
Abstract

MBEDDED SYSTEMS are becoming increasingly com-
mon in our everyday lives. As technology progresses, 
these systems become more and more complex. Design-

ers handle this increasing complexity by reusing existing compo-
nents. At the same time, the systems must fulfill strict 
functional and non-functional requirements. 

This thesis presents novel and efficient techniques for the ver-
ification of component-based embedded system designs. As a 
common basis, these techniques have been developed using a 
Petri net based modelling approach, called PRES+. 

Two complementary problems are addressed: component veri-
fication and integration verification. With component verifica-
tion the providers verify their components so that they function 
correctly if given inputs conforming to the assumptions imposed 
by the components on their environment. 

Two techniques for component verification are proposed in the 
thesis. The first technique enables formal verification of Sys-
temC designs by translating them into the PRES+ representa-
tion. The second technique involves a simulation based 
approach into which formal methods are injected to boost verifi-
cation efficiency. 

E



Provided that each individual component is verified and is 
guaranteed to function correctly, the components are intercon-
nected to form a complete system. What remains to be verified is 
the interface logic, also called glue logic, and the interaction 
between components. 

Each glue logic and interface cannot be verified in isolation. It 
must be put into the context in which it is supposed to work. An 
appropriate environment must thus be derived from the compo-
nents to which the glue logic is connected. This environment 
must capture the essential properties of the whole system with 
respect to the properties being verified. In this way, both the 
glue logic and the interaction of components through the glue 
logic are verified. The thesis presents algorithms for automati-
cally creating such environments as well as the underlying the-
oretical framework and a step-by-step roadmap on how to apply 
these algorithms. 

Experimental results have proven the efficiency of the pro-
posed techniques and demonstrated that it is feasible to apply 
them on real-life examples.

This work has been supported by SSF (Swedish Foundation for 
Strategic Research) through the INTELECT and STRINGENT 
programmes, as well as by CUGS (National Computer Science 
Graduate School). 



Acknowledgements

ANY PEOPLE HAVE EITHER directly or indirectly 
contributed to this thesis. I would here like to take 
the opportunity to thank them all.

I would first like to sincerely thank my suvervisors Professor 
Petru Eles and Professor Zebo Peng for their invaluable guid-
ance and support during these years. I will particularly remem-
ber our fruitful and sometimes lively discussions at our regular 
meetings. They have hopefully taught me something about what 
it is to be a true researcher.

I would also like to thank all my other colleagues at the 
Department of computer and information science, and in partic-
ular at the Embedded systems laboratory, for the happy and joy-
ful time we have spent together. In this context, I would like to 
include my fellow students and teachers at CUGS (National 
Computer Science Graduate School), I shall never forget the 
time we spent taking courses together at various kursgårdar 
away from civilisation - including the social activities in the eve-
nings.

During the years, a number of master thesis students have 
implemented various parts of the techniques presented in the 
thesis. Thank you for your effort, you made my days easier with 
subsequent experimental work.

M



As my artistic talents leave a huge room for improvement, I 
am very grateful to Liana Pop for investing the effort in design-
ing the nice cover of this thesis.

Last, but not the least, I would like to express my gratitude 
and appreciation to my family who is always there for me. In 
particular I would like to mention my beloved wife, Zhiping 
Wang, who always gives me more care than I deserve.

Linköping, April 2006

Daniel Karlsson



Contents

Part I:  Preliminaries  1

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

1.1  Motivation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

1.2  Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . .  6

1.2.1  Component Verification . . . . . . . . . . . . . . . .  7

1.2.2  Integration Verification  . . . . . . . . . . . . . . . .  8

1.3  Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

1.4  Thesis Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

2.  Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

2.1  Design of Embedded Systems . . . . . . . . . . . . . . . . .  13

2.2  IP Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

2.2.1  IP Provider  . . . . . . . . . . . . . . . . . . . . . . . . .  16

2.2.2  IP User  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

2.3  Verification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

2.3.1  Model Checking  . . . . . . . . . . . . . . . . . . . . .  21

2.3.2  Equivalence Checking  . . . . . . . . . . . . . . . .  22

2.3.3  Theorem Proving  . . . . . . . . . . . . . . . . . . . .  23



2.3.4  Simulation  . . . . . . . . . . . . . . . . . . . . . . . . .  24

2.4  Verification of IP-based Designs  . . . . . . . . . . . . . .  25

2.4.1  Assume-Guarantee Reasoning  . . . . . . . . .  26

2.4.2  Modelling the Environment in the  
Property Formulas . . . . . . . . . . . . . . . . . . .  27

2.5  Remarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

3.  Preliminaries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

3.1  SystemC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

3.1.1  Processes . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

3.1.2  Scheduler  . . . . . . . . . . . . . . . . . . . . . . . . . .  33

3.1.3  Channels and Signals  . . . . . . . . . . . . . . . .  33

3.1.4  Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

3.1.5  wait Statements  . . . . . . . . . . . . . . . . . . . . .  34

3.1.6  Transaction-Level Modelling . . . . . . . . . . .  35

3.2  The Design Representation: PRES+  . . . . . . . . . . .  35

3.2.1  Standard PRES+  . . . . . . . . . . . . . . . . . . . .  36

3.2.2  Dynamic Behaviour . . . . . . . . . . . . . . . . . .  38

3.2.3  Forced Safe PRES+  . . . . . . . . . . . . . . . . . .  38

3.2.4  Components in PRES+  . . . . . . . . . . . . . . .  40

3.3  Computation Tree Logic . . . . . . . . . . . . . . . . . . . . .  43

4.  Verification Methodology Overview  . . . . . . . . . . . . .  47

Part II:  Component Verification  57

5.  PRES+ Representation of SystemC Models  . . . . . . .  59

5.1  Related Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60

5.2  Basic Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

5.3  Method Calls and Interfaces  . . . . . . . . . . . . . . . . .  64



5.4  Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

5.4.1  SystemC Execution Mechanism  . . . . . . . .  67

5.4.2  PRES+ Model  . . . . . . . . . . . . . . . . . . . . . . .  68

5.5  Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72

5.6  wait Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74

5.7  Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78

6.  Verification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81

6.1  Model Checking PRES+ Models . . . . . . . . . . . . . . .  81

6.1.1  Overview of our Model Checking  
Environment . . . . . . . . . . . . . . . . . . . . . . . .  81

6.1.2  Experimental results  . . . . . . . . . . . . . . . . .  85

6.1.3  Discussion . . . . . . . . . . . . . . . . . . . . . . . . . .  89

6.2  Formal Method Aided Simulation  . . . . . . . . . . . . .  90

6.2.1  Related Work  . . . . . . . . . . . . . . . . . . . . . . .  90

6.2.2  Verification Strategy Overview . . . . . . . . .  92

6.2.3  Coverage Metrics  . . . . . . . . . . . . . . . . . . . .  95

6.2.4  Assertion Activation . . . . . . . . . . . . . . . . . .  96

6.2.5  Stimulus Generation  . . . . . . . . . . . . . . . .  100

6.2.6  Assertion Checking . . . . . . . . . . . . . . . . . .  103

6.2.7  Coverage Enhancement . . . . . . . . . . . . . .  114

6.2.8  Stop Criterion . . . . . . . . . . . . . . . . . . . . . .  120

6.2.9  Experimental Results . . . . . . . . . . . . . . . .  127

Part III:  Integration Verification  131

7.  Integration Verification Methodology . . . . . . . . . . .  133

7.1  Explanatory Example . . . . . . . . . . . . . . . . . . . . . .  133

7.2  Objective and Assumptions  . . . . . . . . . . . . . . . . .  137



7.3  The Impact on Verification Using Different  
Stubs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140

7.4  Verification Methodology Roadmap . . . . . . . . . . .  144

8.  Verification of Component-based Designs . . . . . . .  147

8.1  Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147

8.2  Relations between Stubs  . . . . . . . . . . . . . . . . . . .  152

8.3  Verification Environment . . . . . . . . . . . . . . . . . . .  155

8.4  Formal Verification with Stubs . . . . . . . . . . . . . .  161

8.4.1  Discussion . . . . . . . . . . . . . . . . . . . . . . . . .  165

8.5  Experimental Results . . . . . . . . . . . . . . . . . . . . . .  166

8.5.1  General Avionics Platform  . . . . . . . . . . .  166

8.5.2  Split Transaction Bus  . . . . . . . . . . . . . . .  168

8.6  Verification Methodology Roadmap . . . . . . . . . . .  173

9.  Automatic Stub Generation . . . . . . . . . . . . . . . . . . . .  177

9.1  Pessimistic Stubs  . . . . . . . . . . . . . . . . . . . . . . . . .  178

9.2  The Naïve Approach . . . . . . . . . . . . . . . . . . . . . . .  179

9.3  Stub Generation Algorithm  . . . . . . . . . . . . . . . . .  181

9.3.1  Dataflow Analysis  . . . . . . . . . . . . . . . . . .  183

9.3.2  Identification of Stub Nodes  . . . . . . . . . .  185

9.3.3  Compensation . . . . . . . . . . . . . . . . . . . . . .  190

9.3.4  Complexity Analysis  . . . . . . . . . . . . . . . .  195

9.4  Reducing Pessimism in Stubs  . . . . . . . . . . . . . . .  196

9.4.1  Complexity Analysis  . . . . . . . . . . . . . . . .  201

9.5  Experimental Results . . . . . . . . . . . . . . . . . . . . . .  202

9.5.1  General Avionics Platform  . . . . . . . . . . .  202

9.5.2  Cruise controller  . . . . . . . . . . . . . . . . . . .  204

9.6  Verification Methodology Roadmap . . . . . . . . . . .  206



10.  Modelling the Surrounding  . . . . . . . . . . . . . . . . . . .  211

10.1  Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213

10.1.1  Introductory Example  . . . . . . . . . . . . . .  213

10.1.2  Formula Normalisation  . . . . . . . . . . . . .  214

10.2  The ACTL to PRES+ Translation Algorithm . . .  215

10.2.1  Place Generation  . . . . . . . . . . . . . . . . . .  216

10.2.2  Timer Insertion for U Operators . . . . . .  225

10.2.3  Transition Generation  . . . . . . . . . . . . . .  228

10.2.4  Insertion of Initial Tokens . . . . . . . . . . .  240

10.2.5  Summary . . . . . . . . . . . . . . . . . . . . . . . . .  242

10.3  Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243

10.3.1  Place with Empty Corresponding  
Elementary Set . . . . . . . . . . . . . . . . . . . .  243

10.3.2  Place with More than One Timer  . . . . .  245

10.3.3  Guards on Transitions  . . . . . . . . . . . . . .  247

10.4  Verification Methodology Roadmap . . . . . . . . . .  250

11.  Case Study: A Mobile Telephone Design . . . . . . . .  253

11.1  The Mobile Telephone System  . . . . . . . . . . . . . .  253

11.1.1  Buttons and Display . . . . . . . . . . . . . . . .  255

11.1.2  Controller  . . . . . . . . . . . . . . . . . . . . . . . .  256

11.1.3  AMBA Bus  . . . . . . . . . . . . . . . . . . . . . . .  258

11.1.4  Glue Logics  . . . . . . . . . . . . . . . . . . . . . . .  261

11.2  Verification of the Model . . . . . . . . . . . . . . . . . . .  265

11.2.1  Property 1  . . . . . . . . . . . . . . . . . . . . . . . .  265

11.2.2  Property 2  . . . . . . . . . . . . . . . . . . . . . . . .  267

11.2.3  Property 3  . . . . . . . . . . . . . . . . . . . . . . . .  268

11.3  Discussion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  270



Part IV:  Conclusions and Future Work  271

12.  Conclusions and Future Work  . . . . . . . . . . . . . . . .  273

12.1  Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  273

12.2  Future Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276

References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279

Abbreviations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287

Notations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289



P
ar

t 
I

PART  I
Preliminaries





INTRODUCTION
Chapter 1
Introduction

ERIFICATION IS AN IMPORTANT aspect of embedded 
system development. This thesis addresses verification 
issues with a particular emphasis on component reuse. 

Although the thesis concentrates on formal verification, in par-
ticular model checking, it also covers issues related to simula-
tion of component-based embedded systems.

This introductory chapter presents the motivation behind our 
work, problem formulation and contributions. In the end follows 
an overview of the thesis.

1.1 Motivation
Electronic devices increasingly penetrate and become part of our 
everyday lives. Such are, for instance, cell phones, PDAs, and 
portable music devices, such as Mp3-players. Moreover, other, 
traditionally mechanical, devices, such as cars, are becoming 
more and more computerised. The computer system inside this 
kind of devices is often referred to as an embedded system.

V

3



CHAPTER 1
There does not exist a universal definition of an embedded 
system. However, there exists a certain consensus that the fol-
lowing features are common to most embedded systems 
[Cam96]:

 • They are part of a larger system (host system), hence 
the term embedded, with which they continuously or fre-
quently interact. Usually, the embedded system serves as a
control unit inside the host system. 

 • They have a dedicated functionality and are not 
intended to be reprogrammable by the end-users. Once an 
embedded system is built, its functionality does not change 
throughout its lifetime. For example, a device controlling the 
engine of a car will probably never be reprogrammed to 
decode Mp3s. A desktop computer, on the other hand, has a 
wide range of functionality, including web browsing, word 
processing, gaming, advanced scientific calculator, etc.

 • They have real-time behaviour. The systems must, in 
general, respond to their environment in a timely manner.

 • They consist of both hardware and software compo-
nents. In order to cope with the wide and unpredictable 
range of applications, the hardware of a general purpose 
computer has to be generously designed with the risk of 
wasting resources. However, since the set of applications to 
be run on an embedded system is known at design-time, 
including their performance requirements, the hardware can 
be tuned at design-time for best performance at minimal 
cost. Similarly, software must also be optimised to build a 
globally efficient HW/SW system.

It is both very error-prone and time-consuming to design such 
complex systems. In addition, the complexity of today’s designs 
(and the manufacturing capability) increases faster than what 
the designers can handle (design productivity). On top of this, 
the ability to verify the systems (verification productivity)
4



INTRODUCTION
increases even slower than the design productivity. Thus, pro-
portionally more and more effort has to be put on verifying these 
complex systems [Ber05]. The difference between the manufac-
turing capability and design productivity is called the design 
productivity gap (or just productivity gap), and the difference 
between manufacturing capability and verification productivity 
is called verification productivity gap (see Figure 1.1). 

In order to manage the design complexity and to decrease the 
development time, thereby reducing the design productivity 
gap, designers usually resort to reusing existing components (so 
called IP blocks) so that they do not have to develop certain func-
tionality themselves from scratch. These components are either 
developed in-house, by the same company, or acquired from spe-
cialised IP vendors [Haa99], [Gaj00]. 

Not discovering a fault in the system in time can be very 
costly. Reusing predesigned IP blocks introduces the additional 
challenge that the exact behaviour of the block is unfamiliar to 

N
u

m
be

r 
of

 T
ra

n
si

st
or

s 
(l

og
ar

it
h

m
ic

)

Time

Manuf. Cap.

Design Prod.

Verification Prod.

Design Productivity gap

Figure 1.1: Productivity gap

Verification Productivity gap
5



CHAPTER 1
the designer, for which reason design errors that are difficult to 
detect can easily occur. Discovering such faults only after the 
fabrication of the chip can easily cause unexpected costs of 
US$500K - $1M per fault [Sav00]. In many projects, the verifica-
tion related activities may consume 50-70% of the total design 
effort [Dru03]. This suggests the importance of a structured 
design methodology with a formal design representation, and in 
particular it suggests the need for efficient verification. In highly 
safety-critical systems, such as aeroplanes or medical equip-
ment, it is even more evident that errors are not tolerable since 
it is not only for economic reasons that they have to be consid-
ered, but also in order to avoid loss of human lives. In such cases, 
the use of formal methods is required.

Verification tools analyse the system model, captured in a par-
ticular design representation, to find out whether it satisfies cer-
tain properties. In this way, the verification tool can trap many 
design mistakes at early stages in the design, and thereby 
reduce cost significantly. 

Increasing both the design and verification productivity are 
consequently very important. In this thesis, focus will be placed 
on the verification aspect with an emphasis on formal verifica-
tion of component-based designs. 

1.2 Problem formulation
The previous section stated that designers increasingly often 
build systems using reusable components due to the complexity 
of their designs. Therefore, there is an increasing need to effi-
ciently and effectively verify such systems. Verification method-
ologies, in particular formal ones, which can effectively cope 
with this situation and take advantage of the component-based 
structure, need to be developed. 

There are two aspects of this task:
6



INTRODUCTION
 • Verify that each component is correct
 • Verify that the interconnection (integration) of components 

is correct.

This thesis solves problems related to both aspects. The follow-
ing subsections will shortly present a few problems which have 
been addressed by this thesis.

1.2.1 COMPONENT VERIFICATION

In the case of component verification, the component itself is 
verified that it fulfils the specification with respect to its inter-
face. 

It is convenient for the designers to use the same language for 
simulation and synthesis as well as for formal verification. Sys-
temC gains popularity partly due to its simulation and synthesis 
capabilities [Bai03]. However, formal verification techniques 
applied on SystemC designs are less developed, in particular 
concerning designs at levels above Register-Transfer Level 
(RTL). It is, therefore, important to develop techniques so that 
also designs at higher levels of abstraction can be formally veri-
fied. 

It is sometimes the case that the component models are too big 
and complex to verify formally due to state space explosion. In 
such cases, designers normally resort to simulation. However, 
simulation only partially covers the total state space and poten-
tially requires long time in order to obtain the appropriate 
degree of coverage. Injecting formal methods into the simulation 
process could lead to higher coverage and a shorter total valida-
tion time. 
7



CHAPTER 1
1.2.2 INTEGRATION VERIFICATION

It can often be assumed that the design of each individual com-
ponent has been preverified [See02] and can be supposed to be 
correct. What furthermore has to be verified is the interface 
logic, also called glue logic, and the interaction between compo-
nents [Alb01]. 

Each glue logic and interface cannot be verified in isolation. It 
must be put into the context in which it is supposed to work. An 
appropriate environment must thus be derived from the compo-
nents to which the glue logic is connected. This environment 
must capture the essential properties of the whole system with 
respect to the properties being verified. In this way, both the 
glue logic and the interaction of components through the glue 
logic are verified.

1.3 Contributions
This thesis deals with issues related to verification of compo-
nent-based embedded systems. The main contributions are sum-
marised below:

Integration Verification

 • Theoretical framework. A theoretical framework underly-
ing the proposed integration verification methodology has 
been developed which is based on the notion of stubs, as an 
interface model of components. Theoretical results are used 
in order to improve the efficiency of the verification process 
[Kar02].

 • Automatic generation of stubs. An algorithm which, 
given a model of a component, generates a stub, has been 
developed. The algorithm builds on the theoretical frame-
work mentioned above. It furthermore removes the obliga-
8



INTRODUCTION
tion of the IP provider to build appropriate stubs [Kar04a], 
[Kar04b].

 • Translation of logic formulas into the Petri-net based 
design representation. In certain situations it is desired to 
incorporate logic formulas (other than those being verified) 
into the verification process, as assumptions about the rest of 
the system. In order to do so, they must be translated into 
the design representation used. An algorithm for doing this 
is proposed [Kar03].

Component Verification

 • Translation of SystemC into a Petri-net based design 
representation. Translating SystemC into a well-defined 
design representation makes it possible to formally analyse 
and verify designs specified in SystemC. Given this transla-
tion, all other techniques discussed in the thesis can also be 
applied to designs formulated in SystemC [Kar06]. 

 • Formal method-aided simulation. Sometimes, the models 
under verification are too big and complex to be successfully 
verified formally in a reasonable amount of time. In such 
cases, we propose a simulation methodology where model 
checking is invoked in order to improve coverage. The invo-
cation of the model checker is controlled dynamically during 
verification in order to minimise total verification time
[Kar05]. 

Although these items are contributions by themselves and pre-
sented in Part II (component verification) and Part III (integra-
tion verification) respectively, they can also be considered as 
part of one single proposed verification methodology. The compo-
nents are first verified individually, to guarantee the correct 
behaviour for each one of them. As a second step, assuming the 
9



CHAPTER 1
correctness of the reusable components, their interconnection 
(integration) is furthermore verified in order to guarantee the 
overall correctness of the system.

1.4 Thesis Overview
The thesis is divided into four parts. Part I introduces the area of 
embedded system design with focus on verification. It further-
more presents the background needed to understand the thesis 
and a high-level overview of the proposed methodology. Part II 
continues with presenting techniques which can be used for ver-
ification of reusable components. Part III introduces a formal 
verification process aimed at verifying the integration of compo-
nent-based designs. Part IV concludes the thesis and points out 
a few areas for future work.

The four parts are, in turn, divided into twelve chapters as fol-
lows:

Part I: Preliminaries

 • Chapter 1 shortly motivates the importance of the area of 
formal verification in a component-based context. It further-
more introduces the problems discussed as well as the struc-
ture of the thesis.

