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Abstract

Embedded systems are becoming increasingly common in our everyday lives. As technology progresses, these systems become

more and more complex. At the same time, the systems must fulfill strict requirements on reliability and correctness. Informal

validation techniques, such as simulation, suffer from the fact that they only examine a small fraction of the state space. Therefore,

simulation results cannot be 100% guaranteed. Formal techniques, on the other hand, suffer from state space explosion and might

not be practical for huge, complex systems due to memory and time limitations. This paper proposes a validation approach, based

on simulation, which addresses some of the above problems. Formal methods, in particular model checking, are used to aid, or

guide, the simulation process in certain situations in order to boost coverage. The invocation frequency of the model checker is

dynamically controlled by estimating certain parameters related to the simulation speed of the particular system at hand. These

estimations are based on statistical data collected during the validation session, in order to minimise verification time, and at the

same time, achieve reasonable coverage.

1 Introduction

It is a well-known fact that we increasingly often interact with electronic devices in our everyday lives. Such electronic devices

are for instance cell phones, PDAs and portable music devices like Mp3-players. Moreover, other, traditionally mechanical,

devices are becoming more and more computerised. Examples of such devices are cars, aeroplanes or washing machines. Many

of them are also highly safety critical such as aeroplanes or medical equipment.

It is both very error-prone and time-consuming to design such complex systems. At the same time, there is a strong economical

incentive to decrease the time-to-market.

In order to manage the design complexity and to decrease the development time, designers usually resort to reusing existing

components (so called IP blocks) so that they do not have to develop certain functionality themselves from scratch. These com-

ponents are either developed in-house by the same company or acquired from specialised IP vendors [1], [2].

Designers using IP blocks in their complex designs must be able to trust that the functionality promised by the IP providers is

indeed implemented by the IP block. For this reason, the IP providers must thoroughly validate their blocks. This can be done



2

either using formal methods, such as model checking, or using informal methods, such as simulation.

Both methods, in principle, compare a model of the design with a set of properties (assertions), expressed in a temporal logic

(for instance (T)CTL), and answer whether they are satisfied or not. With formal methods, this answer is mathematically proven

and guaranteed. The state space induced by the model under verification (MUV) is exhaustively investigated by applying tech-

niques for efficient state space representation [3] and efficient pruning of the same. However, using informal methods, this is not

the case. Such methods are not exhaustive and therefore require a metrics which captures the reliability of the result. Such metrics

are usually referred to as coverage metrics [4], as they try to express how big part of the state space has been covered by the sim-

ulation. Unfortunately, formal methods such as, for example, model checking, suffer from state space explosion. Although there

exist methods to relieve this problem [5], [6], [7], for very big systems simulation-based techniques are needed as a complement.

Simulation techniques, however, are also very time consuming, especially if high degrees of coverage are required.

This paper presents a validation technique combining both simulation and model checking. The basis of the approach is sim-

ulation, but model checking methods are applied to faster reach uncovered parts of the state space, thereby enhancing coverage.

The invocation of the model checking is dynamically controlled during run-time in order to minimise the overall validation time.

This paper is organised in 12 sections and one appendix. Section 2 presents related work, followed by an overview of the pro-

posed approach in Section 3. Section 4 introduces preliminary background material needed to fully understand the paper. The

coverage metrics used throughout the paper and the concept of assertion activation are described in Section 5 and Section 6

respectively. Section 7 and Section 8 present the frameworks for stimulus generation and assertion generation, whereas the cov-

erage enhancement procedure is explained in Section 9. Section 10 describes the dynamic stop criterion for the simulation, which

also determines the invocation time of the model checker. Experimental results are found in Section 11, and Section 12 concludes

the paper. Appendix A contains additional material on the generation of a PRES+ model given an ACTL formula.

2 Related Work

Combining formal and informal techniques is however not a new invention. Symbolic trajectory evaluation [8] is a technique

that mixes model checking with symbolic simulation. Though it has proved to be very efficient on quite large designs, it can only

be applied on a small class of properties.

Another idea, proposed by Tasiran et al., involves using simulation as a way to generate an abstraction of the simulated model

[9]. This abstraction is then model checked. The output of the model checker serves as an input to the simulator in order to guide

the process to uncovered areas of the state space. This will create a new abstraction to model check. If no abstraction can be gen-

erated, it is concluded that the specification does not hold. As opposed to this approach, the technique presented in this paper does
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not iteratively model check a series of abstractions, but tries to maximise simulation coverage given a single model. There is hence

a difference in emphasis. They speed up model checking using simulation, whereas this work improves simulation coverage using

model checking.

Another approach, developed at Synopsys, uses simulation to find a “promising” initial state for model checking [10]. In this

way, parts of the state space, judged to be critical to the specification, are thoroughly examined, whereas other parts are only

skimmed. The approach is characterised by a series of partial model checking runs where the initial states are obtained with sim-

ulation. The technique presented in this paper is, on the other hand, coverage driven in the sense that model checking is used to

enhance the coverage obtained by the simulation.

Shyam et al. [11] (with later elaboration by De Paula et al. [12]) propose a technique where formal verification techniques are

used to guide the simulation towards a certain verification goal, e.g. coverage. The core idea is the use of a distance function that

gives a measure on how far away the current simulation state is from the verification goal. The simulation is then guided based

on minimising this distance on an abstracted model. Our approach differs in the sense that our MUV is not abstracted and the

formal state evaluation is not applied at each simulation step, allowing the less computationally intensive simulation carry out as

much work as possible. They perform frequent formal analysis on approximate models, whereas we perform the formal analysis

more seldomly but on the actual model.

Lu et al. [13] focus on the fact that methods for formal verification of limited sized IP blocks at Register-Transfer Level (RTL)

have previously been frequently researched, but less attention has been paid to verifying designs at the system-level. The idea is

to use randomly generated legal traces obtained from the formal verification of the IP blocks to guide the simulation at system-

level. In this way, the verification of the whole system will be more efficient resulting in higher quality simulation results. In our

approach, on the other hand, formal verification guides the simulation at the same level of abstraction in the same verification

round, thereby increasing the quality of simulation.

The work by Abts et al. [14] formally verifies the architectural model of the design. The trace obtained from the formal veri-

fication is then fed into the simulator in order to examine the particular scenario described by the trace, in detail. This approach

is somehow opposite to Lu et al., but the difference to our work remains in principle the same.

Techniques where simulation guides formal verification have also been developed. The approach developed by Krohm et al.

[15] uses simulation as a complement to BDD-based techniques for equivalence checking. Our technique applies to property

checking, as opposed to equivalence checking. Moreover, formal verification is in our approach applied to boost simulation, as

opposed to Krohm et al. who apply simulation to boost formal verification, though at the expense of accuracy.

Gupta et al. [16] apply formal methods to automatically generate a testbench for guided simulation given a model under veri-
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fication and a CTL property. As a result of their approach, they obtain a testbench which generates stimuli for a subsequent sim-

ulation. The stimuli are biased towards the CTL property to increase the probability for obtaining a witness or counter-example.

We have also included a similar type of biasing into our approach, though our biasing technique is not based on formal methods

but on examining the property itself.

Simulation can also help in concretising counter examples from model checking. Nanshi et al. [17] have targeted the problem

of lengthy counter examples through model abstraction. By performing simulation, the counterexample from the abstract model

can be mapped to the corresponding concrete model.

Formal methods have also been used for test case generation, as in the technique developed by Hessel et al. [18]. The main

idea is to apply model checking on a correct model of the system and extract test cases from the diagnostic trace. The test cases

are then applied to the actual implementation. The approach is guided by a certain coverage metrics and the resulting test cases

are guaranteed to minimise test time. Although their work bears certain similarities with the work presented in this paper, it solves

a different problem. They assume that the model is correct while the implementation is to be tested. In our case, however, it is the

model that has to be proven correct. Another version of this problem is addressed by Fey et al [19]. They use model checking to

detect behaviour in the design that is not yet covered by the existing testbench.

As opposed to existing simulation-based methods, the presented approach is able to handle continuous time (as opposed to

discrete clock ticks) both in the model under validation and in the assertions. It is moreover able to automatically generate the

“monitors”, which are used to survey the validation process, from assertions expressed in temporal logic. In addition to this, the

method dynamically controls the invocation frequency of the formal verification tool (model checker), with the aim of minimising

validation time while achieving reasonable coverage.

3 Methodology Overview

The objective of the proposed validation technique is to examine if a set of temporal logic properties, called assertions, are

satisfied in the model under validation (MUV). The technique imposes the following three assumptions:

• The MUV is modelled as a transition system, e.g. PRES+ (see Section 4.2).

• Assertions, expressed in temporal logics, e.g. (T)CTL (see Section 4.1), stating important properties which the MUV must

not violate, are provided.

• Assumptions, expressed in temporal logics, e.g. (T)CTL (see Section 4.1), stating the conditions under which the MUV

shall function correctly (according to its assertions), are provided.
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The assertions and assumptions described above constrain the behaviour on the interface of the MUV. They do not state any-

thing about the internal state. The assumptions describe the valid behaviour of the environment of the MUV, i.e. constrain the

input, while the assertions state what the MUV must guarantee, i.e. constrain the output. As mentioned previously, the objective

of the validation is to examine if the MUV indeed satisfies its assertions.

The result of the verification is only valid to the extent expressed by the particular coverage metrics used. Therefore, certain

measures are normally taken to improve the quality of the simulation with respect to the coverage metrics. This could involve

finding corner cases which only rarely occur under normal conditions. Coverage enhancement is therefore an important part in

simulation-based techniques.

