some high-level
models of these components. However, due to several reasons,
such as the fact that these components also need to interact with
other interface logics, those high-level models cannot provide a
complete specification of the environment. If this turns out to be
3

CHAPTER 1
the case in a particular verification, there must exist a mecha-
nism to detect this and to add the missing, but necessary, infor-
mation.

The aim of this thesis is to develop a verification methodology
which enables the designer to verify designs consisting of inter-
connected predefined components.

1.3 Contributions
In this thesis we propose a formal verification approach which
smoothly integrates with a component based system-level
design methodology for embedded systems. The approach is
based on a timed Petri-net notation which is used to model the
interface logic and the components. Once the model correspond-
ing to the interface logic has been produced, the correctness of
the system can be formally verified. The verification is based on
the interface properties of the interconnected components and
on abstract models of their functionality. Our approach repre-
sents a contribution towards increasing both design and verifi-
cation efficiency in the context of a methodology based on
component reuse.

The contributions providing a basis for the proposed verifica-
tion methodology include:

 • Theoretical framework. A theoretical framework underlying
the verification methodology has been developed. It provides
strict mathematical definitions about the high-level models
of the components, called stubs, used in verification. Inter-
esting results can be deduced from these definitions and
used to improve verification efficiency.

 • Automatic generation of stubs. An algorithm which, given a
model of a component, generates a so called stub, has been
developed. The algorithm builds on the theoretical frame-
4

INTRODUCTION
work mentioned above. It furthermore removes the obliga-
tion of the IP provider to build appropriate stubs.

 • Translation of logic formulas into the Petri-net based design
representation. In certain situations it is desired to incorpo-
rate logic formulas (other than those being verified) in the
model to be verified, as assumptions about the rest of the
system. In order to do so, they must be translated into the
design representation used. We propose an algorithm for
doing this.

All parts of the proposed verification methodology are demon-
strated in experimental results, also presented in this thesis.

1.4 Thesis Overview
The rest of this thesis is structured as follows:

 • Chapter 2 gives background information on major issues in
the design of embedded system with emphasis on IP-based
design. Other work related to verification in this context is
also presented.

 • Chapter 3 addresses existing theory and definitions needed
in order to understand the thesis.

 • Chapter 4 introduces the big picture in which context the
rest of the chapters should be put. The main features of the
proposed verification methodology are presented here.

 • Chapter 5 presents the theoretical framework and funda-
mental properties of stubs.

 • Chapter 6 describes the algorithms used for automatically
generating stubs. Additional theory for this part is also
given.

 • Chapter 7 presents an algorithm for generating a stub which
satisfies a given property. Such stubs are useful when mak-
ing assumptions about system properties.
5

CHAPTER 1
 • Chapter 8 illustrates the whole verification methodology by
following an example.

 • Chapter 9 concludes the thesis and discusses possible direc-
tions for future work.
6

BACKGROUND
Chapter 2
Background

HE PURPOSE OF THIS CHAPTER is to introduce the
context in which the work presented in this thesis
belongs. First, a general system-level design flow is

introduced. Important aspects of IP reuse in general are then
presented, followed by a section introducing formal verification.
In the end, related work concerning formal verification of IP-
based designs is presented.

2.1 Design of Embedded Systems
Designing an embedded system successfully is a very compli-
cated task. Therefore, it is necessary to break down this task
into smaller ones. Figure 2.1 outlines the early stages of a typi-
cal embedded systems design flow, from the system specification
until the final model where the system is mapped and sched-
uled. This is the part of the design flow, the system-level, to
which the work presented in this thesis belongs.

The designer starts out with a specification written in a for-
mal or informal language. The specification contains informa-

T

7

CHAPTER 2
Modelling

System
Model

Architecture
Selection

Mapping

Mapped and
Scheduled Model

HW
Synthesis

SW
Synthesis

Communication
Synthesis

System
Specification

Simulation

Formal
Verification

Figure 2.1: System-level design flow

Scheduling

System Integration
and Testing

Simulation

Formal
Verification
8

BACKGROUND
tion about the system, such as its expected functionality,
performance, cost, power etc. It does not specify how the system
should be built, but only what system to build [Kar01].

The next step is to obtain a suitable system model. The model
should capture all essential aspects of the design in order to
facilitate later design steps. For this reason, it is important to
choose suitable models of computation for the system model
[Edw97], [Jan03].

When the system model is obtained, it should be validated to
make sure that it really corresponds to the initial specification.
This can be done either by simulation, formal verification or
both.

Having obtained a system model, the designer must then
decide upon a good architecture for the system. This stage
includes finding appropriate IP blocks in the library, for instance
processors, memories and application specific components
(ASICs).

The next step is to decide which part of the design (as cap-
tured by the model) should be implemented on which processing
element (processor, ASIC or bus). This step is called mapping. If
several processes are mapped onto the same processor, these
processes need to be scheduled. Possible bus accesses and simi-
lar resource usage collisions need either to be scheduled or a
dynamic collision management mechanism has to be imple-
mented. Constraints given in the original specification, e.g.
response times, must still be satisfied. This can also be verified
either by simulation, formal verification or both.

Later stages deal with synthesis of hardware and software
components, as well as their communication, and fall out of the
scope of system-level design.

If at a certain stage the designer finds out that an improper
design decision was taken at an earlier stage, a step backwards
has to be performed. Such iterations are very costly, especially if
errors are detected at later design steps, e.g. at prototyping
when a physical model of the product has already been built.
9

CHAPTER 2
Therefore, it is necessary to perform the validation steps, simu-
lation and formal verification, in order to detect errors as early
as possible in the design flow.

This thesis addresses the shadowed activities in Figure 2.1,
i.e. formal verification.

2.2 IP Reuse
By introducing reusable components, so called IP blocks (IP =
intellectual property), several problems which would otherwise
be absent, arise [Kea98], [Lo98]. On the other hand, using pre-
designed IP blocks is an efficient way of reducing design com-
plexity and time-to-market [Gir93].

Developing a reusable IP block takes approximately 2.5 times
more effort compared to developing the same functionality in a
classical design [Haa99]. Therefore, the designer must think
twice, if it is worth this effort or not. Will the same functionality
be used often enough in future or in other designs? Does there
already exist a suitable block developed by a third party? How-
ever, once the block is developed, the design time for future prod-
ucts is decreased significantly.

There are in principle two categories of actors in IP-based
design: the IP provider and IP user. The following subsections
describe problems faced by the two categories respectively
[Gaj00].

2.2.1 IP PROVIDER

The task of the IP provider is to develop new IP blocks. Anyone
who has performed this task is an IP provider. It is not necessary
that this person is someone in an external company, it might as
well be the colleague in the office next door.

The first problem encountered by the IP provider is to define
the exact functionality of the IP. As opposed to designing a spe-
cific system (without using IP), the IP provider must imagine
10

BACKGROUND
every possible situation in which the IP block may be applied, in
order to maximise the number of users. At the same time, effi-
ciency, verifiability, testability etc must not suffer too much. In
general, as a block is made more and more general and includes
more and more functionality, these parameters will suffer, as
illustrated in Figure 2.2. At a certain point, if the IP is too gen-
eral, it practically becomes useless.

Documentation is another issue which gains importance with
IP reuse. The documentation must be thorough enough so that
the IP user can decide whether the IP block at hand has the
desired functionality and performance requirements. For this
reason, data sheets, user manuals, simulation models, test-
benches and more should be provided. If the provider fails to
provide satisfactory documentation, it is necessary to give full
customer support.

In order to facilitate reuse and to reduce the need for exten-
sive documentation, standardisation is needed. Standardisation
provides a uniform way of interconnecting components. In this
way, the IP user does not need to spend time on learning how
each different IP block communicates with its environment. The
fact that all blocks communicate in the same way facilitates
integration and makes it less error-prone. Another advantage of
standardisation is that it becomes simpler to compare different

Quality
Verifiability
Testability
Characterisability

No of parameters0 parameters
Figure 2.2: Impact of IP generality on various

other parameters [Gaj00]
11

CHAPTER 2
blocks with each other and the likelihood of choosing the best
one is increased. Major standardisation efforts have been made
by the VSI Alliance [VSI].

Quality assurance is also very important. Some IP users are
still reluctant to adopt IP from third-party vendors because of
quality assurance issues. Therefore, it is important to demon-
strate that the IP delivers what it promises in its documenta-
tion. This is normally done by simulation and applying ”test
vectors” to the model using a testbench [Gar98]. These methods
should analyse both the functionality and the timing require-
ments of the IP [Yal99]. Other techniques include code coverage,
prototyping and formal verification [Kea98].

Not only purely technical issues apply. There are also business
and legal issues. One of the most important such issues is that of
copyright. In order to protect the IP blocks from being copied by
outsiders, the IP provider would like to mark the design with his
signature. At the same time, it should be impossible, or as diffi-
cult as possible, to copy the design without also copying the sig-
nature. The signature must, of course, not alter the functionality
of the block. One such technique is called watermarking. The IP
provider encrypts a sentence which unambiguously ties the
block to himself using a well-known encryption algorithm. The
string obtained is seemlessly encoded into the design, only to
appear when the block receives a certain, secret, input pattern.
Revealing a copyright violation is done by applying the secret
input pattern and decrypting the obtained output. Several
watermarking techniques exist [Hon99], [Cal99].

2.2.2 IP USER

The IP user is the one who uses the IP blocks designed by the IP
provider. This person faces similar problems as the IP provider
but with a different twist.

The SoC (System on a Chip) market is literally overflowed
with IP, so finding the most appropriate one for the design at
12

BACKGROUND
hand is not a trivial task. This imposes big requirements on the
IP repository (library) [Koe98] and the search mechanisms
[Reu99]. Once a seemingly suitable IP is found, it must be eval-
uated in the current design and possibly compared with another
IP block. Hence, it is important to have an effective design explo-
ration technique in order to produce an efficient system in short
time [Pei99]. Simulation is one good method of evaluating a
design and estimating its cost already at a high abstraction level
early in the design process [Dal99].

Having found the proper components for the design, the next
task of the IP user is to integrate them, so that they smoothly
communicate with each other. However, it might be necessary to
insert some logic (called glue logic in this thesis) between the
components in order to achieve the required functionality.
Figure 2.3 depicts this situation.

To facilitate the integration of components, approaches where
communication related issues are separated from behaviour
related issues have been developed [Row97], [Vah97].

Guaranteeing correctness of the interconnection of compo-
nents and the communication is crucial but often neglected. If
the interconnection does not work, the whole system will not
work either, despite the fact that each individual component

Figure 2.3: Two components and their glue logic

Comp 1 Comp 2Glue
Logic
13

CHAPTER 2
works according to its own specification. In this thesis, the glue
logic is verified to make sure that it satisfies the requirements
put by the components. If these requirements are not satisfied,
the system will not work. In order to perform such verification,
high-level models of the components must, in some way, be
obtained [Kar02]. These models differ from the actual complete
models of the components in the sense that they only have to
capture the behaviour related to the interface of the glue logic
under verification, while the other interfaces can, in principle,
be ignored.

2.3 Formal Verification
The goal of formal verification is to find discrepancies between
specification and design. As opposed to other verification tech-
niques, such as simulation, formal verification techniques
search exhaustively, but intelligently, the state space of the
designed system. This means that all possible computation
paths have been checked. In simulation, for example, the inter-
action with the system is done with an incomplete set of input
vectors. Consequently, the obtained simulation results only have
a certain degree of reliability.

Formal verification is generally based on mathematical (logi-
cal) models, methods and theorems. Several techniques exist,
such as language containment, model checking, equivalence
checking, symbolic simulation and theorem proving [Swa97].
This section will give a quick overview of three of them: model
checking, equivalence checking and theorem proving.

2.3.1 MODEL CHECKING

In model checking, the specification is written as a set of tempo-
ral logic formulas. In particular, Computational Tree Logic
(CTL) is usually used [Cla86]. CTL is able to express properties
in branching time, which makes it possible to reason about pos-
14

BACKGROUND
sibilities of events happening in different futures. The logic has
also been augmented with time (Timed CTL [Alu90]) to allow
definition of time bounds on when events must occur. Section 3.2
will present more details about these logics.

The design, on the other hand, is usually given by a transition
system. The exact formalism may vary between different model
checking tools, but a common system, also including timing
aspects, is timed automata [Alu94].

The model checking procedure traverses the state space by
unfolding the transition system [Cla99]. Working in a bottom-up
approach, it marks the states in which the inner-most subformu-
las in the specification are satisfied. Then, the states for which
larger subformulas are satisfied are marked based on the sets of
states obtained for the smaller formulas. In the end, a set of
states where the whole formula is satisfied is obtained. If the ini-
tial state of the transition system is a member of this set, the
design satisfies the requirements of the specification. On the
other hand, if the initial state is not a member, the specification
is not satisfied in the design.

If a universally quantified formula was found to be unsatis-
fied, the model checker gives a counter-example containing a
sequence of transitions leading to a state which contradicts the
formula. In case an existentially quantified formula is satisfied
in the model, a witness showing a sequence of transitions lead-
ing to a state which confirms the validity of the formula is given.
A common name of counter-example and witness is diagnostic
trace.

The time complexity of model checking is linear in terms of
the state space to be investigated. However, the state space gen-
erally grows exponentially with the size of the transition sys-
tem. This problem is usually referred to as the so called state
explosion problem.

As, basically, every reachable state in the state space is visited
one by one by the classical model checking algorithm, it is not
15

CHAPTER 2
feasible to check very large systems with a reachable state space
of above 106 states. In fact, for a long time, people did not believe
that formal verification (or model checking) had any practical
future because of this problem. However, later on, more efficient
data structures to represent sets of states have evolved to allow
state spaces of over 1020 states to be investigated [Bur90]. In
particular, states are not visited or represented one by one, but
states with certain common properties are processed symboli-
cally and simultaneously as if they were one entity. The data
structure for such efficient representation of state spaces is
called Binary Decision Diagrams (BDD) [Bry86]. Model check-
ing using BDDs is called symbolic model checking.

2.3.2 EQUIVALENCE CHECKING

Equivalence checking is typically used in design refinement.
When a new, refined, design is obtained, it is desired to check
that it is equivalent with the old, less refined, version. The
method requires the input/output correspondences of the two
designs. In the context of digital system design, there exist two
distinct types of equivalence checking, depending on the type of
circuits to compare: combinational and sequential.

Combinational equivalence checking is relatively simple,
checking that the two designs, given a certain input, produce the
same output. This is usually accomplished by graph matching
and functional comparison [Bra93].

Sequential equivalence checking is more difficult since we
need to verify that given the same sequence of inputs, the
designs produce the same sequence of outputs. A well-known
method is to combine the two designs into one and traverse the
product to ensure equivalence [Cou90].
16

BACKGROUND
2.3.3 THEOREM PROVING

Formal verification by theorem proving takes a different
approach from model and equivalence checking. The state space
as such is not investigated, but a pure mathematical or logical
approach is taken. Theorem provers try to prove that the speci-
fied properties are satisfied in the system using formal deduc-
tion techniques similar to those used in logic programming
[Rus01]. The prover needs the following information as input:
background knowledge, the environment in which the system
operates, the system itself and the specification. Equation 2.1
expresses the task of theorem proving mathematically.

(2.1)

The main problem of theorem proving is its extremely high com-
putational complexity (sometimes even undecidable). Conse-
quently, human guidance is often needed, which is prone to error
and often requires highly skilled personnel.

One attractive solution to this problem is to mix theorem prov-
ing and model checking. A simplified model, still preserving the
property in question, is developed. Theorem proving is used to
verify that the property really is preserved. The property is then
verified with the simpler model using model checking. This
method moreover allows diagnostic trace generation in applica-
ble situations. Work has been done to automate the property-
preserving simplification of the model [Gra97].

The advantage of theorem proving over other techniques is
that it can deal with infinite state spaces and supports highly
expressive, yet abstract, system models and properties.

background environment system specification+ +
17

CHAPTER 2
2.4 Formal Verification of IP Interconnection
Section 2.2 presented the aspects of IP reuse and Section 2.3
those of formal verification. In this section, work trying to com-
bine these two areas, i.e. verifying the interconnection between
two or more IP blocks is presented.

2.4.1 ASSUME-GUARANTEE REASONING

Assume-guarantee reasoning [Cla99] is not a methodology in
the sense described in earlier sections in this chapter. It is
rather a method of combining the results from the verification of
individual components to draw a conclusion about the whole sys-
tem. This has the advantage of avoiding the state explosion
problem by not having to actually compose the components, but
each component is verified separately.

The correct functionality of a component, , does not only
depend on the component itself, but also on the correctness of its
input environment. This is expressed as , where is
what expects from the environment, and guarantees that

holds. A typical proof shows that both and
hold and concludes that is true,

where is component composition. and are two different
but interacting components. The result of a component composi-
tion is a new component behaving in the same way as
and together. Equation 2.2 expresses this statement as an
inference rule.

(2.2)

Equation 2.3 shows another common inference rule which is
very powerful in the context of assume-guarantee reasoning.

M

g〈 〉 M f〈 〉 g
M M

f g〈 〉 M′ f〈 〉
True〈 〉 M g〈 〉 True〈 〉 M M′ f〈 〉||

|| M M′

M M′|| M
M′

True〈 〉 M g〈 〉
g〈 〉 M′ f〈 〉

True〈 〉 M M′ f〈 〉||
18

BACKGROUND
(2.3)

It expresses that if and are each other’s specification, i.e.
fulfills the assumptions of the other component, then their com-
position will satisfy the whole specification.

2.4.2 MODELLING THE ENVIRONMENT IN THE PROPERTY
FORMULAS

A different approach is to include the environment of the model
to verify in the property formula [Cha02]. The advantage with
this approach is that the designer can express the correctness
property and the environment under which it is expected to hold
in a unified way.

Assume that the possible input to our system is .
Equation 2.4 expresses a property stating that always within 4
time units a state where is satisfied is reached. This formula
should be checked assuming the environment described by

, i.e. both input signals are present.

(2.4)

The authors call this logic Open-RTCTL and they have also
developed a model checking algorithm for it.

2.4.3 CONSTRUCTING TABLEAUX FOR MODELLING THE
ENVIRONMENT

In order to be able to smoothly incorporate environments of a
component expressed as property formulas, as in Section 2.4.1
and Section 2.4.2, into common model checking tools, they need
to be translated into transition systems. When speaking of such
translations, the transition systems are often referred to as tab-

g〈 〉 M f〈 〉
f〈 〉 M′ g〈 〉

M M′ f g∧||

M M′

i1 i2,{ }

f

i1 i2∧

AF 4≤
i1 i2∧ f
19

CHAPTER 2
leaux in literature. Unfortunately, not all formulas can be trans-
lated into tableaux. Only so called LTL formulas and ACTL
formulas can be translated (see Section 3.2 for details) [Gru94].

The goal of the translation is to create a tableau which can
produce all possible events, given the constraints of the formula.
This means that the tableau must, in some sense, be maximal.

The technique of constructing tableaux from formulas can be
used for basic model checking purposes. Having constructed the
tableau for the formula, can be incorporated into a model

, obtaining a new model behaving in the same way as
assuming the environment . Verification can then be per-

formed on following normal procedures.

T T
M M T||
M T

M T||
20

PRELIMINARIES
Chapter 3
Preliminaries

HIS CHAPTER PRESENTS the necessary background
theory in order to understand the rest of this thesis.
First, the design representation which will be used

throughout the thesis will be introduced. Second, a brief intro-
duction to Computation Tree Logic (CTL) follows. Finally, a brief
overview of partial orders and lattices is presented.

3.1 The Design Representation: PRES+
As pointed out in Section 2.1, it is very important to choose a
good design representation. In this work, we have chosen a
Petri-net based model of computation called Petri-net based Rep-
resentation for Embedded Systems (PRES+) [Cor00].

This design representation was chosen because of its expres-
siveness and intuitivity. It is capable of handling concurrency as
well as timing aspects. It is also suitable for describing IP blocks,
since they can be well delimited in space and be assigned a well-
defined interface. The models can be provided at any desired
level of granularity. Moreover, it is possible to verify designs

T

21

CHAPTER 3
expressed with this formalism using existing model checking
tools [Cor00].

3.1.1 STANDARD PRES+

Definition 3.1: PRES+. A PRES+ model is a 5-tuple
 where

 is a finite non-empty set of places
 is a finite non-empty set of transitions

is a finite non-empty set of input arcs which define
the flow relation between places and transitions

is a finite non-empty set of output arcs which
define the flow relation between transitions and places

is the initial marking of the net (see Item 2 in the list
below)

The following notions of classical Petri Nets and extensions typ-
ical to PRES+ are the most important in the context of this the-
sis (see Figure 3.1):

1. A token has values and timestamps, where is
the value and is the timestamp. In Figure 3.1, the token in
place has the value 4 and the timestamp 0.

2. A marking is an assignment of tokens to places of the net.
The marking of a place is denoted . A place is
said to be marked iff .

Γ P T I O M0, , , ,()=
P
T
I P T×⊆

O T P×⊆

M0

Figure 3.1: A simple PRES+ net

x
x

x

x

x

x

y

xy

x
x

2..5[]

2..5[]
3..4[]

3..4[]

3..7[]
x 5+

x 5–

x 2 y>[]

x 4≤[]

p1

p2

p3

p4

p5

p6

p7

t1
t2

t3

t4

t5

out-ports

in-port

4 0,〈 〉

k k v r,〈 〉= v
r

p1
M

p P∈ M p() p
M p() ∅≠
22

PRELIMINARIES
3. A transition has a function and a time delay interval associ-
ated to it. When a transition fires, the value of the new token
is computed by the function, using the values of the tokens
which enabled the transition as arguments. The timestamp of
the new tokens is the maximum timestamp of the enabling to-
kens increased by an arbitrary value from the time delay in-
terval. The transition must fire at a time before the one indi-
cated by the upper bound of its time delay interval. In
Figure 3.1, the functions are marked on the outgoing edges
from the transitions and the time interval is indicated in
connection with each transition.

4. The transitions may have guards. A transition can only be
enabled if the value of its guard is true (see transitions
and).

5. The preset (postset) of a transition is the set of all
places from which there are arcs to (from) transition . Simi-
lar definitions can be formulated for the preset (postset) of
places. In Figure 3.1, , ,

 and .
6. A transition is enabled (may fire) iff there is at least one to-

ken in each input place of and ’s guard is satisfied.

3.1.2 DYNAMIC BEHAVIOUR

Figure 3.2 illustrates the dynamic behaviour of the example
given in Figure 3.1. In the situation of Figure 3.1, transition
can fire at any time between 2 and 5. Assuming that it fires at
time 3, the situation in Figure 3.2(a) is reached. Both transitions

and are now enabled. can fire after 3 but before 7 time
units after it became enabled and after between 2 and 5 time
units. This means that we have two simultaneous flows of
events. If fires after 4 time units and after 5 time units,
the situation in Figure 3.2(b) is obtained, where the new token
in has value and timestamp and the
token in has value and timestamp .

t4
t5

°t t° t
t

°t4 p4 p5,{ }= t4° p6{ }=
° p5 t3{ }= p5° t4 t5,{ }=

t
t t

t1

t2 t3 t2
t3

t2 t3

p4 4 5+ 9= 3 4+ 7=
p5 4 5– 1–= 3 5+ 8=
23

CHAPTER 3
x
x

x

x

x

x

y

xy

x
x

2..5[]

2..5[]
3..4[]

3..4[]

3..7[]
x 5+

x 5–

x 2 y>[]

x 4≤[]

p1

p2

p3

p4

p5

p6

p7

t1
t2

t3

t4

t5

4 3,〈 〉

4 3,〈 〉

x
x

x

x

x

x

y

xy

x
x

2..5[]

2..5[]
3..4[]

3..4[]

3..7[]
x 5+

x 5–

x 2 y>[]

x 4≤[]

p1

p2

p3

p4

p5

p6

p7

t1
t2

t3

t4

t5

9 7,〈 〉

1– 8,〈 〉

Figure 3.2: Example of the dynamic behaviour of PRES+

(a)

(b)

(c)

x
x

x

x

x

x

y

xy

x
x

2..5[]

2..5[]
3..4[]

3..4[]

3..7[]
x 5+

x 5–

x 2 y>[]

x 4≤[]

p1

p2

p3

p4

p5

p6

p7

t1
t2

t3

t4

t5

9– 11,〈 〉
24

PRELIMINARIES
Note that it is not necessary that all tokens have the same
timestamp. In this case, both and are enabled since their
guards are satisfied. Figure 3.2(c) shows the situation after
has fired after 3 time units. The resulting token in will have
value and timestamp .

3.1.3 FORCED SAFE PRES+

In this thesis, a modification to the enabling rule (item 6 in the
list defining standard PRES+, Definition 3.1) of transitions is
made.

 • A transition is enabled iff there is one token in each input
place, there is no token in any of its output places and its
guard is satisfied.

The rule is added to guarantee safeness of the Petri-net. A Petri-
net is safe if there is at most one token in each place for any fir-
ing sequence of the net. With this rule, there cannot possibly be
two tokens in one place, since each transition is disabled if there
is a token in an output place.

Forced safe PRES+ nets can relatively straight-forwardly be
translated into standard PRES+ using the following translation
rules, also illustrated in Figure 3.3.

1. Each place in the net is duplicated so that it has a shadow
place . If has an initial token, then has not and vice
versa.

2. For each input arc , where and , an output
arc is added.

3. For each output arc , where and , an input
arc is added.

4. The exception to 2 and 3 is if is both an input place and an
output place of , , in which case no arc is add-
ed (see arcs and .)

t4 t5
t4

p6
9– max 7 8,() 3+ 11=

p
p′ p p′

p t,〈 〉 p P∈ t T∈
t p′,〈 〉

t p,〈 〉 p P∈ t T∈
p′ t,〈 〉

p
t p °t∈ p t°∈∧

p3 t3,〈 〉 t3 p3,〈 〉
25

CHAPTER 3
In the rest of the thesis, it will be assumed that forced safe nets
are used.

3.1.4 COMPONENT ASPECTS OF PRES+

We will now define three concepts critical to our methodology, in
the context of the PRES+ notation.

p1

p2 p3

p4

p5

t1

t2

t3

t4

p1

p2 p3

p4

p5

t1

t2
t3

t4

p1’

p2’

p4’

p5’

p3’

(a) Forced safe PRES+ (b) Equivalent standard PRES+

Figure 3.3: Example of a PRES+ net with forced safe
semantics and its equivalent in standard PRES+
26

PRELIMINARIES
Definition 3.2: Component. A component is a subgraph of
the graph of the whole system (is the set of
places and is the set of transitions) such that:

1. Two components , may only overlap
with their ports (Definition 3.3), , where

.
2. The pre- and postsets (and) of all transitions of a

component , must be entirely contained within the com-
ponent, .

Definition 3.3: Port. A place is an out-port of component
if . A place is an in-port of if

. is a port of if it is either an in-
port or an out-port of .

Assuming that the net in Figure 3.1 is a component , is an
in-port and and are out-ports.

Note that tokens can appear in in-ports at any time with any
value. Dually, tokens can disappear from out-ports at any time.
It should be imagined that the component is connected to other
components placing and removing tokens from the in-ports and
out-ports respectively.

Definition 3.4: Interface. An interface of component is a
set of ports where .

Returning again to the example in Figure 3.1, the following sets
are all examples of interfaces: , , , ,

. The following sets are not interfaces with respect
to the example: , , .

A component will often be drawn as a box surrounded by its
ports, as illustrated in Figure 3.4(a), in the examples throughout

Γ P T∪= P
T

C1 C2, Γ⊆ C1 C2≠
C1 C2∩ Pcon=

Pcon p P p° C2⊆ °p C1⊆∧() p° C1⊆ °p C2⊆∧()∨∈{ }=

°t t° t
C

t C∈ °t t°, C⊆⇒

p
C p° C∩ ∅=() °p C⊆()∧ p C
°p C∩ ∅=() p° C⊆()∧ p C

C

C p1
p6 p7

C
I p1 p2 … pn, , ,{ }= pi C∈

p1{ } p6{ } p1 p6,{ } p6 p7,{ }
p1 p6 p7, ,{ }

p2{ } p2 p3,{ } p1 p2 p6, ,{ }
27

CHAPTER 3
the thesis. Ports will be drawn with bold circles. Modelled in this
way, a component can be replaced with its PRES+ model as indi-
cated by Figure 3.4(b).

3.2 Computation Tree Logic
In model checking, the specification of the system (i.e. the set of
properties to be verified) is written as a set of temporal logic for-
mulas. Such formulas allow us to express a behaviour over time.
For model checking, Computation Tree Logic (CTL) is particu-
larly used [Cla86]. CTL is able to express properties in branch-
ing time which makes it possible to reason about possibilities of
events happening in different futures.

CTL formulas consist of atomic propositions, boolean connec-
tives and temporal operators. The temporal operators are G (glo-
bally), F (future), X (next step), U (until) and R (releases). These
operators must always be preceded by a path quantifier A (all)
or E (exists). The universal path quantifier A states that the
subsequent property holds in all possible futures (computation
paths), whereas E states that there exists at least one future
(computation path) in which the subsequent property holds. The
following paragraphs will give a short explanation of the seman-
tics of the temporal operators, also illustrated in Figure 3.5.

Figure 3.4: Component substitution
(a) (b)
28

PRELIMINARIES
The operator G (globally) states that the particular property
will always be true in every state along a certain future (includ-
ing the initial state). F states that the particular property will
be true some time in the future (including the initial state),
whereas X only looks one step ahead in the future (not including
the initial state).

As opposed to the previously described operators, U and R are
binary. (for any path quantifier Q) means that must
be true at some time in the future. Until the moment when is
true, must be true in every state up until, but not necessarily

AG pp

p p

p p p pp

EG pp

p

p

AF p

p

p p

EF p

p

A pUq[]p

q p

q q

A qR p[]p

p q

q qp

Figure 3.5: Illustration of different CTL formulas

Q pUq[] q
q

p

29

CHAPTER 3
including, . It is not specified how far away the future when
is true is, but it must come eventually, hence is also true.

has a similar meaning as (In fact, the two
operators are duals). The difference is that it is not necessary
that will be true in the future. In that case, must be true
globally. However, if is true at a certain point in the future,
then needs only to be true in every state up until that point.
Note that the order of the arguments is reversed.

Formulas can be nested to express more complicated proper-
ties. For example, means that once is true,
then it must be possible that is true in the future.

means that once is true, it remains true
until becomes true and states that must be a reoc-
curring event, i.e. always be true in the future from any state no
matter what happens.

The remaining question is how to interpret the atomic propo-
sitions in our design representation PRES+. Every place in the
Petri-net has a label. A CTL formula consisting of an atomic
proposition which is the label of a place, e.g. , is true if there is
a token in that place, . A negated label, , is true if there
does not exist any token in the corresponding place, .

In order to be able to verify token values, labels can be com-
pared to values using an appropriate relation , where is
a relation and is any value. Such a proposition is true if there
is a token in the place, , and its token value is in the relation
with . Hence, . In Figure 3.2(b), both formulas

 and are true.
The negation of an atomic proposition with relation, ,

means that there is no token in that place, , with a value
related in the particular way. Consequently,

, where is the complementary relation of
. Note that , since means that there must

be a token in with a token value in the relation with respect
to .

q q
QF q

Q qR p[] Q pUq[]

q p
q

p

AG p EF q→() p
q

AG p A pUq[]→() p
q AGAF p p

p
p p¬

p

pℜv ℜ
v

p ℜ
v pℜv p⇒

p4 9= p5 0≤
pℜv¬

p

pℜv¬ p¬ pℜv∨⇔ ℜ
ℜ pℜv¬ pℜv⇔ pℜv

p ℜ
v

30

PRELIMINARIES
and are both
examples of CTL formulas for the example net in Figure 3.1.

It is also useful to define a subset of CTL which has particular
properties (discussed in later chapters), ACTL. ACTL formulas
do not have any existential path quantifiers and negation does
only occur in front of atomic propositions. Hence, and

are ACTL formulas, whereas and are
not.

As mentioned previously, CTL can only express relative time,
such as ” must be true some time in the future.” In many appli-
cations, however, it is desired to be able to set a time limit
whithin which a certain property must become true. That would
allow to express properties like ” must be true in the future
within at least time units.” This time limit is indicated by a
subscript on the temporal operators. , where

intuitively indicates the relationship between
time point and the time point when must be true. For
instance, means that must always be true within (or
equal to) 5 time units. The logic allowing such time relations is
call Timed CTL, or TCTL [Alu90]. ACTL formulas augmented
with time are called TACTL.

3.3 Partial Orders and Lattices
In Chapter 5, results based on partial orders and lattices are
presented. This section will therefore give a brief introduction to
this area. For more elaborate explanation, see [Grä78].

Definition 3.5: Partial order. A relation is a partial order
if it is reflexive, antisymmetric and transitive.

Definition 3.6: Poset. If is a partial order, then
the pair is called a partially ordered set, or poset.

AG p1 AF p6 p7∨()→() AG p1 p1 10≤→()

AGAF p
AF p¬ AGEF p AF p¬

p

p
x

AF px∼
>,≥,=,≤,<{ }∈∼

x p
AF p5≤ p

≤

≤ A A×⊆
A ≤,〈 〉
31

CHAPTER 3
Definition 3.7: Upper (Lower) bound. Let be a
poset and . Then is called an upper (lower)
bound of , (), iff () for all .