 • Chapter 2 provides a more thorough background of the 
research area as well as related work.

 • Chapter 3 addresses several concepts and definitions which 
are necessary for understanding the contents of this thesis.

 • Chapter 4 presents a high-level overview of the verification 
methodology proposed in this thesis. 

Part II: Component Verification

 • Chapter 5 describes a translation mechanism from SystemC 
into the Petri-net based design representation which is used 
10



INTRODUCTION
throughout the thesis. 
 • Chapter 6 discusses two methods in which components can 

be verified: formally (model checking) or by simulation. In 
the second case, emphasis is put on enhancing the coverage 
obtained from simulation by using formal methods.

Part III: Integration Verification

 • Chapter 7 introduces the big picture in which context the 
chapters in this third part should be put. The main features 
of the proposed integration verification methodology are pre-
sented in this chapter.

 • Chapter 8 presents the theoretical framework and the funda-
mental properties of stubs. 

 • Chapter 9 describes algorithms used for automatically gen-
erating stubs. Additional theory related to these algorithms 
is also given.

 • Chapter 10 presents an algorithm for generating a Petri-net 
model which corresponds to a given temporal logic formula. 
The resulting model is able to produce all outputs consistent 
with the formula. Such models are useful when making 
assumptions about system properties.

 • Chapter 11 illustrates the whole verification methodology by 
a case study, a mobile telephone design.

Part IV: Conclusions and Future Work

 • Chapter 12 concludes the thesis and discusses possible direc-
tions for future work.

A summary of abbreviations and notations has also been 
included at the end of the thesis.
11



CHAPTER 1
12



BACKGROUND
Chapter 2 
Background

HE PURPOSE OF THIS CHAPTER is to introduce the 
context in which the work presented in this thesis 
belongs. First, a general system-level design flow is 

introduced. Aspects related to verification of IP blocks, from the 
perspective of both the IP provider and the IP user, are then pre-
sented. This is followed by a section introducing both simulation 
and formal verification. In the end, related work concerning ver-
ification of IP-based designs is presented.

2.1 Design of Embedded Systems
Designing an embedded system is a very complicated task. 
Therefore, in order to manage the complexity, it is necessary to 
break down this task into smaller subtasks. Figure 2.1 outlines 
a typical embedded systems design flow, with emphasis on the 
early stages from the system specification until the model where 
the system is mapped and scheduled (the part above the dashed 
line). This is the part of the design flow, the system-level, to 
which the work presented in this thesis belongs. 

T

13



CHAPTER 2
The input to the design process is a specification of the system, 
usually written in an informal language. The specification con-
tains information about the system, such as its expected func-
tionality, performance, cost, power consumption etc. It does not 
specify how the system should be built, but only what system to 
build [Kar01]. Given this document, the designer has to gradu-
ally transform, or refine, its contents into a finished product. 

When an appropriate system model has been obtained
[Var01], it must be validated to make sure that it really corre-
sponds to the initial specification. That can be done either by 
simulation, formal verification or both. 

Having obtained a system model, the designer must decide 
upon a good architecture for the system. This stage includes 
finding appropriate IP blocks in the library of components, for 
instance processors, buses, memories and application specific 
components, such as ASICs. 

The next step is to determine which part of the design (as cap-
tured by the model) should be implemented on which processing 
element (processor, ASIC or bus). This step is called mapping. 

If several processes are mapped onto the same processor, 
these processes need to be scheduled. Possible bus accesses and 
similar resource usage conflicts need either to be staticly sched-
uled or a dynamic conflict management mechanism has to be 
implemented. Constraints given in the original specification, e.g. 
response times, must be satisfied after scheduling. This must 
also be verified, either by simulation or formal verification. 

Later stages of the design flow deal with synthesis of hard-
ware and software components, as well as their communication, 
and fall out of the scope of system-level design. 

If at a certain stage the designer finds out that an improper 
design decision was taken at an earlier stage, typically discov-
ered in a verification phase, the design has to reiterate from a 
point where the problem can be fixed. Such iterations are very 
costly, especially if errors are detected at late design steps, e.g. at 
prototyping, when a physical model of the product has already 
14



BACKGROUND
Modelling

System
Model

Architecture
Selection

Mapping

Mapped and
Scheduled Model

HW
Synthesis

SW
Synthesis

Communication
Synthesis

System
Specification

Simulation

Formal
Verification

Figure 2.1: Embedded systems design flow

Scheduling

System Integration
and Testing

Simulation

Formal
Verification
15



CHAPTER 2
been built. Therefore, it is necessary, not to say crucial, to per-
form the validation steps, simulation and formal verification, in 
order to detect errors as early as possible in the design flow. 

This thesis addresses the shadowed activities in Figure 2.1, 
i.e. verification, with emphasis on formal verification. 

2.2 IP Reuse 
By introducing reusable components, so called IP (intellectual 
property) blocks, several problems which would otherwise be 
absent, arise [Kea98], [Lo98]. On the other hand, using prede-
signed IP blocks is an efficient way for reducing design complex-
ity and time-to-market [Gir93]. 

Developing a reusable IP block takes approximately 2.5 times 
more effort compared to developing the same functionality in a 
classical design [Haa99]. Therefore, the designer must think 
carefully, if it is worth this effort or not. Will the same function-
ality be used often enough in the future or in other designs? 
Does there already exist a suitable block developed by a third 
party? However, once the block is developed, the design time for 
future products is decreased significantly. 

There are in principle two categories of actors in IP-based 
design: the IP provider and the IP user [Gaj00]. The following 
subsections describe problems, related to verification, faced by 
the two categories respectively.

2.2.1 IP PROVIDER

The task of the IP provider is to develop new IP blocks. Anyone 
who has performed this task is an IP provider. It is not necessary 
that this person is someone in an external company, it might as 
well be the colleague in the office next door. 

The first problem encountered by the IP provider is to define 
the exact functionality of the IP. As opposed to designing a spe-
cific system (without using IP), the IP provider must imagine 
16



BACKGROUND
every possible situation in which the IP block may be utilised, in 
order to maximise the number of users. At the same time, effi-
ciency, verifiability, testability etc. must be kept at a reasonable 
level [Gaj00]. In general, as a block is made more and more gen-
eral and includes more and more functionality, these parameters 
will suffer, as illustrated in Figure 2.2. At a certain point, if the 
IP is too general, it practically becomes useless.

The component must furthermore be verified thoroughly, con-
sidering all possible environments, conditions and situations in 
which the component might be used. The success of the IP block 
might critically depend on the effort put on verification. 

In order to facilitate for the IP user to reduce the verification 
productivity gap, information which speeds up the verification 
effort also needs to be provided together with the IP block. Some 
elements used for verification of the IP might also be useful 
when verifying the system. Such elements could, for instance, be 
monitors, stimuli and response vectors and scripts [And02b]. In 
the case of formal verification, such information could be formal 
descriptions of the component and temporal logic formulas of 
assertions and assumptions.

Quality
Verifiability
Testability
Characterisability

Generality
Figure 2.2: Impact of IP generality on various 

other parameters [Gaj00]
17



CHAPTER 2
2.2.2 IP USER

The IP user is the person who uses the IP blocks designed by the 
IP provider. The main task of the IP user is to choose the appro-
priate blocks and to integrate them. The components may be 
designed by different providers, in which case their interfaces 
might not exactly match. Therefore glue logic has to be added 
between the components to adapt their interfaces in a way that 
they are able to properly communicate with each other. The glue 
logic is sometimes also called wrapper [Spi03]. Ideally, the com-
ponents should be chosen in such a way that the size of the glue 
logic is minimised. This process of inserting glue logics for inter-
connecting components is called integration. 

Keeping the model small facilitates verification, both by simu-
lation and formal verification. Besides trying to find as compati-
ble components as possible in order to keep the glue logic small, 
it is also favourable to find small such components. The compo-
nents must provide the requested functionality, but contain as 
little extra functionality, that will not be used in the design, as 
possible. The extra functionality will only contribute to the 
already big verification complexity. This aspect should be con-
trasted with the goals of the IP provider, who would like to make 
the component as general as possible in order to maximise the 
number of potential users.

Component 1 Component 2
Glue Logic

Figure 2.3: Two components interconnected by a glue logic
18



BACKGROUND
2.3 Verification
The goal of verification is to find discrepancies between the 
designer’s intent and the implementation (possibly a model) of 
the design. In order to accomplish that, the designer’s intent 
must be documented in a written specification. Verification then 
compares the specification with the implementation of the 
design. Since there might be a discrepancy between the specifi-
cation and the designer’s intent, the result from verification does 
not necessarily reflect exactly what the designer might think. It 
is important that designers are aware of this fact. An illustra-
tion over this situation is shown in Figure 2.4 [Piz04]. 

The figure shows three circles representing design intent, 
specification and implementation respectively. In the ideal case, 
there should be a complete overlap of these circles. The design 
intent should be equal to the specification, which in turn should 
be equal to the final implementation. However, in practice this is 
rarely the case. There is always a discrepancy between the 
design intent and the specification. It is very difficult to specify 
exactly every aspect of the system, and to do it in such a way 
that the message is correctly conveyed to implementors. Fur-
thermore, the design intent only exists in the minds of the 
designers, or, even worse, in the minds of the customers or mar-
keting people. Several designers might have different concepts 
and understanding about the same system, a fact which might 

Design
Intent

Specification

Implementation
A

B

C

DE F

G

H

Figure 2.4: Verification Intent Overview [Piz04]
19



CHAPTER 2
influence the resulting specification. There will, consequently,
always (except for very trivial systems) be some parts of the 
intended system which are never specified and implemented 
(area A). Other unintended parts are specified but, luckily, not 
implemented (B), whereas yet other unintended and unspecified 
parts were implemented (C). These aspects can be furthermore 
combined, i.e. intended and specified behaviour does not end up 
in the implementation (E) or that unintended behaviour was 
specified and implemented (F). 

As mentioned previously, the final aim of verification is to 
ensure that area H is as big as possible, while minimising the 
other areas. It should be remembered that verification is a com-
parative technique. If the specification with which the imple-
mentation is compared has flaws, then so does the results of the 
verification. The results of verification techniques cannot have 
higher quality than that of the specification. 

There exist two types of verification techniques: formal and 
informal. Formal verification techniques search exhaustively, 
but intelligently, the state space of the designed system. This 
means that all possible computation paths will be checked. For-
mal verification is generally based on mathematical (logical) 
models, methods and theorems. Several techniques exist, such 
as language containment, model checking, equivalence check-
ing, symbolic simulation and theorem proving [Swa97]. This sec-
tion will give a quick overview of three of them: model checking, 
equivalence checking and theorem proving.

The informal verification techniques of interest in our context 
are based, in principle, on simulation. The main difference to 
formal verification is that informal techniques only search a lim-
ited part of the total state space. They can therefore not guaran-
tee correctness of the system, only falsify. On the other hand, 
such techniques do not suffer from the major disadvantages of 
formal techniques, e.g. state space explosion.
20



BACKGROUND
2.3.1 MODEL CHECKING

Model checking is perhaps the most common type of formal ver-
ification used in industry, due to its proven efficiency and rela-
tively simple use. 

In model checking, the specification is written as a set of tem-
poral logic formulas. In particular, Computational Tree Logic 
(CTL) is usually used [Cla86]. CTL is able to express properties 
in branching time, which makes it possible to reason about pos-
sibilities of events happening in different futures. The logic has 
also been augmented with time (Timed CTL [Alu90]) to allow 
definition of time bounds on when events must occur. Section 3.3
will present more details about these logics.

The design, on the other hand, is usually given by a transition 
system. The exact approach may vary between different model 
checking tools, but a common formalism, also including timing 
aspects, is timed automata [Alu94]. 

The model checking procedure traverses the state space by 
unfolding the transition system [Cla99]. Working in a bottom-up 
approach, it marks the states in which the inner-most subformu-
las in the specification are satisfied. Then, the states for which 
outer subformulas are satisfied are marked based on the sets of 
states obtained for the subformulas. In the end, a set of states 
where the whole formula is satisfied is obtained. If the initial 
state of the transition system is a member of this set, the design 
satisfies the requirements of the specification. On the other 
hand, if the initial state is not a member, the specification is not 
satisfied in the design. 

If a universally quantified formula was found to be unsatis-
fied, the model checker provides a counter-example containing a 
sequence of transitions leading to a state which contradicts the 
specification formula. In case an existentially quantified for-
mula is satisfied in the model, a witness showing a sequence of 
transitions leading to a state which confirms the validity of the 
21



CHAPTER 2
formula is given. A common name for counter-example and wit-
ness is diagnostic trace. 

The time complexity of model checking is linear in terms of 
the state space to be investigated. However, the state space gen-
erally grows exponentially with the size of the transition sys-
tem. This problem is usually referred to as the state space 
explosion problem. A major consequence of the state space explo-
sion problem is that many designs are difficult to formally verify 
in a reasonable amount of time.

As, basically, every reachable state in the state space is visited 
one by one by the classical model checking algorithm, it is not 
feasible to check very large systems with a reachable state space 
of above 106 states. In fact, for a long time, people did not believe 
that formal verification (and, in particular, model checking) had 
any practical future because of this problem. However, later on, 
more efficient data structures to represent sets of states have 
evolved to allow state spaces of over 1020 states to be investi-
gated [Bur90]. In particular, states are not visited or repre-
sented one by one, but states with certain common properties 
are processed symbolically and simultaneously as if they were 
one entity. The data structure for such efficient representation of 
state spaces is called Binary Decision Diagrams (BDD) [Bry86]. 
Model checking using BDDs is called symbolic model checking.

2.3.2 EQUIVALENCE CHECKING

Equivalence checking is typically used during the design refine-
ment process. When a new, refined, design is obtained, it is 
desired to check that it is equivalent with the old, less refined, 
version. The old, less refined, version can be said to serve as the 
specification. The method requires the input/output correspond-
ences of the two designs. In the context of digital system design, 
there exist two distinct types of equivalence checking, depending 
on the type of circuits to compare: combinational and sequential.
22



BACKGROUND
Combinational equivalence checking is relatively simple, 
checking that the two designs, given a certain input, produce the 
same output. This is usually accomplished by graph matching 
and functional comparison [Bra93].

Sequential equivalence checking is more difficult since we 
need to verify that given the same sequence of inputs, the 
designs produce the same sequence of outputs. A well-known 
method is to combine the two designs into one and traverse the 
product to ensure equivalence [Cou90]. 

2.3.3 THEOREM PROVING

Formal verification by theorem proving takes a different 
approach from both model and equivalence checking. The state 
space as such is not investigated, but a pure mathematical or 
logical approach is taken. Theorem provers try to prove that the 
specified properties are satisfied in the system using formal 
deduction techniques similar to those used in logic programming 
[Rus01]. The prover needs the following information as input: 
background knowledge, the environment in which the system 
operates, the system itself and the specification. Equation 2.1
expresses the task of theorem proving mathematically.

(2.1)

The main problem of theorem proving is its extremely high com-
putational complexity (sometimes even undecidable). Conse-
quently, human guidance is often needed, which is prone to error 
and often requires highly skilled personnel [Cyr94]. 

One attractive solution to this problem is to mix theorem prov-
ing and model checking. A simplified model, still preserving the 
property in question, is developed. Theorem proving is used to 
verify that the property really is preserved. The property is then 
verified with the simpler model using model checking. This 
method moreover allows diagnostic trace generation in applica-

background environment system    specification+ +
23



CHAPTER 2
ble situations. Work has been done to automate the property-
preserving simplification of the model [Gra97].

The advantage of theorem proving over other techniques is 
that it can deal with infinite state spaces and supports highly 
expressive, yet abstract, system models and properties.

2.3.4 SIMULATION

Simulation-based techniques operate with four entities: the 
model under verification (MUV), the stimulus generator, the 
assertion checker (or monitor) and coverage measurement. 
Figure 2.5 illustrates how these entities cooperate [Piz04]. 

The stimulus generator feeds the model under verification 
with input stimuli. It is important that the input stimuli are 
generated in such a way that as much as possible of the model is 
exercised. Therefore, the stimuli cannot be totally randomly 
generated. There must hence be a bias, for instance towards cor-
ner cases. 

The very same set of stimuli, which is given to the MUV, is 
also given to the assertion checker. The output of the MUV pro-
vides additional input to the assertion checker. The assertion 
checker compares the input and output sequences of the MUV in 
order to check for any inconsistencies between the specification 

Model under verification

Assertion Checker

Diagnostics

Input

O
u

tp
u

t

Figure 2.5: Simulation overview

Stimulus
Generator

Coverage Measurement
24



BACKGROUND
and the implementation. The result is then forwarded to the ver-
ification engineer. 

Coverage is a measure to indicate the completeness of the ver-
ification. 100% coverage indicates that all aspects supposed to 
be of interest are verified. An implication of this is that once 
such a coverage is obtained, there is no point in continuing the 
verification. 

In order to state something about the achieved coverage, a 
coverage metrics has to be defined. Two types of metrics can be 
defined: implementation specific and specification specific. 
Implementation specific metrics refer to structures in the MUV, 
such as the number of covered lines of code, paths, transitions 
etc. Specification specific metrics, on the other hand, refer to the 
assertions checked by the assertion checker, such as the number 
of covered antecedents of temporal logic implication formulas. It 
is greatly recommended to define a combined coverage metrics, 
where coverage from the two types are weighted against each 
other. 

The coverage measurement is surveying the whole process, 
investigating which parts of the MUV and/or the specification 
has been exercised by the generated stimuli, with respect to the 
defined coverage metrics. As hinted previously, the stimulus 
generation should be biased to maximise coverage. From this 
point of view, one can say that the coverage metrics actually 
guides the whole simulation process. The results of the simula-
tion process are satisfactory only to the degree indicated by the 
obtained coverage.

2.4 Verification of IP-based Designs
This section will describe a few techniques where the component 
based structure can be utilised in order to perform verification 
more efficiently. The components are assumed to be preverified 
25



CHAPTER 2
by their respective designers and thus to be correct. What fur-
thermore has to be verified is the interconnection of components 
and interaction between components.

2.4.1 ASSUME-GUARANTEE REASONING

Assume-guarantee reasoning [Cla99] is not a methodology, in 
the sense described in earlier sections in this chapter. It is 
rather a method of combining the results from the verification of 
individual components to draw a conclusion about the whole sys-
tem. This has the advantage of avoiding the state explosion 
problem by not having to actually compose the components, but 
each component is verified separately.

The correct functionality of a component, , does not only 
depend on the component itself, but also on its input environ-
ment. This is expressed as , where  is what 
expects from the environment, and  guarantees that  holds. 
A typical proof shows that both  and  
hold and concludes that  is true, where  is 
component composition.  and  are two different but inter-
acting components. The result of a component composition 

 is a new component behaving in the same way as  and 
 together. Equation 2.2 expresses this statement as an infer-

ence rule.

(2.2)

Equation 2.3 shows another common inference rule which is 
very powerful in the context of assume-guarantee reasoning.

(2.3)

M

g〈 〉 M f〈 〉 g M
M f
g〈 〉 M ′ f〈 〉 True〈 〉 M g〈 〉

True〈 〉 M M ′ f〈 〉|| ||
M M ′

M M ′|| M
M ′

True〈 〉 M g〈 〉
g〈 〉 M ′ f〈 〉  

True〈 〉 M M ′ f〈 〉||

g〈 〉 M f〈 〉
f〈 〉 M ′ g〈 〉  

M M ′    f g∧||
26



BACKGROUND
It expresses that if  and  are each other’s specification, i.e. 
fulfils the assumptions of the other component, then their com-
position will satisfy the whole specification. This type of reason-
ing is often referred to as circular assume-guarantee reasoning 
[Mis81], [Loc91], [Hen02].

The environment in assume-guarantee reasoning is provided 
in terms of logic formulas. This is probably acceptable in the 
cases when verifying the functionality of a single component. 
However, when verifying the interaction of several components 
through a glue logic, interconnecting the components, several 
drawbacks arise. The environment of a given component, in this 
case, consists of models of the glue logic and of other compo-
nents, expressed in the particular design representation used. 
Therefore, assumption formulas have to be extracted from these 
models with respect to the property to be verified. That is not 
always easy, especially considering that the environment compo-
nents, in turn, depend on yet other components. In our 
approach, on the other hand, we directly involve the environ-
ment components into the verification process, though in an 
adapted form where the dependency with other components is 
abstracted away. The adapted forms of the components may be 
obtained automatically. 

2.4.2 MODELLING THE ENVIRONMENT IN THE PROPERTY 
FORMULAS

Another approach, different from assume-guarantee reasoning, 
is to include the environment of the model to verify in the prop-
erty formula [Cha02]. The advantage with this approach is that 
the designer can express the correctness property and the envi-
ronment under which it is expected to hold in a unified way. 

Assume that the possible input to our system is . 
Equation 2.4 expresses a property stating that always within 4 
time units a state where  is satisfied is reached. This formula 

M M ′

i1 i2,{ }

f

27



CHAPTER 2
should be checked assuming the environment described by 
, i.e. both input signals are present. 