The proposed strategy consists of two phases, as indicated in Figure 1: simulation and coverage enhancement. These two

phases are iteratively and alternately executed. The simulation phase performs traditional simulation activities, such as transition

firing and assertion checking. When a certain stop criterion is reached, the algorithm enters the second phase, coverage enhance-

ment. The coverage enhancement phase identifies a part of the state space that has not yet been visited and guides the system to

enter a state in that part of the state space. After that, the algorithm returns to the simulation phase. The two phases are alternately

executed until the coverage enhancement phase is unable to find an unvisited part of the state space.

Figure 1. Verification Strategy Overview

In the simulation phase, transitions are repeatedly selected and fired at random, while checking that they do not violate any

assertions (Line 4 to Line 6). This activity goes on until a certain stop criterion is reached (Line 3). The stop criterion used in this

work is, in principle, a predetermined number of fired transitions without any coverage improvement. This stop criterion will be

further elaborated in Section 10.

When the simulation phase has reached the stop criterion, the algorithm goes into the second phase where it tries to further

enhance coverage by guiding the simulation into an uncovered part of the state space. An enhancement plan, consisting of a

sequence of transitions, is obtained and executed while at each step checking that no assertions are violated (Line 8 to Line 11).

1 initialise;
2 while coverage can be further enhanced do
3 while not stop criterion reached do
4 select r randomly among the enabled transitions;
5 fire r;
6 check that no assertion was violated;
7
8 obtain a coverage enhancement plan P;
9 for each transition r∈ P in order do
10 fire r;
11 check that no assertion was violated;
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It is at this step, obtaining the coverage enhancement plan, that a model checker is invoked (Line 8).

The two phases, simulation and coverage enhancement, are iteratively executed until coverage is considered unable to be fur-

ther enhanced (Line 2). This occurs when either 100% coverage has been obtained, or when the uncovered aspects, with respect

to the coverage metrics in use, have been targeted by the coverage enhancement phase at least once, but failed.

Stimulus generation is not explicitly visible in this algorithm, but is covered by the random selection of enabled transitions

(Line 4) or as part of the coverage enhancement plan (Line 8). Subsequent sections will go into more details about the different

parts of the overall strategy.

4 Preliminaries

4.1 Computation Tree Logic (CTL)

Both the assertion to be checked and the assumptions under which the MUV is verified are, throughout this paper, expressed

in a formal temporal logic with respect to the ports in the interfaces of the MUV. In this work, we use (timed) Computation Tree

Logic, (T)CTL [20], [21] for expressing these properties. However, other similar logics may be used as well.

CTL is a branching time temporal logic. This means that it can be used for reasoning about the several different futures (com-

putation paths) that the system can enter during its operation, depending on which actions it takes. CTL formulas consist of path

quantifiers (A, E), temporal quantifiers (X, G, F, U, R) and state expressions. Path quantifiers express whether the subsequent

formula must hold in all possible futures (A), no matter which action is taken, or whether there must exist at least one possible

future where the subformula holds (E). Temporal quantifiers express the future behaviour along a certain computation path

(future), such as whether a property holds in the next computation step (X), in all subsequent steps (G), or in some step in the

future (F). p U q expresses that p must hold in all computation steps until q holds. q must moreover hold some time in the future.

q R p on the other hand expresses that p must hold in every computation step until q, or if q never holds, p holds indefinitely. State

expressions may either be a boolean expression or recursively a CTL formula.

In TCTL, relations on time may be added as subscripts on the temporal operators (except the X operator). For instance, AF≤5 p

means that p must hold before 5 time units and AG≤5 p means that p holds continuously during at least 5 time units.

An important sublogic is (T)ACTL. A (T)CTL formula belongs to (T)ACTL if it only contains universal path quantifiers (A)

and negation only occurs in front of atomic propositions. This type of properties express, in particular, safety and liveness. The

sublogic is, in the context of this paper, important when it comes to stimulus generation and assertion checking (Section 7 and

Section 8 respectively).
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4.2 The design representation: PRES+

In the discussion throughout this paper, as well as in the tool we have implemented, the MUV, the assertion checker and stim-

ulus generator are assumed to be modelled in (or translated into) a design representation called Petri-net based Representation

for Embedded Systems (PRES+) [22]. This representation is chosen over other representations, such as timed automata [23], due

to its intuitivity in capturing important design features of embedded systems, such as concurrency and real-time aspects. The rep-

resentation is based on Petri-nets with some extensions as defined below. Figure 2 shows an example of a PRES+ model.

Figure 2. A simple PRES+ net

Definition 1. PRES+ model. A PRES+ model is a 5-tuple  where

P is a finite non-empty set of places,

T is a finite non-empty set of transitions,

 is a finite non-empty set of input arcs which define the flow relation from places to transitions,

 is a finite non-empty set of output arcs which define the flow relation from transitions to places, and

M0 is the initial marking of the net (see Item 2 in the list below).

We denote the set of places of a PRES+ model Γ as P(Γ), and the set of transitions as T(Γ). The following notions of classical

Petri-nets and extensions typical to PRES+ are the most important in the context of this work.

1. A token k has values and timestamps, where v is the value and r is the timestamp. In Figure 2, the token in place

p1 has the value 4 and the timestamp 0. When the timestamp is of no significance in a certain context, it will often be omitted

from the figures.

2. A marking M is an assignment of tokens to places of the net. The marking of a place P is denoted M(p). A place p is said

to be marked iff .

3. A transition t has a function (ft) and a time delay interval ( ) associated to it. When a transition fires, the value of

the new token is computed by the function, using the values of the tokens which enabled the transition as arguments. The

timestamp of the new tokens is the maximum timestamp of the enabling tokens increased by an arbitrary value from the time

delay interval. The transition must fire at a time before the one indicated by the upper bound of its time delay interval ( ),
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but not earlier than what is indicated by the lower bound ( ). The time is counted from the moment the transition became

enabled. In Figure 2, the functions are marked on the outgoing edges from the transitions and the time interval is indicated

in connection with each transition.

4. The PRES+ net is forced to be safe, i.e. one place can at most accommodate one token. A token in an output place of a

transition disables the transition.

5. The transitions may have guards (gt). A transition can only be enabled if the value of its guard is true (see transitions t4 and

t5).

6. The preset (postset ) of a transition t is the set of all places from which there are arcs to (from) transition t. Similar

definitions can be formulated for the preset (postset) of places. In Figure 2,  and .

7. A transition t is enabled (may fire) iff there is one token in each input place of t, no token in any output place of t and the

guard of t is satisfied.

We will now define a few concepts related to the component-based nature of our methodology, in the context of the PRES+

notation.

Definition 2. Union. The union of two PRES+ models and is

defined as .

Other set theoretic operations, such as intersection and the subset relation, are defined in a similar manner.

Definition 3. Component. A component C is a subgraph of the graph of the whole system Γ such that:

1. Two components , , may only overlap with their ports (Definition 4), ,

where .

2. The pre- and postsets ( and ) of all transitions must be entirely contained within the component C,

.

Definition 4. Port. A place p is an out-port of component C if or an in-port of C if

. p is a port of C if it is either an in-port or an out-port of C.

Definition 5. Interface. An interface of component C is a set of ports  where .

The PRES+ representation is not required by the verification methodology itself, although the algorithms presented here have

been developed using PRES+. However, if another transition-based design representation is found more suitable, similar algo-

rithms can be developed for that design representation. Our current implementation also accepts models specified in SystemC,

which are compiled to PRES+ as described in [24].

dt
-
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°t4 p4 p5,{ }= t4° p6{ }=
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Pconnect p P Γ( ) p° T C2( )⊆ ° p T C1( )⊆∧( ) p° T C1( )⊆ ° p T C2( )⊆∧( )∨∈{ }=

°t t° t T C( )∈

°t t°, P C( )⊆

p° T C( )∩ ∅=( ) °p T C( )⊆( )∧

°p T C( )∩ ∅=( ) p° T C( )⊆( )∧

I p1 p2 …, ,{ }= pi P C( )∈



9

In the context of PRES+, two forms of boolean state expressions are used within (T)CTL formulas: p and . The expres-

sion p refers to a state where a token is present in place p. Expressions of the form , on the other hand, describe states where

also the value of a token is constrained. The value of the token in place p (there must exist such a token) must relate to the value

v as indicated by relation . For example, the expression p = 10 states that there is a token in place p, and that the value of that

token is equal to 10.

In order to perform the model checking, the PRES+ model, as well as the (T)CTL properties, have to be translated into the

input language of the particular model checker used. For the work in this paper, the models are translated into timed automata

[23] for the UPPAAL model checking environment [25], using the algorithms described by Cortés et al. [22]. The properties are

also modified to refer to timed automata elements, rather than PRES+. The model checker was invoked with default parameters,

such as breadth first search and no approximation.

4.3 Example

The model in Figure 3, the assumption in Equation (1) and the assertion in Equation (2) will serve as an example throughout

this paper, in order to clarify the details of the methodology. The assumption (Equation (1)), under which condition the validation

will take place, stipulates that only even numbers will appear in p, whereas the assertion (Equation (2)), which eventually will be

verified, states that if p contains a token with a value less than 20, then a token will appear in q (regardless the value) within 10

time units.

Figure 3. An explanatory PRES+ model

(1)

(2)

5 Coverage Metrics

Coverage is an important issue in simulation-based methods. It provides a measure of how thorough a particular validation is.

It is advantageous to use a coverage metrics which refers both to the implementation and specification, so that the validation proc-

ess exercises all relevant aspects related to both. A combination of two coverage metrics is therefore used throughout this paper:
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assertion coverage and transition coverage.