Definition 3.8: Least upper (Greatest lower) bound. Let
be a poset and . Then is called a least

upper (greatest lower) bound of iff () and
() whenever ().

Least upper and greatest lower bounds are unique if they exist.

Definition 3.9: Lattice. A lattice is a poset where
every pair of elements has a least upper bound,
denoted , and a greatest lower bound, denoted .

Figure 3.6 shows two examples of posets. The poset in
Figure 3.6(a) is a lattice since every pair of nodes have both a
least upper bound and a greatest lower bound. For instance,

and . However, the poset in
Figure 3.6(b) is not a lattice since several pairs do not have a
least upper bound or greatest lower bound. Both

A ≤,〈 〉
B A⊆ x A∈

B B x≤ x B≤ y x≤ x y≤ y B∈

A ≤,〈 〉 B A⊆ x A∈
B B x≤ x B≤ x y≤

y x≤ B y≤ y B≤

A ≤,〈 〉
x y A∈,

x y∨ x y∧

Figure 3.6: Examples of posets

(a) Lattice (b) Poset not a lattice
a1

a2 a3 a4

a5 a6 a7

a8

b1 b2

b3 b4

b5 b6

b7 b8

a2 a3∨ a5= a2 a3∧ a1=
32

PRELIMINARIES
(so they are both lower bounds), but neither
nor (so none of them is the greatest lower

bound).

Definition 3.10: Complete lattice. A complete lattice is a
poset where every subset (finite or infinite)
has a least upper bound and a greatest lower bound .
The element is called the top element and is called
the bottom element.

Theorem 3.1: Any finite lattice is a complete lattice.

According to Theorem 3.1, it is enough to prove that a finite
poset is a lattice in order to prove that there exists a top or bot-
tom element. The lattice in Figure 3.6(a) is consequently a com-
plete lattice with top element and bottom element .

b3 b4, b5 b6,{ }≤
b3 b4≤ b4 b3≤

A ≤,〈 〉 B A⊆
B B

A A

a8 a1
33

CHAPTER 3
34

THE VERIFICATION METHODOLOGY
Chapter 4
The Verification

Methodology

HIS CHAPTER PROVIDES an overview of the proposed
verification methodology. It is based on details explained
thoroughly later in Chapter 5 and Chapter 6.

The chapter begins with introducing an example used to
explain the verification process and its challenges.

4.1 Explanatory Example
To illustrate the methodology, an example of a military aircraft,
built on the General Avionics Platform (GAP) [Loc91] model, is
presented.

The system is centred around one single component, the MCC
(Mission Control Computer). All other components communicate
only with the MCC which then coordinates all requests and
responses. Besides the MCC, the system consists of the following
components: Radar, Display & Controls, Tracker and Weapon.

The Radar component repeatedly sends signals, with a regu-
lar time interval, concerning the current situation in the sky to

T

35

CHAPTER 4
keep other components updated. The Display & Controls compo-
nent displays the information it receives from the radar, via the
MCC, on a screen. It also notifies the MCC about the status of
the controls, for instance if a ”fire” command is issued. The
Tracker component, when activated, traces one single enemy
plane and issues orders to Weapon to aim at it. The Weapon
component receives aiming and firing instructions.

The whole setting is illustrated in Figure 4.1 at a high level of
abstraction. Messages sent by one component are delivered to
the recipient without loss. However, we would also like to specify
and model the communication mechanism through which the
components interact. A single segment LAN is chosen for this
purpose. The selected protocol is connection based. This yields
the situation in Figure 4.2, where the LAN is placed in the cen-
tre between the components and the protocol adapters. Note
that from a formal and methodological point of view, all boxes in
the figure including LAN and protocol handlers are also compo-
nents. What remains to be added is the glue logics, represented
by the clouds between the components.

As mentioned previously, a connection based protocol is used
in the design. However, the components in the high-level model

target_update update lock fire update lock_req aim aim_req fire_req

radar_in update_disp lock_req fire_req update_track lock aim_req aim fire

m

MCC

Radar Display & Controls Tracker Weapon

Figure 4.1: A high level model of the GAP example

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

36

THE VERIFICATION METHODOLOGY
in Figure 4.1 are not designed to communicate over such a pro-
tocol. Thus, the functionality of establishing and maintaining a
connection must be added in the glue logic. The same glue logic
also has to handle errors in case the connection was refused. The
model of such a glue logic between the Radar and its Protocol
adapter can be seen in Figure 4.31 (the time delay intervals on
the transitions are not shown in the figure for the sake of reada-
bility).

Before Radar can send any message, the glue logic must con-
nect to the MCC. This is reflected in the figure by the fact that
transition is not enabled until the protocol reported that it
has successfully been connected and a token appears in . To

1. Inhibitor arcs are drawn with a small circle instead of an arrow in one
end. The function of inhibitor arcs is to disable otherwise enabled tran-
sitions. In PRES+, inhibitor arcs are only syntactic sugar for a more
complex structure which performs the same functionality.

radar_in update_disp lock_req fire_req update_track lock aim_req aim fire

MCC (= Mission Control Computer)

target_update update lock fire update lock_req aim aim_req fire_req

Radar Display & Controls Tracker Weapon

Single Segment LAN

Figure 4.2: Refined GAP model

Protocol Adapter

Protocol Adapter Protocol Adapter Protocol Adapter Protocol Adapter

t2
p2
37

CHAPTER 4
achieve this, a token with value is passed to the
Protocol adapter, meaning that a connection to component MCC
is requested. When the connection is established, will
be passed to the Protocol adapter. The first element of the tuple
is a command to the protocol (”sd” is a shorthand for ”send”) and
the second element is an argument to the command. Here the
argument is a tuple of the destination of the message and the
message itself.

s

m

n

n

0

Radar

Protocol Adapter

target

inoutstatus

sendrec

update

Figure 4.3: The glue logic between Radar and its Protocol

con MCC,〈 〉

sd m,〈 〉

s connected=[]

s disconnected=[]

s rejected=[]

s others=[]

n 1+

n 5<[] t2 t1

t3

t4

t5

t6

t7

t10

t8

t9
t11

p1

p2

p3

p6 p5

p4

0 0,〈 〉

n

s
s

s

con MCC,〈 〉

sd m,〈 〉
38

THE VERIFICATION METHODOLOGY
If, however, the connection failed, the glue logic will continue
to attempt to connect, at most five times. It has been decided by
the designer that it is always the peripheral components (not the
MCC) which initiate any connection requests. The MCC, on the
other hand, must always listen for connection requests from the
other components.

4.2 Objective and Assumptions
The objective of the proposed methodology is the following: ver-
ify the glue logic so that it satisfies the requirements imposed by
the connected components.

The methodology is based on the following three assumptions:

 • The components themselves are already verified.
 • The components have some requirements on their environ-

ment associated to them expressed in a formal notation.
 • A model of the component is provided which is used together

with the attached glue logic in the verification process.

The first assumption states that the components themselves are
already verified by their providers, so they are considered to be
correct. What remains to be verified is the glue logic and the
interaction between the components through the glue logic.

According to the second assumption, the components impose
certain requirements on their environment. These requirements
have to be satisfied in order for the component to function cor-
rectly. The requirements are expressed with (T)CTL formulas,
described in Section 3.2, in terms of the ports in a specific inter-
face. It is important to note that these formulas do not describe
the behaviour of the component itself, but they describe how the
component requires the rest of the system (its environment) to
behave in order to work correctly.

Review the example introduced in Section 4.1. The communi-
cation protocol chosen in the example was connection based
39

CHAPTER 4
(Figure 4.2). A Protocol adapter implementing the chosen proto-
col was supplied and verified by a provider and (T)CTL formulas
describing the expected input on each interface of the compo-
nent were also supplied.

Two of the formulas provided together with the Protocol
adapter component are:

(4.1)

(4.2)

Equation 4.1 states that the protocol can never receive a send
command when it is disconnected. Equation 4.2 requires that as
long as the protocol is already connected, it is prohibited to con-
nect again. Note that all formulas are expressed only using val-
ues on the ports of one interface. In this example, the interface is
considered to be formed by all ports of the Protocol adapter con-
nected to the Radar through the glue logic.

The third assumption states that in order to be able to verify
the glue logic, a model of the attached components is needed.
Such models are called stubs and are formally defined in Chap-
ter 5.

Consider the Protocol adapter component in Figure 4.3. The
glue logic is connected to the interface ,
but the component has more ports than those in this interface,
namely the ports and . The behaviour of the ports in
depends actually also on the token exchange through these
other ports. Consequently, a mechanism to abstract away unat-
tached ports, in this case and , is needed.

Figure 4.4 shows how a simple stub for interface of the Pro-
tocol adapter might look like. When the Protocol receives a con-
nect (con) or listen (lis) command in port , transition
becomes enabled. In the real component, the response to such a
request is the result of token exchange on the ignored ports.

AG status disconnected init∨=()
A status connected= R in¬ send _,〈 〉=[]

→(
)

AG status connected
A status disconnected= R

in¬ connect _,〈 〉 in¬ listen -,〈 〉=∧=()
[

]

→=(

)

I in out status, ,{ }=

send rec I

send rec
I

in s1
40

THE VERIFICATION METHODOLOGY
However, since those ports are abstracted away in the stub, the
result of this exchange is considered non-deterministic from the
point of view of . This non-determinism is modelled in
Figure 4.4 with the conflicting transitions and . The
response can either be ”rejected” or ”connected”. When con-
nected, messages can be received from the party to which the

c

inoutstatus

arg

arg

rejected

connected

true

false

true

disconnected

cmd arg,〈 〉

cmd con= cmd∨ lis=[]

cmd disc=[]

cmd sd=[]

c true=[]

c

c

c

c true=[]

c true=[]

c false=[]

sendrec

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

q1

q2

q3

q5

q4

isconnected

Figure 4.4: A simple stub of the Protocol adapter

false 0,〈 〉

discon
n

ected

I
s4 s5
41

CHAPTER 4
component is currently connected. Transition models the
receive behaviour, by emitting tokens to port . It is, however,
only able to do so when the component is connected. Analo-
gously, send commands (sd) are simply consumed (transition

). Disconnection commands (disc) are taken care of similarly
by transitions and , depending on whether the Protocol
was previously connected or not. Transition takes care of the
case where the other party disconnects.

4.3 Methodology Overview
Our verification approach is illustrated in Figure 4.5. In order to
verify the glue logic it is needed to integrate its model with stubs
of the components it is connected to. These stubs capture the
characteristics of the outputs produced by the components as a
result of the given input and, by this, they provide the environ-
ment for the glue logic to be verified. The model composed of one
or more stubs and the glue logic itself is then passed to the
model checker together with the (T)CTL formulas associated to
the involved interfaces of the components. The model checker
then answers whether or not the given properties are satisfied.

Components, glue logics and stubs are all modelled in PRES+.
It should be mentioned that, in order to perform the model
checking, PRES+ has to be translated into the input language of
the particular model checker used. For the work in this thesis,
the models are translated into timed automata [Alu94] for the
UPPAAL model checking environment [UPP], using the algo-
rithms described in [Cor00]. In addition to the formulas pro-
vided together with the components, the designer can add
formulas invented by himself which he wants to be verified.
These additional formulas may be conditions on the ports of the
components or they can refer to any place in the glue logic in
order to verify the functionality of the glue logic.

s8
out

s3
s9 s10

s7
42

THE VERIFICATION METHODOLOGY
4.3.1 THE IMPACT ON VERIFICATION USING DIFFERENT STUBS

Since a component has several interfaces, it has naturally also
several stubs. This fact can be exploited by the verification proc-
ess in order to reduce verification time.

Consider the situation in Figure 4.6. The system consists of
two components, Doubler and Strange, and there is a glue logic
in between connecting them. Doubler accepts a token with an
integer value at in-port arg. In response, it will issue a token at

S
tu

b

S
tu

b

Glue

Logic

Interface 1
Interface 2

(T)CTL Formulas
(T)CTL Formulas

Model
Checker

(T)CTL Formulas (T)CTL Formulas
Interface 1 Interface 2

Satisfied/Unsatisfied
Figure 4.5: Overview of the proposed methodology
43

CHAPTER 4
out-port output with the value two times the value it received.
Component Strange will issue one token on out-port action as an
answer to each token it receives on in-port input. The glue logic
will provide the Doubler with an argument, starting with value
0 and increasing each time by one. The reply of the Doubler is
given to Strange which will acknowledge by issuing a token on
out-port action, which in turn will cause a new integer to even-
tually be provided to the Doubler.

Figure 4.7 lists the stubs corresponding to the example in
Figure 4.6. The stub for interface simply consumes any
token which arrives, and the stub for produces tokens
with only even token values since Doubler only produces even
values as a result of its input. and consumes
and produces tokens respectively. No other behaviour can be
observed by only looking at one individual port of Strange. The
stubs for interfaces and contain
all ports of their respective components. Consequently, their
stubs model the full component.

Let us elaborate on how this variety of stubs can be exploited
for verification considering the following formulas:

(4.3)

(4.4)

Doubler Strange

arg

output

action

input

0 0,〈 〉

i
i

i

i 1+

r r

Figure 4.6: Example for Stub Demonstration

arg{ }
output{ }

action{ } input{ }

arg output,{ } action input,{ }

AG input even input()→()

AG arg A arg U A output R arg¬[][]→()
44

THE VERIFICATION METHODOLOGY
(4.5)

(4.6)
To check formula 4.3 (if there is a token in place input, then the

value of that token must be an even number), only the stubs for
the interfaces and are needed. is
needed because tokens must be consumed in order to obtain a
deadlock-free system. is enough to produce tokens
with only even numbers. The satisfiability of the property does

arg

output

arg

output

Figure 4.7: Stubs used in the example in Figure 4.6

input

action

arg{ }

output{ }

action{ }

input{ }

action

input

x

2x

arg output,{ }

action input,{ }

2 random⋅

AG arg arg 0≥→()

AGEF input 0<

output{ } input{ } input{ }

output{ }
45

CHAPTER 4
not depend on the input on port . More complicated stubs
like and can also be used to
obtain a correct result. However, as will be discussed in Chapter
5, using fewer and smaller stubs may reduce the verification
time.

Formula 4.4 (if one argument is received by Doubler, another
argument may not arrive until the result of the first one is pro-
duced), requires all ports to be included in the stubs since the
causality between the ports is important for the property. Hence,
stubs corresponding to the interfaces and

must be used. Formula 4.5 (if there is a token
in place arg, then the value of that token is non-negative) can be
checked using any set of stubs.

Let us look at formula 4.6 (there is always a possibility that a
negative value may arrive at port input) which obviously is not
satisfied. However, if stubs with interfaces containing only a sin-
gle port are used, the verification will indicate that the formula is
satisfied, since the stub corresponding to interface
may produce negative numbers. But if the stub corresponding to

is used, the verification will point out that the
property is not true, which is the correct conclusion. Using simple
stubs on this formula results in the property being satisfied
whereas it is unsatisfied in reality, which is proven using more
complex stubs. The situation for the other properties is that the
properties are unsatisfied using simple stubs, whereas they are
satisfied in reality, which is proven using more complex stubs. The
reason for this difference is that formula 4.6 is not an ACTL for-
mula as opposed to the other formulas.

It is obvious that using the stub covering all ports connected to
the glue logic (called top-level stubs) for all components, we will
get a correct verification for properties specified by any formula.
However, we have many different stubs for each component.
Thus, the following question has to be answered: Do we always
have to use the top-level stubs in order to verify a certain for-
mula? If the answer is ”no”, then which stub or combination of

arg
arg output,{ } action input,{ }

arg output,{ }
action input,{ }

output{ }

arg output,{ }
46

THE VERIFICATION METHODOLOGY
stubs to use for verification? These questions are of both theoret-
ical and practical importance. From the practical point of view,
selecting a certain combination of stubs can reduce the complex-
ity of the verification process and, by this, the verification time.
On the other hand, it can happen that certain stubs, possibly the
top-level ones, are not available. Thus, it is important to provide
a theoretical platform which allows to decide if it is possible to
perform a correct verification with a certain combination of
available stubs. This theoretical framework will be described in
Chapter 5.

It could be the case, though, that the property being verified
depends on a specific feature of the environment of the compo-
nent, so that the behaviour described by the stubs is too general.
We assume that these additional features are described as logic
formulas capturing constraints related to ports of the compo-
nent not connected to the actual glue logic under verification. In
such cases, it is possible to construct a model corresponding to
these logic formulas, as was mentioned in Section 2.4.3. These
models are then included in the verfication process together
with the components. An algorithm to construct such a model for
PRES+ is presented in Chapter 7.

4.3.2 VERIFICATION METHODOLOGY ROADMAP

In order to support the designer, it is necessary to introduce
some structure to the verification process, so that the verifyer
clearly knows the sequence of steps to follow and if the results
obtained at a certain moment are valid or not. If the results turn
out not to be valid, the verification process suggests what should
be done in order to obtain a valid result. For this purpose, a road-
map has been developed. It should work as a guideline which the
verifyer can follow to obtain good results in reasonable time.

The roadmap will be presented in the rest of the thesis as the
particular aspects of the verification process are discussed in
more detail.
47

CHAPTER 4
The methodology consists of two main parts, presented in
Chapter 5 and Chapter 6 respectively. The first part assumes
that stubs are already given by the component providers. The
problem is to find the most appropriate set of them. The second
part assumes that a model of the whole component is provided
and that appropriate stubs can be automatically created given
this model.

Since the methodology includes these two distinct parts, the
first question in the roadmap to be answered by the verifyer is
intended to guide the verification into either part. Figure 4.8
presents the first question.

In the roadmap presented in this thesis, diamonds denote Yes
and No questions to be answered by the verifyer. Depending on
the answer for a particular case different paths are taken as
indicated on the edge of the diamond. Squares denote activities
which have to be performed. Rounded squares (ovals) denote ter-
minals where a verification result is reached.

Since there are, in general, several components connected to
the glue logic under verification, stubs must be selected or cre-
ated for each of them. Consequently, there is one instance of the

Are stubs provided
by the component designer?

Start

Yes

No

Figure 6.17

Figure 5.12

Figure 4.8: The start of the roadmap
48

THE VERIFICATION METHODOLOGY
roadmap for each stub or component. The instances are followed
independently of each other, with synchronisation points where
the verification (model checking) itself takes place.

For example, one component already has stubs provided
together with it, and another component does not, so they have
to be created given the model of the component. A (set of) stubs
to represent each connected component must have been selected
or created when the actual model checking of the glue logic is
performed.
49

CHAPTER 4
50

VERIFICATION OF COMPONENT-BASED DESIGNS
Chapter 5
Verification of

Component-based
Designs

N THIS CHAPTER the theoretical framework underlying
the verification methodology is presented. It gives formal
definitions and presents important properties and rela-

tions. Experiments have also been performed. The chapter ends
with a continuation of the roadmap introduced in Section 4.3.2.

5.1 Definitions
In Section 4.2 we concluded that some description mechanism of
the components is necessary in the verification process. We have
previously called components describing another component
”stub”. In this section, a mathematical definition of what a stub
exactly is will be given. Before defining a stub, some auxiliary
concepts have to be defined.

Definition 5.1: Interface compatibility. Interfaces and
are compatible iff there exists a bijection such

I

I1
I2 f :I1 I2→
51

CHAPTER 5
that if , then and are both either in-ports or
out-ports in their respective interface.

Remembering that interfaces are sets of ports, (Definition 3.4),
it is inuitive to see that two interfaces are compatible if they
have equally many in-ports and equally many out-ports.
Figure 5.1 illustrates this concept further. The interfaces in
Figure 5.1(a) are not compatible since the left-hand component

f p() q= p q

(a) Incompatible interfaces

(b) Incompatible interfaces

(c) Compatible interfaces

Figure 5.1: Illustration of interface compatibility
52

VERIFICATION OF COMPONENT-BASED DESIGNS
has two out-ports and one in-port, whereas the situation in the
right-hand component is the reverse. The interfaces in
Figure 5.1(b) contain a different number of ports and are thus
not compatible either. Only the interfaces in Figure 5.1(c) are
compatible, since they have an equal number of in-ports and
out-ports respectively.

Definition 5.2: Event. An appearing event is a tuple
, where is a place and is a token.

Appearing events represent the fact that a token with
value is put in place at time moment . A disappear-
ing event is a tuple where is a place and is a
timestamp. Disappearing events represent the fact that a
token in place is removed at time . Observe that for dis-
appearing events we are not interested in the token value.
An event is either an appearing event or a disappearing
event.

Definition 5.3: Observation. An observation is a set of
events . Given observation and an inter-
face , the restricted observation

. An input
observation is an observation which only contains
appearing events defined on in-ports and disappearing
events defined on out-ports. An output observation is an
observation which only contains appearing events defined on
out-ports and disappearing events defined on in-ports.

Figure 5.2 illustrates the concept of observations according to
Definition 5.3. The figure shows the flow of events as described
by observation , defined in the figure. Initially at time ,
the ports do not contain any token. The observation states that a
token with value 2 appears in port at time moment 1. At time

e+ p k,〈 〉= p k vk rk,〈 〉=
k

vk p rk
e- p r,〈 〉= p r

p r

e

o
o e1 e2 …, ,{ }= o

I
o

I
p k,〈 〉 o∈ p I∈{ } p r,〈 〉 o p I∈∈{ }∪=

in

out

o t 0=

p

53

CHAPTER 5
another token appears in and at time disap-
pears. A token with value 3 then appears in port at and
at time both tokens in and disappear.

The restricted operation of with respect to interface is
and the one

restricted with respect to is .
Moreover, in this particular case, .

Assuming that is an in-port and is an out-port, then the
observation is an input
observation and is an output
observation.

When discussing about input and output observations, the
interest is concentrated on what a user of a component inputs to
it or receives as output from it. Since the user is also affected by
the time when tokens are consumed by the component, the dis-
appearing events on in-ports have also been included in output
observations. A similar argument holds for disappearing events
on out-ports in the case of input observations.

o p 2 1,〈 〉,〈 〉 q 5 3,〈 〉,〈 〉 p 4,〈 〉 p 3 8,〈 〉,〈 〉 p 9,〈 〉 q 9,〈 〉, , , , ,{ }=

p

q

t 0=

p

q

t 1=

2 1,〈 〉
p

q

t 3=

2 1,〈 〉

5 3,〈 〉

p

q

t 4=

5 3,〈 〉

p

q

t 8=

5 3,〈 〉

3 8,〈 〉
p

q

t 9=

Figure 5.2: Illustration of observations

t 3= q t 4= p
p t 8=

t 9= p q
o p{ }

o
p{ } p 2 1,〈 〉,〈 〉 p 4,〈 〉 p 3 8,〈 〉,〈 〉 p 9,〈 〉, , ,{ }=

q{ } o
q{ } q 5 3,〈 〉,〈 〉 q 9,〈 〉,{ }=

o
p q,{ } o=

p q
in p 2 1,〈 〉,〈 〉 p 3 8,〈 〉,〈 〉 q 9,〈 〉, ,{ }=

out q 5 3,〈 〉,〈 〉 p 4,〈 〉 p 9,〈 〉, ,{ }=
54

VERIFICATION OF COMPONENT-BASED DESIGNS
Definition 5.4: Operation. Consider an arbitrary input
observation of component . If events occur in the way
described by , we can obtain the output observation
by executing the PRES+ net of . For each , several differ-
ent observations are possible due to non-determinism.
The set of all possible output observations of being
the result of applying the input observation to component

, is called the operation of component from and is
labelled . Given an operation

and an interface of component ,
the restricted operation .

Intuitively, the operation of a component describes all possible
behaviours (outputs) of that component, given a certain input
pattern.

We are now ready to define what a stub is. In Chapter 4, stubs
were described as a piece of PRES+ net modelling the behaviour
of a component with respect to a specific interface. Ports belong-
ing to other interfaces should be abstracted away by introducing
non-determinism.

Definition 5.5: Stub. Let us consider two components,
and . is the interface of containing all ports of .
is any interface of . is a stub of with respect to inter-
face iff:

1. Interface is compatible with interface .
2. For any input observation of component , satisfying all

requirements on ports not in , .

Since the lefthand-side is restricted to interface , it is clear
that events on ports not belonging to this interface are not con-
sidered. All possible inputs to are considered, though. The

in C
in out

C in
out

out C
in

C C in
O pC in()

O pC in() o1 o2 …,,{ }= I C
O pC in()

I
o1 I

o2 I
, …{ , }=

S
C IS S S IC

C S C
IC

IS IC
in C

IC O pC in()
IC

O pS in
IS

()=

IC

C

55

CHAPTER 5
meaning of the expression on the left-hand side is thus, the set of
all possible output behaviours occurring in ports of obtained
by firing the PRES+ net of given any possible input.

The set on the right-hand side denotes the set of all possible
behaviours obtained by firing the PRES+ net of given the
same input, but only those events of the input belonging to a
port in (implicitly applying the bijective function defined by
the interface compatibility in Definition 5.1). The output does
not need to be restricted since only output compatible with is
produced. However, the input must be restricted so that only
events corresponding to ports existing in are considered. The
other events are left to non-determinism as discussed previ-
ously.

5.2 Relations between Stubs
As the concept of stubs has now been formally defined, it is time
to investigate how stubs belonging to different interfaces of a
component relate to each other.

Definition 5.6: Top-level interface. The top-level interface
of a component , with respect to a glue logic , is the set of
ports of the component to which the glue logic is connected,

. We will use the simple notation , if it is
either not important or it is clear from the context, to which
component and glue logic we refer.

Returning to the example in Figure 4.3, which shows a glue logic
between the two components Radar and Protocol adapter,

and
. For the sake of understanding

the rest of this chapter, it should be noted that the involved com-
ponents do have other interfaces connected to than the top-
level one. For instance, , , are all

IC
C

S

IS

IC

IS

C G

Imax
C G, C G∩= Imax

Imax
Protocol G, in out status, ,{ }=

Imax
Radar G, targetupdate{ }=

G
in out,{ } in status,{ } out{ }
56

VERIFICATION OF COMPONENT-BASED DESIGNS
examples of such interfaces of the Protocol adapter component,
but none of them is a top-level interface with respect to the glue
logic. Each of these interfaces has an associated stub as defined
by Definition 5.5. Top-level interfaces are unique and they
always exist if the glue logic is connected to the component.

The ports of a component , can be divided into interfaces in
many different ways. More precisely, every subset of can
be considered an interface for which a stub can be constructed.
Figure 5.3 presents a partial order (lattice) of interfaces and
hence also of stubs of a component connected to a glue logic
through two in-ports (I1 and I2) and two out-ports (O1 and O2).
The lattice induces distinct levels of generality of the stubs. The
top-level stub (the stub for the top-level interface), with inter-
face , exhibits exactly the same behav-
iour as its corresponding component. However, the
implementation is not bound to be the same. In the bottom of the

Figure 5.3: A partial order of interfaces

I1I2O1O2

I1I2O1 I1I2O2 I1O1O2 I2O1O2

I1I2 I2O1 I1O1 I1O2 I2O2 O1O2

I1 I2 O1 O2

∅
level 0:

level 1:

level 2:

level 3:

level 4:

∅IN ∅OUT

C
Imax

Imax I1 I2 O1 O2, , ,{ }=
57

CHAPTER 5
lattice, we have the empty interface, for which there does not
exist any stub and which is only of theoretical interest. If, for a
certain verification, no stubs situated at level 1 or higher are
applied at a certain port, then a so called empty stub is con-
nected to that port. In the case of in-ports, the empty stub, ,
denotes the stub that consumes any token at any point in time.
Similarly, the empty stub, , denotes the stub that gener-
ates tokens with random values at any point in time. The models
of these stubs are presented in Figure 5.4. It is useful to intro-
duce the notation to denote the empty stub at port .
Whether is equal to or to depends on whether

is an in-port or an out-port. We further elaborate on the use of
empty stubs in Section 5.3.

Between and , stubs of different levels of generality
can be found. For each level up in the lattice as more and more
ports are included in the interfaces, more specialised stubs can
be found which introduce causality between in-ports and out-
ports of the respective interfaces.

On level 1, stubs for one-port interfaces are situated. If the
interface only contains an in-port, the functionality of the stub is
to consume the token at random times which, however, corre-
spond to times when the full component could be able to con-
sume the token, if it would be consumed at all. If it only contains
an out-port, the functionality is to issue a new token with ran-
dom value at random occasions. The value and time are random
to the extent that the issued values could, in some circumstance,
be issued by the full component at the time in question. Note the
difference between these stubs and and , respec-

∅IN

(a) ∅IN

random

(b) ∅OUT
Figure 5.4: The models of the empty stubs

0..∞[] 0..∞[]

∅OUT

∅ p p
∅ p ∅IN ∅OUT

p

Imax ∅

∅IN ∅OUT
58

VERIFICATION OF COMPONENT-BASED DESIGNS
tively. The empty stubs produce/consume tokens with random
values and times with no regard to the component.

If higher level (level > 1) stubs contain both in-ports and out-
ports, a certain degree of causality is introduced. The out-ports
can no longer produce any arbitrary value on the tokens, but
rather any value still consistent with the token values arriving
at the in-ports given the behaviour of the full component. Hence,
for instance, in Figure 4.4 no token on port out can be issued
unless the stub has received a connection or listen request at
port in and accepted it. If there are other in-ports of the compo-
nent, not represented in the interface of the stub, the output is
considered non-deterministic from the point of view of the
absent in-port, as in the case with the non-deterministic issuing
of rej and con as an answer to a connect request described previ-
ously in Figure 4.4.

5.3 Verification Environment
In Section 4.3.1, the impact of using different sets of stubs was
briefly discussed. It was concluded that it is enough to use sim-
ple stubs, from here on called low-level stubs referring to the lat-
tice in Figure 5.3, in order to verify some properties. Other
properties still required complicated, or high-level, stubs, where
the causality between ports is still kept. This section tries to
bring some order into that discussion and proposes a methodol-
ogy which takes advantage of the variety of stubs to reduce ver-
ification time. First, the mathematical foundation must be set.

Definition 5.7: Interface partition. An interface partition
is a set of non-empty interfaces such

that for any and , .
P P P1 P2 …, ,{ }=

Pi P j∩ ∅= i j i j≠
59

CHAPTER 5
It should be pointed out that each port can, at most, belong to
one interface in every partition. As a consequence of
Definition 3.4, all ports in the same interface must belong to the
same component. By convenience, the set of all ports belonging
to the interfaces in partition is denoted .

In the example of Figure 4.6, ,
and

are all interface parti-
tions. and

. How-
ever, , and

are all examples of sets
which are not interface partitions since contains the empty
set, contains a set which in turn contains ports from different
components and the interfaces of are not disjoint.

Definition 5.8: Partition precedence. Partition precedes
partition , , iff .

For every , there exists at most one that satisfies
the subset relation. This is due to the fact that every port can at
most belong to one interface in the partition.

Using , and as defined above, , since all inter-
faces in are subsets of an interface in . It is also true that

and . However, it is not the case that since
is not a subset of any set in . Intuitively, the

stubs corresponding to interfaces in are more accurate than
those in or , since they capture more of the causalities and
dependencies between their ports.

Theorem 5.1: The partition precedence relation is a partial
order.

P Ports P() i
i P∈∪=

P arg{ } output{ },{ }=
Q arg{ } output{ } action input,{ }, ,{ }=
R arg output,{ } action input,{ },{ }=

Ports P() arg output,{ }=
Ports Q() Ports R() arg output action input, , ,{ }= =

S { } input{ },{ }= T arg action,{ }{ }=
U action{ } action input,{ },{ }=

S
T

U

P
Q P Q∝ p P q Q: p q⊆∈∃∈∀

p P∈ q Q∈

P Q R P Q∝
P Q

P R∝ Q R∝ R Q∝
arg output,{ } Q

R
P Q
60

VERIFICATION OF COMPONENT-BASED DESIGNS

r

Proof: Reflexivity: which is
trivially true since every set is a subset of itself.
Antisymmetry: Assume and . The given assump-
tion is equivalent to

according to
Definition 5.8. Due to the observation that the existentially
quantified and are uniquely determined, it is valid that

. Since all elements of and are
equal, then .
Transitivity: Assume and .

, since the existentially quantified in the first clause of the for-
mula is included among the universally quantified ’s in the
second clause.

Theorem 5.2: The partition precedence relation has a top
element , including the top-level interfaces of all con-
nected components, and bottom element .

Proof: Assume which contains only top-level interfaces
and the empty partition . Consider an arbitrary par-
tition . by definition since only contains top-
level interfaces and all interfaces of must be a subset of one of
the top-level interfaces due to the interface subset relation
(Figure 5.3). is trivial.

In fact, the precedence relation does not only have top and bot-
tom elements, but it is a lattice. Since it is a lattice and finite,
Theorem 3.1 implies Theorem 5.2.