(2.4)

The authors of [Cha02] call this logic Open-RTCTL and they 
have also developed a model checking algorithm for it. 

However, as with assume-guarantee reasoning, the environ-
ment (input) must be given as a logic formula. The problems are 
therefore similar. In addition, this technique targets in particu-
lar verification of communication protocols. 

2.5 Remarks
In this chapter, issues concerning IP reuse from a verification 
point of view have been discussed, as well as several verification 
techniques. However, these techniques are developed with 
respect to component verification without taking integration 
into account. Moreover, there does not exist any work that pro-
vides a holistic approach to verifying component-based systems. 

The rest of this thesis will discuss issues related to applying 
these techniques (with emphasis on model checking and, to a 
lesser extent, simulation) to IP based designs. A roadmap guid-
ing the designer through the verification process, facilitating 
decision-making, will also be provided. 

The thesis will, in addition, touch upon issues, related to com-
ponent verification, which add to its practicality. This includes a 
translation procedure from SystemC to the Petri-Net based 
design representation used, and a simulation approach 
enhanced with model checking to make it more feasible to verify 
large components.

The final implementation of embedded systems usually con-
sists of both hardware and software parts. The proposed model-
ling approach is appropriate for representing both the 
functionality which is going to be implemented in hardware as 

i1 i2∧

AF 4≤
i1 i2∧ f
28



BACKGROUND
well as the functionality which is going to be implemented in 
software. At the beginning of the design process (Figure 2.1) 
where the actual mapping has not yet been decided, such a dis-
tinction cannot be made. At later design steps (in particular 
mapping), certain parts of the functionality (model) are decided 
to be implemented in hardware and software respectively. One 
consequence of such a decision is, for example, that actual esti-
mated execution time intervals can be associated to certain ele-
ments of the model and, consequently, timing related properties 
can be verified.
29



CHAPTER 2
30



PRELIMINARIES
Chapter 3 
Preliminaries

HIS CHAPTER PRESENTS the necessary background 
concepts in order to fully understand the rest of this the-
sis. First, important aspects of SystemC will be pre-

sented, followed by an introduction of the design representation 
which will be used throughout the thesis. Finally, a brief intro-
duction to Computation Tree Logic (CTL) follows. 

3.1 SystemC
Designing complex embedded systems stresses the need of an 
intuitive and easy-to-use design language with effective support 
for component-based design. One such language, gaining popu-
larity, is SystemC [Bai03]. 

SystemC is, in fact, a C++ class library containing class defini-
tions corresponding to structures (buses, processes, signals, 
channels, 4-valued logic, etc.) used in embedded system and dig-
ital system design. A SystemC program is, in principle, a C++ 
program. As such, ordinary C++ development tools and compil-
ers can be used. Both hardware and software can therefore be 

T

31



CHAPTER 3
tightly developed using the very same language. Codevelopment 
and coverification of these two parts are therefore relatively 
straightforward tasks. Executing a SystemC program corre-
sponds to simulating the model.

The following SystemC concepts are important in the context 
of this thesis:

 • Processes
 • Scheduler
 • Channels and signals
 • Events
 • wait statements
 • Transaction-level modelling

Each concept will be elaborated in the following subsections.

3.1.1 PROCESSES

SystemC models consist of a collection of processes. Each proc-
ess belongs to one of three types: METHOD, THREAD and 
CTHREAD.

Processes of type METHOD are used to model combinational 
circuits. They are typically set to execute once each time at least 
one of their input values changes. METHOD processes always 
execute in zero time.

THREAD processes behave as an ordinary process, as can be 
found in mainstream programming languages. This is the most 
general process type. CTHREAD (clocked threads) is similar to 
THREADs, except that they are activated periodically according 
to a clock. 

Processes of both type METHOD and CTHREAD can be mod-
elled as processes of type THREAD without loss of generality. 
Therefore, in the rest of this chapter, only processes of type 
THREAD will be considered.
32



PRELIMINARIES
3.1.2 SCHEDULER

The SystemC scheduler orchestrates the execution of the model. 
It synchronises the different entities in the model so that they 
interact according to the correct semantics. 

According to the SystemC semantics, only one process may 
execute at a time. It is the task of the scheduler to decide which 
process, in a set of ready processes, to execute at a certain time 
moment. When a process has received control, it retains it until 
it executes a wait statement. Processes, thus, retain control until 
they explicitly give it up (yield). 

The scheduler furthermore divides the execution into delta 
cycles. A delta cycle is finished when there are no more processes 
ready to execute. Between two delta cycles, new processes may 
become ready and execution can progress. 

In Section 5.4.1, a more detailed description of the SystemC 
execution mechanism is given.

3.1.3 CHANNELS AND SIGNALS

Processes communicate through channels. A channel is an object 
which implements an arbitrarily complex communication proto-
col. Normally, a channel has at least one write method and one 
read method. Blocking calls are realised by wait statements 
inside the methods of the channels. 

Signals are a special type of channel. When a new value is 
written to a signal, that value is not visible to any reader until 
the next delta cycle. 

Processes can register themselves to signal value changes. As 
a consequence, when the value of a signal changes, the regis-
tered processes are declared ready in the next delta cycle.
33



CHAPTER 3
3.1.4 EVENTS

Events are a mechanism for one process to notify one or several 
other processes that something has happened which other proc-
esses are interested in. There are two ways in which processes 
can listen, or subscribe, to an event: staticly or dynamically. 

Processes listening staticly to an event must declare this in 
conjunction with the creation of the process by including the 
event in a sensitivity list. Such processes will always be notified 
upon the particular event. 

In addition to static subscription to events, processes can tem-
porarily listen to events dynamically. This is useful when an 
event only casually has significance to a process. Dynamic lis-
tening is performed using wait statements.

When a process is notified, the scheduler adds that process to 
its pool of ready processes. The scheduler will then eventually 
give control to that process. 

Signals actually use events to notify other processes when 
their values have changed. Consequently, registering processes 
to signals comes down to subscribing them to the event con-
nected to the signal.

3.1.5 wait STATEMENTS

wait statements suspend the calling process and give control 
back to the scheduler which chooses another ready process for 
execution. The wait statements come in a few different variants. 
Their difference lies in the way the process should be reactivated 
after suspension. The following lists the most important vari-
ants:

 • Time: 
The process is declared ready again when the specified 
amount of simulated time has elapsed.

 • Event: 
The process is declared ready again when the specified event 
34



PRELIMINARIES
has occurred (see dynamic subscription to events in Section 
3.1.4).

 • Event with time-out: 
The process is declared ready again when the specified event 
has occurred or the specified simulated time has elapsed, 
whichever comes first.

Using wait statements with timing is the only way to specify 
time, or make time advance. All other statements are considered 
to be instantaneous.

3.1.6 TRANSACTION-LEVEL MODELLING

At early stages in the design process, designers wish to focus on 
the functionality rather than low-level communication details. 
For this purpose, transaction-level modelling (TLM) [Ros05] has 
been developed. Using TLM, the designer can concentrate on 
what to transmit, rather than how to transmit. 

In TLM, all messages are encapsulated in transactions and 
sent by one process to another through a channel. If the proper-
ties of a selected channel were found unsatisfactory during sim-
ulation, this channel can easily and straight-forwardly be 
changed, so that it finally satisfies the requirements. This is due 
to imposed standardised interfaces on channels.

TLM has shown to be an efficient approach to refining designs 
in the development process. 

Although SystemC can be used for modelling at various levels 
of abstraction, it is particularly suitable for TLM. This level of 
abstraction is of main interest throughout this thesis.

3.2 The Design Representation: PRES+
In this work, we use a Petri-net based model of computation 
called Petri-net based Representation for Embedded Systems
(PRES+) [Cor00]. 
35



CHAPTER 3
This design representation was chosen because of its expres-
siveness and intuitivity. It is capable of handling concurrency as 
well as timing aspects. It is also suitable for describing IP blocks, 
since they can be well delimited in space and be assigned a well-
defined interface. The models can be provided at any desired 
level of granularity. Moreover, it is possible to verify designs 
expressed with this formalism using existing model checking 
tools [Cor00]. 

3.2.1 STANDARD PRES+

Definition 3.1: PRES+. A PRES+ model is a 5-tuple 
 where  

 is a finite non-empty set of places, 
 is a finite non-empty set of transitions, 

 is a finite non-empty set of input arcs which define 
the flow relation from places to transitions, 

 is a finite non-empty set of output arcs which 
define the flow relation from transitions to places, and  

 is the initial marking of the net (see Item 2 in the list 
below).

We denote the set of places of a PRES+ model  as , and 
the set of transitions as . We furthermore define 

.
The following notions of classical Petri Nets and extensions 

typical to PRES+ are the most important in the context of this 
thesis (a PRES+ example is illustrated in Figure 3.1):

1. A token  has values and timestamps,  where  is 
the value and  is the timestamp. In Figure 3.1, the token in 
place  has the value 4 and the timestamp 0. When the 
timestamp is of no significance in a certain context, it will of-
ten be omitted from the figures.

Γ P T I O M0, , , ,〈 〉=
P
T
I P T×⊆

O T P×⊆

M 0

Γ P Γ( )
T Γ( )

V Γ( ) P Γ( ) T Γ( )∪=

k k v r,〈 〉= v
r

p1
36



PRELIMINARIES
2. A marking  is an assignment of tokens to places of the net. 
The marking of a place  is denoted . A place  is 
said to be marked iff .

3. A transition t has a function (ft) and a time delay interval 
( ) associated to it. When a transition fires, the value 
of the new token is computed by the function, using the val-
ues of the tokens which enabled the transition as arguments. 
The timestamp of the new tokens is the maximum timestamp 
of the enabling tokens increased by an arbitrary value from 
the time delay interval. The transition must fire at a time be-
fore the one indicated by the upper bound of its time delay 
interval ( ), but not earlier than what is indicated by the 
lower bound ( ). The time is counted from the moment the 
transition became enabled. In Figure 3.1, the functions are 
marked on the outgoing edges from the transitions and the 
time interval is indicated in connection with each transition. 

4. The transitions may have guards (gt). A transition can only 
be enabled if the value of its guard is true (see transitions  
and ).

5. The preset  (postset ) of a transition  is the set of all 
places from which there are arcs to (from) transition . Simi-
lar definitions can be formulated for the preset (postset) of 

M
p P∈ M p( ) p

M p( ) ∅≠

Figure 3.1: A simple PRES+ net

x
x

x

x

x

x

y

xy

x
x

 2..5[ ]

 2..5[ ]
 3..4[ ]

 3..4[ ]

 3..7[ ]
 x 5+

 x 5–

 x 2 y>[ ]

 x 4≤[ ]

p1

p2

p3

p4

p5

p6

p7

t1
t2

t3

t4

t5

4 0,〈 〉

dt
-..dt

+[ ]

dt
+

dt
-

t4
t5

°t t° t
t

37



CHAPTER 3
places. In Figure 3.1, , , 
 and .

6. A transition  is enabled (may fire) iff there is at least one to-
ken in each input place of  and the guard of  is satisfied.

3.2.2 DYNAMIC BEHAVIOUR

Figure 3.2 illustrates the dynamic behaviour of the example 
given in Figure 3.1. In the situation of Figure 3.1, there is an ini-
tial token with value 4 and timestamp 0 in place . Moreover, 
this token enables transition , which can fire at any time 
between 2 and 5. The associated function of  is the identity 
function. Assuming that the transition fires at time 3, the situa-
tion in Figure 3.2(a) is reached, where two identical tokens with 
value 4 and timestamp 3 are situated in places  and  
respectively. Both transitions  and  are now enabled.  can 
fire after 3 but before 7 time units after it became enabled and 

 after between 2 and 5 time units. This means that we have 
two simultaneous flows of events. If  fires after 4 time units 
and  after 5 time units, the situation in Figure 3.2(b) is 
obtained, where the new token in  has value  and 
timestamp  and the token in  has value  
and timestamp . In this case, both  and  are ena-
bled since their guards are satisfied. Figure 3.2(c) shows the sit-
uation after  has fired after 3 time units. The resulting token 
in  will have value  and timestamp . 

3.2.3 FORCED SAFE PRES+

In the scope of this thesis, a modification of the semantics of 
PRES+ is made in order to reduce complexity and to guarantee 
verifiability. The modification lies in the enabling rule of transi-
tions (item 6 in the list defining standard PRES+, Section 3.2.1).

 • A transition is enabled iff there is one token in each input 
place, there is no token in any of its output places and its 

°t4 p4 p5,{ }= t4° p6{ }=
° p5 t3{ }= p5° t4 t5,{ }=

t
t t

p1
t1

t1

p2 p3
t2 t3 t2

t3
t2

t3
p4 4 5+ 9=

3 4+ 7= p5 4 5– 1–=
3 5+ 8= t4 t5

t4
p6 9– max 7 8,( ) 3+ 11=
38



PRELIMINARIES
x
x

x

x

x

x

y

xy

x
x

 2..5[ ]

 2..5[ ]
 3..4[ ]

 3..4[ ]

 3..7[ ]
 x 5+

 x 5–

 x 2 y>[ ]

 x 4≤[ ]

p1

p2

p3

p4

p5

p6

p7

t1
t2

t3

t4

t5

4 3,〈 〉

4 3,〈 〉

x
x

x

x

x

x

y

xy

x
x

 2..5[ ]

 2..5[ ]
 3..4[ ]

 3..4[ ]

 3..7[ ]
 x 5+

 x 5–

 x 2 y>[ ]

 x 4≤[ ]

p1

p2

p3

p4

p5

p6

p7

t1
t2

t3

t4

t5

9 7,〈 〉

1– 8,〈 〉

Figure 3.2: Examples of the dynamic behaviour of PRES+

(a)

(b)

(c)

x
x

x

x

x

x

y

xy

x
x

 2..5[ ]

 2..5[ ]
 3..4[ ]

 3..4[ ]

 3..7[ ]
 x 5+

 x 5–

 x 2 y>[ ]

 x 4≤[ ]

p1

p2

p3

p4

p5

p6

p7

t1
t2

t3

t4

t5

9– 11,〈 〉
39



CHAPTER 3
guard is satisfied.

The modification guarantees safeness of the Petri-net. A Petri-
net is safe if there is at most one token in each place for any fir-
ing sequence of the net. With this rule, there cannot possibly be 
two tokens in one place, since each transition is disabled if there 
is a token in an output place.

Forced safe PRES+ nets can be translated into standard 
PRES+ using the following translation rules, also illustrated in 
Figure 3.3.

1. Each place  in the net is duplicated. Label the duplication 
. If  has an initial token, then  has not and vice versa.

2. For each input arc , where  and , an output 
arc  is added.

3. For each output arc , where  and , an input 
arc  is added.

4. An exception to 2 and 3 is if  is both an input place and an 
output place of , , in which case no arc is add-
ed (see arcs  and  in the figure.)

In the rest of the thesis, it will be assumed that forced safe nets 
are used.

3.2.4 COMPONENTS IN PRES+

We will now define a few concepts related to the component-
based nature of our methodology, in the context of the PRES+ 
notation. 

Definition 3.2: Union. The union of two PRES+ models 
 and  

is defined as 

Definition 3.3: Component. A component is a subgraph of 
the graph of the whole system  such that:

p
p ′ p p ′

p t,〈 〉 p P∈ t T∈
t p ′,〈 〉

t p,〈 〉 p P∈ t T∈
p ′ t,〈 〉

p
t p °t∈ p t°∈∧

p3 t3,〈 〉 t3 p3,〈 〉

Γ1 P1 T1 I1 O1 M01, , , ,( )= Γ2 P2 T2 I2 O2 M02, , , ,( )=

Γ1 Γ2∪ P1 P2∪ T1 T2∪ I1 I2∪ O1 O2∪ M01 M02∪, , , ,〈 〉=

Γ

40



PRELIMINARIES
1. Two components ,  may only overlap 
with their ports (Definition 3.4), , 
where 

p1

p2 p3

p4

p5

t1

t2

t3

t4

p1

p2 p3

p4

p5

t1

t2
t3

t4

p1’

p2’

p4’

p5’

p3’

(a) Forced safe PRES+ (b) Equivalent standard PRES+

Figure 3.3: Example of a PRES+ net with forced safe 
semantics and its equivalent in standard PRES+

C1 C2, Γ⊆ C1 C2≠
V C1( ) V C2( )∩ Pcon=

Pcon p P Γ( ) p° T C2( )⊆ ° p T C1( )⊆∧( )
p° T C1( )⊆ ° p T C2( )⊆∧( )

∨∈{
}

=

41



CHAPTER 3
2. The pre- and postsets (  and ) of all transitions  of a 
component , must be entirely contained within the com-
ponent, .

Definition 3.4: Port. A place  is an out-port of component 
 if  and . A place  

is an in-port of  if  and 
.  is a port of  if it is either 

an in-port or an out-port of .

Assuming that the net in Figure 3.1 is a component ,  is an 
in-port and  and  are out-ports.

It is assumed that a component is interacting with other com-
ponents placing and removing tokens in/from the in-ports and 
out-ports respectively. Hence, tokens can appear in in-ports at 
any time with any value. Dually, tokens can disappear from out-
ports at any time. 

Definition 3.5: Interface. An interface of component  is a 
set of ports  where . 

Returning to the example in Figure 3.1, the following sets are all 
examples of interfaces: , , , , 

. The following sets are, on the other hand, not
interfaces with respect to the example: , , 

.
A component will often be drawn as a box surrounded by its 

ports, as illustrated in Figure 3.4(a), in the examples throughout 
the thesis. Ports will be drawn with bold circles. Modelled in this 
way, a component can be replaced with its PRES+ model, as indi-
cated by Figure 3.4(b), without change in semantics. 

°t t° t
C

t T C( )∈ ° t t°, P C( )⊆⇒

p
C p P C( )∈ p° T C( )∩ ∅=( ) °p T C( )⊆( )∧ p

C p P C( )∈
°p T C( )∩ ∅=( ) p° T C( )⊆( )∧ p C

C

C p1
p6 p7

C
I p1 p2 … pn, , ,{ }= pi P C( )∈

p1{ } p6{ } p1 p6,{ } p6 p7,{ }
p1 p6 p7, ,{ }

p2{ } p2 p3,{ }
p1 p2 p6, ,{ }
42



PRELIMINARIES
3.3 Computation Tree Logic
In model checking, the specification of the system (i.e. the set of 
properties to be verified) is written as a set of temporal logic for-
mulas. Such formulas allow us to express a behaviour over time. 
For model checking, Computation Tree Logic (CTL) is particu-
larly used [Cla86]. CTL is able to express properties in branch-
ing time, which makes it possible to reason about the possibility, 
and not only the necessity, of a state occurring in a certain timed 
manner.

CTL formulas consist of atomic propositions, boolean connec-
tives and temporal operators. The temporal operators are G (glo-
bally), F (future), X (next step), U (until) and R (releases). These 
operators must always be preceded by a path quantifier A (all) 
or E (exists). 

The universal path quantifier A states that the subsequent 
property holds in all possible futures (computation paths), 
whereas E states that there exists at least one future (computa-
tion path) in which the subsequent property holds. The following 
paragraphs will give a short explanation of the semantics of the 
temporal operators, also illustrated in Figure 3.5. 

Figure 3.4: Component substitution

(a) (b)
43



CHAPTER 3
The operator G (globally) states that the particular property 
will always be true in every state along a certain future, i.e. a 
certain branch of the computation tree (including the initial 
state). F (future) states that the particular property will be true 
some time in the future (including the initial state), whereas X
(next) only looks one step ahead in the future (not including the 
initial state). 

As opposed to the previously described operators, U and R are 
binary.  (  until ), for any path quantifier Q, means 

AG pp

p p

p p p pp

EG pp

p

p

AF p

p

p p

EF p

p

A pUq[ ]p

q p

q q

A qR p[ ]p

p q

q qp

Figure 3.5: Illustration of different CTL formulas

Q pUq[ ] p q
44



PRELIMINARIES
that  must be true at some time in the future. Until the 
moment when  is true,  must be true in every state up until, 
but not necessarily including, . It is not specified how many 
steps away the future when  is true is, but it must be a finite 
number of steps. Hence  is also true. 

 (  releases ) has a similar meaning as . In 
fact, the two operators are duals. The difference is that it is not 
necessary that  will be true in the future. In that case,  must 
be true globally. However, if  is true at a certain point in the 
future, then  needs only to be true in every state up until that 
point. Note that the order of the arguments is reversed.

Formulas can be nested to express more complicated proper-
ties. For example,  means that once  is true, 
then it must be possible that  is true in the future. 

 means that once  is true, it remains true 
until  becomes true and  states that  must be a 
recurring event, i.e. always be true in the future from any state 
no matter what happens.