Definition 6. Assertion coverage. The assertion coverage (cova) is the percentage of assertions which have been activated (acti-

vation will be defined in Section 6) during the validation process (aact) with respect to the total number of assertions (atot), as

formalised in Equation (3).

(3)

Definition 7. Transition coverage. The transition coverage is the percentage of fired distinct transitions (trfir) with respect to

the total number of transitions (trtot), as formalised in Equation (4).

(4)

Definition 8. Total coverage. The total coverage (cov) (coverage for short) is computed by dividing the sum of activated asser-

tions and fired transitions by the sum of the total number of assertions and transitions, as shown in Equation (5).

(5)

Assuming, in Figure 3, that for a particular validation session transitions t1, t2 and t5 have been fired and the assertion in Equa-

tion (2) has been activated, the assertion, transition and total coverage are 100%, 60% and 67% as computed in Equation (6),

Equation (7) and Equation (8) respectively.

(6)

(7)

(8)

6 Assertion Activation

During simulation, a record of fired transitions and activated assertions has to be kept, in order to compute the achieved cov-

erage. As for recording fired transitions, the procedure is straight-forward: For each transition fired, if it has never been fired

before, add it to the record of fired transitions. However, when it comes to assertions, the procedure is not as obvious. Intuitively,

an assertion is activated when all (relevant) aspects of it have been observed or detected during simulation. In order to formally

cova

aact

atot
---------=

covtr

tr fir

trtot
----------=

cov
aact tr fir+

atot trtot+
---------------------------=

cova
1
1
--- 1= =

covtr
3
5
--- 0.6= =

cov
3 1+
5 1+
------------ 0.67≈=
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define the activation of an assertion, the concept of assertion activation sequence needs to be introduced.

The purpose of an activation sequence is to provide a description of what markings have to occur before the assertion is con-

sidered activated. As will be demonstrated shortly, the order between some markings does not matter, whereas it does between

other markings. For this reason, an activation sequence is not a pure sequence, but a partial sequence defined as a set of <number,

markings>-pairs. The ordering between markings in pairs with the same order number is undetermined, whereas markings with

different order numbers have to appear in the order indicated by the number.

The set of markings in a pair is denoted by a place name possibly augmented with a relation. This place name represents all

markings with a token in that place, and whose value satisfies the relation. Below follows a formal definition of assertion activa-

tion sequence.

Definition 9. Assertion activation sequence. An assertion activation sequence is a set of pairs <d, K>, where d is an integer and

K is a (T)CTL atomic proposition, representing a set of markings.

Equation (9), given below, shows an example of an activation sequence. The order between p and q = 5 is irrelevant. However,

they must both appear before r. Proposition p stands for the set of all markings with a token in place p, the value of the token does

not matter. Proposition q = 5 represents the set of all markings with a token in q with a value equal to 5. Lastly, proposition r

denotes the markings with a token in place r.

(9)

To use activation sequences for detecting assertion activations, a method to derive such a sequence given an assertion ((T)CTL

formula) must be developed. In the following discussion, it is assumed that the assertion only contains the temporal operators R

and U. Negation is only allowed in front of atomic propositions. Any formula ϕ can be transformed to satisfy these conditions.

Moreover, time bounds on the temporal operators of TCTL formulas, e.g. <10 in AF<10 q are dropped, since, in the context of

activation sequences, we are only interested in the ordering of markings, not in the particular time moment they occur. The fol-

lowing function, A(ϕ) returns a set of activation sequences corresponding to the formula ϕ.

Definition 10. A(ϕ). The function A(ϕ) = A(ϕ, 0) returning a set of activation sequences given an ACTL formula is recursively

defined as:

• ,

•

• ,

1 p,〈 〉 1 q 5=,〈 〉 2 r,〈 〉, ,{ }

A p d,( ) d p,〈 〉{ }{ }= A p¬ d,( ) d p¬,〈 〉{ }{ }=

A pℜ v d,( ) d pℜ v,〈 〉{ }{ }=

A pℜ v( )¬ d,( ) A p¬ pℜ v∨ d,( )=

A false d,( ) ∅= A true d,( ) ∅{ }=
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•

•

•

•

It should be noted that A(ϕ) returns a set of activation sequences. The interpretation of this is that if any of these sequences

have been observed during simulation, the corresponding assertion is considered activated. Assume, for example, the set of acti-

vation sequences in Equation (10). It contains two sequences. The first sequence captures a situation where a token in p should

appear before a token in q, whereas the second sequence captures the single occurrence of a token in r. Either of these two sce-

narios activates, according to this set of sequences, the corresponding assertion.

(10)

The function A(ϕ) is moreover provided with an auxiliary parameter d, initially 0, in order to keep track of the ordering between

the markings in the resulting sequence.

The activation sequence corresponding to ϕ = p, an atomic proposition, is the singleton sequence containing markings with a

token in place p. Detecting a token in p is consequently sufficient for activating that property. Similarly ϕ = ¬p and ϕ = pℜ v are

activated by markings where there is no token in p and where there is a token in p with a value satisfying the relation, respectively.

ϕ = ¬ (pℜ v) is activated if there either is no token in p or the token value is outside the specified relation.

Since there is no marking which satisfies ϕ = false, there cannot exist any activating sequence. The formula ϕ = true, on the

other hand, is activated by all markings. There is consequently no constraint on the marking. This situation is denoted by an empty

sequence. As will be explained shortly, such a property will therefore be immediately marked as activated.

Disjunctions introduce several possibilities in which the property can be activated. It is partly for the sake of disjunctions that

A(ϕ) returns a set of sequences, rather than a single one. The function returns the union of the sequences of each individual dis-

junct. It is sufficient that one of these sequences is detected during simulation to consider the property activated.

In conjunctions, the activation sequences corresponding to both conjuncts must be observed. Since both conjuncts may corre-

spond to several activation sequences, the two sets of sequences must be interleaved so that all possibilities (combinations) are

represented in the result.

The formula Q[ϕ1 R ϕ2], for any Q ∈ {A, E}, is considered activated when either of the following two scenarios occurs:

1. After ϕ1 is detected, then from the point of view of this property, the following observations are of no significance any more.

A ϕ1 ϕ2∨ d,( ) A ϕ1 d,( ) A ϕ2 d,( )∪=

A ϕ1 ϕ2∧ d,( ) a b∪( )
b A ϕ2 d,( )∈

∪
a A ϕ1 d,( )∈

∪=

A Q ϕ1 R ϕ2[ ] d,( ) A ϕ1 d 1+,( ) A ϕ2¬ d 1+,( )∪=

A Q ϕ1 U ϕ2[ ] d,( ) A ϕ1¬ d 1+,( ) A ϕ2 d 1+,( )∪=

1 p,〈 〉 2 q,〈 〉,{ } 1 r,〈 〉{ },{ }
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Therefore, detecting ϕ1 is sufficient for activating this property.

2. A similar scenario applies when ϕ2 no longer holds, therefore also ¬ϕ 2 is sufficient for activation.

Both scenarios refer to future markings, for which reason the order number (parameter d) is increased with 1.

The U operator follows a similar pattern as the R operator. An important characteristics of a Q[ϕ1 U ϕ2] formula, for any

Q ∈ {A, E}, is that ϕ2 must appear in the future. The property does not specify anything about what should happen after ϕ2.

Therefore, ϕ2 is considered sufficient for activating the property. Similarly, the property does not specify what should happen

when ϕ1 no longer holds. Detecting ¬ϕ 1 is therefore also sufficient for activating the property. Since both scenarios refer to the

future, the order number (parameter d) is increased with 1.

It is important to distinguish the procedure of deriving assertion activation sequences from the verification process. The

sequences only identify possible orderings in which the involved markings may occur to in order to satisfy the assertion. It is the

task of the validation process to assess whether they are indeed satisfied or not.

Consider the example assertion in Equation (2), presented in a normalised form, and without the time constraints, in Equation

(11).

(11)

The set of activation sequences corresponding to this formula is computed as follows:

with the following auxiliary computations:

As can be seen in the computation, the activation sequence is the only one activating

. According to the sequence, a token in p with a value less than 20, which is eventually followed by a token

in q, activates the assertion.

As will be seen in Section 7, activation sequences are not only used for computing the assertion coverage, but they are also

useful for biasing the input stimuli to the MUV in order to boost assertion coverage.

AG p 20< AF q→( )
A false R p 20<( )¬ A true U q[ ]∨( )[ ]

⇔

A A false R p 20<( )¬ A true U q[ ]∨( )[ ] 0,( )

A false 1,( ) A p 20<( )¬ A true U q[ ]∨( )¬ 1,( )∪

∅ A p 20< E false R q¬[ ]∧ 1,( )∪

a b∪( )
b A E false R q¬[ ] 1,( )∈

∪
a A p 20< 1,( )∈

∪
a b∪( )

b 2 q,〈 〉{ }{ }∈
∪

a 1 p, 20<〈 〉{ }{ }∈
∪ 1 p, 20<〈 〉 2 q,〈 〉,{ }{ }

=

=

=

=

=

A p 20< 1,( ) 1 p, 20<〈 〉{ }{ }=

A E false R q¬[ ] 1,( ) A false 2,( ) A∪ q 2,( ) 2 q,〈 〉{ }{ }= =

1 p, 20<〈 〉 2 q,〈 〉,{ }

AG p 20< AF q→( )
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7 Stimulus Generation

The task of stimulus generation is to provide the model under validation with input consistent with the assumptions under

which the model is supposed to function. In the presented approach, the stimulus generator consists of another model, expressed

in the same design representation as the MUV, i.e. PRES+. A more elaborate description on how to generate such a model, given

an assumption ACTL formula, is presented in Appendix A. At this moment, it is just assumed that it is possible to derive such a

PRES+ model corresponding to an ACTL formula. This model encodes all possible behaviours which a PRES+ model can per-

form without violating the property for which it was created.