Definition 5.9: Environment. The environment correspond-
ing to a partition with respect to a set of
ports where , is defined as

where

P P p1 P p2 P. p1 p2⊆∈∃∈∀⇔∝

P Q∝ Q P∝

p P q Q: p q⊆∈∃∈∀() q Q p P:q p⊆∈∃∈∀()∧

p q
p q q p p⇒⊆∧⊆ q= P Q

P Q=
P Q∝ Q R∝

p P q Q: p q⊆∈∃∈∀() q Q r R:q r⊆∈∃∈∀()∧ p P r R: p ⊆∈∃∈∀⇒
q

q

Pmax
Pmin ∅=

Pmax
Pmin ∅=

P P Pmax∝ Pmax
P

Pmin ∅ P∝=

P I1 I2 …, ,{ }=
J Ports P() J⊆

Env P J,() Sii P∈∪() ∅
p J Ports P()–∈∪ p

()∪=
61

CHAPTER 5
each is the stub for interface , and is the empty stub
attached to port 1.

Let us consider the example in Figure 4.6 with the stubs of the
components in Figure 4.7. With

, Figure 5.5(a) shows the
environment . Since port out-
put is not included in the partition, the empty stub (see
Figure 5.4) has been added. Figure 5.5(b) shows a similar exam-
ple for . In Figure 5.5(c), no empty

1. The union of two PRES+ nets can be reduced to the union of the places
and transitions, respectively.

Si i ∅ p
p

arg

output
2⋅random

arg

output

x

2⋅x

action

input

(a)

arg

action

input

(b)

(c)
Figure 5.5: A few environments for the example in

Figure 4.6

∅output

∅action

∅input

J arg output action input, , ,{ }=
Env arg{ } action input,{ },{ } J,()

∅output

Env arg{ } output{ },{ } J,()
62

VERIFICATION OF COMPONENT-BASED DESIGNS
stub needs to be added for
, since all ports in

 are included in the partition.
If all the individual stubs in together are viewed as

one single component, we obtain the environment corresponding
to partition with respect to the set of ports . The name stems
from the fact that such a component acts as the environment of
the glue logic, connected to the ports in , in the verification
process. A synonymous name is Verification Bench. Based on
Theorem 5.1 and Theorem 5.2, it is possible to construct a par-
tial order (lattice) of partitions, i.e. environments, similar to that

Env arg output,{ } action{ } input{ }, ,{ } J,()
J

∅

{i1} {o1}

{i1,o1}

o1

i1

Figure 5.6: Components and corresponding interfaces

(a) Components and glue logic

(b) Interface lattices

Component

Component 1 Component 2

i2

Component

∅IN ∅OUT

{i2}

∅

∅IN

1
2

Env P J,()

P J

J

63

CHAPTER 5

C)
done with individual stubs and their interfaces (Figure 5.3).
Figure 5.6 introduces a very simple example consisting of two
interconnected components. In Figure 5.6(b), we show the inter-
face (stub) lattice corresponding to each of the components.
Figure 5.7 depicts the corresponding partition (environment)
lattice.

Definition 5.10: Surrounding. The surrounding of a glue
logic , , is the part of the design not including
or any component connected to , .

.

∅

{{i1}} {{o1}} {{i2}}

{{i1},{o1}} {{i1},{i2}} {{o1},{i2}}

{{i1},{o1},{i2}}{{i1,o1}}

{{i1,o1},{i2}}

Figure 5.7: Partition (environment) lattice of the situation
in Figure 5.6

G Sur G() Γ G
C G C G∩ ∅≠

Sur G() Γ G
C C′ C′ is a component in Γ() C′ G∩ ∅≠∧{ }∈∪∪(–=
64

VERIFICATION OF COMPONENT-BASED DESIGNS
Figure 4.3 shows a glue logic and its connected components
Radar and Protocol adapter. These three entities are only a part
of the design of the whole system shown in Figure 4.2. The
whole system except , Radar and Protocol adapter, is said to
be the surrounding of , . The glue logic in
Figure 4.6 does not have any surrounding, .

5.4 Formal Verification with Stubs
Having shown that there are many possibilities in choosing the
proper stubs, i.e. choosing the verification environment, for the
verification problem at hand, a mechanism for helping the veri-
fier making this choice is presented through the following defini-
tions and theorems.

Theorem 5.3: Given an input observation , two parti-
tions and , , and a set of ports where

, then
.

Proof: Assume an observation . This
means that is a possible output observation given the input
observation . By definition of partition precedence,

. Hence the restriction operator in
(see Definition 5.5) filters out more

elements from the unrestricted operation when
than when . Consequently must also pass the
filter of and can be an output of , i.e.

.

Definition 5.11: Generalised operation. The generalised
operation for component is the union of all opera-

G

G
G Sur G() G′

Sur G′() ∅=

in
P1 P2 P1 P2∝ J

Ports P1() Ports P2(), J⊆
O pEnv P1 J,() in() O pEnv P2 J,() in()⊇

o O pEnv P2 J,() in()∈
o

in
p1 P1 p2 P2: p1 p2⊆∈∃∈∀

O pC in()
IC

O pS in
IS

()=
IS IC p2= =

IS IC p1= = p
p1 Env P1 J,()

o O pEnv P1 J,() in()∈

O pC C
65

CHAPTER 5
tions for every possible input observation,
.

According to Definition 5.4, an operation is the set of all possible
outputs given a certain input. The generalised operation is the
set of all possible outputs no matter what the input is. The gener-
alised operation allows us to generalise Theorem 5.3 into the fol-
lowing corollary.

Corollary 5.1: Given partitions and , , and a
set of ports where , then

.

Proof: Follows directly from Theorem 5.3 and Definition 5.11.

Definition 5.12: State sequence generator. A state, in this
context, is a marking of ports. A state sequence generator is a
function , where is an observation and is an
initial state. The observation may only contain appearing
events and disappearing events on ports. The result of the
function is a sequence of states obtained by iteratively apply-
ing the events in to the previously obtained state (initially

) in the order indicated by their timestamps.

Let denote the timestamp of an event . Assume
or , depending on whether it is an

appearing or disappearing event, and
, i.e. the set of events with the lowest

timestamp in . Then Definition 5.12 can be recursively refor-
mulated as , where
denotes the head, , and the tail, , of a sequence, and
denotes the resulting state (marking) after applying all events
in on the initial state (marking) . The basis of the recur-
sion is .

O pC O pC in()
in∪=

P1 P2 P1 P2∝
J Ports P1() Ports P2(), J⊆

O pEnv P1 J,() O pEnv P2 J,()⊇

σ o M0,() o M0
o

o
M0

re e o∈
e p v re,〈 〉,〈 〉= e p re,〈 〉=

E e e′ o: re′ re<()∈∃¬{ }=
o

σ o M0,() M0:σ o E– M0 E(),()[]= h:T[]
h T M0 E()

E M0
σ ∅ M0,() M0[]=
66

VERIFICATION OF COMPONENT-BASED DESIGNS
Figure 5.2 has illustrated the result of applying the state
sequence generator on the given observation with an empty ini-
tial marking. Describing the contents of the ports in each time
step mathematically, Equation 5.1 gives the solution.

(5.1)

The definitions given so far provide the necessary means to
express the semantics of CTL formulas in the context of the the-
oretical framework we have introduced. First, recall the classi-
cal definitions [Cla99] for the two example formulas and

for any CTL formula (means that formula holds
in state , and denotes equivalence between two formu-
las):

(5.2)

(5.3)

denotes the set of all possible sequences of states in
model where the first state is . It should be noted that in
these equations does not refer to the state sequence generator
introduced in Definition 5.12, but is a variable quantified over a
set of sequences of states. From these sample equations it is pos-
sible to extract how the state path quantifiers (A, E) and the
time quantifiers (G, F) translate into the semantics of our theo-
retical framework. The difference between this model and ours,
is that all definitions in our model are based on events, not
states. The link between these two views of the world is based on
the state sequence generator in Definition 5.12. Equation 5.4
and Equation 5.5, where is the set of all possible input
observations of component , express the same semantics as
Equation 5.2 and Equation 5.3 in terms of observations and
operations.

σ o ∅,() ∅ p 2 1,〈 〉,〈 〉{ } p 2 1,〈 〉,〈 〉 q 5 3,〈 〉,〈 〉,{ }
q 5 3,〈 〉,〈 〉{ } p 3 8,〈 〉,〈 〉 q 5 3,〈 〉,〈 〉,{ } ∅

, ,
, , ,

[
]

=

AF φ
EG φ φ s φ φ

s φ ψ⇔

s AF φ σ∀ PM s() j∃ 0:σ j[] φ≥∈⇔

s EG φ σ∃ PM s() j∀∈ 0:σ j[] φ≥⇔

PM s()
M s σ

IN
C

67

CHAPTER 5

φ

(5.4)

(5.5)

The union is taken of both all possible input observations,
, and all possible output observations, , and

passed to the state sequence generator to be used as in the clas-
sical definitions. The observations are quantified in the same
way as the state sequences would have been done in Equation
5.2 and Equation 5.3.

In [Alu90] equivalent formulas to Equation 5.2 and Equation
5.3 are given for TCTL. Based on the discussion above, they can
be trivially extended to formulas similar to Equation 5.4 and
Equation 5.5.

Theorem 5.4: Assume the partitions and , ,
a set of ports where , an initial
marking on the ports in and a (T)ACTL formula, e.g.

, also expressed only on the ports in . If
for component , then it is also true that

 for component .

Proof:

, where is the set of all input observations on ports in the
partitions, according to Equation 5.4. As a consequence of
Corollary 5.1 and the fact that and are universally quanti-
fied, it is possible to conclude

.

The key point in the proof is the universal quantifiers of the
observations and . For this reason the theorem only applies
to (T)ACTL formulas, since they are exactly those formulas
which can guarantee the universal quantifier.

M0 AF φ o∀ O pC i∀ IN j∃∈∈ 0:σ o i∪ M0,() j[] φ≥⇔

M0 EG φ o∃ O pC i∃ IN j∀∈∈ 0:σ o i∪ M0,() j[] φ≥⇔

i IN∈ o O pC∈

P1 P2 P1 P2∝
J Ports P1() Ports P2(), J⊆

M0 J
AF φ J M0 AF φ

Env P1 J,()
M0 AF φ Env P2 J,()

M0 AF φ o∀ O pEnv P1 J,() i IN j∃∈∀ 0:σ o i∪ M0,() j[]≥∈⇔
IN

o i

o∀ O pEnv P2 J,() i IN j∃∈∀ 0:σ o i∪ M0,() j[] φ≥∈

o i
68

VERIFICATION OF COMPONENT-BASED DESIGNS
Figure 5.8 tries to illustrate the theorem. The area inside the
outer circle denotes the set of behaviours (observations), i.e. the
operation of (). According to
Definition 5.9, this operation is produced by the union of all
stubs corresponding to the interfaces in . The area inside the
inner circle denotes the set of behaviours of
(). This set is a subset of the first one according to
Corollary 5.1 since by assumption. If a certain
(T)ACTL formula holds for all behaviours in the bigger set, it
does also hold for all behaviours in the subset. Seen in this way,
the necessity of (T)ACTL formulas, as opposed to an arbitrary
(T)CTL formula, becomes obvious. An arbitrary (T)CTL formula
cannot guarantee that the property holds for all behaviours,
only that there is at least one behaviour satisfying it.

5.4.1 DISCUSSION

Theorem 5.4 provides the answer to the questions identified at
the end of Section 4.3.1. Let us assume that we have a set C of
two or more components which have been interconnected by a
glue logic. It has to be verified that a certain property, expressed
as a (T)CTL formula , holds. The following situations can
occur:

1. The verification is unmanageable in the context defined
above. This is the case when formula is expressed in terms

Set of behaviours (observations) of .P1

Set of behaviours (observations) of .P2

Figure 5.8: Illustration of Theorem 5.4

Env P1 J,() O pEnv P1 J,()

P1
Env P2 J,()

O pEnv P2 J,()
P1 P2∝

φ

φ

69

CHAPTER 5
of ports which do not belong to any component in the set C or
which, although they belong to a component in C, are not con-
nected to the glue logic being verified.

2. If the verification is manageable, the following two situa-
tions can be indentified:
a) Formula is not a (T)ACTL formula. In this case the ver-
ification has to be performed with top-level stubs for all con-
nected components.
b) Formula is a (T)ACTL formula. In this case, if the for-
mula is satisfied using stubs at any level, the property can be
considered as satisfied (this is a direct consequence of
Theorem 5.4).

Case 2b above is important, as it offers a certain degree of lib-
erty in the case of verification with (T)ACTL formulas. If some
top-level stubs are not available, but the property can be verified
with lower-level stubs, this is sufficient for validation of the sys-
tem. On the other hand, for reasons of complexity, the designer
can choose to perform the verification with simpler low-level
stubs. If the property is satisfied, such a verification is sufficient.
If not, however, the verification using high-level stubs can still
satisfy the property and thus demonstrate that the system is
correct. Some experiments discussed in Section 5.5 illustrate
this process.

5.5 Experimental Results
The following experiments concern the verification of systems
resulted after the interconnection of components through a glue
logic, according to the discussed methodology.

φ

φ

70

VERIFICATION OF COMPONENT-BASED DESIGNS
5.5.1 GENERAL AVIONICS PLATFORM

In the first set of experiments, we have verified the glue logic in
Figure 4.3, which interconnects the Radar and Protocol compo-
nent as part of the General avionics platform (Figure 4.1 and
Figure 4.2) [Loc91]. We illustrate the verification of four proper-
ties. Property A is (the tokens in port ”update”
will always be consumed). Property D is (the
tokens in port ”out” will always be consumed). Properties B and
C are identical to Equation 4.1 and Equation 4.2. Consequently,
all formulas are ACTL. Three possible partitions were used
whose relations are shown in the lattice in Figure 5.9. The
results of the verification are shown in Table 5.1. The letters F
and T in each cell of the table denote wether the property was
satisfied (T) or not (F) with the corresponding environment. The
numbers denote the verification time in seconds. It can be

1

3

2

Figure 5.9: Partition lattice in the GAP example

{{update},{in,out,status}}

{{update},{in},{out,status}}

{{update},{out,status}}

AGAF update¬
AGAF out¬

Table 5.1: Experimental results for GAP example

Property

Partition

1 2 3

A F 1.97 F 4.1 T 0.24

B F 0.39 F 0.69 T 0.12

C F 0.43 F 0.75 T 0.13

D T 0.21 T 0.36 T 0.12
71

CHAPTER 5
observed that all four properties imposed by the interconnected
components are satisfied with the actual glue logic. For property
D, the verification can be done using the lowest level of the three
interfaces (as the property is expressed by an ACTL formula,
point 2b in Section 5.4.1 applies).

5.5.2 SPLIT TRANSACTION BUS

The second example refers to a split transaction bus (STB) in a
multiprocessor DSP [Ack00]. An overview of the system is
shown in Figure 5.10. The I/O interface and memory controller
handles the interaction of the processing element with the mem-
ory system and the outside world, while the processing elements
perform the real functionality. Each processing element contains
one 32-b V8 SPARC RISC Core with a co-processor and reconfig-
urable L-1 cache memory. As suggested in the figure, the STB
consists in fact of two buses, the address bus and the data bus.
When the protocol wants to send data, on request from the
processing element, it must first request access to the address
bus. After acknowledgement of the address bus, the protocol
suggests an identifier for the message transfer and associates it
with the address of the recipient. This identifier is broadcast to
all protocol components connected to the bus in order to notify
all of them about used identifiers. The next step is to request
access to the data bus. When the data bus has acknowledged the
request, the identifier is sent followed by some portion
(restricted in size by the bus) of the data. Then, the data bus is
again requested and the same procedure continues until the
whole block of data has been transmitted. The protocol is now
ready to service another request from the processing element.
One functionality of the medium glue logic being verified is to
deliver messages from the protocol to the correct bus. Another
aspect is to process the results and acknowledgements so that
they can be correctly treated by the protocol. For instance, the
72

VERIFICATION OF COMPONENT-BASED DESIGNS
protocol component expects two different commands from an
identifier broadcast (described above) of the address bus,
depending on wether the protocol component currently in hold of
the address bus is the component connected to this particular
glue logic or the broadcast is the result of another component
proposing an identifier.

Table 5.2 shows the verification results with the STB example.
The high number of ports in the components yields a large lat-
tice of environments. The one depicted in Figure 5.11 is not the
full lattice. Only those environments which are involved in this
particular experiment are included. Environment 12 consists of
the top-level stubs for all three connected components. Environ-
ment 1 consists of only level 1 stubs on out-ports.

In order to give a better understanding of the properties, we
will have a closer look at two of them. Property B, for instance,
concerns with the fact that the glue logic must issue different
commands to the protocol component when the address bus
broadcasts the identifiers, depending on the source causing this
event to happen. It is hence formulated as

where
TRAN (transaction) is the command to be received by the proto-
col component when the source causing the event is the one con-
nected to the glue logic under verification. It should not be
possible to receive such an event where the address is different

Figure 5.10: Schematic view of the STB example

I/O
Interface
and
memory
controller

Processing
Element

128-b Split trans. bus

Processing
Element

Protocol

STB Address Bus

STB Data Bus

Processing
Element

Processing
Element

Processing
Element

Verified
glue logic

AG rec rec TRAN a,〈 〉≠ a this_component≠∧→()
73

CHAPTER 5
from the one of the current component. Another property, D,
, states a

requirement according to which commands are to be given to the
address bus: when the bus has acknowledged a request, it
expects that the address and identifier are passed.

Properties A to G are expressed as ACTL formulas, while
property H is not. It can be noticed that property C is not at all
satisfied in the system. That is why the verification results for
that property is false, no matter which environment is used. On

Table 5.2: Experimental results for STB example

Property

Partition

1 2 3 4 5 6

A F 0.41 F 3.28 F 0.34 F 162 T 156 F 345

B T 0.14 T 0.41 T 0.16 T 17.6 T 24.8 T 16.9

C F 0.23 F 0.74 F 0.23 F 19.7 F 29.7 F 18.6

D F 0.38 F 0.89 F 0.37 F 129 F 45.9 F 97.7

E T 0.20 T 0.58 T 0.21 T 28.1 T 54.2 T 29.2

F F 0.34 F 0.68 F 0.31 T 18.7 T 26.2 T 16.5

G F 0.41 T 0.43 F 0.44 T 18.5 T 26.3 T 17.0

H T 0.21 T 1.30 T 0.22 F 167 F 438 F 344

Property

Partition

7 8 9 10 11 12

A F 330 F 68.2 T 17.7 F 636 T 30.4 T 12.6

B T 23.6 T 1.69 T 1.38 T 26.9 T 1.54 T 1.29

C F 28.8 F 3.25 F 3.27 F 32.7 F 4.09 F 4.01

D F 313 F 20.1 T 3.32 F 292 T 10.2 T 7.04

E T 48.9 T 2.80 T 1.20 T 53.3 T 4.48 T 4.39

F T 25.2 F 6.51 F 2.85 T 28.8 T 1.76 T 1.36

G T 26.7 T 2.47 T 0.94 T 30.0 T 2.36 T 1.94

H F 325 F 66.4 F 11.9 F 689 F 87.2 F 38.0

AG addr.out ACK=() AF addr.in→ drive_addr=()
74

VERIFICATION OF COMPONENT-BASED DESIGNS
the other extreme we find properties B and E which are satisfied
even with the lowest level environment. Hence, being expressed
as an ACTL formula, the property is satisfied with any environ-
ment. Property H is not an ACTL formula and can hence not be
expected to behave according to the same pattern. Its behaviour
can be described as the inverse of the behaviour of ACTL formu-
las, i.e. the property is satisfied when verified with low-level
stubs, but is not satisfied with high-level stubs. Property G, also
expressed as an ACTL formula, is also satisfied. This can be ver-
ified by using the top-level environment, but also by verifying
with enironment 2. According to point 2b in Section 5.4.1, the
verification performed with environment 2 also guarantees that
the property is satisfied with environments 4, 5, 6, 7, 8, 9, 10, 11
and 12, which means the complete system. This is, of course, not
the case with property H which is expressed by a non-ACTL for-
mula. Verification with environments 1 to 11 are not valid. The
only verification which makes sense is using the top-level envi-
ronment.

Figure 5.11: Partition lattice in the STB example
1

2 3

4

5 67

8

9

1011

12
75

CHAPTER 5
Let us have a look at verification times. For the two examples,
taking each separately, the verification time with different envi-
ronments is in the range 0.12-689 seconds. For a given property
the verification times are small for the very low-level stubs and
for the top-level stubs. This is due to the simplicity of the low-
level stubs, on the one side, and the high degree of determinism
of the top-level stubs (which reduces the state space) on the
other side. Between these two limits we can observe a, some-
times very sharp, increase of verification times for the stubs
which are at a level close to the top. If a complete set of stubs is
available, one can perform the verification using the top-level
stubs. For non-(T)ACTL formulas, this is the only alternative.
However, (T)ACTL formulas could be verified even if the top-
level stubs are not at hand. In this case, a good strategy could be
to start with the lowest level stubs, going upwards until the
property is satisfied.

5.6 Verification Methodology Roadmap
This section will continue the roadmap of Section 4.3.2 based on
the work presented in this chapter.

The answer to the question leading the verifyer to this part of
the roadmap (see Figure 4.8) gives us the assumption that stubs
already exist and are provided by the designer of the compo-
nents. The second question to be answered is shown in
Figure 5.12. As the experimental results suggest, using top-level
stubs, if they exist, gives a relatively short verification time and
accurate results avoiding iterations. For this reason it is proba-
bly most efficient to immediately use top-level stubs.

If top-level stubs exist, the procedure is very simple as
described in Figure 5.13. If the property is satisfied and it is
ACTL, then it can be deduced according to Theorem 5.4 that the
property really is satisfied. Otherwise if not ACTL, the property
can only be proven satisfied to the extent given by the compo-
76

VERIFICATION OF COMPONENT-BASED DESIGNS
nents, i.e. a particular behaviour of the surrounding is not taken
into consideration (we will further elaborate on the aspects

Are top-level stubs
available?

No

Yes

Figure 4.18

Is the property
ACTL?

Yes

No

Figure 5.15

Figure 5.13

Figure 5.14

Figure 5.12: Continuation of the roadmap from Figure 4.8

Use top-level
stubs

Verify property

Is the property
satisfied?

Yes

No

Figure 5.12

Property is
proven satisfied

Is the property
ACTL?

No

Yes
Property is

proven satisfied
without consideration about

design specific particularities
in the surrounding

Is the property
ACTL?

Property is
proven not satisfied

No

Property is
proven not satisfied

without consideration about
design specific particularities

in the surrounding

Yes

Figure 5.13: Roadmap when using top-level stubs,
continuation from Figure 5.12
77

CHAPTER 5
related to the surrounding in Chapter 7). The procedure is anal-
ogous when the property was not satisfied.

In the case top-level stubs do not exist, a choice between two
similar procedures must be made depending on whether the
property is ACTL or not. Figure 5.14 shows the procedure for
ACTL formulas and Figure 5.15 for non-ACTL formulas. Start
the iterative process by using stubs at the lowest level, since ver-
ification times are short when using such stubs. However, the
experienced verifyer may directly use stubs at higher level if it is
obvious that the property is not satisfied using the lowest level
stubs. The verification result is evaluated as indicated by the
roadmap. When increasing the level of stubs, it is important that
this is done by following a path in the stub lattice so that the
assumptions in Theorem 5.4 are not violated. The diagnostic

Verify property

Use an environment
at equal or higher level

Use a low-level
environment

Is the property
satisfied?

No

Yes

Are stubs of higher
level available?

No

Yes

Property is
proven satisfied

Unknown verification
result

Figure 5.12

Figure 5.14: Roadmap when using lower-level stubs on
ACTL formulas, continuation from Figure 5.12
78

VERIFICATION OF COMPONENT-BASED DESIGNS
trace resulting from the model checking is very useful for guid-
ance.

Verify property

Use an environment
at equal or higher level

Use a low-level
environment

Is the property
satisfied?

Are stubs of higher
level available?

No

Yes

Unknown verification
result

Figure 5.12

Property is
proven not satisfied

No

Yes

Figure 5.15: Roadmap when using lower-level stubs on
non-ACTL formulas, continuation from Figure 5.12
79

CHAPTER 5
80

AUTOMATIC GENERATION OF STUBS
Chapter 6
Automatic

Generation
of

Stubs

HAPTER 5 INTRODUCED A verification methodology
where the stubs are provided by the designer of the
reusable components. If stubs of the desired level are

not available, other stubs at lower level can be used instead. An
alternative situation is that a PRES+ model of the system is
available, but no particular stubs. In this chapter algorithms for
automatically generating stubs, given the model of the compo-
nent and the interface, are presented together with a methodol-
ogy which explains how to use such stubs. Here, we assume that
we do not know anything about the surrounding environment,
as opposed to Chapter 7. Experimental results are also pre-
sented.

The example component in Figure 6.1 will be used to explain
and analyse the stub generation algorithms in this chapter. In

C

81

CHAPTER 6
all cases, a stub for the marked interface will be gener-
ated.

6.1 Pessimistic Stubs
The stub definition presented in Section 5.1 (Definition 5.5) is
quite strict, requiring equality between the operations of the
component and stub. That strictness makes it very difficult to
automatically create stubs.

Definition 6.1: Pessimistic stub. Let us consider two com-
ponents, and . is the interface of containing all
ports of . is any interface of . is a pessimistic stub
of with respect to interface iff:

1. and are compatible.
2. For any possible input of component ,

.

A pessimistic stub is consequently a stub which can generate
more observations than its corresponding component and hence
is more ”pessimistic” about the set of possible events. Of course,

p1 p2,{ }

Figure 6.1: Example of a component for stub generation

p1

p2

p3

p4

q1

q2

q3

q4

q5

q6

t1 t2

t3

t4

t5t6

t7

t8

t9

x

x

t10

x

x

xx
x

x
x

q7x x

x mod 4 0≠[]

x mod 4 0=[]
2x

d[]

d[]

t5min..t5max[]

t2min..t2max[]

t6min..t6max[]

t7min..t7max[]

S C IS S
S IC C S

C IC

IC IS
in C

O pC in()
IC

O pS in
IS

()⊆
82

AUTOMATIC GENERATION OF STUBS
this might influence the accuracy of the verifications in which
they are involved. However, for properties expressed as (T)ACTL
formulas this does not necessarily lead to uncertain results.
Stubs following Definition 5.5 are in this chapter called exact
stubs in order to differentiate between the two types.

The following theorem helps us to evaluate the result of a ver-
ification with pessimistic stubs.

Theorem 6.1: Assume two environments and of the
same set of components and , an initial mark-
ing and a (T)ACTL formula, e.g. expressed only on
the ports of the stubs in and . If for com-
ponent , then it is also true that for compo-
nent .

Proof:
,

where is the set of all input observations on ports in the par-
titions, according to Equation 5.4. As a consequence of the fact
that and are universally quantified, it is straight-forward to
conclude that .

The intuition behind this theorem is the same as the intuition
behind Theorem 5.4 described on page 68. The set of behaviours
of includes all the behaviours of according to the
assumption. Hence, if a certain property is true for all behav-
iours of , it must also be true for all behaviours of .

Theorem 6.1 allows us to use pessimistic stubs when verifying
(T)ACTL formulas. The behaviours of the exact stub (see
Definition 5.5) are also produced by the pessimistic one which,
however, produces additional behaviours. This fulfills the
assumptions of the theorem. So, if a property is satisfied using
the pessimistic stubs, we can confidently deduce that the prop-
erty would also have held if exact stubs had been used instead.

E1 E2
O pE1

O pE2
⊆

M0 AF φ
E1 E2 M0 AF φ

E2 M0 AF φ
E1

M0 AF φ o∀ O pE2
i IN j∃∈∀ 0:σ o i∪ M0,() j[] φ≥∈⇔

IN

o i
o∀ O pE1

i IN j∃∈∀ 0:σ o i∪ M0,() j[] φ≥∈

E2 E1

E2 E1
83

CHAPTER 6
However, if the property is not satisfied, no conclusion can be
drawn at all. In this case, the stubs must be made less pessimis-
tic in order to exclude the undesired behaviour, which caused the
property to be unsatisfied, from the operation of the stub.

6.2 The Naïve Approach
The straight-forward way to create a stub of a component, is to
keep the original model of the component and add transitions
with completely random time intervals and, in the case of an in-
port, a random function, on all other ports than those given in
the interface of the stub. This will clearly fulfill the require-
ments of a stub, according to Definition 6.1, since it is able to
produce the same events as the component is able to. The differ-
ence between the naïve stub and the exact top-level stub is that
the naïve stub assumes the most hostile surrounding possible
whereas the exact stub complies with the assumptions on the
other interfaces (see Definition 5.5). The resulting stub is shown
in Figure 6.2.

Figure 6.3 illustrates the difference between an exact stub
and a naïve stub further. Figure 6.3(a) shows the model of a sim-
ple component. It is designed assuming input on ports and

Figure 6.2: A naïve stub of the component in Figure 6.1

p1

p2

p3

p4

q1

q2

q3

q4

q5

q6

t1 t2

t3

t4

t5t6

t7

t8

t9

x

x

t10

x

x

xx
x

x
x

q7
x

x

x mod 4 0≠[]

x mod 4 0=[]
2x

d[]

d[]

t5min..t5max[]

t2min..t2max[]

random

0..∞[]

0..∞[]

t6min..t6max[]

t7min..t7max[]

p3
84

AUTOMATIC GENERATION OF STUBS
satisfying the formulas in Equation 6.1 (if there is a token in
, then there must arrive a token in in the future) and

Equation 6.2 (no token may arrive in unless there was first a
token in).

(6.1)

(6.2)

p3

p4

p1

p2

p1

p2

p1

p2

(a) The component

(b) The naïve stub

(c) The exact stub

Figure 6.3: Comparison between exact and naïve stubs

random

p3

p4

p3

p4

p4
p3 p4

p4
p3

AG p3 AF p4→()

AG p4 init∨() A A p3 R p4¬[] R p4[]→()
85

CHAPTER 6
In Figure 6.3(b), the naïve stub for the interface is pre-
sented. Transitions are added to ports and as discussed
previously. The transitions are added disregarding the assump-
tions captured in the formulas above. The exact stub is shown in
Figure 6.3(c). This stub satisfies the assumptions.

To verify a design using naïve stubs is tremendously time con-
suming (see experimental results in Section 6.5). For this rea-
son, an algorithm generating smaller stubs reducing verification
time has been developed and is presented in the following sec-
tions.

6.3 Stub Generation Algorithm
The basic idea of the stub generation algorithm is to identify the
parts of the given component which have an influence on the
interface for which a stub should be generated. This is done by
analysing the dataflow in the component. Once these parts have
been identified, the parts of the model which were excluded
must be compensated for. This is the point where pessimism is
introduced in the stub.

Hence, the stub generation algorithm consists of the three
parts presented below. Each of them is explained separately in
the following sections.

1. Dataflow analysis
2. Identification of stub nodes
3. Compensation for the excluded parts of the component

6.3.1 DATAFLOW ANALYSIS

The first step when identifying the parts to be included in the
stub is to investigate the dataflow. This is a very simple proce-
dure namely a graph search algorithm, as shown in Figure 6.4.
These procedures are called once for each port in the interface of
the stub. traceBack is called for out-ports and traceForward in

p1 p2,{ }
p3 p4
86

AUTOMATIC GENERATION OF STUBS
the case of in-ports. visited is initially false for all places and
transitions. During the search through the graph, each node
(place or transition) is marked with the node previously visited
(Line 5 and Line 12) so that it is possible to obtain the path from
an arbitrary node to a port in the interface. The dataflow mark-
ing must consequently not only be able to distinguish the paths
but also to which ports they lead. The dataflow marking is
stored in a data structure (DF) for later use. The data structure
associates a place or transition together with the original port to
a set of neighbouring places or transitions which were immedi-
ately visited before the node just being visited. The algorithms
in Figure 6.4 and the outlined data structure implement
Definition 6.2.

Definition 6.2: Dataflow marking. A dataflow marking
is a set of nodes (places or transitions), which con-

stitute the first step on a path from node to port in
component with an interface . If or are evi-
dent from the context they may be omitted from the notation.
As an extension we also define .

1 procedure traceBack(e: place or transition, p: port)
2 if not visited[e] then
3 visited[e] := true;
4 for each d ∈ °e do
5 DF[d, p] := DF[d, p] ∪ { e };
6 traceBack(d, p);
7
8 procedure traceForward(e: place or transition, p: port)
9 if not visited[e] then
10 visited[e] := true;
11 for each d ∈ e° do
12 DF[d, p] := DF[d, p] ∪ { e };
13 traceForward(d, p);

Figure 6.4: Algorithms for searching the dataflow

df if
C n p,()

n p if∈
C if C⊆ C if

df n() df if n p,()
p if∈∪=
87

CHAPTER 6
Figure 6.5 reveals the dataflow marking for the example compo-
nent. Every node is annotated with a set of arrows, solid and hol-
low. The type of the arrow reflects towards which port it points.
In the figure, solid arrows point towards and hollow ones
point towards . Place is visited both starting from
(traceForward) and (traceBackward). This means that both
ports can be reached from . As indicated by the figure, the
path from to goes through , and the path from to

through either or . There is no path to from ,
since was never reached in the dataflow search from
(traceForward).