The atomic propositions must be mapped to a (set of) marking 
in the intended PRES+ model. Every place in the Petri-net has a 
label. A CTL formula consisting of an atomic proposition which 
is identical to the label of a place, e.g. , is true if there exists a 
token in that place, . Due to the safeness assumption, there 
can be maximum one token in a place. A negated label, , is 
true if there does not exist any token in the corresponding place, 

.
In order to verify token values, place labels can be used 

together with a relation, e.g. , where  is a relation and  
is a value. Such a proposition is true if there is a token in the 
place, , and its token value is in the relation  with . Hence, 

. In Figure 3.2(b), both  and  are true. 
The negation of an atomic proposition with relation, , 

states that there is no token in that place, , with a value 
related in the particular way. Consequently, 

, where  is the complementary relation of 

q
q p

q
q

QF q
Q qR p[ ] q p Q pUq[ ]

q p
q

p

AG p EF q→( ) p
q

AG p A pUq[ ]→( ) p
q AGAF p p

p
p

p¬

p

pℜ v ℜ v

p ℜ v
pℜ v p⇒ p4 9= p5 0≤

pℜ v¬
p

pℜ v¬ p¬ pℜ v∨⇔ ℜ
45



CHAPTER 3
. Note that , since  means that there must 
be a token in  with a token value in the relation  with respect 
to . 

 and  are both 
examples of CTL formulas referring to the example net in 
Figure 3.1.

It is also useful to define a subset of CTL which has particular 
properties (discussed in later chapters), ACTL. ACTL formulas 
do not have any existential path quantifiers and negation only 
occurs in front of atomic propositions. Hence,  and 

 are ACTL formulas, whereas  and  are 
not.

As mentioned previously, CTL can only express relative time, 
such as “  must be true some time in the future”. In many appli-
cations, however, it is desired to set a time limit within which a 
certain property must become true. That would allow to express 
properties like “  must be true in the future within at least  
time units.” This time limit is indicated by a subscript on the 
temporal operators. , where  intuitively 
indicates the relationship between the time of the current state 
and the time point  when  must be true. For instance,  
means that  must always be true within (or equal to) 5 time 
units. The logic allowing such time relations is call Timed CTL, 
or TCTL [Alu90]. ACTL augmented with time is called TACTL. 

ℜ pℜ v¬ pℜ v⇔ pℜ v
p ℜ

v
AG p1 AF p6 p7∨( )→( ) AG p1 p1 10≤→( )

AGAF p
AF p¬ AGEF p AF p¬

p

p x

AF p x∼           >,≥,=,≤,<{ }∈∼

x p AF p 5≤
p

46



VERIFICATION METHODOLOGY OVERVIEW
Chapter 4
Verification Methodology 

Overview

HIS CHAPTER PRESENTS an overview of the overall 
verification methodology with the purpose of integrating 
the research described in the different chapters of this 

thesis and put them into a context. 
As mentioned in Chapter 1, the methodology is divided into 

two parts: Component verification and Integration verification. 
Figure 4.1 illustrates the relationship of the two parts. The 
shadowed boxes represent tasks discussed in this thesis. 

The component providers first design and implement their 
components. Having a complete model of the component, it 
needs to be verified. Figure 4.2 provides an illustration on how 
components can be verified, in the scope of this thesis. 

The component model is assumed to be expressed either in 
SystemC, or in PRES+. SystemC models have to be translated 
into a formal representation before it is possible to formally ver-
ify. We perform such a translation from SystemC to PRES+. In 
the remaining part of the methodology, only PRES+ models are 
discussed. 

T

47



CHAPTER 4
The verification can be performed either using model checking 
or using a mixed simulation/model checking technique. Both 
methods verify a model with respect to a set of temporal logic 
properties. For components that are not too large, model check-
ing is the best choice since the results will be guaranteed. How-
ever, for larger components, a simulation based technique has to 
be used, since model checking of a complex system will take a lot 
of time. Both the SystemC to PRES+ translation as well as the 
mixed simulation and model checking technique are presented 
in Part II, Chapter 5 and Chapter 6 respectively. Chapter 6 also 
discusses briefly model checking of PRES+ models. 

After selecting a proper set of components for the design at 
hand, the designer has to connect them to each other in order to 
obtain a functional system. As illustrated in Figure 4.3, glue log-

Verify each component

Add glue logics

Verify each interface

between components

Part II:
Component verification

Part III:
Integration verification

individually

Figure 4.1: Relationship between component and
integration verification

Build appropriate components
IP Provider tasks

IP User tasks

individually
48



VERIFICATION METHODOLOGY OVERVIEW
ics are added between the components in order to interconnect 
them and adapt their interfaces so that they become compatible 
to each other. 

The components and the glue logics together form a complete 
system. Since the components are now already verified, it is safe 
to assume that they are correct. What has not been verified is 
the added glue logic and the interaction of the components via 
their interfaces. Therefore, each component interface has to go 
through the verification process described in Part III, where it is 
verified using a representation of its environment. This verifica-
tion process includes methods for choosing and deriving a proper 
environment consisting of the glue logic and a representation of 
the components connected to the glue logic. The term interface 

Component

SystemC

PRES+ translate

described in

Model Checking Simulation +
Model Checking

Figure 4.2: Component verification overview

Verification

described in

Temporal Logic
Properties
49



CHAPTER 4
environment will be used to denote such an environment related 
to an interface, and the term stub will denote the representation 
of a component in an interface environment.

A glue logic is an unverified part of the model, connecting one 
or more preverified components. The complexity of a glue logic 
may vary from a single wire to an arbitrarily complex part of the 

Comp. 1 Comp. 2 Comp. n

System

Integrate
(Add glue logics)

For each interface

Figure 4.3: Integration verification overview

Model Checking Simulation +
Model Checking

Verification

Derive a proper
interface environment
50



VERIFICATION METHODOLOGY OVERVIEW
Comp. 1 Comp. 2

(b) A simple glue logic connecting two components

Comp. 1

(a) A simple glue logic connecting two ports of one component

Comp. 1 Comp. 2

(c) One or two simple glue logics connecting two components

Comp. 2

Comp. 3

Comp. 1

(d) A simple glue logic connecting three components

Comp. 2

Comp. 3

(e) One or two simple glue logics connecting three components

Figure 4.4: Several examples of glue logics constellations

Comp. 1
51



CHAPTER 4
Comp. 1 Comp. 2

(a) One glue logic connecting two components

Comp. 2

Comp. 3

(c) One glue logic connecting three components

Comp. 1

Glue Logic

Comp. 1 Comp. 2

(b) Two glue logics connecting two components

Glue Logic

Glue Logic

Glue Logic

Comp. 2

Comp. 3

(d) Two glue logics connecting three components

Comp. 1

Glue Logic

Glue Logic

Figure 4.5: Several ways how to view the glue logics illus-
trated in Figure 4.4 (c) and (e) respectively
52



VERIFICATION METHODOLOGY OVERVIEW
design. Figure 4.4 illustrates several examples of how glue log-
ics can be used to connect one or more components. The glue log-
ics in these figures only consist of one or two transitions, but the 
examples may straight-forwardly be generalised to arbitrarily 
complex. 

As shown in Figure 4.4(a), a glue logic can be used to intercon-
nect one port (interface) of a component with another port (inter-
face) of the same component. 

Figure 4.4(b) presents the common scenario where a glue logic 
interconnects two components. Figure 4.4(c) also interconnects 
two components. However, that glue logic consists of two dis-
junct parts. This means that the glue logic can either be 
regarded as being one glue logic (as clarified by Figure 4.5(a)), or 
as two parallel glue logics (as in Figure 4.5(b)). How to view the 
design in a particular situation is the designer’s decision. Often, 
design and verification parameters, such as the property to be 
verified, influence the designer in the decision. Assume that the 
ports of Component 1 in Figure 4.4(c) are labelled p and q. If 
there is an interface property like  (if there is a 
token in p, then in the future there must also arrive a token in 
q), which involves both p and q, this suggests that the glue logic 
should be treated as one (Figure 4.5(a)). However, from the point 
of view of properties like  (the values of tokens 
in q must be even), the glue logic can be considered to be either 
one or two (Figure 4.5(a) or Figure 4.5(b)). 

Figure 4.4(d) and Figure 4.4(e) show two cases where glue 
logic interconnects three components. The glue logic in 
Figure 4.4(d) can only correspond to the situation in 
Figure 4.5(c), since it cannot be divided into disjunct parts. The 
glue logic in Figure 4.4(e) consists, on the other hand, of two dis-
junct parts. Similar to the situation in Figure 4.4(c), depending 
on the designer’s intent these can be regarded as one glue logic 
interconnecting three components, or two separate glue logics 
which interconnect two components each. These scenarios are 
illustrated in Figure 4.5(c) and Figure 4.5(d) respectively. 

AG p AFq→( )

AG q even q( )→( )
53



CHAPTER 4
Figure 4.6 illustrates the verification procedure of Figure 4.3. In 
order to verify the interfaces, it is needed to integrate the glue 
logic connected to the interface with stubs of all components con-
nected to that glue logic. These stubs capture the characteristics 
of the outputs produced by the components as a result of the 
given input. 

Preverified components have associated to their interfaces a 
set of (T)CTL formulas, expressing requirements which its envi-
ronment has to satisfy in order to guarantee correct functional-

S
tu

b

S
tu

b

Glue

Logic

Interface 1
Interface 2

(T)CTL Formulas
(T)CTL Formulas

Verification
Tool

(T)CTL Formulas (T)CTL Formulas
Interface 1 Interface 2

Satisfied/Unsatisfied

Figure 4.6: Overview of the proposed methodology
54



VERIFICATION METHODOLOGY OVERVIEW
ity of the component. The model composed of one or more stubs 
and the glue logic (the interface environment) is then passed to 
the verification tool (model checker or simulator) together with 
the (T)CTL formulas associated to the involved interfaces of the 
components. The verification tool then answers whether or not 
the given properties are satisfied.

Part III will present the integration verification methodology 
in detail, including techniques to choose and automatically gen-
erate proper stubs for a particular verification. 
55



CHAPTER 4
56



P
ar

t 
II
PART  II
Component 
Verification





PRES+ REPRESENTATION OF SYSTEMC MODELS
Chapter 5
PRES+ Representation of 

SystemC Models

YSTEMC HAS GAINED popularity in recent years as a 
design language for embedded and digital systems. 
Using SystemC, developers can easily and quickly create 

a working model of the system at a functional level. More details 
can then gradually be added in order to refine the model until it 
becomes cycle-accurate. Each level of refinement can be simu-
lated. 

The big advantage of SystemC over other hardware descrip-
tion languages (HDL’s) is its close relationship with C++. Actu-
ally, SystemC is a C++ library and can be used with any C++ 
compiler or C++ development environment. This allows design-
ers to use the same language for all phases in the design, from 
the initial sketch to the actual implementation of both the soft-
ware and hardware in the final product. In addition, SystemC 
offers great ability to reuse existing components thanks to its 
object oriented nature. 

With SystemC, designers normally use simulation to trap 
design errors. Despite the efficient implementation of the simu-

S

59



CHAPTER 5
lators, it is not always feasible to find and cover all situations 
and corner cases necessary to trap all errors. This is not accept-
able, particularly in critical parts of a design. Therefore, there is 
a need to resort to formal methods. In order to use formal meth-
ods, the model needs to be translated into a formal design repre-
sentation, which in the context of this thesis is PRES+. 
Translating the model into PRES+ furthermore enables all 
other verification techniques presented in the thesis, so that 
they can be applied also to SystemC designs.

5.1 Related Work
Several attempts, though very few, have been made to capture 
the formal semantics of SystemC in a representation suitable for 
formal verification by model checking. Kroening and Sharygina 
[Kro05] translate SystemC models into labelled Kripke struc-
tures (LKS). However, their approach does not handle time. Nor 
does it handle signals, since their scheduler lacks the notions of 
delta cycles and signal updates. Their work is furthermore 
focused on an abstraction-refinement approach based on auto-
matic hardware/software partitioning. 

Drechsler and Große [Dre02], [Gro03], [Gro05] capture gate-
level SystemC specifications in netlists and RTL specifications 
are transformed into finite state machines. Their approach is, 
however, quite restricted and limited, in the sense that it can 
only handle specifications at these two levels. As a consequence, 
they can, in particular, not capture models using SystemC chan-
nels, necessary for transaction-level modelling (TLM). Nor can 
they handle continuous time, rather than clock cycles. 

A complementary work has been performed by Habibi and 
Tahar [Hab05]. Given a UML description of the system and cer-
tain properties, they translate this model and these properties 
into Abstract State Machines (ASM). The properties are verified 
on the fly while generating the ASMs. In the end, the ASMs are 
60



PRES+ REPRESENTATION OF SYSTEMC MODELS
translated into SystemC. They consequently translate from a 
formal representation into SystemC, the opposite direction to 
our work. However, in their paper [Hab06] published after ours 
[Kar06], they briefly mention translating from SystemC to 
ASMs. The procedure is not further discussed in the paper.

The approach described in this chapter [Kar06] removes the
constraints of the described approaches. Most importantly, it can 
handle models at levels from the initial functional specification 
to cycle-accurate RT-level, including Transaction-Level Model-
ling (TLM). Time is treated continuously. Dynamic structures 
are handled to the extent that an upper bound on the sizes of 
those structures must be known. Loops may have variable upper 
bounds and SystemC channels are allowed, and encouraged 
(core part of TLM). 

5.2 Basic Concepts
In PRES+, a SystemC statement is, in the simplest case, repre-
sented by one place and one transition. The transition performs 
the actual statement, whereas a token in the place enables the 
execution of the statement. Variables are also represented by 
places. There must be a token in the place during the whole 
lifespan of that variable. Statements assigning a value to a var-
iable put tokens in the variable’s place, and the token is removed 
when the execution has reached a statement out of its scope. 
Places for global variables always contain tokens, and places 
corresponding to fields in objects contain tokens as long as the 
object exists. 

Figure 5.1 provides an example. All transitions have time 
delay interval [0..0], but the delays are omitted in the figure to 
avoid clutter. 

Statements 1 and 2 introduce and initialise new variables. 
Transitions t1 and t2 reflect this by adding tokens with the ini-
tial values in the places corresponding to the variable. At the 
61



CHAPTER 5
same time they put a token in the places corresponding to the 
next statement to be executed, i.e. p2 and p3 respectively. State-
ment 3 updates x, which is straightforwardly reflected in transi-
tion t3. This straightforward translation works well if only one 
variable is involved in the assignment statement. Statement 4, 
however, involves two variables. Since PRES+ transitions only 
can produce one output value, one of the variables must be 
explicitly fetched and a copy must be temporarily stored in a 
dedicated place (p6). Without this procedure, variable x would be 
erroneously updated to the same value as y. 

p1

p2

p3

p4

p5
p6

t1

t2

t3

t4

t5

3

2

x

x+5
x

x

y

x

x

y

x*y

(b) PRES+

Figure 5.1: Translation of statements and variables

1 int x = 3;

2 int y = 2;

3 x += 5;

4 y *= x;

Fetching x for
use in stmt 4

(a) SystemC
62



PRES+ REPRESENTATION OF SYSTEMC MODELS
Control statements, such as if and while statements follow the 
same principle. An example of an if statement is given in 
Figure 5.2. The if statement itself is translated into one place 
(p1) and two transitions (t1 and t2). The place, if marked, enables 
the two transitions. The transitions have guards which reflect 
the condition of the if statement. One transition (t1) introduces 
the true branch, and the other transition (t2) corresponds to the 
false branch. The guard of t1 is thus identical to the condition in 
the if statement, whereas the guard of t2 is the negation of that 
condition. After the last statement in each branch, the two 
branches join and the execution continues with the statement 
following the if statement (p4 and t5). 

A while statement is constructed partly using the structure of 
an if statement, since it can be rewritten as an if statement com-
bined with a loop back (goto), as indicated in Figure 5.3. The dif-
ference is that after the last statement of the true branch, 

p1

t1

x

p2 p3

p4

t2

t3 t4

t5

[x = 3] [x ≠ 3]

stmt A stmt B

stmt C

x
x

x x

(b) PRES+

Figure 5.2: Example of an if statement

1 if (x == 3) 
2 stmt A;
3 else
4 stmt B;
5 stmt C;

(a) SystemC
63



CHAPTER 5
execution is transferred back to the beginning of the if state-
ment. If the condition is false, execution continues directly with 
the next statement after the while statement (t4). 

5.3 Method Calls and Interfaces
Calling a method (function) involves three steps: transfer of 
parameter values, transfer of control and return of control. Each 
of these steps must be performed explicitly in the PRES+ model. 
Figure 5.4 presents the whole scheme. The code in the figure can 
be divided into two parts. Lines 1 to 5 declare the method add-
mult and lines 6 and 7 introduce code that invokes addmult. 

Each part is translated into a PRES+ model surrounded by a 
box. The places between the boxes constitute the interface of the 
method. These places are called ports (see Section 3.2.4). By
looking only at the method header (Line 1), it is possible to 
deduce these ports. Each parameter par needs two ports, setpar
and setparret. If par is declared as a reference, two additional 

Figure 5.3: Example of a while statement

p1

t1

1 while (x <= 3) 
2 stmt A;
3 stmt B;

is equivalent to
1 if (x <= 3) {
2 stmt A;
3 goto 1;
4 }
5 stmt B;

x

p2

p3

t2

t3
t4

[x ≤ 3] [x > 3]

stmt A
stmt B

x
x

x x

(b) PRES+(a) SystemC
64



PRES+ REPRESENTATION OF SYSTEMC MODELS
Figure 5.4: Translation of method calls

1 int addmult(int v, int& xv) {
2 int z = xv;
3 xv *= v;
4 return z + v;
5 }
6 int x = 0;
7 int y = addmult(2, x);

p1

t1 t2

t3 t4 t5p2 p3 p4 p5 p6

yx

re
tx

vr
et

re
tx

v

xv

xv

se
tv

se
tv

re
t

se
tx

v

se
tx

vr
et

ad
d

m
u

lt

ad
d

m
u

lt
re

t

r

r

2

x

x

z

v xv

v

v

xv

xv

v

v ap2

ap3

ap4
ap5

at1

at2at3

at4

at5

at6

r

r

v

xv

xv*v

z

v

z+v

0

xv
*v

ap1
65



CHAPTER 5
ports are needed, retpar and retparret. Finally, the method add-
mult itself needs two ports, addmult and addmultret. 

The method call itself is realised by transitions t2, t3, t4 and t5, 
where t2 and t3 transfer the actual parameters 2 and x to formal 
parameters v and xv respectively. As can be seen in the figure, 
the transfer uses the setpar ports (setv and setxv) to actually 
pass the value and the setparret ports (setvret and setxvret) are 
used to ensure that the transfer is completed before continuing, 
thereby maintaining the sequential execution semantics inside 
a process. After the parameter transfer, transition t4 makes the 
actual transfer of control to the method. Control is returned 
back from the method through t5. The return port, addmultret, 
carries the return value of the method, which is stored in varia-
ble y. 

A closer look at the formal parameters of addmult reveals that 
xv is passed by reference, while v is not. This means that when-
ever the value of xv is modified, so must the corresponding 
actual parameter. For this reason, two additional ports (retxv
and retxvret) are added to the interface. 

The method call structure, in particular the part that each 
port must be paired with a return port, occurs in many situa-
tions in this translation procedure. Without this structure, 
sequentiality of a process execution cannot be maintained and 
the model will not reflect the SystemC semantics correctly.

On the method side, assigning a formal parameter with an 
actual parameter is straightforward. A transition putting a 
token in the place of the parameter is added, for instance at5 and 
at6. The method body starts with transition at1 which assigns 
the value of xv to z, according to Line 2. Since Line 3 involves 
more than one variable (v and xv), one variable has to be explic-
itly fetched. Transition at2 consequently fetches v and the mul-
tiplication is performed by at3. Since at3 updates xv, a parameter 
passed by reference, the actual parameter must also be updated. 
This is performed through ports retxv and retxvret. Lastly, tran-
sition at4 returns both control and the return value. 
66



PRES+ REPRESENTATION OF SYSTEMC MODELS
5.4 Scheduler

5.4.1 SYSTEMC EXECUTION MECHANISM

The main task of the scheduler is to give control to processes 
ready for execution, according to SystemC semantics. Processes 
can be declared ready for execution in one of three modes, all of 
which have to be supported by the scheduler: 

 • in the current delta cycle (immediate) 
The new process is immediately added to the set of ready 
processes in the scheduler. The process will, in particular, 
execute before any signal is updated.

 • in the next delta cycle 
The new process will be added to the set of processes in the 
next delta cycle, after first updating the signals. The process 
will be executed at the same simulated time moment as the 
previous ones.

 • at a specified time moment 
The new process will be put in a priority queue sorted on 
starting time. The process will execute when the simulated 
time has reached the specified starting time of the process. 
This happens when the process reaches the head of the 
queue.

Another important task of the scheduler is to update the signals 
between two successive delta cycles, so that values written to 
signals during one cycle are available for reading in the follow-
ing delta cycle. The details regarding signal updates will be 
described in Section 5.7.