The stimulus generator and the MUV are then connected to each other during simulation, by applying the union of the two

models, to form a closed system. For this reason, the stimulus generator is not explicit in the pseudocode in Figure 1. An enabled

transition selected on Line 4 might belong to the MUV as well as to the stimulus generator.

As mentioned previously, let us assume that only even numbers are accepted as input to port p in the model of Figure 3. This

assumption was formally expressed in Equation (1), but is repeated for convenience in Equation (12). Following the discussion

above, a model capturing this assumption is generated and attached to the MUV. The result is shown in Figure 4. A transition,

which immediately consumes tokens, is attached to port q, implying the assumption that output on q must immediately be proc-

essed.

Figure 4. A MUV with stimulus generators

(12)

It was mentioned previously that activation sequences can be used to boost assertion coverage during the simulation phase.

This can be achieved by not letting the algorithm (Figure 1) select a transition to fire randomly (Line 4). The transition selection

should be biased so that transitions leading to a marking in an activation sequence are selected with preference, thereby leading

the validation process to activating one more assertion. When all markings in the sequence have been observed, the corresponding

assertion is considered activated.

As shown in Section 6, A(ϕ) translates a logic formula ϕ into a set of sequences of markings (represented by a place name,

possibly augmented with a relation on token values). The transition selection algorithm should select an enabled transition which

leads to a marking which is first (with lowest order number) in any of the sequences. However, only selecting transitions strictly

pat1

[0..∞]

The model in Figure 3

Random
even

number

[0..0]

q at2ap1

AG p even p( )→( )
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according to the activation sequences could lead the simulator into a part of the state space, from which it will never exit, leaving

a big part of the state space unexplored. Therefore, an approach is proposed in which the transition selection is only guided by

the activation sequences with a certain probability. The proposed transition selection algorithm is presented in Figure 5.

Figure 5. The transition selection process

A random value p, denoting a probability, is chosen between 0 and 1 (Line 3). If that value is less than a user-defined parameter

pc (Line 4), a transition is selected following an activation sequence if such transition exists (Line 5 and Line 6), otherwise a ran-

dom enabled transition is selected (Line 7). The algorithm in Figure 5 is called on Line 4 in Figure 1.

The user-defined parameter pc controls the probability to select a transition which fulfils the activation sequence. This value

introduces a trade-off which the designer has to make. The lower the value of pc is, the higher is the probability to enter unex-

plored parts of the state space. On the other hand, a too low value of pc might lead to the situation where the assertions are rarely

activated and, then, it could take longer time to achieve a high assertion coverage. In the experiments presented in Section 11, the

value of pc has been set to 0.66. With this value, the validation process is biased towards targeting events specified by the activa-

tion sequences while still giving substancial freedom for random exploration of the statespace.

8 Assertion Checking

The objective of validation is to ensure that the MUV satisfies certain desired properties, called assertions. The part of the sim-

ulation process handling this crucial issue is the assertion checker, also called monitor [26]. Designers often have to write such

monitors manually, which is a very error-prone activity. The key point is to write a monitor which accepts the model behaviour

if and only if the corresponding assertion is not violated.

A model created from an ACTL formula was introduced for stimulus generation in Section 7, based on the technique illustrated

in Appendix A. The same type of models can also be used for assertion checking as monitors. The assertion in Equation (2) will

be used to illustrate the operation of a monitor throughout this section. Figure 6 shows the essential part of the monitor corre-

sponding to that assertion. For the sake of clarity, the ports p and q are omitted. Arrows connecting to these ports are labelled with

1 function selectTransition(MUV: PRES+,
actseqs: set of activation sequences) returns transition

2 entrans := the set of enabled transitions in MUV;
3 p := random[0..1];
4 if p < pc then
5 if ∃  t ∈ entrans,

such that t leads to the first marking in any seq. in actseqs then
6 return t;
7 return any transition in entrans;
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the name of the corresponding port.

Figure 6. Part of an example monitor

The structure of monitors, generated with the technique illustrated in Appendix A, follows a certain pattern. All transitions in

Figure 6, except one, interact directly with a port, either p or q. The exception is transition mt6 (located in the lower right quarter

in the figure), whose purpose is to ensure that a token is put in q before the deadline, 10 time units after p<20. Such transitions,

watching a certain deadline, are called timers. This observation is important when analysing the output of the MUV.

Figure 7 illustrates the intuition behind assertion checking. Both the input given by the stimulus generator and the output from

the MUV are fed into the assertion checker. The assertion checker then compares this input and output with the monitor model

generated from the assertion (like the one in Figure 6). For satisfiability, there must exist a sequence of transitions in the monitor

leading to the same output as provided by the MUV, given the same input. This method works based on the fact that the monitor

model captures all possible interface behaviours satisfying the assertion, including the interface behaviour of the MUV. The

essence is to find out whether the MUV behaviour is indeed included in that of the monitor.

Figure 7. Assertion checking overview
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As indicated in the figure, the input given to the MUV is also given to the assertion checker. That is everything that needs to

be performed with respect to the input. As for the output sequence, on the other hand, the assertion checker has to perform a more

complicated procedure. It has to find a sequence of transitions producing the same output.

It was mentioned previously, that all transitions are directly connected to a port. Due to this regularity, the stipulated output

can always be produced by (at least) one of the enabled transitions in the monitor. If not, the assertion does not hold. The exception

is timers. If, at the current marking, a timer is enabled, the timer is first (tentatively) fired before examining the enabled transitions

in the same manner as just described. Successfully firing the timer signifies that the timing aspect of the assertion is correct.

Several enabled transitions may produce the same output. In the situation in Figure 6, for example, both transitions mt2 and

mt3 are enabled and can produce the output q. However, firing either of them will lead to different markings and will constrain

the assertion checker in future firings. The monitor has several possible markings where it can go, but the marking of the MUV

only corresponds to one (or a few) of them. The problem is that the assertion checker cannot know which one will be followed.

Therefore, the assertion checker has to maintain a set of possible current markings, rather than one single marking. The assertion

checker, thus, has to go through each marking in the set and compare it with the marking on the interface of the MUV. If the

marking currently being compared leads to a difference with the MUV, that marking is removed from the set. The assertion is

found unsatisfied when the set of current markings is empty. Figure 8 presents the assertion checking algorithm. It replaces Line 6

and Line 11 in Figure 1. Line 1, Line 2 and Line 3 (Figure 8) are, however, part of the initialisation step at Line 1 in Figure 1. The

algorithm uses the auxiliary function in Figure 9, which validates the timing behaviour of the model, and the function in

Figure 10, which implements the output matching procedure.
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Figure 8. The assertion checking algorithm in the context of Figure 1

Figure 9. Algorithm to check the timing aspect of an assertion

Figure 10. Algorithm for finding monitor transitions fulfilling the expected output

1 monitor: PRES+ := model corresponding to the assertion to be checked;
2 curmarkings: set of markings := { initial marking of monitor };
3 newmarkings: set of markings;
4 ...
5 oldtime := current time in MUV;
6 fire r; -- Line 5 or Line 10 in Figure 1
7 newtime := current time in MUV;
8 curmarkings :=

validateTimeDelay(newtime - oldtime, curmarkings, monitor);
9 if r provided MUV with an input then
10 put the tokens produced by r as input to

each marking in curmarkings;
11 if r provided MUV with an output then
12 e := marking in the out-ports of MUV;
13 newmarkings := ∅ ;
14 for each m ∈ curmarkings do
15 set marking of monitor to m;
16 newmarkings := newmarkings ∪ findOutput(e, monitor);
17 curmarkings := newmarkings;
18 if curmarkings = ∅ then
19 abort; -- Assertion not satisfied
20 ...

1 function validateTimeDelay(d: delay, curmarkings: set of markings,
monitor:PRES+) returns set of markings

2 newmarkings : set of markings := ∅ ;
3 for each m ∈ curmarkings do
4 set marking of monitor to m;
5 let time advance in monitor with d;
6 if not monitor exceeded the upper bound of the time delay interval

of any enabled transition then
7 newmarkings := newmarkings ∪ { m };
8 return newmarkings;

1 function findOutput(e: output marking, monitor: PRES+)
returns set of markings

2 newmarkings : set of markings := ∅ ;
3 fire all enabled timers;
4 entrans := the set of enabled transitions in monitor;
5 initmarking := the current marking of monitor;
6 for each t ∈ entrans do
7 fire t in monitor;
8 if output marking of monitor = e then
9 if a timer has a token in its output place then
10 move the token to the input place;
11 newmarkings := newmarkings ∪ { current marking of monitor };
12 set marking of monitor to initmarking;
13 return newmarkings;
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Throughout the validation process, the simulator must maintain a global variable, on behalf of the assertion checking, contain-

ing the set of all possible current markings in the monitor. In Figure 8, the variable curmarkings is used for this purpose. The

variable newmarkings is an auxiliary variable whose use will soon be explained.

The assertion checking algorithm must, at a certain moment, know how long (simulated) time a transition firing takes in order

to detect timing faults. The variable oldtime contains the current time before the transition was fired and newtime the time after.

The difference between the values of these two variables is the time it took for the transition, denoted r, to fire. This value is passed

to the function validateTimeDelay (Figure 9) which validates the delay with respect to the assertion. The function examines all

markings in curmarkings and returns the subset which still satisfies the assertion. The function will be explained in more detail

shortly.

If the fired transition, r, provides an input to the MUV, that input is also added to each marking in curmarkings, so that the

monitor is aware of the input (Line 9 and Line 10, Figure 8). As input counts either putting a token in an in-port of the MUV or

consuming a token from an out-port.