A dataflow marking is, intuitively, the set of arrows (main-
taining their types) associated to a node obtained from the
search. For future reference, it is also useful to introduce the fol-
lowing definitions based on the dataflow marking.

Definition 6.3: Divergence node. A node is a divergence
node iff , i.e. there are several different paths
leading to ports in the interface, or the arrows of point in
different directions.

Figure 6.5: The dataflow marking of the component in
Figure 6.1

p1

p2

p3

p4

q1

q2

q3

q4

q5

q6

t1
t2

t3

t4

t5t6

t7

t8

t9

x

x

t10

x

x

xx
x

x
x

q7x x

x mod 4 0≠[]

x mod 4 0=[]
2x

d[]

d[]

t5min..t5max[]

t2min..t2max[]

p1
p2 q3 p1

p2
q3

q3 p1 t2 q3
p2 t6 t7 p1 q4

q4 p1

n
df n() 1>

n

88

AUTOMATIC GENERATION OF STUBS
Definition 6.4: Intersect node. A node is an intersect
node iff , i.e. at
least two arrows pointing in different directions are of differ-
ent type (solid or hollow).

In Figure 6.5, amongst others, nodes , , , and are
divergence nodes. Nodes , , and are examples of
intersect nodes. , and are nodes which are neither
divergence nor intersect nodes.

6.3.2 IDENTIFICATION OF STUB NODES

In order to describe the algorithm, the concept of separation
point (SP) must first be defined.

Definition 6.5: Separation point. A separation point (SP) is
a node (place or transition), which denotes the border
between the parts of the component to be included in the
stub and the part not to be included.

An SP can be situated at two different types of nodes:

1. Divergence node (e.g. , , and in Figure 6.5).
2. The node is a port in the interface (and in Figure 6.5).

The search for SPs starts in the ports not belonging to the spec-
ified interface and it must be repeated once for each such port.
Figure 6.6 (traceNode) presents the algorithm.

Similar to traceForward and traceBackward, traceNode is also
a depth first search algorithm. During the search three cases
can occur:

1. The node being visited is a port or an intersect node.
2. The node being visited is a divergence node.
3. The node being visited is neither of the above.

n
p if :df if n p,() ∅ df if n() df if n p,()≠∧≠∈∃

t1 q1 q4 p3 p2
t1 q1 t6 t7

p4 t10 q7

p3 q3 q4 t6
p1 p2
89

CHAPTER 6
If the node being visisted is a port, the stub is constructed
using as a separation point (Line 4). is also used as a sepa-
ration point if it is an intersect node. All nodes on the path
between two ports in the specified interface, and only those
nodes, are intersect nodes. For this reason, intersect nodes must
be included in the resulting stub.

1 procedure traceNode(e: place or transition)
2 if not tr_visited[e] then
3 tr_visited[e] := true;
4 if e is a port in the specified interf. or e is an intersect node then
5 constructStub(e);
6 else if e is a divergence node then
7 tr_visited[e] := false;
8 node spcand := traceCutEdge(e);
9 if spcand = NULL then
10 constructStub(e);
11 else
12 traceNode(spcand);
13 else
14 traceNode(the only element in DF[e]);
15
16 function traceCutedge(e: place or transition) returns place or transition
17 if not tr_visited[e] and e is not an intersect node then
18 tr_visited[e] := true;
19 for each d∈DF[e] do
20 if <e,d> is a cutedge then
21 return d;
22 else
23 node cecand := traceCutedge(d);
24 if cecand ≠ NULL then
25 return cecand;
26 return NULL;

Figure 6.6: Algorithms for identifying which parts of a
component to include in the stub

e
e e
90

AUTOMATIC GENERATION OF STUBS
Otherwise, if the node being visited is a divergence node
(Line 6), is a candidate for being the separation point. How-
ever, there might be better separation point candidates if the
search is continued (traceCutedge).

If the node being visited does not belong to either of the two
categories above, the search continues following the dataflow as
indicated by (Line 14).

Let us return to the case when the node being visited is a
divergence node. As mentioned, is a candidate for being a sep-
aration point. The reason is that in divergence nodes, the data-
flow is influenced from more than one direction and all
influences in the dataflow must be kept in the stub. However, it
might be the case that there is a cutedge1 along the path
between and the ports in the specified interface (Line 8). The
presence of a cutedge means that all data has to flow through
the cutedge before reaching , cancelling the importance of
keeping as a separation point since the dataflow between the
ports in the specified interface will not be influenced by the
divergence node . If no cutedge was found, is used as separa-
tion point (Line 10). Otherwise, the procedure starts all over
from the cutedge (Line 12).

Searching for a cutedge (traceCutedge) is also a depth first
search. If the node being visited is an intersect node, the
search must stop due to reasons already discussed (Line 17).
Otherwise, all paths indicated by the dataflow marking are
examined (Line 19). If, in that case, a cutedge is found, the
neighbouring node of is returned as being a new candidate for
SP (Line 21). If no cutedge was found the search continues until
one is found (Line 23). In case a cutedge was not found, NULL is
returned to indicate this situation (Line 26).

When a separation point is finally found, the stub is con-
structed originating from that point. As the other algorithms,

1. An arc is a cutedge if the component becomes divided into two parts if
the arc was to be removed from the graph.

e
e

e

df e()
e

e

e

e
e

e e

e

e

91

CHAPTER 6
this procedure is also a depth first search. Figure 6.7 shows the
code of the algorithm.

All nodes visited by the algorithm are added to the resulting
stub (Line 4). res is a global variable which will contain the gen-
erated stub when the stub generation algorithm has finished.
The search progresses through the component by following the
dataflow, i.e. the arrows created by traceForward and traceBack-
ward (Line 5).

Continuing the example in Figure 6.5, the search starts, for
instance, from port . is a divergence node (but not an
intersect node) and according to the algorithm, a search for cut-
edges is started (Line 8 in Figure 6.6) while keeping in mind
that might be chosen as a separation point in case traceCut-
edge fails. traceCutedge will eventually recognise that the arc
between and is a cutedge and returns back to trace-
Node which assigns this value to spcand. The search continues
as before now starting from (Line 12). However, since is an
intersect node, it is chosen as a separation point and the stub is
constructed starting from this point (Line 5). Figure 6.8 shows
the resulting stub. At this point, everything is added except .
Time delay intervals, transition function and transition guards
will be added later.

The procedure is repeated for port . The first divergence
node discovered in the search is . Consequently, a search for
cutedge is started (Line 8 in Figure 6.6) while keeping as a

1 procedure constructStub(e: place or transition)
2 if not visited[e] then
3 visited[e] := true;
4 res := res ∪ {e}; // including all arcs connecting e with res;
5 for each d ∈ DF[e] do
6 constructStub(d);

Figure 6.7: Algorithm for adding places and transitions to
the resulting stub given a separation point

p3 p3

p3

q2 t2 t2

t2 t2

q4

p4
q4

q4
92

AUTOMATIC GENERATION OF STUBS
candidate for being a separation point. traceCutedge discovers
that both and are intersect nodes (Line 17) and returns
NULL indicating that a cutedge was not found. As a result, tra-
ceNode concludes that must be chosen as a separation point
(Line 10). At this point, is also added to the stub completing
Figure 6.8.

6.3.3 COMPENSATION

All places and transitions on a path between two ports are
included in the resulting stub as a result of previous steps. How-
ever, there will be some nodes (either places or transitions) of
which not all nodes in the postset or preset are also included in
the stub. This means that they will not deliver (receive) all
needed output (input). These nodes are called fork (join) nodes
and need additional treatment.

Definition 6.6: Fork node. Assume a component and a
stub . A node is a fork node iff the corresponding
node has a node in its postset which is not in the stub,

.

Figure 6.8: The places and transitions in the
automatically generated stub

p1

p2

q1

q3

q4

q5

q6

t1 t2

t6

t7

t8

t9

t6 t7

q4
q4

C
S C⊆ n S∈
n C∈

n′ n°:n′ S∉∈∃
93

CHAPTER 6
Definition 6.7: Join node. Assume a component and a
stub . A node is a join node iff the corresponding
node has a node in its preset which is not in the stub

.

Figure 6.9(a) introduces an example of a component which will
be used to explain how fork and join nodes are modified in the
stub. Figure 6.9(b) shows the stub as generated by the algo-
rithms in Figure 6.6, whereas Figure 6.9(c) presents the result-
ing stub after the excluded parts have been compensated for.

It is sometimes necessary to introduce randomness in the
transition functions. This is denoted by a set of values, from
which a value can be randomly chosen. The notation

consequently means that transition may
produce randomly any even integer number. The function does
not have any arguments in this case, meaning that an even
number is produced disregarding the token values in its input
places. On the other hand, the functions may have arguments,
i.e. , where attention has to be paid to the
input token values.

Such transition functions are created with respect to a certain
universe U containing all values possible in the design. In this
chapter, it is assumed that the universe consists of all integers,

.

Case 1: fork place

If the fork node is a place (i.e. in Figure 6.9(a)), it means that
tokens can disappear out of the stub, into the part of the net
which is excluded. To model this, a new transition () is
added to consume these tokens. The time interval of this transi-
tion is from the minimum delay of all successor transitions not
included in the stub, to infinity ().

C
S C⊆ n S∈
n C∈

n′ °n:n′ S∉∈∃

f t 2x Z∈ x Z∈{ }= t

f t y() xy x Z∈{ }=

U Z=

q1

t6 7,

min 3 4,()..∞[]
94

AUTOMATIC GENERATION OF STUBS
x 1+x

2..3[]

x

x x

x

x

3x

x

x x

x
x 2–

x 5+

x

x2x

y y

x
xy3

yy

4..7[]

3..5[]

4..6[]

1..3[]

1..4[]

1..3[]

2..3[]

3..4[] 1..2[]

1..1[]

3..4[]

Figure 6.9: Example component and stub explaining the
compensation of excluded parts

p1

p2

p3

p4

p5

p6

p7

p8

q1

q3

q2

q4

q5

t1

t2

t3 t4

t5

t6

t7

t8

t9

t10

t11t12

x 1+x

2..3[]

x

x

y y

xy3

yy

2..3[]

3..4[] 1..2[]

3..4[]

p1

p2

q1

q3

q4

t1

t2

t3 t4

t5

x 1+x

2..3[]

x

x

y y

xy U∈ x 0≠ x U∈∧{ }3

yy

2..∞[]

3..4[] 1..∞[]

3..4[]

p1

p2

q1

q3

q4

t1

t2

t3
t4

t5

3..∞[]

x 0≠[]

x 0=[]

x 0≠[]

1..∞[]

t6,7

t9

t10

1..∞[]

x 2– U∈ x U∈{ }

x 5+ U∈ x U∈{ }

(b) Stub as generated by the
algorithms in Figure 6.6

(a) Component

(c) Stub
95

CHAPTER 6
The reason is that tokens can inherently not disappear before
the stated lower limit, but, on the other extreme, the token
might not be consumed at all.

Case 2: join place

If the join node is a place (), it means that a token might
appear in the place from outside the stub. This is modelled by
adding all missing transitions in the preset of the place (and

). The newly added transitions are modified in the following
manner:

The upper bound of the time interval is set to infinity. The
lower bound is left unchanged. This models the fact that the cor-
responding transition in the full component might never be ena-
bled.

The function of the added transition is the same as the one of
which it replaces except that all arguments contain random val-
ues conformant to a possible transition guard. Equation 6.3
expresses this formally.

(6.3)

The guard is set to .
The guards are not shown in Figure 6.9(c) for space reasons.

Moreover, the guards are redundant in this case since they are
always true, .

(6.4)

(6.5)

Case 3: join transition

If the join node is a transition (), it means that it is not always
the case that the transition will be enabled. Consequently the
maximum time delay is changed to infinity. Moreover, some
parameters for the transition function lack a value.

q3

t9
t10

f t′ f t x1 … xn, ,() U∈ gt x1 … xn, ,() x1 … xn, , U∈∧{ }=

f t′ ∅≠

f t9
′ f t10

′ Z ∅≠= =

f t9
′ x 2– Z∈ x Z∈{ } Z= =

f t10
′ x 5 Z∈+ x Z∈{ } Z= =

t4
96

AUTOMATIC GENERATION OF STUBS
The new transition function is updated in a similar man-
ner as for join places, with the exception that some parameters
are fixed, as they come from places inside the stub. Equation 6.6
expresses this formally. are parameters coming from places
outside the stub, and from places inside the stub.

(6.6)

The guard of the transition is set to .
The guard is not shown in Figure 6.9(c) for space reasons.

Similar to the join place case, the guard is not necessary in the
example. Equation 6.7 and Equation 6.8 explain why.

(6.7)

(6.8)

Case 4: fork transition

If the fork node is a transition (), it means that the excluded
net can disable it by not consuming the token in one of the out-
put places. This fact is modelled by setting the maximum time
delay of the fork transition to infinity.

To illustrate this situation, imagine the case where there are
tokens in both and and the token in is never con-
sumed by the glue logic connected to it. Transition will never
become enabled.

Figure 6.10 shows the final result of applying this algorithm to
the example in Figure 6.1 with respect to the interface

.
In all cases described above, some degree of pessimism is

introduced. At some points, transition functions are ran-
domised, as for in Figure 6.10. In the stub, this transition
produces any value, since it assumes that any input is possible.

f t′

xi
yi

f t′ y1 … ym, ,() f t x1 … xn y1 … ym, , , , ,() U
gt x1 … xn y1 … ym, , , , ,() x1 … xn, , U∈∧

∈{
}

=

f t′ y1 … ym, ,() ∅≠

f t4
′ y() xy Z∈ x 0≠ x Z∈∧{ }=

y U∈∀ : f t4
′ y() ∅≠

t2

p5 q2 p5
t2

p1 p2,{ }

t5
97

CHAPTER 6
In the full component, this is actually not the case since
(Figure 6.1), which provides input for , only can produce even
numbers. Consequently, the stub is more pessimistic about pos-
sible values than an exact or naïve stub. On the other hand, it
would not be feasible, in the general case, to incorporate the
whole excluded part of the net into the function by composing
functions. That would be the same as keeping the original net
which would give a result similar to the naïve stub.

In particular cases, the algorithm may result in an empty
model. This occurs when the datapath from a certain port does
not intersect that of another port in the interface. Obviously, as a
special case, this occurs when the interface only contains one
single port. Those ports are by definition either join or fork
places and are modified accordingly.

In certain models, an SP may be situated at a port outside the
specified interface. Such ports are neither join, nor fork places.
Random transitions are in such cases added to the port, in the
same way as random transitions were added for naïve stubs.

Figure 6.10: An automatically generated stub

p1

p2

q1

q3

q4

q5

q6

t1 t2

t5t6

t7

t8

t9

x

x

x

xx
x

x
x

x mod 4 0≠[]

x mod 4 0=[] t5min..∞[]

t2min..∞[]

t6min..t6max[]

t7min..t7max[]

U

t10
t5
98

AUTOMATIC GENERATION OF STUBS
6.3.4 COMPLEXITY ANALYSIS

The algorithm is based on depth first search, which has time
complexity , where is the number of nodes and the
number of edges in a graph. Consequently, both traceForward
and traceBackward have this complexity.

Checking whether an edge is a cutedge or not is also a depth
first search where you try to find another path from one node on
the edge to the other, except through the particular cutedge can-
didate. The complexity is also .

Compensating for the excluded parts of the component is a
scan through all nodes with a constant operation on each of
them, leading to a complexity of .

In the worst case, every edge has to be checked whether it is a
cutedge or not. The overall worst case complexity hence becomes

. Assuming that there are more
edges than nodes, the theoretical worst case complexity of the
algorithm is quadratic in the number of arcs, . However, it
should be noted that, in practice, very few edges are checked for
being cutedges. Consequently, running time is practically close
to linear.

6.4 Reducing Pessimism in Stubs
If a certain property was not satisfied using the generated stubs,
it is necessary to consider the possibility that this is due to the
pessimistic nature of the stub and not to a design error. The
problem could be that the operation of the generated stub con-
tains more observations than the corresponding component.

The operation of the stub must consequently be refined, i.e.
pessimism must be reduced. The solution to this problem is to
add some parts which were excluded in the stub generation to
the stub. However, in the general case, the designer does not
have any detailed knowledge about the internals of the compo-
nent and its stubs, so this procedure cannot be done by hand.

O n e+() n e

O n e+()

O n()

O n e n e+()+() O n en e2+ +()=

O e2()
99

CHAPTER 6
This leads to the necessity of automating the pessimism reduc-
tion procedure. Such an automatic procedure is possible assum-
ing that all transition functions are invertible in the sense that,
given a value, it is possible to obtain which set of arguments
result in the given value. The inverted function can in itself be a
(set of) function, which is the most general approach, or a stored
table.

What the designer must know in order to use the component is
stated in the user documentation of the component, i.e. the
events occurring on the ports. By following the diagnostic trace,
obtained as a result from the verification, the designer can iden-
tify an unwanted behaviour on one of the ports of the compo-
nent. If the unwanted behaviour is causal, i.e. the value itself is
allowed at the particular port, but not at that particular order-
ing compared to other values, then it is not a matter of reducing
pessimism, but it is a sign that the stub does not cover enough
ports (compare with Section 5.2). Unwanted values and overes-
timation of the firing delay of transitions are, on the other hand,
a matter of stub pessimism reduction. This fact is a consequence
of the proposed stub generation algorithm and of the definition
of pessimistic stubs.

Firing delays are overestimated with infinity in the stub gen-
eration algorithm. The reason for this was that there is no guar-
antee that the transitions will ever become enabled. However,
assuming the most hostile surrounding possible, this can never
be guaranteed in the full component either. Consequently, no
pessimism reduction algorithm may ever be able to reduce this
type of pessimism.

Thus, pessimism reduction of stubs is only applied when there
is a value in a port of the interface which cannot occur in that
port in the full component. Pessimism can be reduced by itera-
tively adding transitions and places, which were removed by the
stub generation algorithm, until the unwanted value is elimi-
nated. When adding a previously removed place, all transitions
in both the preset and postset of the place must also be modelled

v

100

AUTOMATIC GENERATION OF STUBS
in accordance with the fork and join node cases of the stub gen-
eration algorithm. In the extreme case, the naïve stub is
obtained when the stub is extended with all parts of the compo-
nent. In order to automatically reduce the pessimism in a stub
efficiently, in a way such that the possibility of value to occur
in a certain port is removed, the diagnostic trace resulting from
the verification is helpful.

In order to explain the pessimism reduction algorithm, let us
return to the previous example and the stub in Figure 6.10. In
order to keep the example simple, it is assumed that the compo-
nent is connected to a second component through a glue logic as
depicted in Figure 6.11. The result of verifying the property

(All tokens arriving in must have an
even value.) is clearly unsatisfied, since transition produces
completely random values. A possible diagnostic trace given by
the model checker is the following sequence of transitions (pro-
duced values in parenthesis, if any): , , , , ,

, . Figure 6.12 outlines the pessimism reduction algo-
rithm presented below.

By following the trace backwards from the end towards its
beginning (Line 7), the possible nodes where the stub can be
extended are discovered. The possible extension points are nat-
urally those nodes where something was omitted in the stub
generation, i.e. the join transitions. Join places do not exist in a
generated stub since transitions in their presets are added due
to case 2 on page 96. The first join transition encountered in the
example sequence is , which produced value (Line 8).

v

The example
Component

x

x
x x

x x

p1

p2

s1

s2

r1

r1

u1

Figure 6.11: An example system

AG r1 even r1()→() r1
t5

s1 t1 t2 t5 3() t6 3()
t9 3() s2 3()

t5 u 3=
101

CHAPTER 6
The part of the component not included in the stub is then
examined backwards starting from the join transition ()
towards the ports (), exploring the part of the component not
included in the stub (Line 10 and Figure 6.13). The exploration
is done in a depth first manner.

For each transition visited, a value to be eliminated is
maintained. If the transition function of , , is constant, the
algorithm fails if since it is impossible to avoid in
(Line 6 in Figure 6.13). Otherwise, the value is avoided by
having included the transition in the stub (Line 4).

If the function is not constant, it is needed to find out which
set of function arguments can produce the unwanted value. This
is done using the inverted function , as defined in Equation
6.9 (Line 8). In order to succeed, all arguments resulting in
must be in turn eliminated (Line 9) only taking into considera-
tion those values which are satisfied by the guard (Line 10).

1 function pessRed(stub: PRES+; comp: PRES+; tr: trace) returns PRES+
2 for each n∈stub do
3 visited[n] := true;
4 oldStub := copy of stub;
5 newStub := oldStub;
6 repeat
7 Follow tr backwards until a join transition, t, is encountered;
8 u := the value resulting from t, also indicated by the trace;
9 visited[t] := false;
10 success := buildStub(newStub, t, u); // Defined in Figure 6.13
11 if not success then
12 newStub := oldStub;
13 else
14 oldStub := newStub;
15 until tr is finished;
16 return newStub;

Figure 6.12: The pessimism reduction algorithm

t5
p4

t u
t f t

f t u= u t
u

f t
1–

u

102

AUTOMATIC GENERATION OF STUBS
(6.9)

Each function argument may consist of several parameters,
for instance transition in Figure 6.9(a). Each such parameter
corresponds to a place. If the place has an initial token with a
token value equal to , it is impossible to eliminate the value, so
the algorithm fails (Line 14). Otherwise, the place is added to
the resulting stub (Line 15). It is also impossible to eliminate
the value if the preset of the place is empty, i.e. the place is a port
towards the surrounding (Line 17).

1 function buildStub(stub: PRES+; t: transition; u: value) returns boolean
2 if not visited[t] then
3 visited[t] := true;
4 stub := stub ∪ { t };
5 if ft is constant then
6 return ft ≠ u;
7 else
8 W := ft

-1(u);
9 for each w∈W do
10 if gt(w) then
11 for each parameter wi of ft do
12 pi := the place corresponding to wi;
13 if pi has an initial token with value wi then
14 return false;
15 stub := stub ∪ { pi };
16 if °pi = ∅ then
17 return false;
18 else
19 for each ti ∈ °pi do
20 success := buildStub(stub, ti, wi);
21 if not success then
22 return false;
23 return true;

Figure 6.13: Auxiliary function for the pessimism
reduction algorithm

f t
1– x() x1 … xn, ,〈 〉 f t x1 … xn, ,() x= x1 … xn, , U∈∧{ }=

t4

u

103

CHAPTER 6
Otherwise, the search continues from the transitions in the
preset of the place, trying to eliminate the value associated to
the place (Line 20). If the algorithm fails for one transition, the
total result will be a failure (Line 22).

Let us return to Figure 6.12. If buildStub failed, the modifica-
tions made on the stub are reverted, so that a new iteration can
start with a fresh copy (Line 12). The algorithm then searches
for the next join transition in the diagnostic trace (Line 7). This
procedure continues until the whole trace has been examined
(Line 15).

The first join transition encountered in the example in
Figure 6.1 is with the value . is not con-
stant, so the transition must be further examined. The set of val-
ues resulting in 3 is . The transition
does not have any guard and has only one parameter corre-
sponding to place . has in turn only one transition in its
preset, .

The function of , is not constant either.
, which means that buildStub stops and reports suc-

cess. The unwanted value is eliminated.
Since there are no more join transitions in the diagnostic

trace, pessRed also finishes returning the stub in Figure 6.14.

t5 u 3= f t5
x() x=

f t5

1– u() f t5

1– 3() 3{ }= =

q7 q7
t10

t10 f t10
x() 2x=

f t10

1– 3() ∅=

Figure 6.14: The resulting stub after pessimism reduction

p1

p2

q1

q3

q4

q5

q6

t1 t2

t5t6

t7

t8

t9

x

x

x

xx
x

x
x

x

x mod 4 0≠[]

x mod 4 0=[] t5min..∞[]

t2min..∞[]

t6min..t6max[]

t7min..t7max[]

x

2x U∈ x U∈{ }

q7 t10
104

AUTOMATIC GENERATION OF STUBS
only produces even values, so also only produces even
values, which in turn causes the property to be satisfied.

6.4.1 COMPLEXITY ANALYSIS

buildStub is a depth first search with complexity , where
is the number of nodes and is the number of edges in the

graph. The question mark in this analysis is the time it takes to
invert a function. Assuming that the time for inverting and com-
puting the functions in the graph takes in the worst
case, the total time complexity of buildStub is .

buildStub is called once for each join transition in the diagnos-
tic trace. The overall time complexity is consequently

, where is the number of join transitions in
the trace. Assuming that the number of join transitions in the
trace are few, we obtain a complexity close to linear.

6.5 Experimental Results
The proposed methodology is demonstrated on two examples:
the General Avionics Platform (GAP), introduced in Section 4.1,
and a cruise controller.

6.5.1 GENERAL AVIONICS PLATFORM

The two components in the GAP example which were modelled
and whose interconnection were especially verified were Tracker
and Weapon (Figure 6.15). Tracker receives information from
component Radar regarding the location of enemy airplanes.
The pilot may point at a particular airplane on his screen and
lock the weapons on it. Upon lock, Tracker repeatedly sends
information to Weapon about the direction and distance of the
target airplane as long as the lock situation holds. Weapon con-
tinuously informs Tracker that it keeps up with the aiming
instructions given by Tracker.

t10 t5

O n e+()
n e

O inv()
O n inv⋅ e+()

O t n inv⋅ e+()() t
105

CHAPTER 6
Three properties were checked in this setting:

1. Weapon must keep up with the aiming instructions given by
Tracker.

2. Tracker must be able to send the aiming instructions at a
certain rate.

3. Tracker must only send aiming instructions within a certain
direction (and distance) interval, e.g. it cannot aim back-
wards.

The properties (all are (T)ACTL) were verified following the
methodology described in this chapter. It was assumed that the
only information given by the component provider was the
model of the complete component. In particular, no predesigned
stubs were provided.

Table 6.1 shows the verification results and times in seconds.
T means that the property was satisfied in the corresponding
verification environment and F means that it was unsatisfied.

First, stubs were obtained by running the models of Tracker
and Weapon through the algorithm described in Section 6.3
(Env 0). In the case when the property was unsatisfied, the diag-
nostic trace was investigated and the proper stub had its pessi-

Tracker Weapon

lock

radar

ready

aimrel

newstat

aimabs fire

0 0,〈 〉

0..0[]

1..2[]

0..1[]

nv

nv

ov
v v ov+

Figure 6.15: The verified glue logic in the GAP example

AG aimrel AF ready→()

AG aimrel AF 5≤ aimrel¬→()

AG aimabs aimabs min max,[]∈→()
106

AUTOMATIC GENERATION OF STUBS
mism reduced (Env 1). The properties were also verified using
naïve stubs.

For properties 1 and 2 the verifications went very fast and
using Env 0 was sufficient. Property 3 was however unsatisfied
in Env 0, so the stub representing the Tracker component
needed to have its pessimism reduced. The time accounted for
pessimism reduction was spent on manual work like investigat-
ing the diagnostic trace and running the pessimism reduction
algorithm. A low estimation of the time for pessimism reduction
was 2 minutes, shown in the third column of Table 6.1.

Verifying with Env 1 took longer time due to its larger model
complexity. For curiosity properties 1 and 2 were also verified
using Env 1 although it would not have been necessary accord-
ing to the methodology. Not surprisingly, it took substantially
longer time than verifying them with Env 0. In either case, ver-
ifying the properties with stubs obtained by the algorithms was
tremendously much faster than using naïve stubs.

Using naïve stubs took substantially longer time than using
Env 0 or Env 1. The available verification equipment was not
capable of efficiently handling the big amount of required mem-
ory leading to verification times of several weeks. For this rea-
son, no results can be presented.

6.5.2 CRUISE CONTROLLER

The second set of experiments was done on a model of a car
cruise controller (Figure 6.16). When the cruise controller is
activated by the driver of the car, a signal is sent to the cruise

Table 6.1: Verification times for the GAP example

Prop. Env 0
Pess.
Red. Env 1 Sum Naïve

1 T 0.200 - (T 15.104) 0.200 N/A

2 T 0.122 - (T 4.159) 0.122 N/A

3 F 0.031 ≈120 T 3.191 ≈123 N/A
107

CHAPTER 6
controller module (CCM). The CCM immediately records the
current speed (reference speed) which it will try to keep until the
cruise controller is turned off. If it notices that the current speed
of the car is lower than the reference value, it sends signals to
the engine controller module (ECM) to increase the torque. If the
speed is higher than expected, the opposite command is issued.
In case the driver pushes the brake pedal, a signal is sent to the
CCM to turn off itself.

The properties to be verified are the following:

1. The brake signal must be processed sufficiently fast.

2. The requested torque is below 100%.

3. The reference value is positive.

All properties are (T)ACTL and it is assumed that no stubs were
provided by the designer of the components.

Table 6.2 presents the verification results and times in sec-
onds in the same style as the results given in Table 6.1. The

CCM
ECM

ccset

vs

cccanc

ccsp

bp

reqtorque

rpm

0..0[]

2..2[]

1..1[]

t t

Figure 6.16: The verified glue logic in the cruise controller
example

brp

tcc

t

t

2..2[]

t4

t1

t2

t3

off

on

AG bp AF 1< bp¬→()

AG reqtorque reqtorque 1≤→()

AG ccsp ccsp 0≥→()
108

AUTOMATIC GENERATION OF STUBS
same procedure was followed in these experiments as in the
GAP example.

The verification of property 1 showed that it was unsatisfied
with Env 0. Hence, the diagnostic trace was examined. It turned
out that the error was located in the glue logic, not in any of the
stubs. The reason was that the brake signal (token) is never con-
sumed if the CCM was turned off as can be seen in Figure 6.16,
transition .

The difference of verification times between the GAP and
CCM examples are several orders of magnitude. The reason is
twofold:

1. Bigger interaction with inherently random system environ-
ment, e.g. turning on and off the system, braking or varying
driving pattern (speed).

2. The generated stubs are nearly as big as the components
themselves, due to their structure.

Although, the verification times are long, they are still far from
the situation using naïve stubs.

6.6 Verification Methodology Roadmap
This section continues the verification roadmap introduced in
Section 4.3.2 based on the work presented in this chapter.

The question answered in Figure 4.8 gives us the assumption
that we must ourselves generate the stubs used in the verifica-

Table 6.2: Verification times for the CCM example

Prop Env 0
Pess.
Red. Env 1 Sum Naïve

1 F 0.147 ≈120 - ≈120 N/A

2 T 151.3 - (T 22905) 151.3 N/A

3 F 0.146 ≈120 T 26095 ≈26220 N/A

t4
109

CHAPTER 6
tion. As indicated by the next question (Figure 6.17) it is neces-
sary to have a model of the whole component in order to be able
to proceed with the verification. If such a model exists, a stub is
created for the interface in question using the algorithm in Sec-
tion 6.3. In the next step, the property is verified using the gen-
erated stub. If the property was satisfied and ACTL, it is proven
that the system satisfies it. If the property was satisfied, but not

Do you have access to
the internal model of

the component?

No

Build top-level stubs
from the component model

using the proposed algorithm

Yes

Verify property

Is the property
satisfied?

Is the property
ACTL?

Yes

Yes

No

No

Figure 4.8

Verification impossible

Property is
proven satisfied

Figure 6.19

Figure 6.18

Is the property
ACTL?

Property is
proven not satisfied

No

Yes

Figure 6.18

Figure 6.17: Continuation from Figure 4.8 when no stubs
are provided by the designer
110

AUTOMATIC GENERATION OF STUBS
ACTL, naïve stubs might need to be used (Figure 6.19). Other-
wise, if the property was not satisfied and not ACTL, it is proven
unsatisfied in the system. However, if the property is ACTL, pes-
simism has to be reduced in the stub (Figure 6.18).

Pessimism is reduced by first investigating the diagnostic
trace obtained from the verification. If the trace indicated a fault
in the glue logic, i.e. not in a stub, the property is proven not sat-
isfied. In case the fault was found in the stub and all functions of
the component are invertible, pessimism is reduced according to

Investigate the diagnostic
trace to identify the

failing point

Did the diagnostic trace
indicate a failure in

a stub?

Figure 6.17

Property is
proven not satisfied

No

Are all transition functions
in the component invertible?

Yes

No
Figure 6.19

Reduce pessimism in the stub using
the proposed algorithm

Yes

Was it possible to
extend the stub?

No
Figure 6.19

Figure 6.17

Yes

Figure 6.18: Continuation of the roadmap from
Figure 6.17
111

CHAPTER 6
the algorithm presented in Section 6.4. If all functions are not
invertible, naïve stubs have to be considered. The same happens
if it was impossible to further reduce pessimism. When a new
less pessimistic stub has been obtained, the property is verified
again.

As mentioned above, if a verification result could not be con-
cluded, naïve stubs have to be considered (Figure 6.19). How-
ever, if the diagnostic trace suggested that assumptions on the
surrounding are violated, using naïve stubs will not solve the
problem (see discussion around Figure 6.3 about the difference

Did the diagnostic trace
indicate that the failure

depends on assumptions about
other interfaces not taken

into consideration?

Figure 6.17
Figure 6.18

Figure 7.23

Yes

Use the naïve
stub

No

Verify property

Is the property
satisfied?