The scheduler repeatedly performs the following major steps:

1. Select a process ready for execution and give control to it. 
New processes may be declared ready for execution during 
the execution of the process (immediate notification). Repeat 
for each ready process until no more ready processes exist.

2. Update all signals.
67



CHAPTER 5
3. Let time advance to the ready time of the earliest pending 
process. Go to step 1.

In step 1, processes ready to run are selected for execution. 
Which process to be selected is undefined, and therefore treated 
as a non-deterministic choice by the translation procedure. How-
ever, during the execution of one process, other processes may 
become ready during the same delta cycle (immediate notifica-
tion). These processes must also be executed before steps 2 and 3
may be performed.

In step 3, if the earliest pending ready time is identical with 
the current time, a new delta cycle is introduced. If this is not 
the case, a new cycle (as well as a new delta cycle, the first in the 
new cycle) is introduced. A cycle, consequently, consists of one or 
more delta cycles. 

5.4.2 PRES+ MODEL

The PRES+ scheduler model provides the following services 
through the ports depicted in Figure 5.5. 

1. Give execution control to processes.
2. Receive notice of a process becoming ready.
3. Update signals.

Execution control (service 1) is given to processes through the 
ports labelled trigger. There is one trigger port for each process 
in the system, each dedicated to its specific process. A token in 

Scheduler

mkready mkreadyret mkimmready mkimmreadyret

yield trigger1 triggern updateA updateretA updateX updateretX

Figure 5.5: The interface of the scheduler

... ...
68



PRES+ REPRESENTATION OF SYSTEMC MODELS
trigger1 signifies that process 1 may execute. When a process 
releases control, which it must explicitly do, it puts a token in 
yield, a port common to all processes.

Ports mkready, mkreadyret, mkimmready and mkimmready-
ret are used for notifying the scheduler about the fact that a 
process became ready (service 2). There is only one instance of 
each such port. A process can become ready in either of two 
modes: 

 • in the current delta cycle (immediate) 
 • in the next delta cycle. 

A token with a unique process identifier (pid) associated to the 
process to become ready is placed in mkimmready or mkready
depending on the intended mode. The other two ports are return 
ports (see Section 5.3). 

Signal updates (service 3) are performed through the ports 
update and updateret. There is one pair of these ports for each 
signal in the system. A token in update causes the associated 
signal to be updated (see Section 5.7).

Figure 5.6 shows a scheduler able to handle two processes (1 
and 2) and two signals (A and B). The model can be divided into 
three parts, separated with dashed lines in the figure. 

Processes can only be given control if they are ready for execu-
tion. The scheduler must consequently keep a record for each 
process about its ready state. Places ready and nready in the 
upper part of the figure are dedicated to this. These places are 
updated either through port mkimmready or through places 
willmkready (implicitly through port mkready) in the lower 
part, depending on if the ready notification is immediate or not. 
There is one ready place and one nready place for each process in 
the system.

A token in place arbiter signifies that a new process may be 
given control. The scheduler is, in this case, able to fire any of 
the ttrigger transitions associated to a ready process. This will 
69



CHAPTER 5
yieldmkimmreadyret mkimmready

tyield

ready1
nready1

ready2
nready2

x

x x

x
[x=pid1]

prochasrun

false

[x=pid1] [x=pid2]

[x=pid2]

true

arbiter

tr
ig

ge
r1

tr
ig

ge
r2

ttrigger1

true

[x=true]

x

u
pd

at
er

et
A

updateA

u
pd

at
er

et
B

updateB

Figure 5.6: A scheduler

ttrigger2

ttoupdate

mkready mkreadyret

x

x[x=false] [x=true]

false

false

fa
ls

e [x=false]

[x=true]
x

x
false

false

false false

[x=pid1] [x=pid2]

true true

x
x

willmk
ready1

willmk
ready2
70



PRES+ REPRESENTATION OF SYSTEMC MODELS
put a token in a trigger port and give control to the selected proc-
ess. When the process finishes, it gives control back to the sched-
uler, by putting a token in the yield port. As a result, the arbiter
place again holds a token and a new process may be selected for 
execution. When there are no more ready processes, the sched-
uler enters the middle part by firing transition ttoupdate. 

In case no process will ever become ready at the current time, 
the scheduler will loop through the three parts of the scheduler 
indefinitely. This is due to the fact that all places nready will, in 
this scenario, always contain a token, and when a token arrives 
in arbiter, the only enabled transition is ttoupdate. The sched-
uler therefore has to fire that transition and continue to the mid-
dle and lower parts before returning to the upper part. This 
infinite loop takes zero time. Since the scheduler loops indefi-
nitely, and the loop is instant, no other transitions have any 
chance to fire. Thus, this loop prevents time to advance. Transi-
tion ttoupdate should, therefore, only fire if at least one process 
has executed in the current delta cycle. In order to prevent the 
infinite loop, the place prochasrun is introduced. It always con-
tains a token with a boolean value, initially false. The value in 
this token becomes true (see transition ttrigger) only if a process 
has executed in the current delta cycle. The guard on ttoupdate
only allows the transition to fire if at least one process has exe-
cuted. ttoupdate furthermore restores the value in prochasrun
when fired. Using this mechanism, the scheduler will remain in 
the upper part if there does not exist any ready process, thereby 
breaking the loop. The scheduler can only continue when a proc-
ess is notified as immediately ready again. If there is no ready 
process (which also means that no zero time delay transition is 
enabled), then time can advance. As will be shown in Section 
5.6, this allows processes which are waiting for a particular 
period, to become ready.

The middle part of the scheduler notifies all signals that the 
system now enters a new delta cycle. This is performed by 
putting a token into the ports update. The signals are updated 
71



CHAPTER 5
serially, one after the other. This is acceptable, since the update 
mechanisms of the signals do not affect each other. Section 5.7
provides a more detailed example of signal updates.

The lower part makes those processes ready that are marked 
to become ready in the next delta cycle. The truth value of the 
token in willmkready indicates if the associated process should 
be made ready or not (if a token should be placed or not in places 
ready1 and ready2 respectively). After having made the proper 
processes ready, a token is again placed in place arbiter, and the 
cycle is closed. 

According to the execution mechanism described in Section 
5.4.1, processes can be made ready in three different modes. The 
PRES+ model in Figure 5.6 only handles two: in the current 
delta cycle and in the next delta cycle. It does not make proc-
esses ready at arbitrary time moments. The advance of time is 
handled by the processes themselves, as will be discussed in Sec-
tion 5.6.

5.5 Events
Events provide the service of making processes ready with one 
method call, notify. Each process interested in listening to the 
event must subscribe to it. Figure 5.7 presents the PRES+ inter-
face of an event. 

Event

notify notifyret immnotify immnotifyret

mkready
mkreadyret

mkimmready
mkimmreadyret

subscr
subscrret

unsubscr

Figure 5.7: The interface of an event

unsubscrret
72



PRES+ REPRESENTATION OF SYSTEMC MODELS
Event notifications can be carried out in one of two modes: 
immediately in the current delta cycle or in the next delta cycle. 
A notification is invoked by a process by putting a token in 
either port immnotify or notify. When a notification is invoked, 
the event object takes all processes subscribed to the event and 
makes them ready. This is done by notifying the scheduler 
through the ports mkready or mkimmready, depending on 
whether it is an immediate notification or not. The tokens placed 
in those ports contain the pid of the process in question. Ports 
subscr and unsubscr are used to dynamically subscribe and 
unsubscribe a process to/from the event by placing a token with 
the pid of that process in the respective place. 

The internal structure of an event is indicated in Figure 5.8. 
The structure inside the dashed square is repeated for each 
process subscribing to the event. The figure, furthermore, only 

notify

notifyret

unsubscr

unsubscrret

subscr

subscrret

mkready

mkreadyret

issubscr1 x

x

[x=pid1]

[x=pid1]

false

truex

x

[x=true]

tomkready1

tomkready2

pid1

[x=false]

...

issubscr2

Figure 5.8: An event

waitforscheduler1

waitforschedulern
73



CHAPTER 5
presents notification in the next delta cycle. Immediate notifica-
tion can, however, straightforwardly be extrapolated from the 
figure using a similar structure. 

The token in place issubscr records if the corresponding proc-
ess currently subscribes to the event or not. This value can be 
changed by a process through ports subscr and unsubscr respec-
tively. Upon notification, the event model checks for each process 
if it is subscribed. If subscribed, the event notifies the scheduler 
to make the associated process ready. If not subscribed, as might 
be the case of dynamic events, the next process is checked. When 
all associated processes have been checked and, possibly, made 
ready, the notify request returns. 

5.6 wait Statements
There are three types of wait statements which can be executed 
by a process: 

 • waiting for a certain amount of time (time-triggered). 
 • waiting for an event (event-triggered)
 • waiting for an event with timeout.

This section will only describe the first two, since the third type 
is a combination of the others. Figure 5.9 depicts the PRES+ 
model of the first type. 

Transition t1 first hands back the control to the scheduler by 
putting a token in the port yield of the scheduler. While other 
processes are allowed to execute, transition t2 measures the 
specified amount of time, x. When the time has elapsed, t3 noti-

yield mkimm mkimm triggerready readyret

t1 t2 t3 t4 t5

pid

Figure 5.9: Translation of a time-triggered wait statement

[x..x]
74



PRES+ REPRESENTATION OF SYSTEMC MODELS
fies the scheduler by placing a token containing the process 
identifier in the port mkimmready of the scheduler, thereby noti-
fying the scheduler that the process is again ready to execute. 
Note that at this point, time has advanced according to step 3 in 
Section 5.4.1. Transition t4 ensures that the scheduler has 
received the notification and finally, the process has to wait until 
it actually regains control from the scheduler (port trigger) in 
transition t5. 

The second type, waiting for an event, implements dynamic 
events. In this case, the process must first subscribe to the par-
ticular event, and afterwards it must unsubscribe from it. The 
whole procedure is depicted in Figure 5.10.

Transition t1 subscribes the process to the particular event 
given as a parameter to the wait statement call, by putting a 
token containing its pid in the subscr port of the event. The sub-
scription request is returned by the event and accepted by tran-
sition t2. Next, in transition t3, the process hands back control to 
the scheduler. When another process notifies the event, the 
scheduler marks this process as ready and is eventually granted 
the control. Transition t4 accepts the grant and the process 
unsubscribes from the event in transitions t5 and t6. 

t1 t2 t3 t4

t5t6

yieldsubscr subscrret trigger

unsubscrunsubscrret

pid

pid

Figure 5.10: Translation of an event-triggered 
wait statement
75



CHAPTER 5
A complication of these schemes occurs if the wait statement is 
located inside a method, for instance within a read or write of a 
communication channel. Such wait statements are common in 
the sense that they implement blocking communication proto-
cols. The complication is twofold: 

 • The method does not know which pid to put in mkimmready
(actually the pid depends on which process has called the 
method)

 • The scheduler does not know which method the particular 
process has called, and hence cannot return control directly 
to that particular method. It can only return control to the 
process itself. 

As a consequence, when the process calls a method, the process 
must also transfer its pid. This can be conveniently done 
through the port transferring control to the method. An exam-
ple, consisting of a process invoking a method (methodWithWait) 
containing a wait statement, is presented in Figure 5.11. 

As demonstrated by the figure, the pid is stored in a variable 
inside the method for retrieval by the wait statement. When a 
process invokes the method, it puts a token with its pid in the 
port transferring control to the method. In the figure, this is 
done by transition t1 putting a token containing the pid into the 
port methodWithWait. Inside the method, transition at1 con-
sumes that token and stores the value in the place called pid. At 
the same time the method gives up control, as a part of the wait
statement. At this moment, the method is suspended for the 
specified amount of time, in this case 2 time units. When this 
time has elapsed, the method will notify the scheduler in order 
to make the process ready again. It now uses the pid which it 
has stored in the dedicated variable, and passes it to the sched-
uler. It should be noted that the scheduler is not aware that the 
process is currently executing a method. Therefore, when the 
scheduler transfers the control back to the process, it does so via 
76



PRES+ REPRESENTATION OF SYSTEMC MODELS
port trigger and the main method of the process. The main 
method identifies that control has to be further passed to the 
invoked method. This identification is straight-forward, since 
there is a token in the place corresponding to the waiting of the 
method to return, in this case p2. The additional transition t3
performs the forwarding of control. The method can now con-

Figure 5.11: Invocation of a method containing a 
wait statement

1 int methodWithWait() {
2 wait(2);
3 return 1;
4 }
5 int x = methodWithWait();

methodWithWait methodWithWaitret

t1 t2

tr
ig

ge
r

yield

x

pid

r

r

pid

at1 at2 at3 at4 at5

[2..2]

pid

r r

mkimmready mkimmreadyret

r

r

r

p1 p2 p3

ap1

ap2 ap3 ap4 ap5

1

t3
77



CHAPTER 5
tinue executing the statements following the wait statement. In 
this example, this is a return statement. 

5.7 Signals
As mentioned before, signals are a special type of communica-
tion channels, which require additional synchronisation with 
the scheduler after each delta cycle. They have to maintain two 
variables, curval and newval. When writing to a signal, newval
is modified, whereas reading is performed on curval. After each 
delta cycle, curval must be updated to the same value as newval. 
At the same time, processes subscribing to value changes on the 
signal must be notified if curval has changed. This is done 
through an event, which is located inside the signal. Figure 5.12
shows the interface of a signal.

Signals have four methods: read, write, event and update. The 
read and write methods read and write from/to the signal 
respectively. The method event is a boolean method, which 
returns true if and only if the signal value was changed during 
the previous delta cycle. A dedicated variable, isevent, keeps 
track of this status. Port update is used by the scheduler to 
announce a new delta cycle. The ports mkready and mkreadyret
belong to an event located inside the signal. They are used for 
making subscribing processes ready upon value changes. 

Figure 5.13 shows the PRES+ model of a signal. The following 
explanation will focus on the update mechanism. The read, 

Signal

read readret write writeret

mkready mkreadyret update updateret event eventret

Figure 5.12: The interface of a signal
78



PRES+ REPRESENTATION OF SYSTEMC MODELS
read

readret

event

eventret

write

writeret

update updateret mkready mkreadyret

Event

newval

p1

p9

t1

t2

t3

p0

notify

x x

x

x

isevent

x

x

notifyret

t11

t12

curval

newval

x

x

p3

p2

p5

p4

false

x

t4

t5

isevent
false

t13

t6[x=y]

p8

t10

p7

true

t9

p6

x

t8

x

y

[x≠y]
t7

Figure 5.13: Translation of a signal

curvalnewval

x

x

curval

x y

x

x

x

79



CHAPTER 5
write and event operations are relatively straightforwardly 
implemented as method calls. They update or retrieve the val-
ues of curval, newval and isevent respectively. 

Places p1 and p9 record whether there has been a write in the 
current delta cycle. A token in p1 means that a write has taken 
place, a token in p9 has the opposite meaning. Transitions t2, t6
and t10 update these places to reflect this situation. Depending 
on p1 and p9, either transition t4 or t13 is fired upon an update 
request from the scheduler. Transition t13 is fired if there was no 
write. It immediately returns from the update operation and 
sets isevent to false. Transition t4, on the other hand, is the start 
of a longer chain of transitions. Transitions t4 and t5 serve the 
purpose of fetching the values of newval and curval, placing cop-
ies in p2 and p4 respectively, in preparation for comparison by t6
and t7. According to the SystemC semantics, processes subscrib-
ing to value changes on the signal should not be notified unless 
newval ≠ curval. Hence, if these two values are equal, then no 
update and notification should be done (t6). However, if they are 
not equal (t7), curval is updated to the same value as newval (t8) 
and all subscribing processes are notified via an event (t9). 
Finally, the signal update returns (t10).
80



VERIFICATION
Chapter 6
Verification

s mentioned earlier, the verification of PRES+ models 
can be done either formally or by simulation, depend-
ing on the size and complexity of the model. This chap-

ter will present one formal verification technique and one 
simulation technique where the performance of simulation is 
improved by injecting formal methods into the process. Both 
techniques are applied to PRES+ models.

6.1 Model Checking PRES+ Models
Section 6.1.1 introduces an overview of the model checking envi-
ronment for PRES+ models, and Section 6.1.2 presents experi-
mental results obtained from applying this technique on models 
originating from SystemC specifications.

6.1.1 OVERVIEW OF OUR MODEL CHECKING ENVIRONMENT

Figure 6.1 presents an overview of our model checking environ-
ment. As input to our model checking approach, the designer 
has a PRES+ model and a set of (T)CTL properties. In order to 

A

81



CHAPTER 6
reuse efficient existing model checkers, the PRES+ model first 
has to be translated into the input language of the model 
checker. In our case, we have used the UPPAAL model checking 
environment [UPP], since it has proven to be efficient on timed 
models. The input language of UPPAAL is timed automata 
[Alu94]. Consequently, the PRES+ models to be formally verified 
need to be translated into timed automata.

Having obtained a timed automata model of the system, this 
model is input, together with the (T)CTL properties, to the 
model checker. The model checker then analyses the model. If 
the properties were not satisfied, the model checker also pro-
vides a diagnostic trace (counter-example) indicating to the 
designer what part or aspect of the model caused the contradic-
tion. The remainder of this section will focus on the translation 

PRES+ model

(T)CTL property
Translation to

timed automata

TA model

Model Checker

Result (Yes/No) Diagnostic trace

Figure 6.1: Model checking environment overview
82



VERIFICATION
from PRES+ to timed automata [Cor00]. The procedure only 
assumes safe PRES+ models. It will be illustrated with the 
example in Figure 6.2. Figure 6.3 presents the resulting system 
of timed automata.

Each place in the PRES+ model corresponds to one global var-
iable in the timed automata. The variable contains the value of 
the token in the corresponding place. If there is no token in the 
place, the variable is assigned a default value, ∅ .

One timed automaton is created for each transition t in the 
PRES+ model. A clock variable, ctx, is also instantiated for each 
PRES+ transition. The timed automaton for a transition t has, 
in general,  locations, i.e. one more location than the 
number of input places of the transition. However, if t has a 
guard, an additional location is added to the automaton. All 
transitions in the example (Figure 6.2) only have one input 
place, except t5 which has two. Therefore, automata t1 and t4
have two locations and t5 has three. Automata t2 and t3 also 
have three locations since their corresponding transitions have 
guards. The locations are labelled s0, s1, ..., sn-1 and en. Autom-
ata corresponding to transitions with a guard additionally have 

p1 t1

[2..4]

x

x

t2

t3

t4

t5

p2

p3

p4

p5

[1..1]

[5..6]

[1..4]

[0..3]

x

x

x

x

x + 5

2x

x - 2

x

y

(x + y) mod 3

[x < 10]

[x ≥ 10]

5

Figure 6.2: A example PRES+ model to be translated into 
timed automata

n °t 1+=
83



CHAPTER 6
a location labelled enc. A token in en means that the correspond-
ing transition is enabled, i.e. there are tokens in all input places 
of t and, if there is a guard, the guard is satisfied. Location enc
captures the same situation, but when the guard is unsatisfied. 
A token in s0 means that no input place of t contains a token, s1
that one of the input places contains a token, etc. 

All transitions in the timed automata have synchronisation 
labels. The labels are identical to transition names and have 
either a “!” or “?” attached to them. When a transition with a “!” 
synchronisation label is taken, all transitions in the whole sys-

s0 en
t5?

t1! p2:=p1, p3:=p1, p1:=∅
ct1 ≥ 2 ct1 ≤ 4

s0 en
t1?

t4! p5:=p3-2, p3:=∅
ct4 ≥ 1 ct4 ≤ 1

s0

enct1?

t2!

p4:=p2+5, p2:=∅
ct2 ≥ 1

ct2 ≤ 4
en

p2 ≥ 10t1?

p2 < 10

t3?

s0

enct1?

t3!

p4:=2*p2, p2:=∅
ct3 ≥ 5

ct3 ≤ 6
en

p2 < 10t1?

p2 ≥ 10

t2?

s0

en
t2?

t5!
p1:=(p4+p5) mod 3, p4:=∅ , p5:=∅

ct5 ≥ 0

ct5 ≤ 3s1

ct1:=0

ct2:=0

ct3:=0

ct4:=0

ct5:=0
t2?

t3? t3? ct5:=0

t4? t4? ct5:=0

t1:

t4:

t5:

t2:

t3:

Figure 6.3: A system of timed automata corresponding to 
the PRES+ model in Figure 6.2
84



VERIFICATION
tem with the “?” version of the same label must also be taken 
simultaneously. Transitions are added in the automata so that 
they reflect the token situation of the input places in the PRES+ 
model. 