If the fired transition, r, provides an output from the MUV (Line 11), that output must be compared with the monitor model in

the assertion checker. As output counts either putting a token in an out-port of the MUV or consuming a token from an in-port.

Since the monitor potentially can be in any of the markings in curmarkings, all of these markings have to be examined

(Line 14), one after the other. The monitor is first set to one of the possible current markings, after which the enabled transitions

are examined with the function in Figure 10 (Line 16). The function returns a set of markings which successfully have produced

the output. The members of this set are added to the auxiliary set newmarkings. Later, when all current markings have been exam-

ined, the new markings are accepted as the current markings (Line 17).

If, at this point, the set of current markings is empty, no monitor marking can produce the output and the assertion is concluded

unsatisfied (Line 18 and Line 19).

The function in Figure 9 validates the timing aspects of an assertion. It examines the markings in curmarkings one after the

other (Line 3). At each iteration, time is advanced in the monitor (Line 5). As a consequence, all enabled transitions are checked,

so that the upper bound of their time delay interval is not exceeded (Line 6). If at least one transition exceeded its time bound,

the marking currently under examination does not agree with the stipulated delay, and is skipped. Otherwise (Line 6), the marking

is added to the result set newmarkings (Line 7) which later is returned (Line 8) and becomes the new set of current markings

(Line 8 in Figure 8).

Let us now focus on the auxiliary function in Figure 10. Given an output marking (the marking in the out-ports of the MUV)

and a monitor, the function returns the set of markings which satisfy the given output.
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At this point, it can be assumed that the timing behaviour of the assertion has not been violated, since the function in Figure 9

was called prior to this one. Thus the timers do no longer play any roll. Because of this and the fact that the lower bound of the

time delay interval of timers is 0, it is safe to fire all enabled timers (Line 3). At this moment, all enabled transitions are directly

connected with a port. Each of these enabled transitions are fired one after the other (Line 6 and Line 7). The result after each

firing is checked whether it matches the desired output, denoted e (Line 8). If it does, the new marking should be stored in new-

markings in order to later be returned. There may, however, be tokens in the output place of some timers, e.g. mp2c in Figure 6,

which were never used for producing the output. This signifies that it was not yet time to fire those timers, i.e. the timer was fired

prematurely. Before storing the new marking, the unused timer must therefore be “unfired” to reflect the fact that it was never

used (Line 9 and Line 10), i.e. move the token from mp2c back to mp2b. The monitor is now ready again to be checked with respect

to the timing behaviour of this marking in the next invocation of the assertion checker, according to the same procedure. After

storing the new marking, the monitor has to restore the marking to the original situation (Line 5 and Line 12) before examining

another enabled transition.

If the transition does not result in the desired output, the marking is restored (Line 12) and another enabled transition is exam-

ined. When all enabled transitions have been examined, the set newmarkings is returned (Line 13).

The algorithm will be illustrated with the sequence of inputs and outputs given in Equation (13) with respect to the monitor

depicted in Figure 6 for the assertion in Equation (2). Port p is an in-port and q is an out-port. Initially, the set of current markings

only consists of one marking, which is the initial marking of the monitor, formally denoted in Equation (14).

(13)

(14)

The first transition puts a token in place p with the value 30. Since time has not elapsed, this operation is fine from the timing

point of view. Putting tokens in an in-port is considered to be an input. The token is therefore just added to each possible current

marking. The resulting set is shown in Equation (15).

(15)

In the next round, the token in p is consumed by the MUV. That is considered as an output, since it is an act by the MUV on

its environment. According to the algorithm (Figure 8), the next step is to examine the enabled transitions and record the new

possible markings. In this situation, four transitions are enabled in the monitor, mt1, mt2, mt3 and mt4. Firing mt1 leads to a mark-

ing identical to the initial one, Equation (14), and mt2 leads to the same marking but where a token has appeared in out-port q.

p 30= p¬ delay:20 p 5=,〈 〉 p¬
delay:2 p 7=,〈 〉 p¬ delay:5 q 10=,〈 〉 q¬

, , , ,
, , ,

[
]

curmarkings m p1 0 0,〈 〉→{ }{ }=

curmarkings m p1 0 0,〈 〉→ p 30 0,〈 〉→,{ }{ }=
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However, this is not the output marking stipulated by the MUV (no token in neither p nor q). For that reason, this marking is

discarded. A similar argument holds for mt3. Firing mt4, on the other hand, leads to a marking where both mp2a and mp2b are

marked and the output is the same as that of the MUV. Two markings are consequently valid considering the input and output

observed so far. This is reflected in that curmarkings will contain both markings, as shown in Equation (16).

(16)

The next input comes after 20 time units, when a new token appears in p, this time with the value 5. At this moment, time has

elapsed since the previous transition firing. When the monitor is in the first marking, with a token in mp1, only transitions mt2 and

mt3 are enabled prior to giving the input to the monitor. Those transitions do not have an upper bound on their time delay interval.

Therefore, in this marking, time can elapse without problem. However, in the second marking, with tokens in mp2a and mp2b, one

transition is enabled, mt6. Moreover, the upper time bound of that transition is 10 time units. Delaying for 20 time units will

exceed this bound. As a conclusion, this marking is not valid and removed from the set of current markings. The input is then

added to the remaining marking. The result is shown in Equation (17).

(17)

With no delay, the token in p is then consumed. As discussed previously this is considered to be an output. In this case, since

the value of the token is 5, only three transitions are enabled, mt2, mt3 and mt4. Transition mt1, is disabled since its guard is not

satisfied. Transitions mt2 and mt3 do not produce the same output as the MUV (consume the token in p), so they are ignored. Only

mt4 satisfies the output. The resulting set of markings is shown in Equation (18).

(18)

After 2 time units, another token arrives in p, this time with value 7. Advancing time by 2 time units is acceptable from the

point of view of the monitor, since the only enabled transition, mt6, has a higher upper bound, 10>2. It is not explicit in Figure 9,

but it is now necessary to remember that 2 time units are already used from mt6, leaving only 8 time units before it has to be fired.

The input is added to each (only one in this case) set of current markings, as shown in Equation (19).

(19)

Next, that new token disappears. Before examining the enabled transitions, all enabled timers must first tentatively be fired,

leading to the markings in Equation (20).

curmarkings m p1 0 0,〈 〉→{ }
m p2a 0 0,〈 〉→ m p2b 0 0,〈 〉→,{ }

,{
}

=

curmarkings m p1 0 0,〈 〉 p 5 20,〈 〉→,→{ }{ }=

curmarkings m p2a 0 20,〈 〉→ m p2b 0 20,〈 〉→,{ }{ }=

curmarkings m p2a 0 20,〈 〉→ m p2b 0 20,〈 〉
p 7 22,〈 〉→

,→,{
}

{
}

=
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(20)

Next, the token in p is consumed. Three transitions are enabled, mt5, mt7 and mt8. However, only mt5 satisfies the output. The

resulting marking should consequently be stored. Firing transition mt5 did not involve the timer (mt6), so before storing the mark-

ing, the timer must be unfired, i.e. moving the token from mp2c back to mp2b. This was apparently not the right moment to fire

the timer. Equation (21) shows the resulting marking.

(21)

After 5 time units, the MUV produces the output q with value 10. Again, the timer mt6 is tentatively fired. Three transitions

are now enabled, mt5, mt7 and mt8, but only the latter two can produce a valid output. They lead to two different markings. The

token in the output place of the timer, mp2c, was consumed so no timer needs to be unfired. The result in shown in Equation (22).

(22)

The output, q, is then consumed by the environment of the MUV (stimulus generator). Removing a token from an out-port is

considered as an input, for which reason it is removed from each marking in curmarkings. The remaining set of markings is shown

in Equation (23).

(23)

The following example will demonstrate how an unsatisfied assertion is detected. Consider the sequence of inputs and outputs

in Equation (24) and the assertion and monitor in Equation (2) and Figure 6 respectively.

(24)

When the input p, with the value 5, and the output “consuming the token in p” have been processed, the set of current markings

in the assertion checker has reached the situation in Equation (25).

(25)

After 20 time units a token in out-port q with value 10 is produced. First, time is elapsed in the monitor. One transition, mt6,

is enabled, and it has an upper time bound of 10 time units. The transition thus exceeds this bound, which makes the marking

being discarded. The set of current markings is now empty, which signifies that the assertion is violated.

curmarkings m p2a 0 20,〈 〉→ m p2c 0 22,〈 〉
p 7 22,〈 〉→

,→,{
}

{
}

=

curmarkings m p2a 0 22,〈 〉→ m p2b 0 20,〈 〉→,{ }{ }=

curmarkings m p1 10 27,〈 〉→ q 10 27,〈 〉→,{ }
m p2a 0 27,〈 〉→ m p2b 10 27,〈 〉 q 10 27,〈 〉→,→,{ }

,{
}

=

curmarkings m p1 10 27,〈 〉→{ }
m p2a 10 27,〈 〉→ m p2b 10 27,〈 〉→,{ }

,{
}

=

p 5= p¬ delay:20 q 10=,〈 〉, ,[ ]

curmarkings m p2a 0 0,〈 〉→ m p2b 0 0,〈 〉→,{ }{ }=
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9 Coverage Enhancement

The previous sections have discussed issues related to the simulation phase (see Figure 1). The simulation phase ends when

the stop criterion, which will be discussed in Section 10, is reached. After that, the validation algorithm enters the coverage

enhancement phase, which tries to deliberately guide the simulation into an uncovered part of the state space, thereby boosting

coverage. As indicated on Line 8 in Figure 1, a coverage enhancement plan has to be obtained. This plan describes step by step

how to reach an uncovered, with respect to the particular coverage metrics used, part of the state space. This section describes the

procedure to obtain the coverage enhancement plan. Obtaining this plan is the core issue in the coverage enhancement phase.