Property is
proven not satisfied

No

Property is
proven satisfied

Yes

Figure 6.19: Continuation of the roadmap from
Figure 6.17 and Figure 6.18
112

AUTOMATIC GENERATION OF STUBS
between naïve and exact stubs). The solution to that problem is
presented in Chapter 7. Otherwise, the naïve stub is used
straight-forwardly.
113

CHAPTER 6
114

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
Chapter 7
Inclusion of the

Surrounding into the
Verification Process

OGETHER WITH EACH COMPONENT, a set of (T)CTL
formulas are provided as requirements on the input on
all interfaces of the component. However, stubs gener-

ated by the algorithms presented in Chapter 6 disregard from
this fact and always assume the worst case surrounding. A less
pessimistic verification result might be obtained if the informa-
tion provided by the formulas on other interfaces than those con-
nected to the glue logic are incorporated into the stubs
themselves. Moreover, system specific assumptions about the
surrounding might also have to be made in order to obtain a
good verification result. In this way, stubs no longer assume the
worst case surrounding but a surrounding satisfying certain
given requirements. Figure 7.1 illustrates this mechanism.

This chapter will present an algorithm which translates an
arbitrary ACTL formula into a PRES+ model, such that this
model can produce all possible observations (behaviours) still

T

115

CHAPTER 7
consistent with the formula. The resulting Petri-net is then
attached to the component on the interface on which the formula
was expressed. The component with the attached formula Petri-
net (Figure 7.1) is then treated as a stub in the subsequent ver-
ification.

Existing work has already approached this issue using finite
automata on infinite words for LTL and ACTL [Gru94]. Our
work is based on this translation method. In fact, many defini-
tions presented in this chapter, in particular in Section 7.2.1, are
based on similar definitions in [Gru94], although most of them
are modified in order to fit the PRES+ representation and our
interpretation of CTL formulas better (see Section 3.2).

Other work tries to remove the restriction of ACTL and be
able to derive automata for all CTL formulas [Kup96]. However,
in this case the translation cannot be performed into normal
automata on infinite words, but only into so called tree autom-
ata. Since there is no direct correspondance between tree autom-
ata and Petri-nets, this generalisation cannot be applied in our
case. Consequently, the translation algorithm presented below

S
tu

b Glue

Logic

Interface 1
Interface 2

(T)CTL Formulas
(T)CTL Formulas

Figure 7.1: Overview of the methodology presented
in this chapter

S
u

rr
ou

n
d

in
g

F
or

m
u

la
P

et
ri

-n
et

(T)CTL Formulas

Interface 3

C
om

p
on

en
t

116

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
assumes an ACTL formula, or a conjunction or disjunction of
ACTL formulas. Conjunctions of formulas are of special interest
since they allow to create one single PRES+ model from several
formulas.

7.1 Preliminaries

7.1.1 INTRODUCTORY EXAMPLE

Consider the ACTL formula . The formula states that
must repeatedly hold some time in the future. It is however

not defined when this future must come, only that it must come
eventually. Figure 7.2(a) shows an ad hoc construction of a
PRES+ model simulating this formula. It should be noted that
all generated models are connected to a component. Therefore it
is possible that tokens disappear or appear in the ports corre-
sponding to the atomic propositions in the formulas, without an
explicit transition in the generated PRES+ model.

Unfortunately, the model in Figure 7.2(a) does not fully corre-
spond to the formula, since there is nothing which will ever force
the transition to fire. As a result, it is not certain that will be
marked in the future.

In order to solve this problem, the F and U operators in the
ACTL formula must have an upper time bound, before which the
subformula must hold, e.g. . The time bound is trans-
ferred to the corresponding transition. The model now has a
mechanism to force the transition to fire and will be marked

p

Figure 7.2: Petri-nets constructed ad hoc for the formula
AGAF p

[0..5]

(a) (b)

p

AGAF p
p

p

AGAF p5≤

p

117

CHAPTER 7
in the future. From here on, in the context of translating ACTL
formulas to Petri-nets, it is assumed that such time bounds on F
and U operators exist. A Petri-net model for this formula is
shown in Figure 7.2(b).

7.1.2 FORMULA NORMALISATION

In order to simplify the algorithm, the formula for which a Petri-
net should be generated must be written in a normal form
according to the following rules:

1. Implications of the form must be rewritten as ,
so that the only boolean operators in the formula are ¬, ∧
and ∨.

2. Subformulas of the form , where is a port, is a
value and is a relation, for example the equality relation
=, must be rewritten as , where is the comple-
mentary relation of , in this case the disequality relation ≠,
in order to enforce the correct semantics.

3. is rewritten as .
4. is rewritten as .

Table 7.1 shows a few examples of ACTL formulas and their nor-
malisations. and are abbreviated as and respec-
tively.

p q→ p¬ q∨

pℜv()¬ p v
ℜ

p¬ pℜv∨ ℜ
ℜ

AG ϕ A false R ϕ[]
AF ϕj≤ A true U ϕj≤[]

Table 7.1: Examples of (T)ACTL formulas and
their normalisations

Formula Normalisation

AG p p 5≤→() A f R p¬ p 5≤∨()[]

AF 4≤ p A t U 4≤ p[]

AGAF 4≤ p A f R A t U 4≤ p[][]

AG p 10> AF 2≤ q 5≤→() A f R p¬ p 10≤ A t U 2≤ q 5≤[]∨ ∨()[]

true false t f
118

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
7.2 The Algorithm
The algorithm consists of the following main steps:

1. Place generation.
2. Timer insertion for U operators
3. Transition generation
4. Insertion of initial tokens

Each of these four steps is explained in more detail in the follow-
ing sections. The steps are executed in sequence. Section 7.2.5
gives a summary of these steps and a final overview of the algo-
rithm is presented.

The basic idea of the algorithm is to identify a set of states sat-
isfying the particular ACTL formula. Each state represents a
particular behaviour of the net. The Petri-net changes state as a
response to inputs received and outputs emitted, in a way that
the formula will stay satisfied. The resulting Petri-net will have
one place for each such state.

If the state represents a behaviour which includes that a cer-
tain U formula must hold, it is necessary to insert timers into
that state in order to guarantee that the specified event will
occur before the upper time bound of the U formula expires.

Transitions are inserted to represent all possible state
changes satisfying the formula.

All states satisfying the formula can potentially be the initial
state. The selection must be made dynamically so that all possi-
bilities are accounted for in the verification. A mechanism for
selecting the initial state is included at the last step of the algo-
rithm.

The formula is used as an example for
explaining the algorithm presented in this chapter. This formula
is rewritten as according to
the normalisation rules. Section 7.3 provides further examples.

AG p AF 3≤ q 10<→()

ψ A f R p¬ A t U q 10<3≤[]∨()[]=
119

CHAPTER 7
7.2.1 PLACE GENERATION

The first step of the algorithm is to create places to the Petri-net.
Before describing the algorithm, a few definitions and concepts
must be presented.

Definition 7.1: Set of elementary formulas. The set
of elementary formulas of the formula is defined by the fol-
lowing equations ([Gru94] modified).

1. If or , then . If
(where is a port of a component) or , then

. If , then .
2. If or , then

.
3. If , then

.
If , then

.

Considering the example formula , the set of elementary for-
mulas is shown in Equation 7.1.

(7.1)

An elementary formula expresses a certain aspect about the
model. AX formulas describe a certain future behaviour,
whereas atomic propositions say something about the current
state of the system.

In the rest of this chapter, we will very often refer to large sets
of subsets of . In order to achieve an acceptably condence
representation, we will use a numerical notation for subsets of

.

el ϕ()
ϕ

ϕ true= ϕ false= el ϕ() ∅= ϕ p=
p ϕ p¬=

el ϕ() p{ }= ϕ pℜv= el ϕ() p pℜv,{ }=
ϕ ϕ1 ϕ2∧= ϕ ϕ1 ϕ2∨=

el ϕ() el ϕ1() el ϕ2()∪=
ϕ A ϕ1U ϕj≤ 2[]=

el ϕ() AX A ϕ1U ϕj≤ 2[]{ } el ϕ1() el ϕ2()∪ ∪=
ϕ A ϕ1 R ϕ2[]=

el ϕ() AX A ϕ1 R ϕ2[]{ } el ϕ1() el ϕ2()∪ ∪=

ψ

el ψ() AX A f R p¬ A t U q 10<3≤[]∨()[]

1

p
2

AX A t U q3≤ 10<[]

4

q
8

q 10<
16

, ,

, ,













=

                 {

         {   

el ϕ()

el ϕ()
120

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
Each subset will be labelled , where is a number accord-
ing to the following scheme. Every elementary formula is
assigned a power of 2, see Equation 7.1. is the sum of the num-
bers corresponding to the formulas included in the desired set.
Table 7.2 lists all subsets of with their associated num-
bers.

Definition 7.2: Subformula. The set of subformu-
las of the formula is defined by the following equations
([Gru94] modified).

1. If or or or (an
atomic proposition), then . If , then

.
2. If or or or

, then
.

Equation 7.2 presents the set of all subformulas of the example
formula .

(7.2)

Definition 7.3: Atomic propositions. The set of atomic prop-
ositions in a formula is defined as

. This function can also be
lifted to sets of formulas: . It is con-
venient to additionally define and to
mean the set of atomic propositions which denote in-ports
and out-ports of a connected component, respectively. Fur-
thermore, let
denote the set of atomic propositions with relations, and

and those atomic propositions with
relations which refer to an in-port or out-port respectively.

Si i

i

el ψ()

sub ϕ()
ϕ

ϕ true= ϕ false= ϕ p= ϕ pℜv=
sub ϕ() ϕ{ }= ϕ p¬=

sub ϕ() ϕ p,{ }=
ϕ ϕ1 ϕ2∧= ϕ ϕ1 ϕ2∨= ϕ A ϕ1U j≤ ϕ2[]=

ϕ A ϕ1 R ϕ2[]=
sub ϕ() ϕ{ } sub ϕ1() sub ϕ2()∪∪=

ψ

sub ψ() A f R p¬ A t U q 10<3≤[]∨()[] f
p¬ A t U q 10<3≤[]∨ p¬ p A t U q 10<3≤[] t q 10<

, ,
, , , , ,

{
}

=

ϕ
AP ϕ() el ϕ() AX ϕ1 el ϕ()∈{ }–=

AP Ψ() AP ϕ()ϕ Ψ∈∪=
APin ϕ() APout ϕ()

APrel ϕ() AP ϕ() APin ϕ()– APout ϕ()–=

APrin ϕ() AProut ϕ()
121

CHAPTER 7
Table 7.2: Listing of all subsets of

Subset of
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

el ψ()

Si el ψ()
∅
AX A f R p¬ A t U q 10<3≤[]∨()[]{ }
p{ }
AX A f R p¬ A t U q 10<3≤[]∨()[] p,{ }
AX A t U q3≤ 10<[]{ }
AX A f R p¬ A t U q 10<3≤[]∨()[] AX A t U q3≤ 10<[],{ }
p AX A t U q3≤ 10<[],{ }
AX A f R p¬ A t U q 10<3≤[]∨()[] p AX A t U q3≤ 10<[], ,{ }
q{ }
AX A f R p¬ A t U q 10<3≤[]∨()[] q,{ }
p q,{ }
AX A f R p¬ A t U q 10<3≤[]∨()[] p q, ,{ }
AX A t U q3≤ 10<[]() q,{ }
AX A f R p¬ A t U q 10<3≤[]∨()[] AX A t U q3≤ 10<[] q, ,{ }
p AX A t U q3≤ 10<[] q, ,{ }
AX A f R p¬ A t U q 10<3≤[]∨()[] p AX A t U q3≤ 10<[] q, , ,{ }
q 10<{ }
AX A f R p¬ A t U q 10<3≤[]∨()[] q 10<,{ }
p q 10<,{ }
AX A f R p¬ A t U q 10<3≤[]∨()[] p q 10<, ,{ }
AX A t U q3≤ 10<[] q 10<,{ }
AX A f R p¬ A t U q 10<3≤[]∨()[] AX A t U q3≤ 10<[] q 10<, ,{ }
p AX A t U q3≤ 10<[] q 10<, ,{ }
AX A f R p¬ A t U q 10<3≤[]∨()[] p AX A t U q3≤ 10<[] q 10<, , ,{ }
q q 10<,{ }
AX A f R p¬ A t U q 10<3≤[]∨()[] q q 10<, ,{ }
p q q 10<, ,{ }
AX A f R p¬ A t U q 10<3≤[]∨()[] p q q 10<, , ,{ }
AX A t U q3≤ 10<[] q q 10<, ,{ }
AX A f R p¬ A t U q 10<3≤[]∨()[] AX A t U q3≤ 10<[] q q 10<, , ,{ }
p AX A t U q3≤ 10<[] q q 10<, , ,{ }

el ψ()
122

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
In the example formula, . It is further
assumed in this example that is an out-port and is an in-
port of a component, and .

 and .
The atomic propositions with relation in a set of elementary

formulas impose certain restrictions on the token values in
the ports corresponding to the atomic proposition. The universe
from which values are chosen is denoted U (see also Section
6.3.3). U contains all values which could possibly occur in the
design. In all examples of this chapter, it is assumed that the
universe is the set of all integers, .

Definition 7.4: Port values. The set of in-port values of the
set of elementary formulas is defined as

. The
set of out-port values is defined with respect to a particular
out-port . It is defined as

, where
.

The set of in-port values of a set of elementary formulas is the
set of values in the universe U which satisfy all relations, with
an atomic proposition referring to an in-port, in . The atomic
propositions in the relations do not need to be the same. There
must still exist a value which satifies all relations in the set. The
reason that all in-port relations must be satisfied simultane-
ously disregarding the atomic proposition in the relation stems
from the fact that transitions in PRES+ only can have one func-
tion. The values produced by that function must consequently
simultaneously satisfy all atomic propositions with relation cor-
responding to in-ports in .

In the case of out-ports, each atomic proposition is examined
separately, as opposed to in-ports, since transition functions may
have several arguments.

AP ψ() p q q 10<, ,{ }=
p q

APout ψ() p{ }= APin ψ() q{ }=
APrel ψ() AProut ψ() q 10<{ }= = APrin ψ() ∅=

s

U Z=

s
PVin s() k U∈ pℜv s∈ : p APin s()∈ kℜv→()∀{ }=

p
PVout s p,() k U∈ pℜv s∈ :kℜv∀{ }=
p APout s()∈

s

s

s

123

CHAPTER 7
In the example, and
.

and does not exist since is
not an out-port.

Having defined port values, it is possible to determine which
sets of elementary formulas are legal.

Let denote the formula for which a Petri-net is to be con-
structed. Let be defined as indicated by Equation 7.3,
where . is the power set of but
where subsets containing a contradictory set of elementary for-
mulas are removed. A set of elementary formulas can be con-
tradictory for two reasons:

1. The set contains an atomic proposition with relation (),
but not the atomic proposition itself (). Such a set is contra-
dictory since the relation says that place contains a token
related in the particular way, but the absence of the atomic
proposition indicates that , on the contrary, does not con-
tain any token, in other words . (E.g.

)
2. The set contains atomic propositions with relations, where

there does not exist any value which can satisfy all relations
corresponding to in-ports at the same time, .
The same holds for out-ports, but for each atomic proposition
separately, in other words .
(E.g.)

(7.3)

Definition 7.5: Legal (Contradictory) set of elementary for-
mulas. A set of elementary formulas, , is legal iff ,
and is contradictory iff , where is defined as
in Equation 7.3.

PVin S9() … 1– 0 1 2 …, , , , ,{ } Z= =
PVin S25() k Z∈ k 10<{ } … 1– 0 1 2 … 9, , , , , ,{ }= =
PVout S27 p,() Z= PVout S27 q,() q

ψ
S ψ()

p pℜv, AP ψ()∈ S ψ() el ψ()

s

pℜv
p

p

p p
p∃ ℜv s∈ : p s∉

pℜv q AX A f R q[], ,{ }

PVin s() ∅=

p APout ψ():PVout s()∈∀ ∅=
q q 10 q 20>,<,{ }

S ψ() 2el ψ() s 2el ψ()∈ p∃ ℜv s∈ : p s∉{ }–

s 2el ψ()∈ PVin s() ∅= p APout ψ():PVout s()∈∀ ∅=∧{ }
–=

s s S ψ()∈
s s S ψ()∉ S ψ()
124

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
The set is contradictory since the for-
mula is not a member of the set, but is.

is also a contradictory set assuming that
both and are in-ports, since there does not exist any value
which is both less than 10 and greater than 20. However, assum-
ing than is an out-port and is an in-port makes the same set
legal. is a legal set of elemen-
tary formulas.

Continuing the example, . Ele-
ments to are not included into , since they contain

 but not and hence are contradictory.
Identifying simplifies the rest of the algorithm, in the

sense that it no longer needs to consider contradictory situa-
tions. From now on, only legal sets of elementary formulas are
considered.

After having identified the legal sets of elementary formulas,
it is needed to find out which legal sets of elementary formulas
satisfy the formula for which a Petri-net should be generated.
Definition 7.6 introduces a function, , for this purpose.

Definition 7.6: . Formula mapping from
to is defined recursi-

vely as follows [Gru94]:

1. , . If , then
. If , then

.
2. If , then . If

, then .
3. If , then

. If
, then

.

AX A p R q[] p 10<,{ }
p p 10<

p 10< p q 20 q,>, ,{ }
p q

p q
AX A p R q[] p 10 p q 5 q,>, ,<,{ }

S ψ() S0..S15 S24..S31,{ }=
S16 S23 S

q 10< q
S ψ()

ψ
Φ

Φ ϕ() Φ ϕ()
el ψ() sub ψ() true false,{ }∪ ∪ S ψ()

Φ true() S ψ()= Φ false() ∅= ϕ el ψ()∈
Φ ϕ() s S ψ() ϕ s∈∈{ }= ϕ ϕ1¬=
Φ ϕ() S ψ() Φ ϕ1()–=

ϕ ϕ1 ϕ2∧= Φ ϕ() Φ ϕ1() Φ ϕ2()∩=
ϕ ϕ1 ϕ2∨= Φ ϕ() Φ ϕ1() Φ ϕ2()∪=

ϕ A ϕ1 U ϕ2[]=
Φ ϕ() Φ ϕ2() Φ ϕ1() Φ AX ϕ()∩()∪=
ϕ A ϕ1 R ϕ2[]=
Φ ϕ() Φ ϕ2() Φ ϕ1() Φ AX ϕ()∪()∩=
125

CHAPTER 7
denotes the maximal set of legal elementary formulas sat-
isfying the formula . This intuitively means that the algorithm
should generate a PRES+ model which realises , i.e. can
produce all events described by the sets in .

The following results are useful for later illustration of the
example and were obtained as partial results while computing

.

Definition 7.7: Progress formulas. A progress formula is
any elementary formula except atomic propositions. Assum-
ing a set of elementary formulas , .
This function can also be lifted to sets of sets of formulas,

.

For example, . since
and

.
Progress formulas express how the system should behave

(progress) over a period of time and therefore tell us something
about the future. Atomic propositions, on the other hand, only

Φ ϕ()
ϕ

Φ ψ()
Φ ψ()

Φ ψ()
Φ ψ() Φ A f R p¬ A t U q 10<3≤[]∨()[]()

S1 S5 S7 S9 S13 S15 S25 S27 S29 S31, , , , , , , , ,{ }
= =

Φ AX A f R p¬ A t U q 10<3≤[]∨()[]()
S1 S3 S5 S7 S9 S11 S13 S15 S25 S27 S29 S31, , , , , , , , , , ,{ }

=

Φ p¬ A t U q 10<3≤[]∨()
S0 S1 S4 S5 S6 S7 S8 S9 S12 S13 S14 S15

S24 S25 S26 S27 S28 S29 S30 S31

, , , , , , , , , , , ,
, , , , , , ,

{
}

=

Φ p¬() S0 S1 S4 S5 S8 S9 S12 S13 S24 S25 S28 S29, , , , , , , , , , ,{ }=
Φ A t U q3≤ 10<[]()

S4 S5 S6 S7 S12 S13 S14 S15 S24 S25 S26 S27 S28
S29 S30 S31

, , , , , , , , , , , , ,
, ,

{
}

=

Φ AX A t U q3≤ 10<[]()()
S4 S5 S6 S7 S12 S13 S14 S15 S28 S29 S30 S31, , , , , , , , , , ,{ }

=

Φ q 10<() S24 S25 S26 S27 S28 S29 S30 S31, , , , , , ,{ }=

Ψ PF Ψ() Ψ AP Ψ()–=

PF Γ() PF Ψ()Ψ Γ∈∪=

PF S31() S5= PF Φ ψ()() S1 S5,{ }=
PF S1() PF S9() PF S25() PF S27() S1= = = =
PF S5() PF S7() PF S13() PF S15() PF S29()= = = = =
PF S31() S5=
126

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
express the current state of the system. For this reason, we need
to treat progress formulas and atomic propositions separately.

Each set of elementary formulas will correspond to a state
(marking) in the final PRES+ model. consequently,
denotes the set of all states satisfying the property . All these
states, as well as transitions between them, must thus be cap-
tured by the final Petri-net. Each set of possible progress formu-
las will have a corresponding place. In this way,
it is possible to express all states.

In our example introduced on page 119, the resulting Petri-
net will have two places corresponding to the two sets in

. A token in the place corresponding to
the set of progress formulas and another token in port
reflects the state (set of elementary formulas) . State is
modelled by a token in the place corresponding to progress for-
mulas together with a token in with a value less than 10.
This state actually also corresponds to , an observation which
is important in the context of redundancy (Definition 7.14).

Let us assume that is an in-port of a component,
. Assume further that the Petri-net is in state

, i.e. a token in the place and other tokens in and
(with a value less than 10). This state satisfies the formula ,

. Since the Petri-net is connected to a component at
, a transition in that component may consume that token

which forces the Petri-net to change state to . However, state
does not satisfy formula , , so the possibility of

ending up in this state must be eliminated. A similar example
can be shown for state , which enters state when the
token in is consumed by the connected component. The differ-
ence is that does satisfy the formula, .

The previous discussion has concluded that state may
lead to a state which does not satisfy the formula. Consequently,
that state must be removed from the set of valid states.

Φ ψ()
ψ

pf PF Φ ψ()()∈

PF Φ ψ()() S1 S5,{ }=
S5 p

S7 S25

S1 q
S9

q
q APin el ψ()()∈
S27 S1 p q

ψ
S27 Φ ψ()∈
q

S3
S3 ψ S3 Φ ψ()∉

S13 S5
q

S5 S5 Φ ψ()∈
S27
127

CHAPTER 7
Definition 7.8: Valid elementary set. A set of elementary
formulas, , is a valid elementary set in , if for all

, and
is recursively a valid elementary set. If

, then is always a valid elementary set. Let
.

only contains the legal sets of elementary formulas
satisfying , , which represent states which will still
satisfy even if one or more tokens are removed from the
marked in-ports. From this point on, only valid elementary sets
are considered, .

In our example,
, since for

the set , . Hence
this set is not a valid elementary set. On the other hand,

, and does not have any in-port
atomic propositions. The recursion ends and it is concluded that

 is a valid elementary set.
Figure 7.3 shows the algorithm for creating the places in the

resulting PRES+ model. The variable net is a global variable of
type PRES+ which in the end will contain the final net.

Create one place for each member set
(Line 3). Denote the set of progress formulas that a place cor-
responds to as (Line 4). Dually, for each place , a set of
places associated to a set of elementary formulas , , is
maintained. It will record the places which have to be marked
when the Petri-net enters the state represented by . Their
function will become clear in Section 7.2.3, where transitions are
added. Initially, (Line 5). maps a set
of elementary formulas to the place. As opposed to ,
will not change during the course of later steps of the algorithm.
Ports corresponding to the atomic propositions (without rela-
tions) occurring in the formula must also be added to the model

s Φ ψ()
p APin s()∈ s p{ }– pℜv s∈{ }– Φ ψ()∈
s p{ }– pℜv s∈{ }–
APin s() ∅= s
VES ψ() s′ Φ ψ()∈ s′ is a valid elementary set{ }=

VES ψ() s
ψ s Φ ψ()∈

ψ

s VES ψ()∈

VES ψ() S1 S5 S7 S9 S13 S15 S25 S29 S31, , , , , , , ,{ }=
S27 Φ ψ()∈ S27 q{ }– q 10<{ }– S3 Φ ψ()∉=

S15 q{ }– S7 Φ ψ()∈= S7

S15

s PF VES ψ()()∈
pi

Ψ pi() pi
s Pin s()

s

Pin s() pi{ }= P s() pi=
Pin s() P s()
128

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
(Line 8). They are associated to their corresponding atomic prop-
osition through the mapping (Line 9).

In our example, the resulting net has two places, and ,
corresponding to formulas in and respectively. This
means that , , and
and . Moreover, it has two atomic propositions

and , so two places and are created for this reason.
, and .

7.2.2 TIMER INSERTION FOR U OPERATORS

In Section 7.1.1, it was concluded that F and U operators are
forced to have an associated upper time bound (deadline) before
which a certain specified event has to occur. Since F operators
are rewritten as U operators in the normalisation, only U oper-
ators are considered.

In order to make sure that the desired events eventually will
happen and that they will happen in time, timers must be intro-
duced.

In Definition 7.9, it should be remembered that
denotes the set of progress formulas for which the place was
created. See also Line 4 in Figure 7.3.

1 procedure createPlaces(ψ: ACTL)
2 for each s ∈ PF(VES(ψ)) do
3 add a place pi to net;
4 Ψ(pi) := s;
5 Pin(s) := { pi };
6 P(s) := pi;
7 for each p ∈ AP(ψ) do
8 add a place pp to net;
9 P(p) := pp;

Figure 7.3: The algorithm for creating the places in the
resulting Petri net

P p()
p1 p5

S1 S5
Ψ p1() S1= Ψ p5() S5= Pin S1() p1{ }=

Pin S5() p5{ }=
p q pp pq
P p() pp= P q() pq=

Ψ pi()
pi
129

CHAPTER 7
Definition 7.9: Set of U formulas. The set of U formulas in
place is expressed as

.

Place in our example does not have any U formula,
and place has got one,

.

Definition 7.10: Top-level subformula. The set
of top-level subformulas of the formula is defined by the
following equations.

1. If or , where is an atomic proposition,
then .

2. If or then
.

3. If , then
. If

, then
.

The operator decomposes the formula into its
clauses if it is a disjunction or conjunction. U and R formulas
have their first or second subformula, respectively, decomposed.
In these two cases, the formula itself is also a top-level subfor-
mula. Otherwise, the formula is left intact.

In our example from page 119,
and

.

Definition 7.11: Timer repeating formula. A formula
is timer repeating in place iff there exists a

formula such that .

pi
U pi() A ϕ1Uϕ2[] AX A ϕ1Uϕ2[] Ψ pi()∈{ }=

p1
U p1() ∅= p5
U p5() A t U q 10<3≤[]{ }=

subtop ϕ()
ϕ

ϕ ϕ1¬= ϕ p= p
subtop ϕ() ϕ{ }=

ϕ ϕ1 ϕ2∨= ϕ ϕ1 ϕ2∧=
subtop ϕ() subtop ϕ1() subtop ϕ2()∪=

ϕ A ϕ1 U ϕ2[]=
subtop ϕ() A ϕ1 U ϕ2[]{ } subtop ϕ1()∪=
ϕ A ϕ1 R ϕ2[]=
subtop ϕ() A ϕ1 R ϕ2[]{ } subtop ϕ2()∪=

subtop ϕ() ϕ

subtop p¬ A t U q 10<3≤[]∨() p¬ A t U q 10<3≤[] t,(),{ }=
subtop A f R p¬ A t U q 10<3≤[]∨()[]() =
A f R p¬ A t U q 10<3≤[]∨()[] p¬ A t U q 10<3≤[] t, , ,(){ }

ϕ U pi()∈ pi
AX A ϕ1 R ϕ2[] Ψ pi()∈ ϕ subtop ϕ2()∈
130

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
Formula is timer repeating in place in the
example since

and
. The definition

is not applicable to any formula in since it does not contain
any U formula, .

The reason for handling formulas which are timer repeating
differently from those which are not timer repeating is the
semantics of the R operator. In , the second sub-
forula must hold as long as the first subformula is not
satisfied. Hence, if contains a U formula, that U formula
must continue to hold and the timer must consequently be
restarted. If does not contain a U formula, the timer must not
be restarted, since the events in do not have to occur several
times.

Consider the formulas and .
states that must be marked after at most 5 time units, but

it does not say anything about what should happen after that
deadline. Figure 7.4(a) illustrates this behaviour. is not
timer repeating in this case. After having fired, the timer, tran-
sition , is not restarted.

states that must be marked after at most 5 time units,
repeatedly. After being marked for the first time, it must be
marked within 5 time units again. Figure 7.4(b) illustrates this
behaviour. After having fired, the timer, transition is immedi-

A t U q 10<3≤[] p5

AX A f R p¬ A t U q 10<3≤[]∨()[] Ψ p5()∈ S5=
A t U q 10<3≤[] subtop p¬ A t U q 10<3≤[]∨()∈

p1
U p1() ∅=

A ϕ1 R ϕ2[]
ϕ2 ϕ1

ϕ2

ϕ2
ϕ2

ψ1 AF 5≤ p= ψ2 AGAF 5≤ p=
ψ1 p

p

Figure 7.4: Illustration of timer repeating

[0..5]

p

[0..5]

(a) AF 5≤ p (b) AGAF 5≤ p
[0..∞]

p1 p1

p1’
t1

t1’
t1

p1

t1
ψ2 p

t1
131

CHAPTER 7
ately re-enabled in order to guarantee another firing. is in
this case timer repeating.

Section 7.3.1 and Section 7.3.2 go into more detail regarding
these two formulas.

One timer per U formula must be added, so that the deadline
of each U formula can be timed independently from each other.
Figure 7.5 presents the algorithm for adding timers to a place

. The algorithm is illustrated in Figure 7.6 for the case when
 has two U formulas ().

A timer is a piece of the PRES+ model consisting of two places
(e.g. and) between which there exists a transition from

to with a time delay interval of the type for any
non-negative real number (e.g). Place is called the
start place of the timer, and is called the end place. Places

and and transition together constitute another
timer.

All timers must be simultaneously started when the Petri-net
enters the state represented by . The mapping
contains all places to be marked when the Petri-net should enter
the particular state. Consequently, all places are added to
the mapping (Line 6).

p1

1 procedure addTimers(pi: place)
2 for each ϕ ∈ U(pi) do
3 add places pix and pix’ as indicated by Figure 7.6 to net;
4 add transition tix asin indicated by Figure 7.6 to net;
5 set time delay of tix to [0..j] where j is the upper bound

associated to the U operator in ϕ;
6 Pin(Ψ(pi)) := Pin(Ψ(pi)) ∪ { pix };
7 Timerin(pi, ϕ) := pix;
8 Timerout(pi, ϕ) := pix’ ;
9 if ϕ is non-timer repeating in pi then
10 add place pix” as indicated by Figure 7.6 to net;
11 NontimerCopy(pi, ϕ) := pix”;

Figure 7.5: Algorithm for adding timers to a place

pi
pi U pi() 2=

pia pia′
pia pia′ 0.. j[]

j tia pia
pia′

pib pib′ tib

pi Pin Ψ pi()()

pix
132

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
The exact use of these mappings will become clear in Section
7.2.3. and record the start
and end places respectively of the timers for future reference
(Line 7 and Line 8).

In case the place is not timer repeating, one additional place
per timer () must be added (Line 10) in order to capture the
same state, but when the respective timer has already fired, and
the events specified by the U formulas do not have to occur
again. The mapping helps to refer to
these places in later steps of the algorithm (Line 11).

In the case of the example formula (defined on page 119),
only place has a timer. Figure 7.7 presents the result of add-
ing the timer corresponding to the only U formula in that place.
At this point, and

. It still holds that
. Since the U formula in is timer repeat-

ing, no extra places are added.

pi pia

pia’

0.. ja[]

Figure 7.6: Adding timers to a place

tia

pib

pib’

0.. jb[]
tib

pia” pib”

Timerin pi ϕ,() Timerout pi ϕ,()

pix″

NontimerCopy pi ϕ,()

ψ
p5

Pin Ψ p5()() p5 p5a,{ }=
Pout Ψ p5()() p5 p5a′,{ }=
Pin Ψ p1()() p1{ }= p5

pix″
133

CHAPTER 7
7.2.3 TRANSITION GENERATION

At this point, all places and timers are added to the Petri-net.
The major remaining step is to add the transitions to the PRES+
model. Transitions are added according to different procedures
depending on whether a timer has been added to a particular
place or not.

Definition 7.12: Target formulas. The set of target formu-
las of a place is defined as

.

Definition 7.13: Target places. The set of target places of a
place is defined as .

p5

Figure 7.7: Adding timers to the example Petri net

p5a

p5a’

0..3[]t5a

p1

pi
TF pi() Φ ϕ()AX ϕ Ψ pi()∈∩ VES ψ()∩=

pi TP pi() PF TF pi()()=
134

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
The set of target formulas contains the sets of elementary for-
mulas representing the events which can happen next, given
that there is a token in . Consequently, as a basic rule, one
transition will be added for each set of elementary formulas in

 realising the particular event.
The set of target places is the set of sets of progress formulas

representing places in the Petri-net (see Section 7.2.1) to which
there is a target formula. In other words, is the set of
what is left when all atomic propositions have been removed
from all the sets in .