Initially, only transition t1 is enabled in the PRES+ model. 
This is reflected in the automata by the fact that only the autom-
aton corresponding to t1 has a token in location en. The transi-
tion from en to s0 encodes the transition firing in the PRES+ 
model. When taken, it synchronises with those other automata 
that are affected by the fact that t1 fires, so that their states are 
kept up-to-date with the new situation. The affected automata 
are those corresponding to transitions with at least one input 
place being the output place of t1, i.e. t2, t3 and t4. In addition to 
the synchronisation, the variables corresponding to the output 
places are updated according to the PRES+ transition function. 
The variables corresponding to the input places are assigned the 
default value, indicating that they no longer contain tokens. 

The upper bounds of the time delay intervals of PRES+ tran-
sitions are reflected in the automata as a location invariant at 
en, and the lower bounds appear as guards on the transitions 
from en to s0.

In addition to these basic translation rules, measures can be 
taken to make the resulting automata more efficient for model 
checking. One such technique involves reducing the number of 
clocks, so that the automata corresponding to several transitions 
may share one clock under certain circumstances [Cor03]. By 
doing this, the automata sharing the same clock can be merged, 
thereby also reducing the number of automata.

6.1.2 EXPERIMENTAL RESULTS

The verification efficiency of PRES+ has been demonstrated in 
several papers [Cor03]. In this section, the verification results of 
a few models obtained by translating SystemC models into 
PRES+, as discussed in Chapter 5, are presented. The experi-
85



CHAPTER 6
ments were conducted on machines with Intel Xeon 2.2GHz 
processors and 2GB of primary memory running the Linux oper-
ating system. 

Router

This example, modelling a router at transaction level, is taken 
from the TLM reference implementation [Ros05]. The router for-
wards messages from one master to one of two slaves. 

The model was verified for four different properties. 

1. If a request is issued, then a response must come in the fu-
ture.

2. If a message is sent to slave 1, it will arrive there.
3. If a message is sent to slave 2, it will arrive there.
4. If a message is sent to slave 2, it will not arrive at slave 1.

Table 6.1 presents the results. All properties were found satis-
fied within a few seconds’ time.

Packet switch

The packet switch example is a slight modification of the 
pkt_switch example shipped with the SystemC reference imple-
mentation [Bai03]. One or more masters send messages to one 
or more slaves. The switch distributes the messages to their 
right destinations. In order to cope with messages coming in 
bursts, the switch model contains one FIFO queue for each mas-
ter and each slave.

Table 6.1: Results from the Router example

Property Verification time (s)

1 3.6

2 1.2

3 1.2

4 1.5
86



VERIFICATION
Four properties were verified:

1. No deadlock.
2. All messages sent by a master will be received by a slave.
3. Slaves may receive messages.
4. The switch will forward every message it receives.

Property 2 turned out to be false. The reason lies in the seman-
tics of the signals connecting the switch with masters and 
slaves. An event notification only occurs in the case when, dur-
ing an update, the new value is not equal to the current one. If 
several consecutive messages are identical, only the first mes-
sage will actually pass the signal and reach the switch. Conse-
quently, the subsequent (identical) messages will not reach their 
destinations. The model, as given in [Bai03], misses such consec-
utive messages that are identical.

The experiments were conducted using several different com-
binations on the number of masters and slaves. Table 6.2 shows 
the verification times. Verifying 2 masters and 2 slaves for prop-
erties 1 and 4 took between 4 to 5 hours. The reason for this 
explosion is that the complexity of this model is double exponen-
tial. The first exponential comes from the fact that the model 
checker has to investigate all execution sequences of all proc-
esses. All concurrent models have this problem. The other expo-
nential is due to the fact that messages may have multiple 
destinations. By adding one more slave, the number of possible 

Table 6.2: Results from the Packet Switch example

Verification time (s)

Property 1m 1s 1m 2s 2m 1s 2m 2s

1 1.1 58.54 39.55 18080.6

2 0.53 1.64 3.13 9.46

3 0.44 0.9 1.48 3.71

4 0.72 28.74 19.11 15375.0
87



CHAPTER 6
destinations of a message doubles. Verification of the other prop-
erties only took a few seconds since property 2 was false (and the 
model checking is interrupted prematurely) and property 3 is of 
existential nature.

AMBA bus

An AMBA bus consists of three entities: arbiter, address bus and 
data bus. Masters sending on the bus must first request access 
to it through the arbiter, and the arbiter will then eventually 
grant access. Slaves have the possibility of delaying or tempo-
rarily blocking (splitting) incoming messages. However, they 
must eventually accept all messages. Messages are transmitted 
pipelined on the buses. First, the address is sent on the address 
bus. The associated data is sent on the data bus only in the next 
clock cycle. As data is sent, the address of the next message is 
simultaneously transmitted on the address bus, hence the pipe-
line.

The AMBA bus example has been modelled in two versions at 
different levels of detail, transaction-level and signal-level. At 
the transaction level, communication is implemented in a chan-
nel and transmissions are method calls with the outside behav-
iour of a real AMBA bus. The signal implementation, on the 
other hand, explicitly implements all signal exchanges between 
the bus, arbiter, and masters and slaves. The signal implemen-
tation is consequently more detailed than the transaction-level 
model. 

The properties verified on both models are:

1. No deadlock.
2. If a master requests the bus, the request will eventually be 

granted.
3. A master may request access to the bus.
4. Messages sent by a master will always eventually be read 

and acknowledged by a slave.
88



VERIFICATION
Table 6.3 and Table 6.4 present the results of the transaction-
level and signal-level AMBA bus examples respectively. 

6.1.3 DISCUSSION

Most of the results presented in Section 6.1.2, and also else-
where in this thesis, show that PRES+ models can be formally 
verified in reasonable time. However, as the models grow bigger, 
the state space explosion problem becomes evident, as could be 
seen in Table 6.2 for the 2-master-2-slave model. In such cases, 
formal methods are difficult to apply or even infeasible due to 
the required amount of time. Therefore, simulation based meth-
ods have to be used. Section 6.2 presents such a simulation 
based method, but where formal methods are used to boost per-
formance.

Table 6.3: Results from the TL AMBA example

Verification time (s)

Property 1m 1s 1m 2s 2m 1s 2m 2s

1 8.95 86.88 81.65 7358.26

2 19.17 182.16 219.94 3281.34

3 1.00 2.58 2.88 8.34

4 13.16 90.95 115.46 3408.00

Table 6.4: Results from the SL AMBA example

Verification time (s)

Property 1m 1s 1m 2s 2m 1s 2m 2s

1 34.54 506.09 129.73 4339.27

2 21.57 328.79 81.52 3328.71

3 10.20 64.73 35.95 219.41

4 35.83 449.45 139.47 4212.40
89



CHAPTER 6
6.2 Formal Method Aided Simulation
Designers using IP blocks in their complex designs must be able 
to trust that the functionality promised by the IP providers is 
indeed implemented by the IP block. For this reason, the IP pro-
viders must thoroughly validate their blocks. This can be done 
either using formal methods, such as model checking, or using 
informal methods, such as simulation.

Both methods, in principle, compare a model of the design 
with a set of properties (assertions), expressed in a temporal 
logic (for instance (T)CTL), and answer whether they are satis-
fied or not. With formal methods, this answer is mathematically 
proven to be guaranteed. However, using informal methods, this 
is not the case. The reliability of the result is indicated by a cov-
erage metrics [Piz04]. Unfortunately, formal methods such as, 
for example, model checking, suffer from state space explosion. 
Although there exist methods to relieve this problem [Wan93], 
[Daw96], [Bal96], for very big systems simulation-based tech-
niques are needed as a complement. Simulation techniques, 
however, are also very time consuming, especially if high 
degrees of coverage are required.

This section presents a validation technique combining both 
simulation and model checking. The basis of the approach is 
simulation, but where model checking is added to reach uncov-
ered parts of the state space, thereby enhancing coverage. 

6.2.1 RELATED WORK

Combining formal and informal techniques is however not a new 
invention. One idea involves using simulation as a way to gener-
ate an abstraction of the simulated model [Tas04]. This abstrac-
tion is then model checked. The output of the model checker 
serves as an input to the simulator in order to guide the process 
to uncovered areas of the state space. This will create a new 
abstraction to model check. If no abstraction can be generated, it 
90



VERIFICATION
is concluded that the specification does not hold. As opposed to 
this approach, the technique presented here does not iteratively 
model check a series of abstractions, but tries to maximise sim-
ulation coverage given a single model. There is hence a differ-
ence in emphasis. They speed up model checking using 
simulation, whereas this work improves simulation coverage 
using model checking.

Another approach uses simulation to find a “promising” initial 
state for model checking [Syn03]. In this way, parts of the state 
space, judged to be critical to the specification, are thoroughly 
examined, whereas other parts are only skimmed. The approach 
is characterised by a series of partial model checking runs where 
the initial states are obtained with simulation. The technique 
presented in this chapter is, on the other hand, coverage driven 
in the sense that model checking is used to enhance the coverage 
obtained by the simulation. 

Formal methods have also been used for test case generation 
[Hes03]. The main idea is to apply model checking on a correct 
model of the system and extract test cases from the diagnostic 
trace. The test cases are then applied to the actual implementa-
tion. The approach is guided by a certain coverage metrics and 
the resulting test cases are guaranteed to minimise test time. 
Although their work bears certain similarities with the work 
presented in this section, it solves a different problem. They 
assume that the model is correct while the implementation is to 
be tested. In our case, however, it is the model that has to be 
proven correct.

As opposed to existing simulation-based methods, the pre-
sented approach is able to handle continuous time (as opposed to 
discrete clock ticks) both in the model under validation and in 
the assertions. It is moreover able to automatically generate the 
“monitors”, which are used to survey the validation process, 
from assertions expressed in temporal logic. In addition to this, 
the method dynamically controls the invocation frequency of the 
91



CHAPTER 6
model checker, with the aim of minimising validation time while 
achieving reasonable coverage.

6.2.2 VERIFICATION STRATEGY OVERVIEW

The basic principle of simulation based validation methods is to 
fire one transition of the model under validation (MUV) at a 
time and check whether any assertions imposed on the model 
have been violated. At the same time, the MUV must be fed with 
inputs (stimuli) consistent with constraints imposed by the 
model on its environment. The following three assumptions are 
consequently imposed:

 • The MUV is modelled as a transition system, e.g. PRES+ 
(see Section 3.2).

 • Assertions, expressed in temporal logics, stating important 
properties which the MUV must not violate, are provided.

 • Assumptions, expressed in temporal logics, stating the condi-
tions under which the MUV shall function correctly accord-
ing to its assertions, are provided. 

Note that assertions and assumptions constrain the behaviour 
on the interface of the MUV. They do not state anything about 
the internal state. The assumptions constrain the input and the 
assertions state what the MUV must guarantee, i.e. constrain 
the output.

The result of the verification is only valid to the extent 
expressed by the particular coverage metrics used. Therefore, 
certain measures are normally taken to improve the quality of 
the results. This could involve finding corner cases which only 
rarely occur under normal conditions. Simulation-based tech-
niques consequently consist of the following three parts: asser-
tion checking, stimulus generation and coverage enhancement.

The proposed strategy consists of two phases, as indicated in 
Figure 6.4: simulation and coverage enhancement. These two 
phases are iteratively and alternately executed. The simulation 
92



VERIFICATION
phase performs traditional simulation activities, such as transi-
tion firing and assertion checking. When a certain stop criterion 
is reached, the algorithm enters the second phase, coverage 
enhancement. The coverage enhancement phase identifies a 
part of the state space that has not yet been visited and guides 
the system to enter a state in that part of the state space. After 
that, the algorithm returns to the simulation phase. The two 
phases are alternately executed until the coverage enhancement 
phase is unable to find an unvisited part of the state space. 

In the simulation phase, transitions are repeatedly selected 
and fired at random, while checking that they do not violate any 
assertions (Line 4 to Line 6). This activity goes on until a certain 
stop criterion is reached (Line 3). The stop criterion used in this 
work is, in principle, a predetermined number of fired transi-
tions without any coverage improvement. This stop criterion 
will be further elaborated in Section 6.2.8.

When the simulation phase has reached the stop criterion, the 
algorithm goes into the second phase where it tries to further 
enhance coverage. An enhancement plan, consisting of a 
sequence of transitions, is obtained and executed while at each 
step checking that no assertions are violated (Line 8 to Line 11). 

1 initialise;
2 while coverage can be further enhanced do
3 while not stop criterion reached do
4  select r randomly among the enabled transitions;
5  fire r;
6  check that no assertion was violated;
7
8  obtain a coverage enhancement plan P;
9  for each transition r∈ P in order do
10  fire r;
11 check that no assertion was violated;

Figure 6.4: Verification Strategy Overview

S
im

u
la

ti
on

C
ov

er
ag

e
E

n
h

an
ce

m
en

t

93



CHAPTER 6
It is at this step, obtaining the coverage enhancement plan, that 
a model checker is invoked (Line 8). 

The two phases, simulation and coverage enhancement, are 
iteratively executed until coverage is considered unable to be 
further enhanced (Line 2). This occurs when either 100% cover-
age has been obtained, or when the uncovered aspects, with 
respect to the coverage metrics in use, have been targeted by the 
coverage enhancement phase at least once, but failed.

Stimulus generation is not explicitly visible in this algorithm, 
but is covered by the random selection of enabled transitions 
(Line 4) or as part of the coverage enhancement plan (Line 8). 
Subsequent sections will go into more details about the different 
parts of the overall strategy.

The model in Figure 6.5 and the assertion in Equation 6.1
serve as an example throughout this chapter, in order to clarify 
the details of the methodology. The assertion states that if p con-
tains a token with a value less than 20, a token will appear in q
(regardless the value) within 10 time units.

(6.1)

p qp1
p2

p3

p4
t1 t2

t3 t4

t5[0..0]

[1..7]

[1..2] [1..4]

[2..2]

[x ≥ 20]

[x < 20]

x x

x

x 2x

x+1

x+1

x

y

x+y
x x

Figure 6.5: An example PRES+ model

AG p 20< AF 10< q→( )
94



VERIFICATION
6.2.3 COVERAGE METRICS

Coverage is an important issue in simulation-based methods. It 
provides a measure of how successful a particular validation is. 
As mentioned in Section 2.3.4, it is advantageous to use a cover-
age metrics which refers both to the implementation and speci-
fication. A combination of two coverage metrics is therefore used 
throughout this chapter: assertion coverage and transition cov-
erage.

Definition 6.1: Assertion coverage. The assertion coverage 
(cova) is the percentage of assertions which have been acti-
vated (defined shortly in Section 6.2.4) during the validation 
process (aact) with respect to the total number of assertions 
(atot), as formalised in Equation 6.2.

(6.2)

Definition 6.2: Transition coverage. The transition cover-
age is the percentage of fired distinct transitions (trfir) with 
respect to the total number of transitions (trtot), as formal-
ised in Equation 6.3.

(6.3)

Definition 6.3: Total coverage. The total coverage (cov) 
(coverage for short) is computed by dividing the sum of acti-
vated assertions and fired transitions with the sum of the 
total number of assertions and transitions, as shown in 
Equation 6.4.

cova
aact
atot
-----------=

covtr
trfir
trtot
------------=
95



CHAPTER 6
(6.4)

Assuming, in Figure 6.5, that for a particular validation session 
transitions t1, t2 and t5 have been fired and the assertion in 
Equation 6.1 has been activated, the assertion, transition and 
total coverage are 100%, 60% and 67% as computed in Equation 
6.5, Equation 6.6 and Equation 6.7 respectively. 

(6.5)

(6.6)

(6.7)

6.2.4 ASSERTION ACTIVATION

During simulation, a record of fired transitions and activated 
assertion has to be kept, in order to compute the achieved cover-
age. As for recording fired transitions, the procedure is straight-
forward: For each transition fired, if it has never been fired 
before, add it to the record of fired transitions. However, when it 
comes to assertions, the procedure is not so obvious. Intuitively, 
an assertion is activated when all (relevant) aspects of it have 
been observed or detected during simulation. In order to for-
mally define the activation of an assertion, the concept of asser-
tion activation sequence needs to be introduced. 

The purpose of an activation sequence is to provide a descrip-
tion of what markings have to occur before the assertion is con-
sidered activated. As will be demonstrated shortly, the order 
between some markings does not matter, whereas it does 
between other markings. For this reason, an activation sequence 

cov
aact trfir+

atot trtot+
-----------------------------=

cova
1
1
--- 1= =

covtr
3
5
--- 0.6= =

cov 3 1+
5 1+
------------- 0.67≈=
96



VERIFICATION
is not a pure sequence, but a partial sequence defined as a set of 
-pairs, where the number denotes the 

order in which at least one of the associated markings has in the 
sequence. The order between markings in pairs with the same 
order number is undetermined, whereas markings with differ-
ent order numbers have to appear in the order indicated by the 
number.

The set of markings in a pair is denoted by a place name pos-
sibly augmented with a relation. This place name represents all 
markings with a token in that place, and whose value satisfies 
the relation. Below follows a formal definition of assertion acti-
vation sequence.

Definition 6.4: Assertion activation sequence. An assertion 
activation sequence is a set of pairs , where d is an 
integer and K is a (T)CTL atomic proposition, representing a 
set of markings.

Equation 6.8, given below, shows an example of an activation 
sequence. The order between  and  is irrelevant. How-
ever, they must both appear before .  stands for the set of all 
markings with a token in place , the value of the token does 
not matter.  represents the set of all markings with a 
token in  with a value equal to 5. Lastly,  denotes the mark-
ings with a token in place . 

(6.8)

To use activation sequences for detecting assertion activations, a 
method to derive such a sequence given an assertion (ACTL for-
mula) must be developed. In the following discussion, it is 
assumed that the assertion only contains the temporal operators 
R and U. Negation is only allowed in front of atomic proposi-
tions. Any formula  can be transformed to satisfy these condi-
tions. The following function,  returns a set of activation 
sequences corresponding to the formula . 

number markings,〈 〉

d K,〈 〉

p q 5=
r p

p
q 5=

q r
r

1 p,〈 〉 1 q 5=,〈 〉 2 r,〈 〉, ,{ }

ϕ
A ϕ( )

ϕ

97



CHAPTER 6
Definition 6.5: . The function  
returning a set of activation sequences given an ACTL for-
mula is recursively defined as:

 • , 
 •  

 • , 
 •

 •

 •

 •

It should be noted that  returns a set of activation 
sequences. The interpretation of this is if any of these sequences 
have been observed during simulation, the corresponding asser-
tion is considered activated. The function  is moreover pro-
vided with an auxiliary parameter , initially 0, in order to keep 
track of the ordering between the markings in the resulting 
sequence. 

The activation sequence corresponding to , an atomic 
proposition, is the singleton sequence containing markings with 
a token in place . Detecting a token in  is consequently suffi-
cient for activating that property. Similarly  and 

 are activated by markings where there is no token in 
 and where there is a token in  with a value satisfying the 

relation, respectively.  is activated if there either is 
no token in  or the token value is outside the specified relation.

Since there is no marking which satisfies , there 
cannot exist any activating sequence. , on the other 
hand, is activated by all markings. There is consequently no con-
straint on the marking. This situation is denoted by an empty 

A ϕ( ) A ϕ( ) A ϕ 0,( )=

A p d,( ) d p,〈 〉{ }{ }= A p¬ d,( ) d p¬,〈 〉{ }{ }=

A pℜ v d,( ) d pℜ v,〈 〉{ }{ }=

A pℜ v( )¬ d,( ) A p¬ pℜ v∨ d,( )=

A false d,( ) ∅= A true d,( ) ∅{ }=

A ϕ1 ϕ2∨ d,( ) A ϕ1 d,( ) A ϕ2 d,( )∪=

A ϕ1 ϕ2∧ d,( ) a b∪( )
b A ϕ2 d,( )∈

∪
a A ϕ1 d,( )∈

∪=

A Q ϕ1 R ϕ2[ ] d,( ) A ϕ1 d 1+,( ) A ϕ2¬ d 1+,( )∪=

A Q ϕ1 U ϕ2[ ] d,( ) A ϕ1¬ d 1+,( ) A ϕ2 d 1+,( )∪=

A ϕ( )

A ϕ( )
d

ϕ p=

p p
ϕ p¬=

ϕ pℜ v=
p p

ϕ pℜ v( )¬=
p

ϕ false=
ϕ true=
98



VERIFICATION
sequence. As will be explained shortly, such a property is there-
fore immediately marked as activated. 

Disjunctions introduce several possibilities in which the prop-
erty can be activated. It is partly for the sake of disjunctions that 

 returns a set of sequences, rather than a single one. The 
function returns the union of the sequences of each individual 
disjunct. It is sufficient that one of these sequences is detected 
during simulation to consider the property activated.

In conjunctions, the activation sequences corresponding to 
both conjuncts must be observed. Since both conjuncts may cor-
respond to several activation sequences, the two sets of 
sequences must be interleaved so that all possibilities (combina-
tions) are represented in the result. 