A model checker returns a counter-example when a property is proven unsatisfied. That is true for ACTL formulas. However,

for properties with an existential path quantifier, the opposite holds. A witness is returned if the property is satisfied. A common

name for both counter-examples and witnesses is diagnostic trace. For instance, when verifying the property EF ϕ, the model

checker provides a trace (witness) which describes exactly step by step how to reach a marking where ϕ holds, starting from the

initial marking. This observation is the centrepiece in the coverage enhancement procedure. The trace constitutes the coverage

enhancement plan mentioned previously.

What ϕ represents depends on the particular coverage metrics used. In our case, the coverage metrics is a mix of assertion

coverage and transition coverage as described in Section 5. The following two sections will go into the details of the peculiarities

of enhancing both assertion and transition coverage respectively.

9.1 Enhancing Assertion Coverage

Each assertion has an associated activation sequence, as described in Section 6. During the simulation phase, the first markings

in the sequence are removed as they are observed in the MUV. When the validation algorithm (Figure 1) reaches the coverage

enhancement phase, the remaining activation sequences might therefore be partial. The first marking in the sequence with the

least number of remaining markings is chosen as an objective, ϕ, for coverage enhancement.

Assume that no marking in the sequence corresponding to the property in Equation (11) has yet been observed, then the objec-

tive would be p<20, i.e. to find a sequence of transitions, such that when fired, would lead to a marking where p<20. The property

given to the model checker would therefore be EF p<20. The model checker will then automatically provide the requested

sequence of transitions in the diagnostic trace.

9.2 Enhancing Transition Coverage

Enhancing transition coverage is about finding a sequence of transitions leading to a marking where a previously unfired tran-

sition is enabled and fired. Having found a previously unfired transition, t, the property EF fired(t) is given to the model checker.
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The model checker will then automatically provide a sequence of transitions, which, when fired, will lead to a marking where t

is enabled and fired. In this way, transition coverage is improved.

The time that the model checker spends on finding a coverage enhancement plan depends heavily on which previously unfired

transition is chosen for coverage enhancement. It is therefore worth the effort to find a transition which is “close” to the current

marking, in the sense that the resulting enhancement plan is short, and hence also the model checking time. Definition 11 defines

a measure of distance between a marking and a transition or place in PRES+ models. The measure can be used to heuristically

find an appropriate transition that leads to a short trace. The measure, in principle, estimates the number of transition firings

needed to fire the transition given the marking. It is chosen due to its fast computation.

Definition 11. Distance. Let M be a marking, V a set of values, U a universe containing all possible values which can occur in

the model (V ⊆ U), t a transition, p a place and c1 and c2 predefined constants. Pt(i) denotes the ith input place of t. In Section 4.2

ft and gt were defined as the transition function and guard of transition t respectively. The function dist(t, V, M) is recursively

defined as:

• If , then dist(t, V, M) = c1

Otherwise,

• If , then dist(p, V, M) = 0

If , then

If , then

V is an auxiliary parameter with the initial value V = U. In the case of measuring the distance from a transition t, the set V

contains all possible values which can be produced by the transition function ft. Similarly, in the case of measuring the distance

from a place p, V contains all possible values which a token in p can carry.

The distance between a transition t and a marking is defined in two different ways, depending on if there exist parameters to

the function ft, x1, ..., xn, which satisfy the guard gt, such that the function can produce a value in the set V. If such parameters do
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∧
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not exist, it means that the transition cannot produce the specified values. The distance is then considered to be infinite, which is

reflected by the constant c1. c1 should be a number bigger than any finite distance in the model.

Otherwise, if at least one value in V can be produced by ft, the distance of t is the same as the sum of all distances of its input

places. The set V contains, in each invocation corresponding to input place p, the values which the function parameter associated

to p may have in order for ft to produce a value in V.

In the case of measuring the distance between a place p and a marking M, the result depends on whether there is a token in that

place, and if so, the value in that token. If there is a token in p and the value of that token is in V, the distance is 0. In other cases,

the search goes on in all of the incoming paths. For a token to appear in p, it is sufficient that only one input transition fires. The

distance is defined with respect to the shortest (in terms of the distance) of them. This case is further divided into two cases: there

is a token in p (but with a value not in V), or there is no token in p. In the latter case, 1 is added to the path to indicate that one

more step has to be taken along the way from M to p. However, in the former case, a larger constant c2 is added to the distance

as penalty in order to capture the fact that the token in p first has to disappear before a token with an appropriate value can appear

in p. The proposed distance heuristic does not estimate further the exact number of transition firings it takes for this to occur.

Figure 11 shows an example which will be used to illustrate the intuition behind the distance metrics. In the example, the dis-

tance between transition t6 and the current marking (tokens in p1 and p2) will be measured. All transition functions are considered

to be the identity function.

Figure 11. Example of computing distance

Transition t6 has two input places p6 and p7. Consequently, in order to fire t6 there must be tokens in both of these places. The

distance of t6 is therefore the sum of the distances of p6 and p7.

In order for a token to appear in p7, only t2 needs to be fired. The distance of p7 is therefore 1 + dist(t2, U, M). Transition t2 is

already enabled, so the distance of t2 is 0 (because there is a token in its only input place). The distance of p7 is hence 1.

At p6, a token may appear from either t4 or t5. The distance of p6 is therefore 1 plus the minimum distance of either transition.
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The distance of t5 is 2 (obtained in a similar way as in the case of p7), while the distance of t4 is 1. Therefore, dist(p6, U, M) =

1 + min{dist(t4, U, M), dist(t5, U, M)} = 2.

Consequently, the distance of t6 is dist(t6, U, M) = dist(p6, U, M) + dist(p7, U, M) = 2 + 1 = 3. Three transition firings are thus

estimated to be needed in order to enable t6.

Given this distance metrics, the uncovered transition with the lowest distance with respect to the current marking may be cho-

sen as a target for coverage enhancement, since it results (heuristically) in the shortest enhancement plan, and it is obtained fast

by the model checker.

This procedure can be taken one step further. Not only can the closest transition be chosen, but the smallest transition-marking

pair. Among all visited markings and uncovered transitions, the pair with the smallest distance is chosen. When such a pair has

been found, the model is reset to the particular marking and the coverage enhancement is performed with respect to that marking.

Although some time has to be spent on finding the transition-marking pair with the smallest distance, it is worth the effort since

the time spent in the model checking can be reduced significantly. This is the alternative which we have implemented and used

in the experiments. However, it is of great importance that the distance computation is as efficient as possible, since it is invoked

many times when searching for a good transition-marking pair. In order to avoid long computation times, a maximum search

depth can be introduced. When that depth is reached, a constant c3 is returned, denoting that the distance is large.

9.3 Failing to Find a Coverage Enhancement Plan

It might happen that the model checking takes a long time. In such cases, a time-out interrupts this procedure leading to a sit-

uation where no coverage enhancement plan could be obtained. When this occurs, the rest of the coverage enhancement phase is

skipped, and a new run of the simulation phase is started. The failed assertion or transition will not be targeted for coverage

enhancement again.

10 Stop Criterion

Line 3 in Figure 1 states that the simulation phase ends when a certain stop criterion is reached. Section 3 briefly mentioned

that the stop criterion holds when a certain number of transitions are fired without any improvement of the coverage. This number

is called simulation length:

Definition 12. Simulation length. The simulation length is a parameter indicating the maximum number of consecutive tran-

sition firings during a simulation run without any improvement in coverage.

It can, however, be very difficult to statically determine a simulation length which minimises total validation time. In this sec-

tion, a dynamic heuristic approach, where the simulation length is determined at run-time, is presented. Section 11 will demon-
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strate that this heuristic yields a comparable coverage as the “optimal” simulation length with little penalty in time for the average

case.

10.1 Static Stop Criterion

The diagram in Figure 12 depicts the relation between the simulation length and the total validation time. The graph shows the

result of an example which has been validated several times with different values on the simulation length, with all simulation

phases of one validation having the same value on the simulation length, σ. In other words, as soon as σ transitions had been

consecutively fired without any increase in coverage, the simulation phase ended. Each diamond (marked “Sample”) in the figure

corresponds to one such run. The example was validated 3 times per simulation length1. The average of the three results belonging

to the same simulation length is also marked in the graph. The averages for each simulation length are connected by a line, in

order to make the trend more visible2.

Figure 12. Relation between simulation length and validation time

For small simulation lengths, the validation time is quite high. This is due to the fact that not many transitions (or assertions)

are covered in the simulation phase. Therefore, the model checker has to be invoked frequently to find enhancement plans for

each of the uncovered transitions or assertions. This action is expensive. On the other hand, for big simulation lengths, a lot of

time is spent in the simulation phase without any contribution to coverage. Between these two extremes, there is a point at which

the least possible amount of time is wasted in the simulation phase and coverage enhancement phase respectively. For the example

1. Since there exists non-determinism both in the MUV and in the methodology, the verification times may differ even
if the same simulation length is used.
2. All instances have been run until their actual finish according to Line 2 in Figure 1. This might, in general, lead to
situations where the obtained coverage does not reach 100%. However, in this particular case, 100% coverage (according
to Definition 8 in Section 5) is reached everywhere.
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given in Figure 12, that point is somewhere between 15 and 30.