In our example,
and

according to the
more detailed computations in Equation 7.4 and Equation 7.5
respectively. In addition, .

(7.4)

(7.5)

No timer was added to the place

Given a place , contains sets of elementary formulas
representing events which may happen next, considering that
the Petri-net is in the state represented by place . For each set
of elementary formulas , a transition must, conse-
quently, be added to enable the event described by the set to

pi

TF pi()

TP pi()

TF pi()

TF p1() S1 S5 S7 S9 S13 S15 S25 S29 S31, , , , , , , ,{ }=
TF p5() S5 S7 S13 S15 S25 S29 S31, , , , , ,{ }=

TP p1() TP p5() S1 S5,{ }= =

TF p1() Φ ψ() VES ψ()∩
S1 S5 S7 S9 S13 S15 S25 S27 S29 S31, , , , , , , , ,{ }
S1 S5 S7 S9 S13 S15 S25 S29 S31, , , , , , , ,{ }

∩

S1 S5 S7 S9 S13 S15 S25 S29 S31, , , , , , , ,{ }

= =

=

TF p5() Φ ψ() Φ A t U q 10<3≤[]()∩() VES ψ()∩
S1 S5 S7 S9 S13 S15 S25 S27 S29 S31, , , , , , , , ,{ }

S4 S5 S6 S7 S12 S13 S14 S15 S24 S25 S26 S27
S28 S29 S30 S31

, , , , , , , , , , , ,
, , ,

{
}

∩(

)
S1 S5 S7 S9 S13 S15 S25 S29 S31, , , , , , , ,{ }

∩

S5 S7 S13 S15 S25 S29 S31, , , , , ,{ }

= =

=

pi TF pi()

pi
s TF pi()∈ t

s

135

CHAPTER 7
happen (see Figure 7.8, Line 2 to Line 4). No transition is, how-
ever, added if does not contain any atomic proposition
(), since such sets do not contribute with any events
on the ports and therefore are useless. As a result, a transition is
added only if . Line 3 will be discussed later
in connection with Definition 7.14.

Performing the events described by is done by moving the
token(s) from the source place to the place indicated by the
progress formulas in the particular elementary set, . At
the same time, tokens must be placed in or consumed from the
ports also as indicated by the atomic propositions in , .
Review the discussion about how a state is represented in the
Petri-net, on page 127. A state corresponding to is a marking
where there is a token in the place representing the progress for-
mulas in , , and there are tokens in the ports occurring
as atomic propositions in , , with token values consist-
ent with all relations given in .

The preset of the added transition must consequently be
(Line 5), since we are leaving and no timers have been

added to it. The postset must contain all places in
(Line 6), since we are entering the place corresponding to

. Thereby, possible timers in that place are also started.

s
s TP pi()∈

1 procedure addTransitions(pi: place)
2 for each s ∈ TF(pi) - TP(pi) do
3 if s is not redundant with respect to TF(pi) then
4 add transition t to net;
5 °t := { pi };
6 t° := Pin(PF(s));
7 connectToPorts(t, s);
8 set time delay of t to findTimeDelay(s, pi);

Figure 7.8: The standard algorithm for adding the
transitions belonging to place .pi

s TF pi() TP pi()–∈

s
pi

PF s()

s AP s()

s

s PF s()
s AP s()

s
t

pi{ } pi
Pin PF s()()

PF s()
136

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
Besides this, the ports corresponding to the atomic proposi-
tions must be included in the preset and postset. Exactly how to
do this, including assigning a transition function and guard
(Line 7), is explained next, as well as determining the time delay
interval of the transition (Line 8).

Figure 7.9 presents the algorithm for connecting a transition
to the ports according to a given set of elementary formulas. The
transition is connected to the ports as follows. Each atomic
proposition in corresponding to an out-port is incorporated
into ’s preset (Line 2). Similarly, each atomic proposition in
corresponding to an in-port is incorporated into ’s postset
(Line 3).

Next, the atomic propositions with relations must be taken
care of. If the atomic proposition refers to an out-port, the rela-
tion is added in conjunction with the other such relations to form
the guard of the transition (Line 6). If there are no atomic prop-
ositions with relation referring to out-ports, the transition does
not have any guard, i.e. the guard is always true (Line 4).

The transition function is set to return randomly any value
from (Line 8).

What remains to be determined is the time delay of the tran-
sition (Line 8 in Figure 7.8). Figure 7.10 shows how this delay is
computed. Normally, there is no requirement on when a certain

t
s

t s
t

1 procedure connectToPorts(t: transition, s: set of elementary formulas)
2 °t := °t ∪ P(APout(s));
3 t° := t° ∪ P(APin(s));
4 g := true;
5 for each pℜv ∈ AProut(s) do
6 g := g ∧ pℜv;
7 set guard of t to g;
8 set function of t to return a random value from PVin(s);

Figure 7.9: The algorithm for adding interaction with the
ports to transition as specified by the set .t s

PVin s()
137

CHAPTER 7
event has to be performed. This means that the transition
should be able to fire after 0 time units and before infinity inclu-
sive, i.e. . However, there are circumstances when the
transition must be taken immediately, i.e. have the time delay
interval . This situation may occur when a token arrives
at an out-port. The arrival of this token means that the Petri-net
changed state from to ,
where is the set of elementary formulas corresponding to the
transition in question and is the current place. It might be
the case that this new state is not valid, i.e.

(Line 2), in which
case the Petri-net must immediately move to a valid state by fir-
ing the transition at hand. As a consequence, the time delay has
to be .

Previously, it has been assumed that a transition is added for
every set of elementary formulas .
Although the resulting Petri-net will be correct using this
assumption, it will contain unnecessarily many transitions,
leading to a longer verification time than needed. Some transi-
tions are namely redundant.

Definition 7.14: Redundant elementary set. A set of ele-
mentary formulas is redundant with respect to the set of
sets of elementary formulas , iff there exists a set ,

, with , ,

1 function findTimeDelay(s: set of elementary formulas, pi: place) returns
time interval

2 if Ψ(pi) ∪ APout(s) ∪ AProut(s) ∉ VES(ψ) then
3 return [0..0];
4 else
5 return [0..∞];

Figure 7.10: Algorithm for finding the correct time delay
interval of a transition

0..∞[]

0..0[]

Ψ pi() Ψ pi() APout s() AProut s()∪ ∪
s

pi

Ψ pi() APout s() AProut s()∪ ∪ VES ψ()∉

0..0[]

s TF pi() TP pi()–∈

s
E s′ E∈

s s′≠ PF s() PF s′()= APin s() APin s′()=
138

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
and and
.

Intuitively, is redundant with respect to , if there is another
set with the same progress formulas and the same atomic
propositions but where can produce more values than , and
accept more values than on each of their input places. The
transition corresponding to can hence perform the very same
events as (and more). The conclusion is that the transition cor-
responding to is redundant and does not need to be included in
the net (Line 3 in Figure 7.8).

It is for example, not necessary to add a transition for a set
containing , if there already is a transition for a set con-
taining , but not , since anyway is able to produce all
events produced by .

In our example, it is evident that a transition for
is not needed since there exists a transi-

tion for , ,
,

and .
Hence is redundant with respect to, for instance,

.
Place in the example does not have any timer, so it follows

the procedure above for creating its transitions. Figure 7.11
shows the result of adding the transitions to . Some arcs on
transitions are not attached to any place in the figure, but they
are associated to an atomic proposition. This is a short-hand
meaning that they are attached to the port representing the
atomic proposition. The transition has, in such cases, a function
which produces random values from U. If the atomic proposition
has a relation, the function produces random values which still
satisfy all relations involved, i.e. its port values.

So, for example, has an output arc labelled . This means
that the arc is connected to port , and that the function associ-

APout s() APout s′()= PVin s() PVin s′()⊆
p APout s()∈ :PVout s p,() PVout s′ p,()⊆∀

s E
s′

s′ s
s

s′
s

s

t
q 10< t′

q q 10< t′
t

S25 S1 q q 10<,{ }∪=
S9 S1 q{ }∪= PF S25() PF S9() S1= =

APin S25() APin S9() q{ }= =
APout S25() APout S9() ∅= = PVin S25() PVin S9()⊆

S25
S1 S5 S9 S23 S25 S31, , , , ,{ }

p1

p1

t2 q
q

139

CHAPTER 7
ated to transition generates random values. Transition in
Figure 7.14 has an output arc with the associated relation

. That arc is also connected to , but the transition has an
associated function which only produces random values less
than 10.

Remember from Section 7.2.2 that
. No transi-

tions are created for and since they do not contain any
atomic propositions. , which means that the tar-
get places are and a token should also
be consumed from port . The token should be consumed, i.e.
belong to the preset, as opposed to produced, since is an out-
port. The transition is added to represent . It has no guard

p5 p5a

p5a’

0..3[]

Figure 7.11: The result of adding the transitions of place
 to the example formulap1

t5a

p1

0..0[]t1

p

q

0..∞[]

q

0..0[]

p

q

0..∞[]

t3

t4

t2

t2 t9

q 10< q

TF p1() S1 S5 S7 S9 S13 S15 S25 S29 S31, , , , , , , ,{ }=
S1 S5

S7 S5 p{ }∪=
Pin PF S7()() Pin S5()=

p
p

t1 S7
140

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
and its function produces a completely random value since there
is no atomic proposition with relation involved. The time delay
interval is set to since . Since

has a timer associated to it, . All tran-
sitions have source place .

Next, transition corresponding to must be added.
, so the target place is equal to the source place,

i.e. . In addition, a token with a completely random value is
placed in the port corresponding to when fired. Since

, the time delay is set to . The
procedure progresses similarly for the sets and . The
remaining sets are redundant with respect to , and con-
sequently no transitions are added for these sets.

The place has a timer

When timers are added to the place, it is necessary to identify
whether a certain set of elementary formulas has to occur before
a certain deadline or not.

Definition 7.15: Requiring U formulas. The set of requir-
ing U formulas of a place and a set of elementary formu-
las is defined as

.

Intuitively, the set of requiring U formulas is the set of U formu-
las in which require to occur before its associated upper
time bound.

Definition 7.16: Timer triggered formulas. The set of timer
triggered formulas of a a set of U formulas is defined as

.

The timer triggered formulas denote the set of sets of elemen-
tary formulas corresponding to events of which one has to be
performed before the deadline of the U formulas in .

0..0[] S1 p{ } S3=∪ VES ψ()∉
p5 Pin S5() p5 p5a,{ }=

p1
t2 S9

S9 S1 q{ }∪=
p1

q
S1 q{ } S9=∪ VES ψ()∈ 0..∞[]

S13 S15
TF p1()

pi
s

RUF pi s,() A ϕ1 U ϕ2[] U pi()∈ s Φ ϕ2()∈{ }=

pi s

U
TTF U() Φ ϕ2()A ϕ1 U ϕ2[] U∈∩ VES ψ()∩=

U

141

CHAPTER 7
In the example, , but
. The timer triggered formulas of are

 according to Equation 7.6.

(7.6)

Figure 7.12 and Figure 7.13 present the algorithm. Similar to
the non-timer case, transitions are added for each non-redun-
dant set (Line 2). There are basically two
cases. Either or , i.e. either the
target place is the same as or not.

In the first case (Line 3 in Figure 7.12), all U formulas requir-
ing the event are examined. If there only are timer repeating
formulas requiring in , , then only one transition
needs to be added. It is inserted between the end places of the
timers corresponding to the requiring formulas, and the start
places (Line 10 and Line 11). One transition is enough due to
the fact that all involved timers may trigger at any time and put
a token in their respective end places, and in that way enable
the particular transition. This case should be compared with the
one described in the next paragraph.

However, if there is at least one non-timer repeating formula
requiring , it is necessary to add one transition per combina-
tion of non-timer repeating formulas requiring (Line 6). The
reason is that all possibilities of determining which timers
should be considered triggered with must be covered. In the
timer repeating case, this is not necessary since timers are
always restarted, so the end place of the timers can always be
reached. If there are no timer repeating formulas, a transition
for must not be added, since such a transition would not
be connected to any timer at all (Line 7).

RUF p5 S25,() A t U q 10<3≤[]{ }=
RUF p5 S7,() ∅= U p5()
TTF U p5()() S25 S29 S31, ,{ }=

TTF U p5()() Φ q 10<() VES ψ()∩
S24 S25 S26 S27 S28 S29 S30 S31, , , , , , ,{ }
S1 S5 S7 S9 S13 S15 S25 S29 S31, , , , , , , ,{ }

∩

S25 S29 S31, ,{ }

= =

=

s TF pi() TP pi()–∈
PF s() Ψ pi()= PF s() Ψ pi()≠

pi

s
s pi f ∅=

s
s

s

f ∅=
142

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
1 procedure addTransitionsForTimers(pi: place)
2 for each s ∈ TF(pi) - TP(pi) do
3 if PF(s) = Ψ(pi) then
4 if RUF(pi, s) ≠ ∅ then
5 if s is not redundant w.r.t TTF(RUF(pi, s)) then
6 for each f ∈ (2the non-timer rep formulas of RUF(pi, s)) do
7 if exists timer rep. formula ϕ ∈ RUF(pi, s) or

f ≠ ∅ then
8 add transition t to net;
9 for each timer rep. formula ϕ ∈ RUF(pi, s) do
10 °t := °t ∪ { Timerout(pi, ϕ) };
11 t° := t° ∪ { Timerin(pi, ϕ) };
12 for each ϕ ∈ f do
13 °t := °t ∪ { Timerout(pi, ϕ) };
14 t° := t° ∪ { NontimerCopy(pi, ϕ) };
15 connectToPorts(t, s);
16 set time delay of t to [0..0];
17 if s is not redundant w.r.t. TF(pi) then
18 for each non-timer rep. formula ϕ ∈ RUF(pi, s) do
19 add transition t’ to net;
20 °t’ := { NontimerCopy(pi, ϕ) };
21 t’° := { NontimerCopy(pi, ϕ) };
22 connectToPorts(t’, s);
23 set time delay of t’ to findTimeDelay(s, pi);
24 else if s is not redundant w.r.t TF(pi) then
25 add transition t to net;
26 °t := { pi };
27 t° := { pi };
28 connectToPorts(t, s);
29 set time delay of t to findTimeDelay(s, pi);
30 else
31 addTransitionsForOtherDestinations(s, pi); -- see Figure 7.13

Figure 7.12: Algorithm for adding transitions to a place
with timers
143

CHAPTER 7
When a timer corresponding to a non-timer repeating formula
is triggered, tokens are taken from the end places of those tim-
ers and new tokens are put in the non-timer copies (Line 13 and
Line 14). An additional transition must also be added as a loop
on the non-timer copies of each requiring timer in order to model
the fact that the event may occur also after its first occurrence
(Line 17 to Line 23).

The transitions added to the end place of a timer must all have
time delay interval , since the event must occur immedi-
ately after the timers have fired. Otherwise, the deadline would
be violated.

In case there is no timer requiring , a transition is added as a
loop around (Line 24 to Line 29). The time delay interval fol-
lows the normal procedure, described in Figure 7.10, since no
timers are involved.

1 procedure addTransitionsForOtherDestinations(s: set of CTL, pi: place)
2 if s ∈ TTF(timer repeating formulas in U(pi)) and

s is not redundant w.r.t. TTF(timer repeating formulas in U(pi)) then
3 for each f ∈ (2the non-timer rep formulas of RUF(pi, s)) do
4 add transition t to net;
5 °t := { pi };
6 for each ϕ ∈ RUF(pi, s) do
7 if ϕ is timer repeating or ϕ ∉ f then
8 °t := °t ∪ { Timerout(pi, ϕ) };
9 else
10 °t := °t ∪ { NontimerCopy(pi, ϕ) };
11 t° := Pin(PF(s));
12 connectToPorts(t, s);
13 if there exists a timer repeating formula in pi or

f ≠ { all non-timer repeating formulas in U(pi) } then
14 set time delay of t to [0..0];
15 else
16 set time delay of t to findTimeDelay(s, pi);

Figure 7.13: Continuation of the algorithm for adding
transitions to a place with timers

0..0[]

s
pi
144

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
Otherwise, if the target place is different from , a transition
can only be added if all timers corresponding to timer repeating
formulas in the place require the event described by (Line 2 in
Figure 7.13). The reason is that, by definition, all such timers
must have their requirements satisfied before their deadlines.
This condition does not need to be applied on timers correspond-
ing to non-timer repeating formulas, since tokens in the non-
timer copies already indicate that they have been triggered.

The transition is added from (Line 5) and the end places of
timers corresponding to timer repeating formulas (Line 8) plus
either the end places or the non-timer copies of the timers corre-
sponding to non-timer repeating formulas (Line 8 and Line 10).
All combinations of end places of the timers and their non-timer
copies must be covered similar to the previous discussion. If the
particular transition is added only from non-timer copies (apart
from), the time delay interval is set according to the normal
rule (Line 16). Otherwise, at least one timer is involved, imply-
ing a time delay interval of (Line 14).

In the example, place contains one U formula, which is
timer repeating. Remember that

, and
. Figure 7.14 shows the result

of the procedure.
As usual, no transition is added for , since that set does not

contain any atomic propositions.
(Line 3 in Figure 7.12), but . Since is not
triggered by any timer and is not redundant, the transition is
added as a loop around place (Line 24), see transition in
the figure. The same goes for and , which result in tran-
sitions and respectively. and

, meaning that the transition, , is added
between and (Line 5 and Line 8 in
Figure 7.13). The for loop on Line 3 in Figure 7.13 only iterates
once for since does not contain any non-timer repeat-

pi

s

pi

pi

0..0[]
p5

TF p5() S5 S7 S13 S15 S25 S29 S31, , , , , ,{ }=
TTF U p5()() S25 S29 S31, ,{ }=

S5
PF S7() S5 Ψ p5()= =

RUF p5 S7,() ∅= S7

p5 t5
S13 S15

t6 t7 PF S25() S1=
S25 TTF U p5()()∈ t8

p5 p5a′,{ } Pin S1()

f ∅= p5
145

CHAPTER 7
ing formulas. The target place of and is , and
which means that the

timer is restarted (Line 10 and Line 11 in Figure 7.12) as illus-
trated by transitions and in the figure.

7.2.4 INSERTION OF INITIAL TOKENS

The last step of the algorithm is to insert initial tokens in the
Petri-net. Figure 7.15 presents the algorithm for this purpose.

In Section 7.2.1, one place was created for each member in
. Any of these places (or sets of places if timers

were introduced) are randomly chosen for the initial token. This
is in practice modelled with non-determinism. A place is

p5 p5a

p5a’

0..3[]

Figure 7.14: The result of adding the transitions of place
 to the example formulap5

t5a

p1

0..0[]t1

p

q<10

q

0..∞[]

q

0..0[]

p

q

0..∞[]

t3

t4

t2

0..0[] t9 0..0[]
t10

q<10

p

p

0..∞[]t5

q

0..∞[]

t6 p

q

0..∞[]t7

0..0[] t8

q<10

S29 S31 p5
RUF p5 S29,() RUF p5 S31,() ∅≠=

t9 t10

PF VES ψ()()

start
146

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
added to the net (Line 5). For each candidate for the initial place,
i.e. , a transition is added from to that can-
didate (Line 6 to Line 10). The transition has time delay
since this choice must be performed instantly.

In case there is only one candidate for the initial place, i.e.
, there is naturally no need for adding this

mechanism for choosing the initial place. The only existing place
is directly chosen to be the initial one (Line 3).

In the example, there are two candidates for the initial token,
and . Consequently place is created with two tran-

sitions, and in Figure 7.16. The figure shows the result-
ing Petri-net corresponding to the example formula as created
by the proposed algorithm.

7.2.5 SUMMARY

Section 7.2 has so far presented all steps of the PRES+ genera-
tion procedure from an arbitrary ACTL formula. Figure 7.17
presents the overall algorithm where the previously presented
steps are put into context.

The first step is to create the places corresponding to a state in
the Petri-net. Places corresponding to atomic propositions, i.e.
ports are also created (Line 2). Secondly, timers are added if

1 procedure insertInitialToken
2 if | PF(VES(ψ)) | = 1 then
3 add tokens in Pin(the only elt of PF(VES(ψ))) with value <0, 0>;
4 else
5 add place start to net with an initial token with value <0, 0>;
6 for each s ∈ PF(VES(ψ)) do
7 add transition t to net;
8 °t := { start };
9 t° := Pin(s);
10 set time delay of t to [0..0];

Figure 7.15: Algorithm for add an initial token

PF VES ψ()() start
0..0[]

PF VES ψ()() 1=

S1 S5 start
t11 t12
147

CHAPTER 7
there is one or more U formulas among the progress formulas in
the state (Line 4). The third step consists of adding transitions
corresponding to events as given by sets of elementary formulas
(Line 6). This is performed in different ways depending on the
type of timers added to the place. The last step is to insert the
initial tokens (Line 11).

7.3 Examples
In order to highlight and emphasise certain aspects of the algo-
rithm presented in Section 7.2, a few examples are presented in
this section. The reader is encouraged to follow the algorithms
presented previously.

p5 p5a

p5a’

0..3[]

Figure 7.16: The resulting Petri net of the example
formula

t5a

p1

0..0[]t1

p

q<10

q

0..∞[]

q

0..0[]

p

q

0..∞[]

t3

t4

t2

0..0[] t9 0..0[]
t10

q<10

p

p

0..∞[]t5

q

0..∞[]

t6 p

q

0..∞[]
t7

0..0[] t8

q<10

start

<0, 0>
0..0[]

t11

0..0[]t12
148

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
7.3.1 PLACE WITH ONE NON-TIMER REPEATING U FORMULA

This section provides an example leading to a Petri-net with a
place containing a non-timer repeating formula. The formula
which will be used is .

The first task when generating the Petri net corresponding a
formula is to normalise it, i.e. .

The next step is to find out its elementary formulas and
.

(7.7)

, because and are con-
tradictory since they contain but not .

1 function generateFormulaStub(ψ: ACTL) returns PRES+
2 createPlaces(ψ);
3 for each s ∈ PF(VES) do
4 if | U(PF(s)) | > 0 then
5 addTimers(P(s));
6 for each s ∈ PF(VES(ψ)) do
7 if | U(PF(s)) | > 0 then
8 addTransitionsForTimers(P(s));
9 else
10 addTransitions(P(s));
11 insertInitialTokens;
12 return net;

Figure 7.17: The algorithm for generating a PRES+ model
given an ACTL formula

AF p 10<3≤

ψ A t U p 10<3≤[]=

VES ψ()

el ψ() AX A t U p 10<3≤[]

1

p
2

p 10<
4

, ,
 
 
 

=

           {   

S ψ() S0 S1 S2 S3 S6 S7, , , , ,{ }= S4 S5
p 10< p

Φ ψ() Φ A t U p 10<3≤[]() S1 S3 S6 S7, , ,{ }= =
Φ AX A t U p 10<3≤[]() S1 S3 S7, ,{ }=
Φ p 10<() S6 S7,{ }=
149

CHAPTER 7
. since
. , which

means that the resulting net will only have one state place, .
However, since there is one U formula in which is not timer
repeating (there is no R formula at all), a timer is added as indi-
cated by Figure 7.6. Consequently the non-timer copy is
also added.

Figure 7.18 shows the resulting Petri-net after transitions
have been added and initial tokens have been inserted.

and . No tran-
sition is added for since it does not contain any atomic prop-
ositions. As for , , but no timer
requires it, , so the transition is added as a
loop around , see transition in the figure. Since

and the timer requires it,
, a transition is added

between the timer and the corresponding non-timer copy.
, so there should actually be two such transi-

tions. However, since there does not exist any timer repeating
formula in , no transition is added for . Moreover, no

VES ψ() S1 S3 S7, ,{ }= S6 VES ψ()∉
S6 p p 10<,{ }– S0 Φ ψ()∉= PF VES ψ()() S1{ }=

p1
p1

p1a″

p1 p1a

p1a’

Figure 7.18: The resulting Petri net of the formula
AF p 10<3≤

t1a

p1a”

0..3[]

t1
0..∞[]

p

p<10

t2 0..0[]

<0, 0> <0, 0>

TF p1() S1 S3 S7, ,{ }= TTF U p1()() S7{ }=
S1
S3 PF S3() S1 Ψ p1()= =

RUF p1 S3,() ∅=
p1 t1

PF S7() S1 Ψ p1()= =
RUF p1 S7,() A t U p 10<3≤[]{ }= t2

2RUF p1 S7,() 2=

p1 f ∅=
150

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
transition is added as a loop around since is redundant
with respect to , .

Because of the fact that a place is
not needed. The initial tokens are directly inserted to .

Note that only has to be satisfied once, both according
to the Petri-net and according to the formula.

7.3.2 PLACE WITH ONE TIMER REPEATING U FORMULA

This section provides an example of a formula leading to a Petri-
net with a place containing a timer repeating formula. The for-
mula which is used is It is similar to the for-
mula discussed in Section 7.3.1, so a comparison with that
example is encouraged.

The formula is normalised as .

(7.8)

. The
sets of formulas which only contain but not have been
removed.

. since
. Since ,

the resulting Petri net will only have one state place, . How-
ever, the place has one U formula and it is timer repeating. A
timer is consequently added as indicated by Figure 7.6. In this
case, no non-timer copy will be created.

p1a″ S7
TF p1() PVin S7() PVin S3()⊆

PF VES ψ()() 1= start
Pin S1()

p 10<

AGAF p 10<3≤

ψ A f R A t U p 10<3≤[][]=

el ψ() AX A f R A t U p 10<3≤[][]

1

AX A t U p 10<3≤[]
2

p
4

p 10<
8

, , ,













=

              

           {   

S ψ() S0 S1 S2 S3 S4 S5 S6 S7 S12 S13 S14 S15, , , , , , , , , , ,{ }=
p 10< p

Φ ψ() Φ= A f R A t U p 10<3≤[][]() S3 S7 S13 S15, , ,{ }=
Φ AX A f R A t U p 10<3≤[][]() S1 S3 S5 S7 S13 S15, , , , ,{ }=
Φ A t U p 10<3≤[]() S2 S3 S6 S7 S12 S13 S14 S15, , , , , , ,{ }=
Φ AX A t U p 10<3≤[]() S2 S3 S6 S7 S14 S15, , , , ,{ }=
Φ p 10<() S12 S13 S14 S15, , ,{ }=

VES ψ() S3 S7 S15, ,{ }= S13 VES ψ()∉
S13 p p 10<,{ }– S1 VES ψ()∉= PF VES ψ()() S1=

p3
151

CHAPTER 7
Figure 7.19 shows the resulting Petri net after having added
transitions and inserted initial tokens.

and . No
transition is added for since it does not contain any atomic
propositions. , a transitions connected to
all requiring timers should be added. However, no timer
requires , , implying that a transition is
added as a loop around instead, see transition .

and
, meaning that a transi-

tion is added from the end place of the timer to the start
place, so that the timer is restarted when the transition is fired.
Only one transition is added since no non-timer repeating for-
mulas exist in , so the only value on is .

In the resulting Petri-net, there is no non-timer copy of ,
but the timer is restarted for every timer triggered event. This
behaviour fits with the semantics of the formula which states
that must always be true within 3 time units, but it does
not exclude the possibility that sometimes may have other
values.

p3 p3a

p3a’

0..3[]

Figure 7.19: The resulting Petri net of the formula
AGAF p 10<3≤

t3at1
0..∞[]

p

0..0[]
t2

<0, 0><0, 0>

p<10

TF p3() S3 S7 S15, ,{ }= TTF U p3()() S15{ }=
S3

PF S7() S3 Ψ p3()= =

S7 RUF p3 S7,() ∅=
p3 t1

PF S15() S3 Ψ p3()= =
RUF p3 S15,() A t U p 10<3≤[]{ }=

t2

p3 f f ∅=
p3

p 10<
p

152

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
7.3.3 PLACE WITH MORE THAN ONE TIMER REPEATING U
FORMULA

This example aims to highlight what happens with a place with
more than one timer repeating U formula. The formula used to
illustrate this is . After normalisation,

.

(7.9)

. No sets have to be removed, since the for-
mula does not contain any atomic propositions with relation.

and . Consequently, three places
are created. and only have one U formula and therefore
will only have one timer each. Both U formulas are moreover
timer repeating in their respective place. Transitions are added
to them in a similar way as in Section 7.3.2. In this section, we

AG AF p2≤ AF q5≤∨()
ψ A f R A t U p2≤[] A t U q5≤[]∨()[]=

el ψ() AX A f R A t U p2≤[] A t U q5≤[]∨()[]

1

AX A t U p2≤[]

2

p
4

AX A t U q5≤[]

8

q
16

,

, , ,













=

                  

       {        {
S ψ() S0..S31{ }=

Φ ψ() S3 S5 S7 S9 S11 S13 S15 S17 S19 S21 S23 S25
S27 S29 S31

, , , , , , , , , , , ,
, ,

{
}

=

Φ AX ψ() S1 S3 S5 S7 S9 S11 S13 S15 S17 S19 S21 S23
S25 S27 S29 S31

, , , , , , , , , , , ,
, , ,

{
}

=

Φ A t U p2≤[] A t U q5≤[]∨() S2..S31{ }=
Φ A t U p2≤[]() S2..S7 S10..S15 S18..S23 S26..S31, , ,{ }=
Φ AX A t U p2≤[]() S2 S3 S6 S7 S10 S11 S14 S15 S18 S19
S22 S23 S26 S27 S30 S31

, , , , , , , , , ,
, , , , ,

{
}

=

Φ p() S4 S5 S6 S7 S12 S13 S14 S15 S20 S21 S22 S23
S28 S29 S30 S31

, , , , , , , , , , , ,
, , ,

{
}

=

Φ A t U q5≤[]() S8..S31{ }=
Φ AX A t U q5≤[]() S8..S15 S24..S31,{ }=
Φ q() S16..S31{ }=

VES ψ() S3 S7 S9 S11 S13 S15 S19 S23 S25 S27 S29 S31, , , , , , , , , , ,{ }=
PF VES ψ()() S3 S9 S11, ,{ }=

S3 S9
153

CHAPTER 7
will concentrate on place corresponding to set which
contains two U formulas. Figure 7.20 shows the part of the
resulting Petri-net corresponding to this set of progress formu-
las.

.
.

As usual, each set of elementary formulas in is
examined. is not added since it does not contain any atomic
propositions. is not added either because

and .
and

, so the transition is added so
that it restarts the corresponding timer , see transition . Since

p11 S11

p11 p11a

p11a’

0..2[]

Figure 7.20: The resulting Petri net corresponding to
progress formulas of the formulaS11

AG AF p2≤ AF q5≤∨()

t11a

p11b

p11b’

0..5[] t11b

p3 Pin S3() p9Pin S9()

0..0[]
t1

p

t5t2 t4

p qp q p q

t3

q

0..0[]

0..0[]
0..0[]

0..0[]

TF p11() S11 S13 S15 S19 S23 S27 S29 S31, , , , , , ,{ }=
TTF U p11()() S20 S21 S22 S23 S28 S29 S30 S31, , , , , , ,{ }=

TF p11()
S11

S13
PF S13() S9 S11≠ Ψ p11()= = S13 TTF U p11()()∉
PF S15() S11 Ψ p11()= =
RUF p11 S15,() A t U p2≤[]{ }=

t1
154

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
there are no non-timer repeating formulas throughout this
example, at most one transition from a timer is added for

. No transition is added for for the same reason as
. does not have the target place , but

, so transition is added with
. causes transition to be cre-

ated for similar reasons as . Both and are analo-
gous to resulting in transitions and respectively.

7.3.4 GUARDS ON TRANSITIONS

Formulas containing out-port atomic propositions with relation
lead, in general, to a Petri-net with guards on certain transi-
tions. This phenomenon will be demonstrated using the formula

, where is an out-port and is an in-
port of a connected component. Normalisation gives the formula

.

(7.10)

, since
in all other sets , but . Hence, those sets are
contradictory.

f ∅= S19
S13 S23 p11
S23 TTF U p11()()∈ t2

p11 p,
11a

′ p11b′,{ } °t2= S27 t3
S15 S29 S31

S23 t4 t5

AG p 2=() AF 7≤ q→() p q

ψ A f R p¬ p 2≠ A t U 7≤ q[]∨ ∨()[]=

el ψ() AX A f R p¬ p 2≠ A t U 7≤ q[]∨ ∨()[]

1

p
2

p 2≠
4

AX A t U 7≤ q[]

8

q
16

, ,

, ,













=

                   {

          {

S ψ() S0..S3 S6..S11 S14..S19 S22..S27 S30 S31, , , , ,{ }=
s p 2≠ s∈ p s∉

Φ ψ() S1 S7 S9 S11 S15 S17 S19 S23 S25 S27 S31, , , , , , , , , ,{ }=
Φ AX A f R p¬ p 2≠ A t U 7≤ q[]∨ ∨()[]()

S1 S3 S7 S9 S11 S15 S17 S19 S23 S25 S27 S31, , , , , , , , , , ,{ }
=

Φ p¬ p 2≠ A t U 7≤ q[]∨ ∨() S0 S1 S6..S11 S14..S19
S22..S27 S30 S31

, , , ,
, ,

{
}

=

Φ p¬() S0 S1 S8 S9 S16 S17 S24 S25, , , , , , ,{ }=
Φ p 2≠() S6 S7 S14 S15 S22 S23 S30 S31, , , , , , ,{ }=
Φ A t U 7≤ q[]() S8..S11 S14..S19 S22..S27 S30 S31, , , ,{ }=
155

CHAPTER 7
,
since . , so two
places and are created in the resulting Petri-net. Place

contains a U formula which is timer repeating. Figure 7.21
shows the resulting Petri-net.