The formula , for any , is considered 
activated when either of the following two scenarios occurs. 
After  is detected, then from the point of view of this property, 
the following observations are of no significance any more. 
Therefore, detecting  is sufficient for activating this property. 
A similar situation applies when  no longer holds, therefore 
also  is sufficient for activation. Both situations refer to 
future markings, for which reason the order number (parameter 

) is increased with 1. 
The U operator follows a similar pattern as the R operator. An 

important characteristics of a , for any , 
formula is that  must appear in the future. The property does 
not specify anything about what should happen after . There-
fore,  is considered sufficient for activating the property. Sim-
ilarly, the property does not specify what should happen when 

 no longer holds. Detecting  is therefore also sufficient for 
activating the property. Since both situations refer to the future, 
the order number (parameter ) is increased with 1.

In the computation of activation sequences, the time bounds 
on the temporal operators of TCTL formulas, e.g. <10 in 

, are dropped by convention. 

A ϕ( )

Q ϕ1 R ϕ2[ ] Q A E,{ }∈

ϕ1

ϕ1
ϕ2

ϕ2¬

d

Q ϕ1 U ϕ2[ ] Q A E,{ }∈
ϕ2

ϕ2
ϕ2

ϕ1 ϕ1¬

d

AF 10< q
99



CHAPTER 6
Consider the example assertion in Equation 6.1, presented in 
a normalised form in Equation 6.9. 

(6.9)

The set of activation sequences corresponding to this formula is 
computed as follows:

with the following auxiliary computations:

As can be seen in the computation, the activation sequence 
 is the only one activating 
. According to the sequence, a token in  

with a value less than 20, which is eventually followed by a 
token in , activates the assertion. 

As will be seen in Section 6.2.5, activation sequences are not 
only used for computing the assertion coverage, but they are 
also useful for biasing the input stimuli to the MUV in order to 
boost assertion coverage. 

6.2.5 STIMULUS GENERATION

The task of stimulus generation is to provide the model under 
validation with input consistent with the assumptions given by 
the model on its environment. In the presented approach, the 
stimulus generator consists of another model, expressed in the 

AG p 20< AF q→( )
A false R p 20<( )¬ A true U q[ ]∨( )[ ]

⇔

A A false R p 20<( )¬ A true U q[ ]∨( )[ ] 0,( )

A false 1,( ) A p 20<( )¬ A true U q[ ]∨( )¬ 1,( )∪

∅ A p 20< E false R q¬[ ]∧ 1,( )∪

a b∪( )
b A E false R q¬[ ] 1,( )∈

∪
a A p 20< 1,( )∈

∪
a b∪( )

b 2 q,〈 〉{ }{ }∈
∪

a 1 p, 20<〈 〉{ }{ }∈
∪ 1 p, 20<〈 〉 2 q,〈 〉,{ }{ }

=

=

=

=

=

A p 20< 1,( ) 1 p, 20<〈 〉{ }{ }=

A E false R q¬[ ] 1,( ) A false 2,( ) A∪ q 2,( ) 2 q,〈 〉{ }{ }= =

1 p, 20<〈 〉 2 q,〈 〉,{ }
AG p 20< AF q→( ) p

q

100



VERIFICATION
same design representation as the MUV, i.e. PRES+. The exact 
procedure on how to obtain such a model, given an assumption 
ACTL formula, will be presented in Chapter 10. In this chapter, 
it is just assumed that it is possible to derive such a PRES+ 
model corresponding to an ACTL formula. This model encodes 
all possible behaviours which a PRES+ model can perform with-
out violating the property for which it was created. 

The stimulus generator and the MUV are then connected to 
each other during simulation to form a closed system. For this 
reason, the stimulus generator is not explicit in Figure 6.4. An 
enabled transition selected on Line 4 might belong to the MUV 
as well as to the stimulus generator. 

As an example, let us assume that only even numbers are 
accepted as input to port p in the model of Figure 6.5. This 
assumption is formally expressed in Equation 6.10. Following 
the discussion above, a model capturing this assumption is gen-
erated and attached to the MUV. The result is shown in 
Figure 6.6. A transition, which immediately consumes tokens, is 
attached to port q, implying the assumption that output on q
must immediately be processed.

(6.10)

It was mentioned previously that activation sequences can be 
used to boost assertion coverage during the simulation phase. 
This can be achieved by not letting the algorithm (Figure 6.4) 
select a transition to fire randomly (Line 4). The transition 
selection should be biased so that transitions leading to a mark-

pat1

[0..∞]

Figure 6.6: A MUV with stimulus generators

The model in Figure 6.5

Random 
even 

number

[0..0]

q at2ap1

AG p even p( )→( )
101



CHAPTER 6
ing in an activation sequence are selected with preference, 
thereby leading the validation process to activating one more 
assertions. When all markings in the sequence have been 
observed, the corresponding assertion is considered activated. 

 translates a logic formula  into a set of sequences of 
markings (represented by a place name, possibly augmented 
with a relation on token values). The transition selection algo-
rithm should select an enabled transition which leads to a mark-
ing which is first (with lowest order number) in any of the 
sequences. However, only selecting transitions strictly according 
to the activation sequences could lead the simulator into a part 
of the state space, from which it will never exit, leaving a big 
part of the state space unexplored. Therefore, an approach is 
proposed in which the transition selection is only guided by the 
activation sequences with a certain probability. The proposed 
transition selection algorithm is presented in Figure 6.7.

A random value p, denoting a probability, is chosen between 0 
and 1 (Line 3). If that value is less than a user-defined parame-
ter pc (Line 4), a transition is selected following an activation 
sequence if such transition exists (Line 5 and Line 6), otherwise 
a random enabled transition is selected (Line 7). The algorithm 
in Figure 6.7 is called on Line 4 in Figure 6.4. 

A ϕ( ) ϕ

1 function selectTransition(MUV: PRES+,  
actseqs: set of activation sequences) returns transition

2 entrans := the set of enabled transitions in MUV;
3 p := random[0..1];
4 if p < pc then
5 if ∃  t ∈ entrans, 

such that t leads to the first marking in any seq. in actseqs then
6 return t;
7 return any transition in entrans;

Figure 6.7: The transition selection process
102



VERIFICATION
The user-defined parameter pc controls the probability to 
select a transition which fulfils the activation sequence. This 
value introduces a trade-off which the designer has to make. The 
lower the value of pc is, the higher is the probability to enter 
unexplored parts of the state space. On the other hand, a too low 
value of pc might lead to the situation where the assertions are 
rarely activated. 

6.2.6 ASSERTION CHECKING

The objective of validation is to ensure that the MUV satisfies 
certain desired properties, called assertions. The part of the sim-
ulation process handling this crucial issue is the assertion 
checker, also called monitor. Designers often have to write such 
monitors manually, which is a very error-prone activity. The key 
point is to write a monitor which accepts the model behaviour if 
and only if the corresponding assertion is not violated. 

A model created from an ACTL formula was introduced for 
stimulus generation in Section 6.2.5, based on the results which 
will be presented in Chapter 10. The same type of models can 
also be used for assertion checking as monitors. The assertion in 
Equation 6.1 will be used to illustrate the operation of a monitor 
throughout this section and Figure 6.8 shows the essential part 
of the monitor corresponding to that assertion. For the sake of 
clarity, the ports p and q are omitted. Arrows connecting to these 
ports are labelled with the name of the corresponding port. 

The structure of monitors, created with the technique in 
Chapter 10, follows a certain pattern. All transitions in 
Figure 6.8, except one, interact directly with a port, either p or q. 
The exception is transition mt6, whose purpose is to ensure that 
a token is put in q before the deadline, 10 time units after p<20. 
Such transitions, watching a certain deadline, are called timers. 
This observation is important when analysing the output of the 
MUV.
103



CHAPTER 6
Figure 6.9 illustrates the intuition behind assertion checking. 
Both the input given by the stimulus generator and the output 
from the MUV are fed into the assertion checker. The assertion 
checker then compares this input and output with the monitor 
model generated from the assertion (like the one in Figure 6.8). 
For satisfiability, there must exist a sequence of transitions in 
the monitor leading to the same output as provided by the MUV, 
given the same input. This method works based on the fact that 
the monitor model captures all possible interface behaviours 
satisfying the assertion, including the interface behaviour of the 
MUV. The essence is to find out whether the MUV behaviour is 
indeed included in that of the monitor. 

Figure 6.8: Part of an example monitor

mt1

[0..10]

mp1

mp2a

mp2b

mp2c

mt2

mt3
mt4

mt6mt7

mt8

mt5

p

[x≥20]

x

p

q

p

q

q

q

[0..∞]

[0..∞]

[0..∞]
[0..0]

[0..∞]
[0..0]

[0..0]
104



VERIFICATION
As indicated in the figure, the input given to the MUV is also 
given to the assertion checker. That is everything that needs to 
be performed with respect to the input. As for the output 
sequence, on the other hand, the assertion checker has to per-
form a more complicated procedure. It has to find a sequence of 
transitions producing the same output. 

It was mentioned previously, that all transitions are directly 
connected to a port. Due to this regularity, the stipulated output 
can always be produced by (at least) one of the enabled transi-
tions in the monitor. If not, the assertion does not hold. The 
exception is timers. If, at the current marking, a timer is ena-
bled, the timer is first (tentatively) fired before examining the 
enabled transitions in the same manner as just described. Suc-
cessfully firing the timer signifies that the timing aspect of the 
assertion is correct.

Several enabled transitions may produce the same output. In 
the situation in Figure 6.8, for example, both transitions mt2
and mt3 are enabled and can produce the output q. However, fir-
ing either of them will lead to different markings and will con-
strain the assertion checker in future firings. The monitor has 
several possible markings where it can go, but the marking of 
the MUV only corresponds to one (or a few) of them. The prob-
lem is that the assertion checker cannot know which one. There-
fore, the assertion checker has to maintain a set of possible 

Assertion Checker

MUV
input

Stimulus
Generator output

Assertion Diagnostics

Figure 6.9: Assertion checking overview
105



CHAPTER 6
current markings, rather than one single marking. The asser-
tion checker, thus, has to find an output from each marking in 
the set. If a contradiction is reached, that marking is removed 
from the set. The assertion is found unsatisfied when the set of 
current markings is empty. Figure 6.10 presents the assertion 
checking algorithm. It replaces Line 6 and Line 11 in Figure 6.4. 
Line 1, Line 2 and Line 3 (Figure 6.10) are, however, part of the 
initialisation step at Line 1 in Figure 6.4. The algorithm uses 
the auxiliary function in Figure 6.11, which validates the timing 
behaviour of the model, and the function in Figure 6.12, which 
implements the output matching procedure.

1 monitor: PRES+ := model corresponding to the assertion to be checked;
2 curmarkings: set of markings := { initial marking of monitor };
3 newmarkings: set of markings;
4 ... 
5 oldtime := current time in MUV;
6 fire r; -- Line 5 or Line 10 in Figure 6.4
7 newtime := current time in MUV;
8 curmarkings :=  

validateTimeDelay(newtime - oldtime, curmarkings, monitor);
9 if r provided MUV with an input then
10 put the tokens produced by r as input to  

each marking in curmarkings;
11 if r provided MUV with an output then
12 e := marking in the out-ports of MUV;
13 newmarkings := ∅ ;
14 for each m ∈ curmarkings do 
15 set marking of monitor to m;
16 newmarkings := newmarkings ∪ findOutput(e, monitor);
17 curmarkings := newmarkings;
18 if curmarkings = ∅ then 
19 abort; -- Assertion not satisfied
20 ...

Figure 6.10: The assertion checking algorithm 
in the context of Figure 6.4
106



VERIFICATION
Throughout the validation process, the simulator must main-
tain a global variable, on behalf of the assertion checking, con-
taining the set of possible current markings in the monitor. In 
Figure 6.10, the variable curmarkings is used for this purpose. 
The variable newmarkings is an auxiliary variable whose use 
will soon become clear.

The assertion checking algorithm must, at a certain moment, 
know how long (simulated) time a transition firing takes in 
order to detect timing faults. The variable oldtime contains the 
current time before the transition was fired and newtime the 
time after. The difference between these two variable is the time 
it took for the transition, denoted r, to fire. This value is passed 
to the function validateTimeDelay (Figure 6.11) which validates 
the delay with respect to the assertion. The function examines 
all markings in curmarkings and returns the subset which still 
satisfy the assertion. The function will be explained in more 
detail shortly. 

If the fired transition, r, provides an input to the MUV, that 
input is also added to each marking in curmarkings, so that the 
monitor is aware of the input (Line 9 and Line 10). As input 
counts either putting a token in an in-port of the MUV or con-
suming a token from an out-port.

If the fired transition, r, provides an output from the MUV 
(Line 11), that output must be compared with the monitor model 
in the assertion checker. As output counts either putting a token 
in an out-port of the MUV or consuming a token from an in-port.

Since the monitor potentially can be in any of the markings in 
curmarkings, all of these markings have to be examined 
(Line 14), one after the other. The monitor is first set to one of 
the possible current markings, after which the enabled transi-
tions are examined with the function in Figure 6.12 (Line 16). 
The function returns a set of markings which successfully have 
produced the output. The members of this set are added to the 
auxiliary set newmarkings. Later, when all current markings 
107



CHAPTER 6
have been examined, the new markings are accepted as the cur-
rent markings (Line 17). 

If, at this point, the set of current markings is empty, no mon-
itor marking can produce the output and the assertion is con-
cluded unsatisfied (Line 18 and Line 19). 

The function in Figure 6.11 validates the timing aspects of an 
assertion. It examines the markings in curmarkings one after 
the other (Line 3). At each iteration, time is advanced in the 
monitor (Line 5). As a consequence, all enabled transitions are 
checked, so that the upper bound of their time delay interval is 
not exceeded (Line 6). If at least one transition exceeded its time 
bound, the marking currently under examination does not agree 
with the stipulated delay, and is skipped. Otherwise (Line 6), 
the marking is added to the result set newmarkings (Line 7) 
which later is returned (Line 8) and becomes the new set of cur-
rent markings (Line 8 in Figure 6.10).

Let us now focus on the auxiliary function in Figure 6.12. 
Given an output marking (the marking in the out-ports of the 
MUV) and a monitor, the function returns the set of markings 
which satisfy the given output. 

At this point, it can be assumed that the timing behaviour of 
the assertion has not been violated, since the function in 

1 function validateTimeDelay(d: delay, curmarkings: set of markings, 
monitor:PRES+) returns set of markings

2 newmarkings : set of markings := ∅ ;
3 for each m ∈ curmarkings do
4 set marking of monitor to m;
5 let time advance in monitor with d;
6 if not monitor exceeded the upper bound of the time delay interval  

of any enabled transition then
7 newmarkings := newmarkings ∪ { m };
8 return newmarkings;

Figure 6.11: Algorithm to check the timing aspect 
of an assertion
108



VERIFICATION
Figure 6.11 was called prior to this one. Thus the timers do no 
longer play any roll. Because of this and the fact that the lower 
bound of the time delay interval of timers is 0, it is safe to fire all 
enabled timers (Line 3). At this moment, all enabled transitions 
are directly connected with a port. Each of these enabled transi-
tions are fired one after the other (Line 6 and Line 7). The result 
after each firing is checked whether it matches the desired out-
put, denoted e (Line 8). If it does, the new marking should be 
stored in newmarkings in order to later be returned. There may, 
however, be tokens in the output place of some timers, e.g. mp2c
in Figure 6.8, which were never used for producing the output. 
This signifies that it was not yet time to fire those timers, i.e. the 
timer was fired prematurely. Before storing the new marking, 
the unused timer must therefore be “unfired” to reflect the fact 
that it was never used (Line 9 and Line 10), i.e. move the token 
from mp2c back to mp2b. The monitor is now ready again to be 
checked with respect to the timing behaviour of this marking in 
the next invocation of the assertion checker, according to the 

1 function findOutput(e: output marking, monitor: PRES+)  
returns set of markings

2 newmarkings : set of markings := ∅ ;
3 fire all enabled timers;
4 entrans := the set of enabled transitions in monitor;
5 initmarking := the current marking of monitor;
6 for each t ∈ entrans do
7 fire t in monitor;
8 if output marking of monitor = e then
9 if a timer has a token in its output place then
10 move the token to the input place;
11 newmarkings := newmarkings ∪ { current marking of monitor };
12 set marking of monitor to initmarking;
13 return newmarkings;

Figure 6.12: Algorithm for finding monitor transitions 
fulfilling the expected output
109



CHAPTER 6
same procedure. After storing the new marking, the monitor has 
to restore the marking to the original situation (Line 5 and 
Line 12) before examining another enabled transition. 

If the transition does not result in the desired output, the 
marking is restored (Line 12) and another enabled transition is 
examined. When all enabled transitions have been examined, 
the set newmarkings is returned (Line 13). 

The algorithm will be illustrated with the sequence of inputs 
and outputs given in Equation 6.11 with respect to the monitor 
depicted in Figure 6.8 for the assertion in Equation 6.1. p is an 
in-port and q is an out-port. Initially, the set of current markings 
only consists of one marking, which is the initial marking of the 
monitor, formally denoted in Equation 6.12.

(6.11)

(6.12)

The first transition puts a token in place p with the value 30. 
Since time has not elapsed, this operation is fine from the timing 
point of view. Putting tokens in an in-port is considered to be an 
input. The token is therefore just added to each possible current 
marking. The resulting set is shown in Equation 6.13.

(6.13)

In the next round, the token in p is consumed by the MUV. That 
is considered as an output, since it is an act by the MUV on its 
environment. According to the algorithm (Figure 6.10), the next 
step is to examine the enabled transitions and record the new 
possible markings. In this situation, four transitions are enabled 
in the monitor, mt1, mt2, mt3 and mt4. Firing mt1 leads to a 
marking identical to the initial one, Equation 6.12, and mt2
leads to the same marking but where a token has appeared in 
out-port q. However, this is not the output marking stipulated by 

p 30= p¬ delay:20 p 5=,〈 〉 p¬
delay:2 p 7=,〈 〉 p¬ delay:5 q 10=,〈 〉 q¬

, , , ,
, , ,

[
]

curmarkings m p1 0 0,〈 〉→{ }{ }=

curmarkings m p1 0 0,〈 〉→ p 30 0,〈 〉→,{ }{ }=
110



VERIFICATION
the MUV (no token in neither p nor q). For that reason, this 
marking is discarded. A similar argument holds for mt3. Firing 
mt4, on the other hand, leads to a marking where both mp2a and 
mp2b are marked and the output is the same as that of the MUV. 
Two markings are consequently valid considering the input and 
output observed so far. This is reflected in that curmarkings will 
contain both markings, as shown in Equation 6.14.

(6.14)

The next input comes after 20 time units, when a new token 
appears in p, this time with the value 5. At this moment, time 
has elapsed since the previous transition firing. When the mon-
itor is in the first marking, with a token in mp1, only transitions 
mt2 and mt3 are enabled prior to giving the input to the monitor. 
Those transitions do not have an upper bound on their time 
delay interval. Therefore, in this marking, time can elapse with-
out problem. However, in the second marking, with tokens in 
mp2a and mp2b, one transition is enabled, mt6. Moreover, the 
upper time bound of that transition is 10 time units. Delaying 
for 20 time units will exceed this bound. As a conclusion, this 
marking is not valid and removed from the set of current mark-
ings. The input is then added to the remaining marking. The 
result is shown in Equation 6.15.

(6.15)

With no delay, the token in p is then consumed. As discussed 
previously this is considered to be an output. In this case, since 
the value of the token is 5, only three transitions are enabled, 
mt2, mt3 and mt4. Transition mt1, is disabled since its guard is 
not satisfied. Transitions mt2 and mt3 do not produce the same 

curmarkings m p1 0 0,〈 〉→{ }
m p2a 0 0,〈 〉→ m p2b 0 0,〈 〉→,{ }

,{
}

=

curmarkings m p1 0 0,〈 〉 p 5 20,〈 〉→,→{ }{ }=
111



CHAPTER 6
output as the MUV (consume the token in p), so they are 
ignored. Only mt4 satisfies the output. The resulting set of 
markings is shown in Equation 6.16.

(6.16)

After 2 time units, another token arrives in p, this time with 
value 7. Advancing time by 2 time units is acceptable from the 
point of view of the monitor, since the only enabled transition, 
mt6, has a higher upper bound, . It is not explicit in 
Figure 6.11, but it is now necessary to mention that 2 time units 
are already used from mt6, leaving only 8 time units before it 
has to be fired. The input is added to each (only one in this case) 
set of current markings, as shown in Equation 6.17.

(6.17)

Next, that new token disappears. Before examining the enabled 
transitions, all enabled timers must first tentatively be fired, 
leading to the markings in Equation 6.18.

(6.18)

Next, the token in p is consumed. Three transitions are enabled, 
mt5, mt7 and mt8. However, only mt5 satisfies the output. The 
resulting marking should consequently be stored. Firing transi-
tion mt5 did not involve the timer (mt6), so before storing the 
marking, the timer must be unfired, i.e. moving the token from 
mp2c back to mp2b. This was apparently not the right moment to 
fire the timer. Equation 6.19 shows the resulting marking.