There are basically two factors that influence the location of this point: the size of the MUV (or actually its state space) and

the sizes of the assertions (or actually the state space of their monitors). The bigger the size of the MUV is, the longer is the “opti-

mal” simulation length, since more time will be needed for model checking in the coverage enhancement phase. Similarly, the

bigger the sizes of the assertions are, the shorter is the “optimal” simulation length, since more time has to be spent in assertion

checking in the simulation phase.

However, it is impossible to obtain the best simulation length before-hand without first validating the MUV multiple times.

For this reason, a dynamic method which finds this value at run-time, while paying attention to coverage, is desired.

10.2 Dynamic Stop Criterion

As concluded in the previous section, the total validation time depends on the two factors: MUV size and assertion size. These

factors influence model checking time and transition firing time respectively. The total validation time, consequently, is directly

dependent on these factors. The following discussion will derive a function describing the total validation time in terms of these

factors. This function will later be used to analytically determine the simulation length which most likely minimises validation

time.

The total time the validation process spends in the coverage enhancement phase is the sum of the times of all model checking

sessions. For a given simulation length, σ, and average model checking time (including the time to find a marking-transition pair

with small distance), tver, the time spent in the coverage enhancement phase can be expressed as stated in Equation (26).

T is the set of transitions in the MUV and A is the set of assertions. cov(σ) is a function expressing how big coverage would

have been achieved at a certain simulation length σ, if the verification only is performed with the simulation phase, i.e. no cov-

erage enhancement takes place. 1 - cov(σ) thus denotes how big percentage of the state space has not been covered. It is assumed

that this part has to be targeted in the coverage enhancement phase. Multiplying this number with the total number of transitions

and assertions, , yields the number of transitions and assertions which are not yet covered by the simula-

tion phase and need to be targeted by the coverage enhancement phase. Given that tver represents the average time spent in one

coverage enhancement phase, the expression in Equation (26) approximates the total time spent in the coverage enhancement

phase.

(26)

The time spent in the simulation phase depends mainly on the assertion checking time. The assertion checking procedure is

invoked after each transition firing. The total time spent in the simulation phase is hence linear to the number of transitions fired.

1 cov σ( )–( ) T A∪⋅

tenh σ( ) 1 cov σ( )–( ) T A∪ tver⋅ ⋅=
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The number of transitions fired can be approximated with the simulation length, in particular for large values. Equation (27)

shows the corresponding expression, where tfir is the average time it takes to fire a transition, including the subsequent assertion

check.

(27)

The approximate total validation time is the sum of tenh(σ) and tsim(σ), as shown in Equation (28).

(28)

The goal is to find a suitable simulation length σ, such that ttot(σ) is minimised. In Equation (28), there are three parameters

whose values are unknown prior to validation, cov(σ), tver and tfir. The latter two can relatively straightforwardly be obtained by

measuring the time it takes to run the model checker or fire and assertion check a transition respectively. Those parameters do not

depend on the simulation length, but remain fairly constant throughout the entire process. Deviations will be captured in these

average time measurements and exercise their relative impact in the computation of the next simulation length.

Before the first simulation phase, tver must be assigned an initial estimated value since it is too computationally expensive to

invoke the model checker in order to obtain an authentic value. Not until after the first coverage enhancement phase, an authentic

value has been obtained which can be used in the subsequent simulation phases. This initial value should depend on the size of

the MUV.

Since it is relatively inexpensive to fire a transition and assertion check the result, tfir does not need to be assigned an initial

default value. After a few iterations in the simulation phase, an authentic value can quickly be obtained.

In order to determine the function cov(σ), the following experiment is performed. First run the simulation phase with simula-

tion length 1, and note down the obtained coverage in a diagram. Next, do the same with simulation lengths 2, 3, 4, etc. In practice,

it is not necessary to run the simulation separately for each simulation length, but the coverage values for all simulation lengths

can be obtained in one single run.

The experiment will show that the longer the simulation length is, the higher is the obtained coverage. For short simulation

lengths, many uncovered transitions and assertions are encountered on each simulation length, resulting in a rapid rise in cover-

age. The longer the simulation length, the less additional uncovered transitions and assertions are encountered compared the pre-

vious simulation length. This function is, thus, exponential.

It is, however, practically infeasible to empirically derive this function by extensive simulation. By doing that, a large part of

the system has already been verified and the use of knowing the coverage function, in order to minimise total validation time, is

severely diminished.

tsim σ( ) t fir σ⋅≈

ttot σ( ) tenh σ( ) tsim σ( )+ 1 cov σ( )–( ) T A∪ tver⋅ ⋅ t fir σ⋅+= =
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Since we cannot know the exact shape of the cov(σ) function in advance, it has to be estimated. As the simulation phase

progresses, more and more data about the coverage function can be collected, in the same way as the experiment described pre-

viously (Figure 12). The data collected for short simulation lengths obtained early during simulation, can be used to predict the

coverage for longer simulation lengths.

Figure 13 shows a diagram in which the coverage obtained at each simulation length is marked (Sample) for a certain run. The

graph only shows the results referring to one single simulation phase. Such diagrams follow in general an exponential curve of

the form cov(σ) = CeDσ + E, where both C and D are negative. In order to obtain an estimation of the coverage function for instant

simulation lengths longer than the one currently reached, these three parameters (C, D and E) have to be extracted from the points

obtained from the simulation so far. This extraction is performed using the Least Square Method, under the constraint that E ≤ 1.

That method minimises the distance between the sample points (measured coverage) and the estimated curve.

Figure 13. Relation between simulation length and coverage

Given the points in Figure 13, the least square method gives us that C = -0.9147, D = -0.53 and E = 0.7668. The resulting expo-

nential curve is shown in the same figure (Estimation). Having obtained this function, Equation (28) can be rewritten as Equation

(29).

(29)

Provided the expression of total validation time in Equation (29), it is straightforward to find the simulation length correspond-

ing to the shortest validation time using analytical methods. The resulting expression is presented in Equation (30).

ttot σ( ) 1 CeDσ E––( ) T A∪ tver⋅ ⋅ t fir σ⋅+=
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(30)

In the example of Figure 12 and Figure 13, tfir = 0.1255s, tver = 33.36s and |T∪ A| = 36. Using the formula in Equation (30)

gives us that the optimal simulation length is 16, as computed in Equation (31).

(31)

For each new simulation phase (Line 3 in Figure 1), a new simulation length is calculated according to Equation (30). The new

value will be more accurate than the previous ones, as more data, on which the calculation is based, have been collected.

The only reason for not reaching 100% coverage with this simulation technique, is that obtaining a coverage enhancement plan

took too long time and timed out. In such cases, the parameter tver will be large. Analysing Equation (30) gives that the larger tver

is, the larger simulation length σ should be chosen (considering that both C and D are negative, and that the quotient inside the

logarithm generally is less than 1). As a consequence, when more and more coverage enhancement attempts fail, the simulation

phase becomes longer. Spending more time in the simulation phase results in a bigger collection of encountered markings (states),

which increases the probability of finding a transition-marking pair with a small distance (Definition 11), and thereby influences

coverage in a positive way.

11 Experimental Results

The proposed formal method-aided simulation technique has been evaluated on a variety of models and assertions. Each model

was validated with both the static and dynamic stop criterion, as well as with pure model checking and pure simulation. The result

of the comparison is presented in Table 1. The values given are the average values of several runs on the same model and asser-

tions. The validations were performed on a Linux machine with an Intel Pentium 4 2.8GHz processor and 2GB of memory.

 Table 1 Experimental results

Time (s) Time
Diff.
(%)

Coverage (%) Cov.
Diff
(%)

Time (s) Cov (%)

Ex. Trans. Dyn. Static Dyn. Static MC Sim
1a 28 22.67 24.54 -7.62 100 100 0.00 OutMem 95

1b 28 51.75 38.30 35.12 100 100 0.00 OutMem 96

2a 35 42.40 39.74 6.69 100 100 0.00 OutMem 98

2b 35 62.55 60.78 2.91 100 100 0.00 OutMem 97

3a 42 55.38 58.77 -5.77 100 100 0.00 OutMem 97

3b 42 82.67 78.71 5.03 100 100 0.00 OutMem 94

4a 49 70.45 80.42 -12.40 100 100 0.00 OutMem 98

4b 49 101.64 105.16 -3.35 100 100 0.00 OutMem 97

σ

t fir

C D T A∪ tver⋅ ⋅
---------------------------------------------ln

D
---------------------------------------------------=

σ

0.1255
0.9147–( ) 0.53–( ) 36 33.36⋅ ⋅ ⋅

----------------------------------------------------------------------------ln

0.53–
---------------------------------------------------------------------------------- 16≈=
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The complexity of the models is given in terms of number of transitions. Although this number is generally not enough to char-

acterise the complexity of a model, it still provides a hint about the size of the model and is used due to the lack of a more accurate,

but still concise, metrics. The number only includes the transitions located inside the MUV itself, not the ones modelling the stim-

ulus generators. So despite the relatively small number of transitions in the examples, the statespace might become quite large,

also due to the parallel nature of PRES+ models and the vast range of possible values tokens may take.

Examples 1 through 16 consist of artificial models, and examples 17 through 19 model a control unit for a mobile telephone,

traffic light controller and a multiplier respectively. The models are often verified for two different properties, why they appear

twice in the table. The model of the mobile telephone is moreover described in more detail in Appendix B.

Generating the artificial models must be done under simultaneous consideration of the assertion to be checked. The model must

be generated in such a way that the assertion will be satisfied in it. It is therefore difficult to apply purely random methods. The

models therefore consist of multiple predefined pieces of Petri-nets connected to each other, forming a model that satisfies a given

assertion by construction. This provides an efficient way to generate test examples of different sizes. The assertions in the exam-

ples are typical and frequently used reachability properties.