Starting with adding transitions for place ,
. No

transitions are added for and since they do not contain
any atomic proposition. The set results in transition . It

Φ AX A t U 7≤ q[]() S8 S9 S10 S11 S14 S15 S24
S25 S26 S,

27
S30 S31

, , , , , , ,
, , ,

{
}

=

Φ q() S16..S19 S22..S27 S30 S31, , ,{ }=
VES ψ() S1 S7 S9 S11 S15 S17 S23 S25 S27 S31, , , , , , , , ,{ }=

S19 q{ }– S3 Φ ψ()∉= PF VES ψ()() S1 S9,{ }=
p1 p9

p9

p9 p9a

p9a’

0..7[]

Figure 7.21: The resulting Petri net of the formula
AG p 2=() AF 7≤ q→()

t5a

p1

0..0[]t2

p

q

0..∞[]

q

0..0[]

p

p
0..∞[]

t5

t6

t1

0..0[] t10 0..0[]
t11

q

p

p

0..∞[]t7

q

0..0[] t8

q

start

<0, 0>
0..0[]

t12

0..0[]t13

p 2≠[]

q

0..∞[]

t3

p
q

p 2≠[]

0..∞[] t4

p q

p 2≠[]t9

0..0[]

p1
TF p1() S1 S7 S9 S11 S15 S17 S23 S25 S27 S31, , , , , , , , ,{ }=

S1 S9
S7 t1
156

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
contains the atomic proposition with relation . Due to the
fact that is an out-port, that relation will become a guard of

. Transition is added for the , it contains , but not
. The time delay is set to , since

. No transition is added for due
to redundancy with . and

, so .
, , and causes , , and to be added

respectively. No transition is added for due to redundancy
with .

Let us continue with place containing a timer and is timer
repeating.
and . No transition is
added for as usual. , but

, hence it must be added as a loop around
, see transition . is redundant with and not added.

Transition is added due to . so it
must originate from the timer with the delay interval .

results in for similar reasons. For and , transi-
tions and are added respectively. Both

and their target place is , meaning
that the timer is restarted. is redundant.

Finally, the initial place is determined.

7.4 Verification Methodology Roadmap
This section continues the verification methodology roadmap
from Section 6.6 and in particular Figure 6.19. Figure 7.22
shows the continuing roadmap.

The first question to answer is if the diagnostic trace, obtained
from the previous verification, indicates that the verification
result is due to an unwanted input from the surrounding. Such
an input has its origin in a random transition attached to at
least one component port that is connected to the surrounding of

p 2≠
p

t1 t2 S11 p
p 2≠ 0..0[]
S1 p{ }∪ S3 VES ψ()∉= S15

S11 PVout S11 p,() Z=
PVout S15 p,() Z 2{ }–= PVout S15 p,() PVout S11 p,()⊆
S17 S23 S25 S27 t3 t4 t5 t6

S31
S27

p9
TF p9() S9 S11 S15 S17 S23 S25 S27 S31, , , , , , ,{ }=

TTF U p9()() S17 S23 S25 S27 S31, , , ,{ }=
S9 PF S11() S9 Ψ p9()= =

RUF p9 S11,() ∅=
p9 t7 S15 S7

t8 S17 S17 TTF U p9()()∈
0..0[]

S23 t9 S25 S27
t10 t11

S25 S27, TTF U p9()()∈ p9
S31
157

CHAPTER 7
the glue logic (Section 6.2). In this case, the verification outcome
could be the result of the fact that the surrounding does not sat-
isfy the requirements of the component on the other interfaces
than the one connected to the glue logic. If that is not the case,
then the property is proven not satisfied. Otherwise, a PRES+
model is generated corresponding to that property.

The generated Petri-net is then connected to the stub and the
system is verified. If the property is satisfied, it is proven satis-
fied in the whole system. Otherwise, the newly obtained diag-
nostic trace is examined again in order to find out if it violates

Did the diagnostic trace indicate
that one of the properties of the

surrounding was violated?

Create the Petri net
of that formula in conjunction

with possible previously
created formulas

Yes

Verify property

Was the property satisfied?

Property is
proven satisfied

Yes

No

Figure 6.19

Property is
proven not satisfied

No

Figure 7.22: Continuation of the roadmap in Figure 6.19,
useFormulas
158

INCLUSION OF THE SURROUNDING INTO THE VERIFICATION PROCESS
another requirement on the surrounding. If it does, a new Petri-
net is generated given both the previous formulas and the new
one as a conjunction. The iteration continues until a final verifi-
cation result is obtained.
159

CHAPTER 7
160

EXAMPLE
Chapter 8
Example

HE PRESENTED VERIFICATION methodology gives a
powerful means to verify large systems using a divide
and conquer approach. This chapter provides an exam-

ple in order to demonstrate how a system can be verified using
the methodology.

8.1 The Mobile Telephone System
The model used as an example is a mobile telephone. Figure 8.1
shows an overview picture of the model and how the components
forming the model are connected. It consists of seven compo-
nents communicating via an AMBA bus.

1. Microphone. The microphone sends voice data to the trans-
mitter.

2. Buttons. When dialing, the buttons component sends infor-
mation about which buttons were pressed to the controller.

3. Speaker. The speaker receives voice signals from the receiv-
er and converts it to sound.

T

161

CHAPTER 8
Arbiter

A
M

B
A

bu
s

Microphone
(master)

Buttons
(master)

Speaker
(slave)

Display
(slave)

Receiver
(master)

Transmitter
(slave)

Controller
(master/slave)

Figure 8.1: Overview model of the example system, a
mobile telephone
162

EXAMPLE
4. Display. The display shows on a small screen information
sent to it by the controller.

5. Receiver. The receiver receives data from the base-station of
the mobile telephone network and passes it on to the desig-
nated component.

6. Transmitter. The transmitter receives data from other com-
ponents in the telephone and passes it on to the base-station.

7. Controller. The controller coordinates the tasks of the other
components.

As mentioned previously, these components are supposed to
communicate over an AMBA bus. However, since the AMBA bus
requires a certain protocol and the components are not designed
for that protocol, glue logics adapting the components to this
protocol are inserted. These glue logics must be formally veri-
fied.

The components which are directly involved in the example
are explained in more detail in the following sections.

8.1.1 BUTTONS AND DISPLAY

The peripheral components, such as Buttons and Display, which
are used to interact with the end user, are modelled in a simplis-
tic way as shown in Figure 8.2.

In this example, we assume that the telephone has eleven but-
tons: the numbers 0 to 9 plus the button ”enter”. When the end
user wants to dial a number, he enters the number, presses the
button ”enter”, after which the telephone tries to satisfy the

0..∞[]

0..9 enter,{ }

bt1

(a) Buttons

0..0[]dt1

(b) Display

Figure 8.2: Models of the components Buttons and Display
163

CHAPTER 8
request. From the point of view of Buttons, the buttons can be
pressed in any order at any time. This is modelled by a transi-
tion with time delay interval and the function ”random
value from the set ”. The Buttons component has
no idea about the semantics of each button being pressed. It is
the task of the controller to determine what should happen
when a particular button is pressed.

The situation is similar but reverse for Display. Display
receives commands about what to show on its screen. In Petri-
net terms, this means that tokens in its port are consumed as
they appear. The time delay interval depends on how fast the
information is processed by the component. In this example, it is
assumed that the information is immediately taken care of, i.e.
the time delay interval is .

8.1.2 CONTROLLER

The controller component keeps track of what is happening in
the system and acts accordingly. Figure 8.3 shows a model of the
component.

Places and are marked when the
controller is able or is not able to process button data respec-
tively. The data is simply discarded if it is not immediately
accepted. Transitions to take care of this functionality.
The transitions have guards so that different actions can be
taken depending on which button was pressed. This model only
makes a difference between if a number was pressed,

, or if ”enter” was pressed, . When dialing a
number, signals (tokens) are also sent in order to update the dis-
play. Having pressed ”enter” the telephone number is sent to the
transmitter.

Places and record whether a phone call is
going on or not. Transition therefore updates these places
when a phone call is to be made. Transition takes care of
incoming phone calls and and handle the end of a call.

0..∞[]
0..9 enter,{ }

0..0[]

accbutton noaccbutton

ct1 ct4

b 0..9{ }∈ b enter=

calling nocall
ct5

ct7
ct8 ct9
164

EXAMPLE
Figure 8.3: Model of the Controller component

button display ring

transmit hang_up receive

0..0[]

b

b

cp1

noaccbutton

accbutton

cp2

b 0..9{ }∈[]
b

b enter=[]

b

b 0..9{ }∈[]

b

b

b enter=[]

cp3

nocall

calling

0..0[]

0..0[]

1..1[]

1..1[]

1..1[]
1..1[]

1..1[]

1..1[]
1..1[]

ct10

ct1

ct2

ct3

ct4

ct5

ct6

ct7

ct8
ct9

0..0[]0..0[]

cp4 cp5

ct11 ct12
165

CHAPTER 8
8.1.3 AMBA BUS

All components communicate through an AMBA bus [Roy03].
The AMBA bus consists of two parts, Arbiter and Bus. The com-
ponents communicating over the bus are furthermore divided
into two categories, master and slave. Figure 8.1 indicates to
which category each component in the example belongs. Compo-
nents sending messages are masters and components receiving
messages are slaves.

Any master wanting to send data on the bus must first request
access to it from Arbiter by emitting the signal (token) HREQ-
BUS. The arbiter will eventually grant access (HGRANT) to any
master requesting it, and at the same time, avoid starvation.
Once a master is granted access it may send one bunch of data
every clock cycle (time unit, in terms of PRES+). All bunches do
not necessarily have to address the same slave. When sending
the last bunch, the master notifies this by emitting the signal
(token) HTRANS.

However, if a slave is not ready to receive, it is able to put the
transaction on hold, or in AMBA bus terms split, (HRESP) until
it eventually becomes ready (HREADY). During the time period
when it is not yet ready to receive, the arbiter might give the
access of the bus to another requesting master. When the slave
declares itself ready to receive again, the master on hold is auto-
matically granted access to the bus again.

The AMBA bus actually consists of two buses, one address bus
and one data bus. When a master sends a bunch of data on the
bus, it sends the address of the receiving slave on the address
bus and the data on the data bus.

Figure 8.4 shows a part of the model of the arbiter correspond-
ing to one particular master. The part in the figure is copied once
for each master. Places represent which master cur-
rently holds the token in the round-robin schedule. The master
holding the token has the opportunity to get access to the bus. If

masterx
166

EXAMPLE
a request has not arrived, the token moves to the next master,
. Place is marked when a slave has split the transac-

tion of that master. is marked otherwise.
The bus itself just distributes tokens sent to it to all compo-

nents connected to it. Figure 8.5 shows a model of the Bus com-
ponent. All transitions have time delay interval and
transition function identity. Consequently, it distributes exactly
the same token to the rest of the components in zero time.

Port HRESP is directly connected to the arbiter through the
port with the same name.

Figure 8.4: Model of the Arbiter component

HREQBUS HGRANT HTRANS

H
R

E
S

P
H

R
E

A
D

Y

1..1[]

1..1[]

1..1[]

0..0[]
0..0[]

2..2[]

2..2[]

at1

at2

at3

at4

at5

at6

at7

ap1

ap2

nomask

mask

master1

master2

at6 mask
nomask

0..0[]
167

CHAPTER 8
8.1.4 GLUE LOGICS

As has been shown, the components do not contain any function-
ality to communicate with and over the bus. For this reason, it is
necessary to adapt the components and insert a glue logic (some-
times called wrapper) between the component and the bus.

Master functionality

A model of the glue logic which is active during the master func-
tionality of the controller is shown in Figure 8.6. The main prob-
lem to be solved by the glue logic is in case of a slave splitting a
transaction initiated by the current master. For this reason, the
glue logic must always remember the last transaction. The

HADDR HDATA HRESP HADDR HDATA HRESP

H
R

E
S

P

m1 m1 m1 m2 m2 m2

HADDR HDATA HRESP HRESP
s1 s1 ins1 outs1

HADDR HDATA HRESP HRESP
s2 s2 ins2 outs2

ut1 ut2
ut3

um1t1

um1t2 um2t1 um2t2

us1t1

us2t2

uaddr udata

uresp

Figure 8.5: Model of the Bus component
168

EXAMPLE
Figure 8.6: A model of the glue logic for the master func-
tionality of the controller

Controller
transmit display ring

Arbiter Bus
HREQBUS HTRANS HADDRHGRANT HDATA HRESP

cmaddr cmdata

[0..0] [0..0] [0..0]
d

d

d

d

d

d

cmt1 cmt2 cmt3

trans-
addr

display-
addr speaker-

addr

[0..0]
[0..0]

[0..0]cmt4
cmt5

cmt6

cmp1 cmp2

cmanosplit1

cmp3

cmp4 cmp5

cmp6

cmp7

cmp10

[1..1]

cmt7

a

a

[0..0]
cmt10

a

a

cmt9

[0..0]

a

a

cmasplit

[1..1]
cmt12

cmanosplit2

cmt11
[1..1]

cmp11

cmp12

[0..0]

[1.5..1.5]

cmt18

cmt19

[0..0]
cmt17

cmdnosplit2

cmdnosplit1

[0..0]
cmt13 [1..1]

cmt14
cmdsplit

[1..1]

[0..0]
cmt16

cmt15

cmp8

cmp9

cmt8
[1..1]

d

d

d

a

d

d

d

d

HRESP
169

CHAPTER 8
address is stored during one clock cycle in and the data in
. After one clock cycle the stored items are removed by

and respectively. When the master is regranted
access to the bus, transitions and become enabled
and resends the data. The tokens, however, stay in their respec-
tive places in case the resent data is again split.

Meanwhile a transaction is split, no new data can be sent by
the component. Presence or absence of tokens in
and regulate this behaviour.

The glue logic may receive tokens from HRESP even though
its master did not send anything. This can be the result of a
transaction of another master being split. Remember that the
bus distributes split requests to all connected components. In
order to keep track of whether such a split request is intended
for the current master or not the structure consisting of places

to is created. A token in means that the
current master has just sent and a possible split request is con-
sequently intended for itself. Before the next clock cycle the
token is however moved back to through transition

. With a token in incoming split requests are
immediately consumed leading to no further action since they
are not intended for this master.

Slave functionality

The main function of the glue logics handling the slave function-
ality is to split a transaction in case the component is not ready
to receive. Afterwards, when the component is ready to receive a
message again, the glue logic must notify the arbiter by placing
a token in the port HREADY. A model of the glue logic handling
the slave functionality of the controller is shown in Figure 8.7.

When the slave is ready to receive data, a token is located in
place . Otherwise, there are tokens in both places

. Meanwhile, if the slave is not ready and data is sent
to it, a token is placed in to indicate that the trans-

cmp7
cmp9
cmt11 cmt14

cmt12 cmt15

cmanosplit1
cmdnosplit1

cm p10 cmp12 cmp12

cmp11
cmt19 cmp11

ready
notread yx

HRESPout
170

EXAMPLE
Figure 8.7: A model of the glue logic for the slave function-
ality of the controller

Controller

Arbiter BusHRESP

HREADY HRESP
in

HADDR HDATAHRESP
out

button hang_up receive

csp1

csp2

csp3

csp4
csp5

ready

notready1

notready2

[0..0]

cst9

[1..1]

cst8

a

a

d

d

[0..0] [0..0]cst11 cst12

[0..0]

cst10

cst13[1..1]

[a ∉ { butaddr,
hangupaddr,
recaddr }]

[1..1]

cst4

[a ∈ { butaddr,
hangupaddr,
recaddr }]

[2..2]

cst5

[0..0]
cst6

[1..1]
cst7

[a ∈ { butaddr,
hangupaddr,
recaddr }]

a

a

cst1

cst2 cst3[0..0]

[0..0]
[0..0]

d

d d
d

a a

a
[a = butaddr]

[a = hangupaddr]

[a = recaddr]
171

CHAPTER 8
action is split, (transition). Furthermore, the address and
data being sent at the time must also be removed. This is also
true when the transaction of another master was split, (transi-
tion).

In this example, it is assumed that the controller is ready to
receive data again 2 clock cycles after a previous reception
(). After these two cycles the slave indicates to the arbiter
that it is ready again ().

8.2 Verification of the Model
Three properties were verified in the system:

1. The controller only receives legal values for button.

2. When a slave has split a transaction, it will be ready again in
the future.

3. When a master has been granted access to the bus, it must
eventually close the transaction.

8.2.1 PROPERTY 1

The first property to be verified states that the controller must
only receive legal values for button. The components included in
the verification of this property were the controller, arbiter, bus
and the slave functionality glue logic. Table 8.1 presents the
result of the different stages in the verification process.

The property was first verified using empty stubs on all com-
ponents, except the bus for which a stub was generated. The
property was not satisfied using this environment since any
data could arrive on the HDATA port of the bus, as indicated by
the diagnostic trace. It took about 1 second to obtain this result.

cst7

cst10

cst5
cst6

AG button button 0..9 enter,{ }∈→()

AG HRESP AF HREADY→()

AG HGRANT AF HTRANS→()
172

EXAMPLE
Since the property was not satisfied, pessimism must be
reduced in the stubs. According to the diagnostic trace, the bus
produced a value on port which is not allowed. How-
ever, the pessimism reduction algorithm failed to extinguish the
value. It was thus necessary to make an assumption about the
surrounding. In this case, it was assumed that only data in the
set can occur in port . The property is
formally given in Equation 8.1.

(8.1)

A Petri-net for this formula was created together with a new ver-
sion of the bus stub, now also including port . Using
this new stub, the property was satisfied using approximately 2
minutes verification time.

The positive verification result was obtained by making an
assumption about the surrounding. In order to finally conclude
the positive result, the correctness of the assumption in Equa-
tion 8.1 must first be established.

The components involved in verifying the assumption were
the buttons, arbiter, bus and master functionality glue logic. A
top-level stub for buttons and empty stubs for the other compo-
nents was enough for obtaining a result within 7.6 seconds.

Table 8.1: Verification results of property 1

Environment Result Time (s)

All empty stubs, bus generated false 1.32

Add assumption on HDATA true 125.33

Verify assumption, Buttons top-
level stub, other stubs empty

true 7.58

HDATAsx

0..9 enter,{ } HDATAmx

AG HDATAmx HDATAmx 0..9 enter,{ }∈→()

HDATAmx
173

CHAPTER 8
8.2.2 PROPERTY 2

The second property states that when a slave has split a trans-
action, it must become ready again in the future. The compo-
nents included in the verification of this property were
Controller, Arbiter, Bus and the slave functionality glue logic.
Table 8.2 presents the result of the different stages in the verifi-
cation process.

This verification has been started with a faulty glue logic. The
fault consisted in that the slave functionality glue logic did not
emit HRESP in time. This fault was finally fixed, after detection,
by changing the time delay interval of transition .

At first, the property was verified using empty stubs on all
components, except that the bus had one generated stub corre-
sponding to interface .
The property was however not satisfied in this environment.
The diagnostic trace indicated that messages were sent too
quickly on port HADDR and HDATA. In other words, an infinite
amount of data was sent in the same clock cycle. In the real sys-
tem, only one bunch of data can be sent in the same clock cycle.
The problem was solved by increasing the level of the stubs on
ports HADDR and HDATA from empty to level one stubs. These
stubs were given (created manually).

The property was again verified in the updated environment,
but it was still not satisfied. The diagnostic trace led to the
design error in the glue logic as described previously. After fixing

Table 8.2: Verification results of property 2

Environment Result Time (s)

All empty stubs, except
{ HRESPin, HRESPout , HRESP }

false 2.47

Level 1 stubs for HADDR, HDATA false 28.39

After correcting design error false 87.57

Use top-level stub for Bus true 246.14

cst6

HRESPinsx HRESPoutsx HRESP, ,{ }
174

EXAMPLE
the error, the property was reverified using the very same envi-
ronment, but still with a negative verification result.

The problem this time was transition in Figure 8.5 which
had an infinite upper bound on the time delay interval. This
caused the fact that no token would ever be placed in port
HREADY. The situation is due to the pessimism of generated
stubs. For this reason the generated stub was exchanged with a
given one1. After additional 4 minutes, the property was finally
satisfied.

8.2.3 PROPERTY 3

The third property states that when a master has been granted
access to the bus, it must eventually close the transaction. The
components included in the verification of this property were the
buttons, arbiter, bus and master functionality glue logic. Table
8.3 presents the result of the different stages in the verification
process.

This verification was also stated with a faulty glue logic. The
fault consisted in that the glue logic could not differentiate
whether a particular split request was a result of its own
attempts to send or not. The fault was fixed, after detection dur-
ing verification, by adding places , and ,
and the transitions , and as indicated in
Figure 8.6.

As with the verification of the previous properties, the first
environment used consisted of empty stubs. In this environ-
ment, Arbiter may grant access to the bus without it even being
requested. Consequently, after such an unrequested grant, data
will not be sent and in particular the transaction will not be
closed. Thus, the property is not satisfied.

1. Another way to continue the verification would have been to continue
with less pessimistic stubs generated automatically and, if needed,
with added PRES+ models corresponding to assumptions on the sur-
rounding.

ut3

cm p10 cm p11 cm p12
cmt17 cmt18 cmt19
175

CHAPTER 8
To avoid this problem revealed by the diagnostic trace, the
empty stubs of the arbiter were replaced with a given stub, such
as the one shown in Figure 8.4. After half a second’s verification
time, the property proved again unsatisfied. The diagnostic
trace shows that the reason was that a transaction can be split,
but the slave will never signal after a while that it is ready to
receive data again. It is however a requirement on the slaves to
eventually signal that they are again ready after a split. There-
fore, a Petri-net corresponding to the formula

was generated and attached to
Bus. Note that it is not necessary to verify this assumption as it
is a requirement of the arbiter and the bus in order to work prop-
erly. Besides, the property was already verified in the previous
section. Even with this extra assumption the property proved
unsatisfied.

The diagnostic trace indicated an error in the glue logic. It did
not record whether the split requests were a result of its own
attempts to send or not. A mechanism for this was added (places

to together with neighbouring transitions) and
the property was reverified with the same environment. After 41
minutes a positive result was obtained.

Table 8.3: Verification results of property 3

Environment Result Time (s)

All empty stubs false 0.14

Arbiter stub false 0.52

Add property 2 as assumption false 2.58

After correcting design error true 2467.42

AG HRESP AF HREADY5≤→()

cmp10 cmp12
176

EXAMPLE
8.3 Discussion
This chapter has tried to give an example on how to use the ver-
ification methodology presented in this thesis, in practice. More-
over, it tries to convince the reader that the methodology is
feasible to use.

The successive steps through the methodology are guided by
the diagnostic trace which all the time gives feedback to the user
what to do next. It might indicate that too pessimistic stubs
were used, that there is an error in the glue logic, or that
assumptions regarding the surrounding have to be introduced.
177

CHAPTER 8
178

CONCLUSIONS AND FUTURE WORK
Chapter 9
Conclusions

and
Future Work

HIS THESIS HAS INTRODUCED a verification method-
ology which takes advantage of the fact that many
designs are built using reusable components. The meth-

odology assumes that these components are already verified,
and concentrates on the parts of the design interconnecting the
components.

This chapter summarises the thesis and points out interesting
issues for future work.

9.1 Conclusions
Embedded systems are becoming increasingly common in our
everyday lives. They are also becoming increasingly complex. In
order to reduce the design complexity, predesigned and preveri-
fied components are used.

T

179

CHAPTER 9
Due to the increasing complexity, the task of building such
systems correctly becomes increasingly challenging. In order to
meet this challenge, formal verification is introduced as part of
the embedded systems design flow so that errors are found early
in the design.

This thesis has presented a verification methodology which
takes advantage of the fact that designs are built using reusable
components. The methodology assumes that these components
are already verified, and concentrates on the glue logics inter-
connecting the components. Every component has a number of
properties associated to it which it requires the system to satisfy
in order to work correctly.

The glue logics interconnecting the components are verified
one at a time for the properties associated to the attached com-
ponents. In order to be able to verify the glue logic, high-level
models of the connected components must also be included in
the verification, so that the glue logic may interact with an envi-
ronment. For this reason, so called stubs are introduced into the
verification process. Stubs are models of the components with
respect to a certain interface. From the point of view of this
interface, it is not possible to distinguish between the stub and
the full component.

An interface is a set of ports of a component. Since there are
different interfaces, and stubs are defined with respect to an
interface, there also exist several stubs to choose from. This fact
can be exploited for properties expressed in (T)ACTL, in order to
reduce verification time. Using stubs with interfaces containing
few ports, i.e. lower-level stubs, generally leads to shorter verifi-
cation times. The methodology iterates until a positive verifica-
tion result is obtained or top-level stubs are used.

Until this point, it has been assumed that the stubs are given
by the designer of the component. In case no stubs have been
provided by the designer of the component, it is possible to gen-
erate the stub automatically given a model of the component
and an interface. The proposed algorithms generate stubs which
180

CONCLUSIONS AND FUTURE WORK
actually produce more events than the full component does,
which means that the stubs are pessimistic. This enforces an
iterative approach where the pessimism in the stubs is reduced
as long as the ACTL properties are not satisfied. An algorithm
for such a pessimism reduction has also been presented in the
thesis.

The generated stubs might be too pessimistic to be used in
verification, due to the fact that they assume that their sur-
rounding is as hostile as possible. They assume that tokens may
appear at those ports of the component not belonging to the stub
interface at any time with any value. This assumption about the
surrounding is sometimes too pessimistic. There is consequently
a need to be able to express properties about the surrounding
and incorporate them into the verification process.

Properties regarding the surrounding can also be expressed as
(T)ACTL formulas. An algorithm to generate a PRES+ model
which produces all possible events still satisfying an ACTL for-
mula has been presented. The generated Petri-net can then be
attached to one of the components involved in the current verifi-
cation.

An example has also been presented in order to demonstrate
the feasibility of using the approach on realistic designs.

9.2 Future Work
Future work includes finding more efficient algorithms support-
ing the methodology. Efficient algorithms in this context means
that they support the verification methodology in such a way
that verification time is minimised. This can be obtained by, for
instance, generating smaller stubs for the same degree of pessi-
mism.

We have seen how a Petri-net can be generated from an ACTL
formula. It is described in the thesis that this Petri-net is
directly attached to the ports of a component or a stub of a com-
181

CHAPTER 9
ponent. However, it might be possible, by analysing the struc-
ture of the component or stub, or by pattern matching, to modify
the stub so that it complies with the ACTL formula. The impli-
cation of this would be that a smaller Petri-net is used in the ver-
ification with shorter verification times as a result.

It is also worth to examine the possibility of extending the
algorithm in Chapter 7 for generating a Petri-net out of an arbi-
trary TACTL formula. In order to do this, it is needed to cope
with deadlines on G and R operators. That would allow to
express properties like ” must hold at least 5 time units”,

. Similarly, handling interval deadlines on properties
could also be introduced, i.e. (must be true in
between 3 and 5 time units).

p
AG 5≤ p

AF 3..5[] p p
182

REFERENCES
References

[Ack00] B. Ackland, A. Anesko, D. Brinthaupt et al, ”A Sin-
gle-Chip, 1.6-Billion, 16-b MAC/s Multiprocessor
DSP”, Journal of Solid-State Circuits, vol 35 no 3,
2000

[Alu90] R. Alur, C. Courcoubetis, D.L. Dill, ”Model Checking
for Real-Time Systems”, in Proc. Symposium on
Logic in Computer Science, pp. 414-425, 1990

[Alu94] R. Alur and D.L. Dill, ”A theory of timed automata”,
in Theoretical Computer Science, pp. 126:183-235,
1994

[Bra93] D. Brand, ”Verification of Large Synthesized
Designs”, in Proc. ICCAD, pp. 534-537, 1993

[Bry86] R.E. Bryant, ”Graph-Based Algorithms for Boolean
Function Manipulation”, in Transactions on Comput-
ers, Vol. C-35, No 8, pp. 677-691, 1986

[Bur90] J.R. Burch, E.M. Clarke, K.L. McMillan, ”Symbolic
Model Checking: 1020 States and Beyond”, in Proc.
LICS, pp. 428-439, 1990
183

[Cal99] A.E. Caldwell, H-J. Choi, A.B. Kahng, ”Effective Iter-
ative Techniques for Fingerprinting Design IP”, in
Proc. DAC, pp. 843-848, 1999

[Cam96] R. Camposano and J. Wilberg, ”Embedded System
Design”, in Design Automation for Embedded Sys-
tems, vol. 1, pp. 5-50, Jan 1996.

[Cha02] A. Chakrabarti, P. Dasgupta, P.P. Chakrabarti et al,
”Formal Verification of Module Interfaces against
Real Time Specifications”, in Proc. DAC, pp. 141-145,
2002

[Cla86] E.M. Clarke, E.A. Emerson, A.P. Sistla, ”Automatic
Verification of Finite-State Concurrent Systems
Using Temporal Logic Specifications”, in Transac-
tions on Programming Languages and Systems, pp.
8(2):244- 263, 1986

[Cla99] E.M. Clarke, O. Grumberg, D.A. Peled, ”Model
Checking”, The MIT Press, 1999

[Cor00] L.A. Cortés, P. Eles, Z. Peng, ”Verification of Embed-
ded Systems using a Petri Net based Representa-
tion”, in Proc. ISSS, pp. 149-155, 2000

[Cou90] O. Coudert, J.C. Madre, ”A Unified Framework for
the Formal Verification of Sequential Circuits”, in
Proc. ICCAD, pp. 126-129, 1990

[Dal99] M. Dalpasso, A. Bogliolo, L. Benini, ”Virtual Simula-
tion of distributed IP-based designs”, in Proc. DAC,
pp. 50-55, 1999

[Edw97] S. Edwards, L. Lavagno, E.A. Lee et al, ”Design of
Embedded Systems: Formal models, Validation, and
Synthesis”, in Proc. of the IEEE, Vol.85 No 3, pp. 366-
390, 1997
184

REFERENCES
[Gaj00] D. Gajski, A C.-H. Wu, V. Chaiyakul et al, ”Essential
Issues for IP Reuse”, in Proc. ASP-DAC, pp. 37-42,
2000

[Gar98] D. Garte, T. Kunjan, A. Reutter et al, ”Survey on a
Practicable Design for Reuse Strategy Including
Design Flow and Testbench Aspects”, in Proc. Work-
shop on Reuse Techniques for VLSI Design, 1998

[Gir93] E. Girczyc, S. Carlson, ”Increasing Design Quality
and Engineering Productivity through Design
Reuse”, in Proc. DAC, pp. 48-53, 1993

[Grä78] G. Grätzer, ”General Lattice Theory”, Academic
Press, 1978

[Gra97] S. Graf, H. Saidi, ”Construction of abstract state
graphs with PVS”, in Lecture Notes in Computer Sci-
ence, Vol. 1254, pp. 72-83, 1997

[Gru94] O. Grumberg, D.E. Long, ”Model Checking and Mod-
ular Verification”, in ACM-TOPLAS, Vol 16 No 3, pp.
843-871, 1994

[Haa99] J. Haase, ”Design Methodology for IP Providers”, in
Proc. DATE, pp. 728-732, 1999

[Hon99] I. Hong, M. Potkonjak, ”Behavioral Synthesis Tech-
niques for Intellectual Property Protection”, in Proc.
DAC, pp. 849-854, 1999

[Jan03] A. Jantsch, ”Modeling Embedded Systems and SoC’s
Concurrency and Time in Models of Computation”,
Morgan Kaufman, 2003

[Kar01] D. Karlsson, P. Eles, Z. Peng, ”A Front End to a Java
Based Environment for the Design of Embedded Sys-
tems”, in Proc. DDECS, pp. 71-78, 2001
185

[Kar02] D. Karlsson, P. Eles, Z. Peng, ”Formal Verification in
a Component Reuse Methodology”, in Proc. ISSS, pp.
156-161, 2002

[Kea98] M. Keating, P. Bricaud, ”Reuse Methodology Manual
for System-on-a-Chip Designs”, Kluwer Academic
Publishers, 1998

[Koe98] M. Koegst, P. Conradi, D. Garte et al, ”A Systematic
Analysis of Reuse Strategies for Design of Electronic
Circuits”, in Proc. DATE, pp. 292-296, 1998

[Kup96] O. Kupferman, O. Grumberg, ”Branching Time Tem-
poral Logic and Tree Automata”, Information and
Computation, pp. 125(1):62-69, 1996

[Lo98] K.C. Lo, ”Design for Reuse”, in Proc. Colloquium on
Systems on a Chip, pp. 11/1-11/6, 1998

[Loc91] C.D. Locke, D.R. Vogel, T.J. Mesler, ”Building a Pre-
dictable Avionics Platform in Ada: A Case Study”, in
Proc. RTSS, pp. 181-189, 1991

[Pei99] H.P. Peixoto, M.F. Jacome, A. Royo et al. ”Design
Space Layer: Supporting Early Design Space Explo-
ration for Core-Based Designs”, in Proc. DATE, pp.
676-683, 1999

[Reu99] A. Reutter, R. Bosch, W. Rosenstiel, ”An Efficient
Reuse System for Digital Circuit Design”, in Proc
DATE, pp. 38-43, 1999

[Row97] J.A. Rowson, A. Sangiovanni-Vincentelli, ”Interface-
Based Design”, in Proc. DAC, pp. 178-183, 1997

[Roy03] A. Roychoudhury, T. Mitra, S.R. Karri, ”Using formal
techniques to Debug the AMBA System-on-Chip Bus
Protocol”, in Proc. DATE, pp. 828-833, 2003
186

REFERENCES
[Rus01] J. Rushby, ”Theorem Proving for Verification”, in Lec-
ture Notes in Computer Science, Vol. 2067, pp. 39-??,
2001

[Sav00] W. Savage, J. Chilton and R. Camposano, ”IP Reuse
in the System on a Chip Era”, in Proc. ISSS, pp. 2-7,
2000

[See02] R. Seepold, N.M. Madrid, A. Vörg et al, ”A Qualifica-
tion Platform for Design Reuse”, in Proc. ISQED, pp.
75-80, 2002

[Swa97] G. Swamy, ”Formal Verification of Digital Systems”,
in Proc. International Conference on VLSI Design,
pp. 213-217, 1997

[Tur99] J. Turley, ”Embedded Processors by the Numbers”, in
Embedded Systems Programming, vol. 12, May 1999.