5a 56 93.60 378.28 -75.26 100 99 1.01 OutMem 97

5b 56 143.36 120.73 18.74 100 100 0.00 OutMem 98

6a 63 137.14 289.89 -52.69 100 99 1.01 OutMem 99

6b 63 157.23 161.75 -2.79 100 100 0.00 OutMem 98

7a 70 298.81 151.43 97.33 99.5 100 -0.50 OutMem 100

7b 70 345.21 196.22 75.93 99.5 100 -0.50 OutMem 100

8 7 6.29 4.43 41.99 100 100 0.00 653.23 90

9a 14 261.98 399.91 -34.49 95 95 0.00 OutMem 100

9b 14 270.23 277.01 -2.45 95 95 0.00 OutMem 100

10a 21 627.27 550.78 13.89 95 94 1.06 OutMem 100

10b 21 891.39 821.83 8.46 89 90 -1.11 OutMem 100

11a 7 7.57 4.66 62.45 100 100 0.00 609.63 90

11b 7 16.41 10.49 56.43 100 100 0.00 379.20 86

12a 14 253.19 240.65 5.21 98 95 3.16 OutMem 100

12b 14 265.08 388.45 -31.76 93 95 -2.04 OutMem 100

13 30 15.27 10.42 46.55 100 100 0.00 OutMem 100

14 75 119.37 93.06 28.27 100 100 0.00 OutMem 98

15 150 564.54 504.37 11.93 100 100 0.00 OutMem 99.5

16 225 1768.35 1604.84 10.19 100 100 0.00 OutMem 99

17a 31 1043.97 935.68 11.57 98 99 -1.01 OutMem 84

17b 31 599.19 417.30 43.59 95 100 -5.00 OutMem 91

18a 36 216.41 157.01 37.83 100 100 0.00 OutMem 86

18b 36 279.46 250.10 11.74 100 100 0.00 6037.53 86

19a 8 13.12 10.21 28.50 100 100 0.00 OutMem 83

19b 8 330.47 316.21 4.51 100 100 0.00 N/A 92

 Table 1 Experimental results

Time (s) Time
Diff.
(%)

Coverage (%) Cov.
Diff
(%)

Time (s) Cov (%)

Ex. Trans. Dyn. Static Dyn. Static MC Sim
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It should be emphasised that the simulation length used for the static stop criterion was obtained by empirically evaluating

several different values, finally choosing the one giving the shortest validation time for comparison. The performance given by

this method can consequently not be achieved in practice, and only serves as a reference.

As can be seen, in most cases using the dynamic stop criterion results in validation times close to those for the static stop cri-

terion. There exist however cases where there is a big difference. This situation occurs if one method did not reach as high cov-

erage as the other. Thus, the coverage enhancement phase must have failed due to a time-out, resulting in longer total time.

It can be deduced from the figures that, in average, the dynamic approach is 15% slower than using the static stop criterion (if

that one could be used in practice, which is not the case). However, in 30% of the cases, the dynamic approach was actually faster.

This situation may occur, since choosing the simulation length for the static stop criterion is not a very accurate process. It could

happen that the dynamic stop criterion finds a simulation length closer to the actual optimum. The loss in coverage is, on the other

hand, very small. In average, coverage is 0.12% lower using the dynamic approach.

Although the dynamic approach performs slightly worse on both aspects, it should be remembered that, in practice, it is impos-

sible to reach the values listed in the table with the static approach. As mentioned previously, the values were obtained by trying

several alternatives for the static simulation length, thus validating the system multiple times. It cannot be known in advance

which simulation length results in the shortest validation time.

For comparison, all models and all assertions have, in addition, been validated with only model checking and only simulation.

In the model checking case, the model checker ran out of memory (2GB) in most cases before a solution was found. However, in

the cases where a solution was found, the model checker spent one or two orders of magnitude longer time than the proposed

mixed approach. In one example (19b) the model checker did not support the verified property, for which reason no result is given

for that example.

As for pure simulation, it was let running for as long time as was used in the case of the dynamic stop criterion (Table 1). The

total coverage obtained by the simulation process after this time, was in most cases less than or equal to our proposed mixed

approach. This is in particular true for the non-random models (17-19).

The general conclusion that can be drawn regarding pure model checking and simulation is that in most cases the proposed

approach outperforms both. Although pure model checking guarantees 100% coverage, it takes significantly longer time to obtain

a result, if a result can be obtained at all due to memory limitations. On the other hand, pure simulation cannot reach as high

coverage as the proposed approach given the same amount of time.
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12 Conclusions

This paper has presented a simulation technique into which formal methods (model checking) have been injected to boost cov-

erage. The approach has been developed on a Petri-net based design representation called PRES+, and on the two orthogonal

coverage metrics transition and assertion coverage. However, the underlying mechanisms are also applicable to any transition-

based design representation and to any coverage metrics.

The simulation algorithm consists of two distinct and successive phases: simulation and coverage enhancement. During the

simulation phase, transitions are repeatedly selected from the model under verification and fired. The results from the firings are

validated by an assertion checker. When it can be concluded that pure simulation will not lead to any increase in coverage, it stops

and control is passed on to the coverage enhancement phase. In that phase, a so far uncovered part of the state space is identified

and targeted by applying model checking. As a result from the model checking, a sequence of transitions leading to the previously

identified uncovered state is obtained, thereby improving coverage. After that, a new round of the simulation phase is initiated

starting from the previously uncovered state identified by the enhancement phase.

Moreover, a technique to automatically generate stimulus generators and assertion checkers from ACTL formulas is used.

These generators and checkers are modelled in the same PRES+ representation as the MUV and, in the case of stimulus genera-

tors, they are connected to the MUV so that they appear as one entity from the point of view of transition selection. The transition

selection mechanism is, moreover, biased in order to target scenarios described by the assertions, thereby enhancing assertion

coverage already in the simulation phase.

In order to minimise total validation time, the model checker is dynamically invoked. The invocation time is continuously esti-

mated based on historical values on certain parameters influencing performance, with the objective of minimising total validation

time. This estimation is performed once after each coverage enhancement phase, yielding more and more accurate estimations at

each iteration.

The approach has been demonstrated by experiments to be effective. It outperforms pure simulation on models where pure

model checking is too memory and time consuming. Verification times have, in addition, shown to be close to optimum.

Appendix A

The methodology relies on the fact that a (T)CTL formula can be captured by a PRES+ model: for the stimulus generator and

for the assertion checker. This appendix very briefly outlines a procedure which performs this transformation on ACTL proper-

ties. The resulting PRES+ model captures all behaviours that satisfy the formula. The detailed procedure is presented in [27].

The fundamental idea behind this algorithm [27] is to find the maximum set of behaviours or states which do not violate the



35

particular ACTL formula at hand [28]. A PRES+ model corresponding to this set of behaviours is then constructed. Let us outline

the algorithm considering the example ACTL formula in Equation (32). It states that if there is a token in port p, the value of that

token must be less than 2.

(32)

It is found that there are two states which satisfy the example formula. They are described by Equation (33) and Equation (34)

respectively. Either there is no token in p and the property continues to hold (Equation (33)), or there is a token in p with a value

less than 2 and the property continues to hold (Equation (34)).

(33)

(34)

In this simple example, there is only one way in which the property may continue to hold (AXAG (p → p < 2)). Except for

the port p, the resulting model only has one place, corresponding to this future behaviour. In general, there is one place per such

future behaviour. Cases with multiple possibilities of future behaviour arise, for instance, when several temporal operators occur

in the formula.

Figure 14 shows the resulting model. It contains one place corresponding to the port p and another place (s1) corresponding to

AXAG (p → p < 2).

Figure 14. The PRES+ model corresponding to the example formula in Equation (32)

For each place (possible future behaviour), transitions must be added for each possible state. There are two such states in the

example, Equation (33) and Equation (34). For Equation (33), no transition needs to be added since it says that p should not have

any token. The only action to take would be to stay in the same place. For Equation (34), a token must be put in place p with a

random value less than 2, as performed by transition t1. A token must also be put in the place corresponding to the continuation,

in this case the same place. There is no time requirement on this action. Consequently, the transition may fire at any time, as

reflected by time delay interval [0..∞]. An initial token is finally added to the place.

Appendix B

This appendix illustrates the mobile telephone controller, one of the real-life examples, that was verified in the experimental

results (Section 11).

AG p p 2<→( )

p¬ AXAG p p 2<→( )∧

p 2< AXAG p p 2<→( )∧

Component
random < 2

0..∞[ ]

p
s1

t1
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The mobile telephone controller keeps track of what is happening in the overall system and acts accordingly. Figure 15 shows

a model of the component.

Figure 15. Model of the Controller component

Places and are marked when the controller is able or is not able to process button data respectively.

The data is simply discarded if it is not immediately accepted. Transitions to take care of this functionality. The transi-

tions have guards so that different actions can be taken depending on which button was pressed. This model only makes a differ-

ence between if a number was pressed, , or if “enter” was pressed, . When dialling a number, signals

(tokens) are also sent in order to update the display. Having pressed “enter” the telephone number is sent to the transmitter.

Places and record whether a phone call is taking place or not. Transition therefore updates these places

when a phone call is to be made. Transition  takes care of incoming phone calls and  and  handle the end of a call.

Assumptions were moreover added to the ports of the components to provide input. These assumptions were given as ACTL

formulas and converted into PRES+ using the technique presented in Appendix A. An illustrative example of such an assumption

formula is given in Equation (35).

(35)

The formula states that the valid range of values of tokens in port is the numbers 0 to 9 and the enter key. The time

interval between two consecutive tokens in that port must be longer than 5 time units.
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