[UPP] Uppaal group, http://www.uppaal.com/

[Vah97] F. Vahid, L. Tauro, ”An Object-Oriented Communica-
tion Library for Hardware-Software CoDesign”, in
Proc. Workshop on HW/SW Codesign, pp. 81-86,
1997.

[VSI] Virtual Socket Interface Alliance,
http://www.vsi.org/

[Yal99] H. Yalcin, M. Mortazavi, R. Palermo et al, ”Func-
tional Timing Analysis for IP Characterization”, in
Proc. DAC, pp. 731-736, 1999
187

	Towards Formal Verification in a Component-based Reuse Methodology
	Daniel Karlsson
	ISBN 91-7373-787-9, ISSN 0280-7971 Printed in Linköping, Sweden by Linköping University Copyright...

	Abstract
	mbedded systems
	E

	Acknowledgements
	pecial thanks
	S
	Contents
	1. Introduction 1
	1.1. Motivation 1
	1.2. Problem formulation 3
	1.3. Contributions 4
	1.4. Thesis Overview 5

	2. Background 7
	2.1. Design of Embedded Systems 7
	2.2. IP Reuse 10
	2.2.1. IP Provider 10
	2.2.2. IP User 12
	2.3. Formal Verification 14
	2.3.1. Model Checking 14
	2.3.2. Equivalence Checking 16
	2.3.3. Theorem Proving 17
	2.4. Formal Verification of IP Interconnection 18
	2.4.1. Assume-Guarantee Reasoning 18
	2.4.2. Modelling the Environment in the Property Formulas 19
	2.4.3. Constructing Tableaux for Modelling the Environment 19

	3. Preliminaries 21
	3.1. The Design Representation: PRES+ 21
	3.1.1. Standard PRES+ 22
	3.1.2. Dynamic Behaviour 23
	3.1.3. Forced Safe PRES+ 25
	3.1.4. Component Aspects of PRES+ 26
	3.2. Computation Tree Logic 28
	3.3. Partial Orders and Lattices 31

	4. The Verification Methodology 35
	4.1. Explanatory Example 35
	4.2. Objective and Assumptions 39
	4.3. Methodology Overview 42
	4.3.1. The Impact on Verification Using Different Stubs 43
	4.3.2. Verification Methodology Roadmap 47

	5. Verification of Component-based Designs 51
	5.1. Definitions 51
	5.2. Relations between Stubs 56
	5.3. Verification Environment 59
	5.4. Formal Verification with Stubs 65
	5.4.1. Discussion 69
	5.5. Experimental Results 70
	5.5.1. General Avionics Platform 71
	5.5.2. Split Transaction Bus 72
	5.6. Verification Methodology Roadmap 76

	6. Automatic Generation of Stubs 81
	6.1. Pessimistic Stubs 82
	6.2. The Naïve Approach 84
	6.3. Stub Generation Algorithm 86
	6.3.1. Dataflow Analysis 86
	6.3.2. Identification of Stub Nodes 89
	6.3.3. Compensation 93
	6.3.4. Complexity Analysis 99
	6.4. Reducing Pessimism in Stubs 99
	6.4.1. Complexity Analysis 105
	6.5. Experimental Results 105
	6.5.1. General Avionics Platform 105
	6.5.2. Cruise controller 107
	6.6. Verification Methodology Roadmap 109

	7. Inclusion of the Surrounding into the Verification Process 115
	7.1. Preliminaries 117
	7.1.1. Introductory Example 117
	7.1.2. Formula Normalisation 118
	7.2. The Algorithm 119
	7.2.1. Place Generation 120
	7.2.2. Timer Insertion for U Operators 129
	7.2.3. Transition Generation 134
	7.2.4. Insertion of Initial Tokens 146
	7.2.5. Summary 147
	7.3. Examples 148
	7.3.1. Place with One Non-timer Repeating U Formula 149
	7.3.2. Place with One Timer Repeating U Formula 151
	7.3.3. Place with More than One Timer Repeating U Formula 153
	7.3.4. Guards on Transitions 155
	7.4. Verification Methodology Roadmap 157

	8. Example 161
	8.1. The Mobile Telephone System 161
	8.1.1. Buttons and Display 163
	8.1.2. Controller 164
	8.1.3. AMBA Bus 166
	8.1.4. Glue Logics 168
	8.2. Verification of the Model 172
	8.2.1. Property 1 172
	8.2.2. Property 2 174
	8.2.3. Property 3 175
	8.3. Discussion 177

	9. Conclusions and Future Work 179
	9.1. Conclusions 179
	9.2. Future Work 181

	Chapter 1 Introduction
	his thesis deals with
	T
	1.1 Motivation
	• They are part of a larger system with which they continuously or frequently interact.

	1.2 Problem formulation
	1.3 Contributions
	• Theoretical framework. A theoretical framework underlying the verification methodology has been...

	1.4 Thesis Overview
	• Chapter 2 gives background information on major issues in the design of embedded system with em...

	Chapter 2 Background
	he purpose of this chapter
	T
	2.1 Design of Embedded Systems
	Figure 2.1: System-level design flow

	2.2 IP Reuse
	2.2.1 IP Provider
	Figure 2.2: Impact of IP generality on various other parameters [Gaj00]

	2.2.2 IP User
	Figure 2.3: Two components and their glue logic

	2.3 Formal Verification
	2.3.1 Model Checking
	2.3.2 Equivalence Checking
	2.3.3 Theorem Proving
	(2.1)

	2.4 Formal Verification of IP Interconnection
	2.4.1 Assume-Guarantee Reasoning
	(2.2)
	(2.3)

	2.4.2 Modelling the Environment in the Property Formulas
	(2.4)

	2.4.3 Constructing Tableaux for Modelling the Environment

	Chapter 3 Preliminaries
	his chapter presents
	T
	3.1 The Design Representation: PRES+
	3.1.1 Standard PRES+
	Definition 3.1: PRES+. A PRES+ model is a 5-tuple where is a finite non-empty set of places is a ...
	Figure 3.1: A simple PRES+ net
	1. A token has values and timestamps, where is the value and is the timestamp. In Figure�3.1, the...
	2. A marking is an assignment of tokens to places of the net. The marking of a place is denoted
	3. A transition has a function and a time delay interval associated to it. When a transition fire...
	4. The transitions may have guards. A transition can only be enabled if the value of its guard is...
	5. The preset (postset) of a transition is the set of all places from which there are arcs to (f...
	6. A transition is enabled (may fire) iff there is at least one token in each input place of and ...

	3.1.2 Dynamic Behaviour
	Figure 3.2: Example of the dynamic behaviour of PRES+

	3.1.3 Forced Safe PRES+
	• A transition is enabled iff there is one token in each input place, there is no token in any of...
	Figure 3.3: Example of a PRES+ net with forced safe semantics and its equivalent in standard PRES+
	1. Each place in the net is duplicated so that it has a shadow place . If has an initial token, t...
	2. For each input arc , where and , an output arc is added.
	3. For each output arc , where and , an input arc is added.
	4. The exception to 2 and 3 is if is both an input place and an output place of , , in which case...

	3.1.4 Component Aspects of PRES+
	Definition 3.2: Component. A component is a subgraph of the graph of the whole system (is the se...
	1. Two components , may only overlap with their ports (Definition�3.3), , where .
	2. The pre- and postsets (and) of all transitions of a component , must be entirely contained w...

	Definition 3.3: Port. A place is an out-port of component if . A place is an in-port of if . is a...
	Definition 3.4: Interface. An interface of component is a set of ports where .
	Figure 3.4: Component substitution

	3.2 Computation Tree Logic
	Figure 3.5: Illustration of different CTL formulas

	3.3 Partial Orders and Lattices
	Definition 3.5: Partial order. A relation is a partial order if it is reflexive, antisymmetric an...
	Definition 3.6: Poset. If is a partial order, then the pair is called a partially ordered set, or...
	Definition 3.7: Upper (Lower) bound. Let be a poset and . Then is called an upper (lower) bound o...
	Definition 3.8: Least upper (Greatest lower) bound. Let be a poset and . Then is called a least u...
	Definition 3.9: Lattice. A lattice is a poset where every pair of elements has a least upper boun...
	Figure 3.6: Examples of posets
	Definition 3.10: Complete lattice. A complete lattice is a poset where every subset (finite or in...
	Theorem 3.1: Any finite lattice is a complete lattice.

	Chapter 4 The Verification Methodology
	his chapter provides
	T
	4.1 Explanatory Example
	Figure 4.1: A high level model of the GAP example
	Figure 4.2: Refined GAP model
	Figure 4.3: The glue logic between Radar and its Protocol

	4.2 Objective and Assumptions
	• The components themselves are already verified.
	(4.1)
	(4.2)
	Figure 4.4: A simple stub of the Protocol adapter

	4.3 Methodology Overview
	Figure 4.5: Overview of the proposed methodology
	4.3.1 The Impact on Verification Using Different Stubs
	Figure 4.6: Example for Stub Demonstration
	Figure 4.7: Stubs used in the example in Figure�4.6
	(4.3)
	(4.4)
	(4.5)
	(4.6)

	4.3.2 Verification Methodology Roadmap
	Figure 4.8: The start of the roadmap

	Chapter 5 Verification of Component-based Designs
	n this chapter
	I
	5.1 Definitions
	Definition 5.1: Interface compatibility. Interfaces and are compatible iff there exists a bijecti...
	Figure 5.1: Illustration of interface compatibility
	Definition 5.2: Event. An appearing event is a tuple , where is a place and is a token. Appearing...
	Definition 5.3: Observation. An observation is a set of events . Given observation and an interfa...
	Figure 5.2: Illustration of observations
	Definition 5.4: Operation. Consider an arbitrary input observation of component . If events occur...
	Definition 5.5: Stub. Let us consider two components, and . is the interface of containing all po...
	1. Interface is compatible with interface .
	2. For any input observation of component , satisfying all requirements on ports not in , .

	5.2 Relations between Stubs
	Definition 5.6: Top-level interface. The top-level interface of a component , with respect to a g...
	Figure 5.3: A partial order of interfaces
	Figure 5.4: The models of the empty stubs

	5.3 Verification Environment
	Definition 5.7: Interface partition. An interface partition is a set of non-empty interfaces such...
	Definition 5.8: Partition precedence. Partition precedes partition , , iff .
	Theorem 5.1: The partition precedence relation is a partial order.
	Theorem 5.2: The partition precedence relation has a top element , including the top-level interf...
	Definition 5.9: Environment. The environment corresponding to a partition with respect to a set o...
	Figure 5.5: A few environments for the example in Figure�4.6
	Figure 5.6: Components and corresponding interfaces
	Figure 5.7: Partition (environment) lattice of the situation in Figure�5.6
	Definition 5.10: Surrounding. The surrounding of a glue logic , , is the part of the design not i...

	5.4 Formal Verification with Stubs
	Theorem 5.3: Given an input observation , two partitions and , , and a set of ports where , then .
	Definition 5.11: Generalised operation. The generalised operation for component is the union of a...
	Corollary 5.1: Given partitions and , , and a set of ports where , then .
	Definition 5.12: State sequence generator. A state, in this context, is a marking of ports. A sta...
	(5.1)
	(5.2)
	(5.3)
	(5.4)
	(5.5)
	Theorem 5.4: Assume the partitions and , , a set of ports where , an initial marking on the ports...
	Figure 5.8: Illustration of Theorem�5.4
	5.4.1 Discussion
	1. The verification is unmanageable in the context defined above. This is the case when formula i...
	2. If the verification is manageable, the following two situations can be indentified: a) Formula...

	5.5 Experimental Results
	5.5.1 General Avionics Platform
	Figure 5.9: Partition lattice in the GAP example
	Table 5.1: Experimental results for GAP example

	5.5.2 Split Transaction Bus
	Figure 5.10: Schematic view of the STB example
	Table 5.2: Experimental results for STB example
	Figure 5.11: Partition lattice in the STB example

	5.6 Verification Methodology Roadmap
	Figure 5.12: Continuation of the roadmap from Figure�4.8
	Figure 5.13: Roadmap when using top-level stubs, continuation from Figure�5.12
	Figure 5.14: Roadmap when using lower-level stubs on ACTL formulas, continuation from Figure�5.12
	Figure 5.15: Roadmap when using lower-level stubs on non-ACTL formulas, continuation from Figure�...

	Chapter 6 Automatic Generation of Stubs
	hapter 5 introduced a
	C
	6.1 Pessimistic Stubs
	Figure 6.1: Example of a component for stub generation
	Definition 6.1: Pessimistic stub. Let us consider two components, and . is the interface of conta...
	1. and are compatible.
	2. For any possible input of component , .

	Theorem 6.1: Assume two environments and of the same set of components and , an initial marking a...

	6.2 The Naïve Approach
	Figure 6.2: A naïve stub of the component in Figure�6.1
	Figure 6.3: Comparison between exact and naïve stubs
	(6.1)
	(6.2)

	6.3 Stub Generation Algorithm
	1. Dataflow analysis
	2. Identification of stub nodes
	3. Compensation for the excluded parts of the component
	6.3.1 Dataflow Analysis
	1 procedure traceBack(e: place or transition, p: port)
	2 if not visited[e] then
	3 visited[e] := true;
	4 for each d Œ °e do
	5 DF[d, p] := DF[d, p] » { e };
	6 traceBack(d, p);
	7
	8 procedure traceForward(e: place or transition, p: port)
	9 if not visited[e] then
	10 visited[e] := true;
	11 for each d Œ e° do
	12 DF[d, p] := DF[d, p] » { e };
	13 traceForward(d, p);
	Figure 6.4: Algorithms for searching the dataflow
	Definition 6.2: Dataflow marking. A dataflow marking is a set of nodes (places or transitions), w...
	Figure 6.5: The dataflow marking of the component in Figure�6.1
	Definition 6.3: Divergence node. A node is a divergence node iff , i.e. there are several differe...
	Definition 6.4: Intersect node. A node is an intersect node iff , i.e. at least two arrows pointi...

	6.3.2 Identification of Stub Nodes
	Definition 6.5: Separation point. A separation point (SP) is a node (place or transition), which ...
	1. Divergence node (e.g. , , and in Figure�6.5).
	2. The node is a port in the interface (and in Figure�6.5).
	1 procedure traceNode(e: place or transition)
	2 if not tr_visited[e] then
	3 tr_visited[e] := true;
	4 if e is a port in the specified interf. or e is an intersect node then
	5 constructStub(e);
	6 else if e is a divergence node then
	7 tr_visited[e] := false;
	8 node spcand := traceCutEdge(e);
	9 if spcand = NULL then
	10 constructStub(e);
	11 else
	12 traceNode(spcand);
	13 else
	14 traceNode(the only element in DF[e]);
	15
	16 function traceCutedge(e: place or transition) returns place or transition
	17 if not tr_visited[e] and e is not an intersect node then
	18 tr_visited[e] := true;
	19 for each dŒDF[e] do
	20 if <e,d> is a cutedge then
	21 return d;
	22 else
	23 node cecand := traceCutedge(d);
	24 if cecand ¹ NULL then
	25 return cecand;
	26 return NULL;

	Figure 6.6: Algorithms for identifying which parts of a component to include in the stub
	1. The node being visited is a port or an intersect node.
	2. The node being visited is a divergence node.
	3. The node being visited is neither of the above.
	1 procedure constructStub(e: place or transition)
	2 if not visited[e] then
	3 visited[e] := true;
	4 res := res » {e}; // including all arcs connecting e with res;
	5 for each d Œ DF[e] do
	6 constructStub(d);

	Figure 6.7: Algorithm for adding places and transitions to the resulting stub given a separation ...
	Figure 6.8: The places and transitions in the automatically generated stub

	6.3.3 Compensation
	Definition 6.6: Fork node. Assume a component and a stub . A node is a fork node iff the correspo...
	Definition 6.7: Join node. Assume a component and a stub . A node is a join node iff the correspo...
	Figure 6.9: Example component and stub explaining the compensation of excluded parts
	Case 1: fork place
	Case 2: join place
	(6.3)
	(6.4)
	(6.5)

	Case 3: join transition
	(6.6)
	(6.7)
	(6.8)

	Case 4: fork transition
	Figure 6.10: An automatically generated stub

	6.3.4 Complexity Analysis

	6.4 Reducing Pessimism in Stubs
	Figure 6.11: An example system
	1 function pessRed(stub: PRES+; comp: PRES+; tr: trace) returns PRES+
	2 for each nŒstub do
	3 visited[n] := true;
	4 oldStub := copy of stub;
	5 newStub := oldStub;
	6 repeat
	7 Follow tr backwards until a join transition, t, is encountered;
	8 u := the value resulting from t, also indicated by the trace;
	9 visited[t] := false;
	10 success := buildStub(newStub, t, u); // Defined in Figure�6.13
	11 if not success then
	12 newStub := oldStub;
	13 else
	14 oldStub := newStub;
	15 until tr is finished;
	16 return newStub;

	Figure 6.12: The pessimism reduction algorithm
	1 function buildStub(stub: PRES+; t: transition; u: value) returns boolean
	2 if not visited[t] then
	3 visited[t] := true;
	4 stub := stub » { t };
	5 if ft is constant then
	6 return ft ¹ u;
	7 else
	8 W := ft-1(u);
	9 for each wŒW do
	10 if gt(w) then
	11 for each parameter wi of ft do
	12 pi := the place corresponding to wi;
	13 if pi has an initial token with value wi then
	14 return false;
	15 stub := stub » { pi };
	16 if °pi = Æ then
	17 return false;
	18 else
	19 for each ti Œ °pi do
	20 success := buildStub(stub, ti, wi);
	21 if not success then
	22 return false;
	23 return true;

	Figure 6.13: Auxiliary function for the pessimism reduction algorithm
	(6.9)
	Figure 6.14: The resulting stub after pessimism reduction
	6.4.1 Complexity Analysis

	6.5 Experimental Results
	6.5.1 General Avionics Platform
	Figure 6.15: The verified glue logic in the GAP example
	1. Weapon must keep up with the aiming instructions given by Tracker.
	2. Tracker must be able to send the aiming instructions at a certain rate.
	3. Tracker must only send aiming instructions within a certain direction (and distance) interval,...

	Table 6.1: Verification times for the GAP example

	6.5.2 Cruise controller
	Figure 6.16: The verified glue logic in the cruise controller example
	1. The brake signal must be processed sufficiently fast.
	2. The requested torque is below 100%.
	3. The reference value is positive.

	Table 6.2: Verification times for the CCM example
	1. Bigger interaction with inherently random system environment, e.g. turning on and off the syst...
	2. The generated stubs are nearly as big as the components themselves, due to their structure.

	6.6 Verification Methodology Roadmap
	Figure 6.17: Continuation from Figure�4.8 when no stubs are provided by the designer
	Figure 6.18: Continuation of the roadmap from Figure�6.17
	Figure 6.19: Continuation of the roadmap from Figure�6.17 and Figure�6.18

	Chapter 7 Inclusion of the Surrounding into the Verification Process
	ogether with each component,
	T
	Figure 7.1: Overview of the methodology presented in this chapter

	7.1 Preliminaries
	7.1.1 Introductory Example
	Figure 7.2: Petri-nets constructed ad hoc for the formula

	7.1.2 Formula Normalisation
	1. Implications of the form must be rewritten as , so that the only boolean operators in the form...
	2. Subformulas of the form , where is a port, is a value and is a relation, for example the equal...
	3. is rewritten as .
	4. is rewritten as .
	Table 7.1: Examples of (T)ACTL formulas and their normalisations

	7.2 The Algorithm
	1. Place generation.
	2. Timer insertion for U operators
	3. Transition generation
	4. Insertion of initial tokens
	7.2.1 Place Generation
	Definition 7.1: Set of elementary formulas. The set of elementary formulas of the formula is defi...
	1. If or , then . If (where is a port of a component) or , then . If , then .
	2. If or , then .
	3. If , then . If , then .

	(7.1)
	Table 7.2: Listing of all subsets of
	Definition 7.2: Subformula. The set of subformulas of the formula is defined by the following equ...
	1. If or or or (an atomic proposition), then . If , then .
	2. If or or or , then .

	(7.2)
	Definition 7.3: Atomic propositions. The set of atomic propositions in a formula is defined as
	Definition 7.4: Port values. The set of in-port values of the set of elementary formulas is defin...
	1. The set contains an atomic proposition with relation (), but not the atomic proposition itself...
	2. The set contains atomic propositions with relations, where there does not exist any value whic...

	(7.3)
	Definition 7.5: Legal (Contradictory) set of elementary formulas. A set of elementary formulas, ,...
	Definition 7.6: . Formula mapping from to is defined recursively as follows [Gru94]:
	1. , . If , then . If , then .
	2. If , then . If , then .
	3. If , then . If , then .

	Definition 7.7: Progress formulas. A progress formula is any elementary formula except atomic pro...
	Definition 7.8: Valid elementary set. A set of elementary formulas, , is a valid elementary set i...
	1 procedure createPlaces(y: ACTL)
	2 for each s Œ PF(VES(y)) do
	3 add a place pi to net;
	4 Y(pi) := s;
	5 Pin(s) := { pi };
	6 P(s) := pi;
	7 for each p Œ AP(y) do
	8 add a place pp to net;
	9 P(p) := pp;

	Figure 7.3: The algorithm for creating the places in the resulting Petri net

	7.2.2 Timer Insertion for U Operators
	Definition 7.9: Set of U formulas. The set of U formulas in place is expressed as .
	Definition 7.10: Top-level subformula. The set of top-level subformulas of the formula is defined...
	1. If or , where is an atomic proposition, then .
	2. If or then .
	3. If , then . If , then .

	Definition 7.11: Timer repeating formula. A formula is timer repeating in place iff there exists ...
	Figure 7.4: Illustration of timer repeating
	1 procedure addTimers(pi: place)
	2 for each j Œ U(pi) do
	3 add places pix and pix’ as indicated by Figure�7.6 to net;
	4 add transition tix asin indicated by Figure�7.6 to net;
	5 set time delay of tix to [0..j] where j is the upper bound associated to the U operator in j;
	6 Pin(Y(pi)) := Pin(Y(pi)) » { pix };
	7 Timerin(pi, j) := pix;
	8 Timerout(pi, j) := pix’ ;
	9 if j is non-timer repeating in pi then
	10 add place pix” as indicated by Figure�7.6 to net;
	11 NontimerCopy(pi, j) := pix”;

	Figure 7.5: Algorithm for adding timers to a place
	Figure 7.6: Adding timers to a place
	Figure 7.7: Adding timers to the example Petri net

	7.2.3 Transition Generation
	Definition 7.12: Target formulas. The set of target formulas of a place is defined as .
	Definition 7.13: Target places. The set of target places of a place is defined as .
	(7.4)
	(7.5)
	No timer was added to the place
	1 procedure addTransitions(pi: place)
	2 for each s Œ TF(pi) - TP(pi) do
	3 if s is not redundant with respect to TF(pi) then
	4 add transition t to net;
	5 °t := { pi };
	6 t° := Pin(PF(s));
	7 connectToPorts(t, s);
	8 set time delay of t to findTimeDelay(s, pi);
	Figure 7.8: The standard algorithm for adding the transitions belonging to place .
	1 procedure connectToPorts(t: transition, s: set of elementary formulas)
	2 °t := °t » P(APout(s));
	3 t° := t° » P(APin(s));
	4 g := true;
	5 for each p¬v Œ AProut(s) do
	6 g := g Ÿ p¬v;
	7 set guard of t to g;
	8 set function of t to return a random value from PVin(s);

	Figure 7.9: The algorithm for adding interaction with the ports to transition as specified by the...
	1 function findTimeDelay(s: set of elementary formulas, pi: place) returns time interval
	2 if Y(pi) » APout(s) » AProut(s) œ VES(y) then
	3 return [0..0];
	4 else
	5 return [0..•];

	Figure 7.10: Algorithm for finding the correct time delay interval of a transition
	Definition 7.14: Redundant elementary set. A set of elementary formulas is redundant with respect...
	Figure 7.11: The result of adding the transitions of place to the example formula

	The place has a timer
	Definition 7.15: Requiring U formulas. The set of requiring U formulas of a place and a set of el...
	Definition 7.16: Timer triggered formulas. The set of timer triggered formulas of a a set of U fo...
	(7.6)
	1 procedure addTransitionsForTimers(pi: place)
	2 for each s Œ TF(pi) - TP(pi) do
	3 if PF(s) = Y(pi) then
	4 if RUF(pi, s) ¹ Æ then
	5 if s is not redundant w.r.t TTF(RUF(pi, s)) then
	6 for each f Œ (2the non-timer rep formulas of RUF(pi, s)) do
	7 if exists timer rep. formula j Œ RUF(pi, s) or f ¹ Æ then
	8 add transition t to net;
	9 for each timer rep. formula j Œ RUF(pi, s) do
	10 °t := °t » { Timerout(pi, j) };
	11 t° := t° » { Timerin(pi, j) };
	12 for each j Œ f do
	13 °t := °t » { Timerout(pi, j) };
	14 t° := t° » { NontimerCopy(pi, j) };
	15 connectToPorts(t, s);
	16 set time delay of t to [0..0];
	17 if s is not redundant w.r.t. TF(pi) then
	18 for each non-timer rep. formula j Œ RUF(pi, s) do
	19 add transition t’ to net;
	20 °t’ := { NontimerCopy(pi, j) };
	21 t’° := { NontimerCopy(pi, j) };
	22 connectToPorts(t’, s);
	23 set time delay of t’ to findTimeDelay(s, pi);
	24 else if s is not redundant w.r.t TF(pi) then
	25 add transition t to net;
	26 °t := { pi };
	27 t° := { pi };
	28 connectToPorts(t, s);
	29 set time delay of t to findTimeDelay(s, pi);
	30 else
	31 addTransitionsForOtherDestinations(s, pi); -- see Figure�7.13

	Figure 7.12: Algorithm for adding transitions to a place with timers
	1 procedure addTransitionsForOtherDestinations(s: set of CTL, pi: place)
	2 if s Œ TTF(timer repeating formulas in U(pi)) and s is not redundant w.r.t. TTF(timer repeating...
	3 for each f Œ (2the non-timer rep formulas of RUF(pi, s)) do
	4 add transition t to net;
	5 °t := { pi };
	6 for each j Œ RUF(pi, s) do
	7 if j is timer repeating or j œ f then
	8 °t := °t » { Timerout(pi, j) };
	9 else
	10 °t := °t » { NontimerCopy(pi, j) };
	11 t° := Pin(PF(s));
	12 connectToPorts(t, s);
	13 if there exists a timer repeating formula in pi or f ¹ { all non-timer repeating formulas in U...
	14 set time delay of t to [0..0];
	15 else
	16 set time delay of t to findTimeDelay(s, pi);

	Figure 7.13: Continuation of the algorithm for adding transitions to a place with timers
	Figure 7.14: The result of adding the transitions of place to the example formula

	7.2.4 Insertion of Initial Tokens
	1 procedure insertInitialToken
	2 if | PF(VES(y)) | = 1 then
	3 add tokens in Pin(the only elt of PF(VES(y))) with value <0, 0>;
	4 else
	5 add place start to net with an initial token with value <0, 0>;
	6 for each s Œ PF(VES(y)) do
	7 add transition t to net;
	8 °t := { start };
	9 t° := Pin(s);
	10 set time delay of t to [0..0];
	Figure 7.15: Algorithm for add an initial token
	Figure 7.16: The resulting Petri net of the example formula

	7.2.5 Summary
	1 function generateFormulaStub(y: ACTL) returns PRES+
	2 createPlaces(y);
	3 for each s Œ PF(VES) do
	4 if | U(PF(s)) | > 0 then
	5 addTimers(P(s));
	6 for each s Œ PF(VES(y)) do
	7 if | U(PF(s)) | > 0 then
	8 addTransitionsForTimers(P(s));
	9 else
	10 addTransitions(P(s));
	11 insertInitialTokens;
	12 return net;
	Figure 7.17: The algorithm for generating a PRES+ model given an ACTL formula

	7.3 Examples
	7.3.1 Place with One Non-timer Repeating U Formula
	(7.7)
	Figure 7.18: The resulting Petri net of the formula

	7.3.2 Place with One Timer Repeating U Formula
	(7.8)
	Figure 7.19: The resulting Petri net of the formula

	7.3.3 Place with More than One Timer Repeating U Formula
	(7.9)
	Figure 7.20: The resulting Petri net corresponding to progress formulas of the formula

	7.3.4 Guards on Transitions
	(7.10)
	Figure 7.21: The resulting Petri net of the formula

	7.4 Verification Methodology Roadmap
	Figure 7.22: Continuation of the roadmap in Figure�6.19, useFormulas

	Chapter 8 Example
	he presented verification
	T
	8.1 The Mobile Telephone System
	Figure 8.1: Overview model of the example system, a mobile telephone
	1. Microphone. The microphone sends voice data to the transmitter.
	2. Buttons. When dialing, the buttons component sends information about which buttons were presse...
	3. Speaker. The speaker receives voice signals from the receiver and converts it to sound.
	4. Display. The display shows on a small screen information sent to it by the controller.
	5. Receiver. The receiver receives data from the base-station of the mobile telephone network and...
	6. Transmitter. The transmitter receives data from other components in the telephone and passes i...
	7. Controller. The controller coordinates the tasks of the other components.

	8.1.1 Buttons and Display
	Figure 8.2: Models of the components Buttons and Display

	8.1.2 Controller
	Figure 8.3: Model of the Controller component

	8.1.3 AMBA Bus
	Figure 8.4: Model of the Arbiter component
	Figure 8.5: Model of the Bus component

	8.1.4 Glue Logics
	Master functionality
	Figure 8.6: A model of the glue logic for the master functionality of the controller

	Slave functionality
	Figure 8.7: A model of the glue logic for the slave functionality of the controller

	8.2 Verification of the Model
	1. The controller only receives legal values for button.
	2. When a slave has split a transaction, it will be ready again in the future.
	3. When a master has been granted access to the bus, it must eventually close the transaction.
	8.2.1 Property 1
	Table 8.1: Verification results of property 1
	(8.1)

	8.2.2 Property 2
	Table 8.2: Verification results of property 2

	8.2.3 Property 3
	Table 8.3: Verification results of property 3

	8.3 Discussion

	Chapter 9 Conclusions and Future Work
	his thesis has introduced
	T
	9.1 Conclusions
	9.2 Future Work

	References
	[Ack00]
	[Alu90]
	[Alu94]
	[Bra93]
	[Bry86]
	[Bur90]
	[Cal99]
	[Cam96]
	[Cha02]
	[Cla86]
	[Cla99]
	[Cor00]
	[Cou90]
	[Dal99]
	[Edw97]
	[Gaj00]
	[Gar98]
	[Gir93]
	[Grä78]
	[Gra97]
	[Gru94]
	[Haa99]
	[Hon99]
	[Jan03]
	[Kar01]
	[Kar02]
	[Kea98]
	[Koe98]
	[Kup96]
	[Lo98]
	[Loc91]
	[Pei99]
	[Reu99]
	[Row97]
	[Roy03]
	[Rus01]
	[Sav00]
	[See02]
	[Swa97]
	[Tur99]
	[UPP]
	[Vah97]
	[VSI]
	[Yal99]