(6.19)

curmarkings m p2a 0 20,〈 〉→ m p2b 0 20,〈 〉→,{ }{ }=

10 2>

curmarkings m p2a 0 20,〈 〉→ m p2b 0 20,〈 〉
p 7 22,〈 〉→

,→,{
}

{
}

=

curmarkings m p2a 0 20,〈 〉→ m p2c 0 22,〈 〉
p 7 22,〈 〉→

,→,{
}

{
}

=

curmarkings m p2a 0 22,〈 〉→ m p2b 0 20,〈 〉→,{ }{ }=
112



VERIFICATION
After 5 time units, the MUV produces the output q with value 
10. Again, the timer mt6 is tentatively fired. Three transitions 
are now enabled, mt5, mt7 and mt8, but only the latter two can 
produce a valid output. They lead to two different markings. The 
token in the output place of the timer, mp2c, was consumed so no 
timer needs to be unfired. The result in shown in Equation 6.20.

(6.20)

The output, q, is then consumed by the environment of the MUV 
(stimulus generator). Removing a token from an out-port is con-
sidered as an input, for which reason it is removed from each 
marking in curmarkings. The remaining set of markings is 
shown in Equation 6.21.

(6.21)

The following example will demonstrate how an unsatisfied 
assertion is detected. Consider the sequence of inputs and out-
puts in Equation 6.22 and the assertion and monitor in Equa-
tion 6.1 and Figure 6.8 respectively.

(6.22)

When the input p, with the value 5, and the output “consuming 
the token in p” have been processed, the set of current markings 
in the assertion checker has reached the situation in Equation 
6.23.

(6.23)

After 20 time units a token in out-port q with value 10 is pro-
duced. First, time is elapsed in the monitor. One transition, mt6, 
is enabled, and it has an upper time bound of 10 time units. The 

curmarkings m p1 10 27,〈 〉→ q 10 27,〈 〉→,{ }
m p2a 0 27,〈 〉→ m p2b 10 27,〈 〉 q 10 27,〈 〉→,→,{ }

,{
}

=

curmarkings m p1 10 27,〈 〉→{ }
m p2a 10 27,〈 〉→ m p2b 10 27,〈 〉→,{ }

,{
}

=

p 5= p¬ delay:20 q 10=,〈 〉, ,[ ]

curmarkings m p2a 0 0,〈 〉→ m p2b 0 0,〈 〉→,{ }{ }=
113



CHAPTER 6
transition thus exceeds this bound, which makes the marking 
being discarded. The set of current markings is now empty, 
which signifies that the assertion is violated.

6.2.7 COVERAGE ENHANCEMENT

The previous sections have discussed issues related to the simu-
lation phase (see Figure 6.4). The simulation phase ends when 
the stop criterion, which will be discussed in Section 6.2.8, is 
reached. After that, the validation algorithm enters the cover-
age enhancement phase, which tries to deliberately guide the 
simulation into an uncovered part of the state space, thereby 
boosting coverage. As indicated on Line 8 in Figure 6.4, a cover-
age enhancement plan has to be obtained. This plan describes 
step by step how to reach an uncovered, with respect to the par-
ticular coverage metrics used, part of the state space. This sec-
tion describes the procedure to obtain the coverage 
enhancement plan. Obtaining this plan is the core issue in the 
coverage enhancement phase. 

A model checker returns a counter-example when a property 
is proven unsatisfied. That is true for ACTL formulas. However, 
for properties with an existential path quantifier, the opposite 
holds. A witness is returned if the property is satisfied. A com-
mon name for both counter-examples and witnesses is diagnos-
tic trace. For instance, when verifying the property , the 
model checker provides a trace (witness) which describes exactly 
step by step how to reach a marking where  holds, starting 
from the initial marking. This observation is the centrepiece in 
the coverage enhancement procedure. The trace constitutes the 
coverage enhancement plan mentioned previously. 

What  represents depends on the particular coverage met-
rics used. In our case, the coverage metrics is a mix of assertion 
coverage and transition coverage as described in Section 6.2.3. 
The following two sections will go into the details of the peculi-

EFϕ

ϕ

ϕ

114



VERIFICATION
arities of enhancing both assertion and transition coverage 
respectively. 

Enhancing Assertion Coverage

Each assertion has an associated activation sequence, as 
described previously. During the simulation phase, the first 
markings in the sequence are removed as they are observed in 
the MUV. When the validation algorithm (Figure 6.4) reaches 
the coverage enhancement phase, only partial activation 
sequences remain. The first marking in the sequence with the 
least number of remaining markings is chosen as an objective, 

, for coverage enhancement. 
Assume that no marking in the sequence corresponding to the 

property in Equation 6.9 has been observed, then the objective 
would be , i.e. to find a sequence of transitions, such that 
when fired, would lead to a marking where . The property 
given to the model checker would therefore be . The 
model checker will then automatically provide the requested 
sequence of transitions in the diagnostic trace.

Enhancing Transition Coverage

Enhancing transition coverage is about finding a sequence of 
transitions leading to a marking where a previously unfired 
transition is enabled and fired. Having found a previously 
unfired transition, t, the property  is given to the 
model checker. The model checker will then automatically pro-
vide a sequence of transitions, which, when fired, will lead to a 
marking where t is enabled and fired. In this way, transition cov-
erage is artificially improved.

The time that the model checker takes to find a coverage 
enhancement plan depends heavily on which previously unfired 
transition is chosen for coverage enhancement. It is therefore 
worth the effort to find a transition which is “close” to the cur-
rent marking, in the sense that the resulting enhancement plan 

ϕ

p 20<
p 20<

EF p 20<

EF fired t( )
115



CHAPTER 6
is short, and hence also the model checking time. Definition 6.6
defines a measure of distance between a marking and a transi-
tion or place in PRES+ models. The measure can be used to heu-
ristically find an appropriate transition which leads to a short 
trace. The measure, in principle, estimates the number of tran-
sition firings needed to fire the transition given the marking.

Definition 6.6: Distance. Let  be a marking,  a set of 
values, U a universe containing all possible values which can 
occur in the model ( ), t a transition, p a place and c1
and c2 predefined constants.  denotes the ith input 
place of t.  is recursively defined as:

 •If , then 

 

Otherwise, 

 

 • If , then  

If , then  

 

M V

V U⊆
Pt i( )

dist t V M, ,( )

f t x1 … xn, ,( ) gt x1 … xn, ,( ){ } V∩ ∅=

dist t V M, ,( ) c1=

dist t V M, ,( )

dist Pt i( ) v U∈ gt x1 … xi 1– v xi 1+ … x °t, , , , , ,( )

f t x1 … xi 1– v xi 1+ … x °t, , , , , ,( ) V∈

x1 … xi 1– xi 1+ … x °t, , , , , U∈

∧

∧

{

} M

,

,

(

)

i 1=

°t

∑

=

M p( ) ∅≠ M p( )v V∈∧ dist p V M, ,( ) 0=

M p( ) ∅≠ M p( )v V∉∧

dist p V M, ,( ) c2
min

t °p∈
dist t V M, ,( ){ }+=
116



VERIFICATION
If , then 

V is an auxiliary parameter with the initial value . In the 
case of measuring the distance from a transition t, the set V con-
tains all possible values which can be produced by the transition 
function ft. Similarly, in the case of measuring the distance from 
a place p, V contains all possible values which a token in p can 
carry. 

The distance between a transition t and a marking is defined 
in two different ways, depending on if there exist parameters to 
the function ft, , which satisfy the guard gt, such that 
the function can produce a value in the set V. If such parameters 
do not exist, it means that the transition cannot produce the 
specified values. The distance is then considered to be infinite, 
which is reflected by the constant c1. c1 should be a number big-
ger than any finite distance in the model. 

Otherwise, if at least one value in V can be produced by ft, the 
distance of t is the same as the sum of all distances of its input 
places. The set V contains, in each invocation corresponding to 
input place p, the values which the function parameter associ-
ated to p may have in order for ft to produce a value in V. 

In the case of measuring the distance between a place p and a 
marking M, the result depends on whether there is a token in 
that place, and if so, the value in that token. If there is a token in 
p and the value of that token is in V, the distance is 0. In other 
cases, the search goes on in all of the incoming paths. For a token 
to appear in p, it is sufficient that only one input transition fires. 
The distance is defined with respect to the shortest (in terms of 
the distance) of them. This case is further divided into two cases: 
there is a token in p (but with a value not in V), or there is no 
token in p. In the latter case, 1 is added to the path to indicate 

M p( ) ∅=

dist p V M, ,( ) 1 min
t °p∈

dist t V M, ,( ){ }+=

V U=

x1 … xn, ,
117



CHAPTER 6
that one more step has to be taken along the way from M to p. 
However, in the former case, a larger constant c2 is added to the 
distance as penalty in order to capture the fact that the token in 
p first has to disappear before a token with a good value can 
appear in p. The proposed distance heuristic does not estimate 
further the exact number of transition firings it takes for this to 
occur.

Figure 6.13 shows an example which will be used to illustrate 
the intuition of the distance metrics. In the example, the dis-
tance between transition t6 and the current marking (tokens in 
p1 and p2) will be measured. All transition functions are consid-
ered to be the identity function. 

Transition t6 has two input places p6 and p7. Consequently, in 
order to fire t6 there must be tokens in both of these places. The 
distance of t6 is therefore the sum of the distances of p6 and p7. 

In order for a token to appear in p7, only t2 needs to be fired. 
The distance of p7 is therefore . Transition t2
is already enabled, so the distance of t2 is 0 (because there is a 
token in its only input place). The distance of p7 is hence 1. 

t1

p1

p2

p3

p4
p5

p6

p7

p8

t2

t3

t4

t5

t6

Figure 6.13: Example of computing distance

1 dist t2 U M, ,( )+
118



VERIFICATION
At p6, a token may appear from either t4 or t5. The distance of 
p6 is therefore 1 plus the minimum distance of either transition. 
The distance of t5 is 2 (obtained in a similar way as in the case of 
p7), while the distance of t4 is 1. Therefore, 

. 
Consequently, the distance of t6 is 

. 
Three transition firings are thus estimated to be needed in order 
to enable t6. 

Given this distance metrics, the uncovered transition with the 
lowest distance with respect to the current marking may be cho-
sen as a target for coverage enhancement, since it results (heu-
ristically) in the shortest enhancement plan, and it is obtained 
fast by the model checker. 

This procedure can be taken one step further. Not only can the 
closest transition be chosen, but the smallest transition-mark-
ing pair. Among all visited markings and uncovered transitions, 
the pair with the smallest distance is chosen. When such a pair 
has been found, the model is reset to the particular marking and 
the coverage enhancement is performed with respect to that 
marking. 

Although some time has to be spent on finding the transition-
marking pair with the smallest distance, it is worth the effort 
since the time spent in the model checking is reduced signifi-
cantly. This is the alternative which we have implemented and 
used in the experiments. However, it is of great importance that 
the distance computation is as efficient as possible, since it is 
invoked many times when searching for a good transition-mark-
ing pair. In order to avoid long computation times, a maximum 
search depth can be introduced. When that depth is reached, a 
constant c3 is returned, denoting that the distance is big.

dist p6 U M, ,( ) 1 min dist t4 U M, ,( ) dist t5 U M, ,( ),{ }+ 2= =

dist t6 U M, ,( ) dist p6 U M, ,( ) dist p7 U M, ,( )+ 2 1+ 3= = =
119



CHAPTER 6
Failing to Find a Coverage Enhancement Plan

It might happen that the model checking takes a long time. In 
such cases, a time-out interrupts this procedure leading to a sit-
uation where no coverage enhancement plan could be obtained. 
When this occurs, the rest of the coverage enhancement phase is 
skipped, and a new run of the simulation phase is started. The 
failed assertion or transition will not be target for coverage 
enhancement again.

6.2.8 STOP CRITERION

Line 3 in Figure 6.4 states that the simulation phase ends when 
a certain stop criterion is reached. Section 6.2.2 briefly men-
tioned that the stop criterion holds when a certain number of 
transitions are fired without any improvement of the coverage. 
This number is called simulation length. It can, however, be very 
difficult to statically determine a simulation length which mini-
mises total validation time. In this section, a dynamic heuristic 
approach, where the simulation length is determined at run-
time, is presented. Section 6.2.9 will demonstrate that this heu-
ristic yields a comparable coverage as the “optimal” simulation 
length with little penalty in time for the average case. 

Static Stop Criterion

The diagram in Figure 6.14 depicts the relation between the 
simulation length and the total validation time. The graph 
shows the result of an example which has been validated with 
different values on the simulation length. Each diamond 
(marked “sample”) in the figure corresponds to one such run. 
The example was validated 3 times per simulation length1. The 
average of the three results belonging to the same simulation 

1. Since there exists non-determinism both in the MUV and in the meth-
odology, the verification times may differ even if the same simulation 
length is used.
120



VERIFICATION
length is also marked in the graph. The averages for each simu-
lation length are connected by a line, in order to make the trend 
more visible1.

For small simulation lengths, the validation time is quite 
high. This is due to the fact that not many transitions (or asser-
tions) are covered in the simulation phase. Therefore, the model 
checker has to be invoked frequently to find enhancement plans 
for each of the uncovered transitions or assertions. This action is 
expensive. On the other hand, for big simulation lengths, a lot of 
time is spent in the simulation phase without any contribution 
to coverage. Between these two extremes, there is a point at 
which the least possible amount of time is wasted in the simula-
tion phase and coverage enhancement phase respectively. For 

1. All instances have been run until their actual finish according to Line 2 
in Figure 6.4. This might, in general, lead to situations where the 
obtained coverage does not reach 100%. However, in this particular 
case, 100% coverage is reached everywhere.

Figure 6.14: Relation between simulation length 
and validation time
121



CHAPTER 6
the example given in Figure 6.14, that point is somewhere 
between 15 and 30. 

There are basically two factors that influence the location of 
this point: the size of the MUV (or actually its state space) and 
the sizes of the assertions (or actually the state space of their 
monitors). The bigger the size of the MUV is, the longer is the 
“optimal” simulation length, since more time will be needed for 
model checking in the coverage enhancement phase. Similarly, 
the bigger the sizes of the assertions are, the shorter is the “opti-
mal” simulation length, since more time has to be spent in asser-
tion checking in the simulation phase. 

However, it is impossible to obtain the best simulation length 
before-hand without first validating the MUV multiple times. 
For this reason, a dynamic method which finds this value at run-
time, while paying attention to coverage, is desired. 

Dynamic Stop Criterion

As concluded in the previous section, the total validation time 
depends on the two factors: MUV size and assertion size. These 
factors influence model checking time and transition firing time 
respectively. The total validation time consequently is directly 
dependent on these factors. The following discussion will derive 
a function describing the total validation time in terms of these 
factors. This function will later be used to analytically deter-
mine the simulation length which most likely minimises valida-
tion time.

The total time the validation process spends in the coverage 
enhancement phase is the sum of the times of all model checking 
sessions. For a given simulation length, , and average model 
checking time (including the time to find a marking-transition 
pair with small distance), , the time spent in the coverage 
enhancement phase can be expressed as stated in Equation 
6.24. 

σ

tver
122



VERIFICATION
T is the set of transitions in the MUV and A is the set of asser-
tions.  is a function expressing how big coverage would 
have been achieved at a certain simulation length , if the veri-
fication only is performed with the simulation phase, i.e. no cov-
erage enhancement takes place.  thus denotes how 
big percentage of the state space has not been covered. It is 
assumed that this part has to be targeted in the coverage 
enhancement phase. Multiplying this number with the total 
number of transitions and assertions, , 
yields the number of transitions and assertions which are not 
yet covered by the simulation phase and need to be targeted by 
the coverage enhancement phase. Given that  represents 
the average time spent in one coverage enhancement phase, it is 
straightforward to conclude that the expression in Equation 
6.24 approximates the total time spent in the coverage enhance-
ment phase.

(6.24)

The time spent in the simulation phase depends mainly on the 
assertion checking time. The assertion checking procedure is 
invoked after each transition firing. The total time spent in the 
simulation phase is hence linear to the number of transitions 
fired. The number of transitions fired can be approximated with 
the simulation length, in particular for large values. Equation 
6.25 shows the corresponding expression, where  is the aver-
age time it takes to fire a transition, including the subsequent 
assertion check. 

(6.25)

The approximate total validation time is the sum of  and 
, as shown in Equation 6.26.

(6.26)

cov σ( )
σ

1 cov σ( )–

1 cov σ( )–( ) T A∪⋅

tver

tenh σ( ) 1 cov σ( )–( ) T A∪ tver⋅ ⋅=

t fir

tsim σ( ) t fir σ⋅≈

tenh σ( )
tsim σ( )

ttot σ( ) tenh σ( ) tsim σ( )+
1 cov σ( )–( ) T A∪ tver⋅ ⋅ t fir σ⋅+

= =
123



CHAPTER 6
The goal is to find a suitable simulation length , such that 
 is minimised. In Equation 6.26, there are three parame-

ters whose values are unknown prior to validation, ,  
and . The latter two can relatively straightforwardly be 
obtained by measuring the time it takes to run the model 
checker or fire and assertion check a transition respectively. 
Those parameters do not depend on the simulation length, but 
remain fairly constant throughout the entire process. 

Before the first simulation phase,  must be assigned an 
initial estimated value since it is too computationally expensive 
to invoke the model checker in order to obtain an authentic 
value. Not until after the first coverage enhancement phase, an 
authentic value has been obtained which can be used in the sub-
sequent simulation phases. This initial value should depend on 
the size of the MUV. 

Since it is relatively inexpensive to fire a transition and asser-
tion check the result,  does not need to be assigned an initial 
default value. After a few iterations in the simulation phase, an 
authentic value can quickly be obtained.

In order to determine the function , the following 
experiment is performed. First run the simulation phase with 
simulation length 1, and note down the obtained coverage in a 
diagram. Next, do the same with simulation lengths 2, 3, 4, etc. 
In practice, it is not necessary to run the simulation separately 
for each simulation length, but the coverage for each simulation 
length can be obtained in one single run. 

The experiment will show that the longer the simulation 
length is, the higher is the obtained coverage. For short simula-
tion lengths, many uncovered transitions and assertions are 
encountered on each simulation length, resulting in a rapid rise 
in coverage. The longer the simulation length, the less addi-
tional uncovered transitions and assertions are encountered 
compared the previous simulation length. This function is, thus, 
exponential. 

σ
ttot σ( )

cov σ( ) tver
tfir

tver

tfir

cov σ( )
124



VERIFICATION
It is, however, practically infeasible to empirically derive this 
function by extensive simulation. By doing that, a large part of 
the system has already been verified and the use of knowing the 
coverage function, in order to minimise total validation time, is 
severely diminished. 

Since we cannot know the exact shape of the  function 
in advance, it has to be estimated. As the simulation phase 
progresses, more and more data about the coverage function can 
be collected, in the same way as the experiment described previ-
ously. The data collected for short simulation lengths obtained 
early during simulation, can be used to predict the coverage for 
longer simulation lengths. 

Figure 6.15 shows a diagram in which the coverage obtained 
at each simulation length is marked (Sample) for a certain run. 
The graph only shows the results referring to one single simula-
tion phase. Such diagrams follow in general an exponential 
curve of the form , where both C and D are 

cov σ( )

Figure 6.15: Relation between simulation length 
and coverage

cov σ( ) CeDσ E+=
125



CHAPTER 6
negative. In order to obtain an estimation of the coverage func-
tion for instant simulation lengths longer than the one currently 
reached, these three parameters (C, D and E) have to be 
extracted from the points obtained from the simulation so far. 
This extraction is performed using the Least Square Method,
under the constraint that . That method minimises the 
distance between the sample points (measured coverage) and 
the estimated curve.

Given the points in Figure 6.15, the least square method gives 
us that ,  and . The result-
ing exponential curve is shown in the same figure. Having 
obtained this function, Equation 6.26 can be rewritten as Equa-
tion 6.27.

(6.27)

Provided the expression of total validation time in Equation 
6.27, it is straightforward to find the simulation length corre-
sponding to the shortest validation time with analytical meth-
ods. The resulting expression is presented in Equation 6.28.

(6.28)

In the example of Figure 6.14 and Figure 6.15, , 
 and . Using the formula in Equation 

6.28 gives us that the optimal simulation length is 16, as com-
puted in Equation 6.29.

(6.29)

E 1≤

C 0.9147–= D 0.53–= E 0.7668=

ttot σ( ) 1 CeDσ E––( ) T A∪ tver⋅ ⋅ t fir σ⋅+=

σ

t fir
C D T A∪ tver⋅ ⋅
------------------------------------------------ln

D
-------------------------------------------------------=

t fir 0.1255=
tver 33.36= T A∪ 36=

σ

0.1255
0.9147–( ) 0.53–( ) 36 33.36⋅ ⋅ ⋅

---------------------------------------------------------------------------------ln

0.53–
---------------------------------------------------------------------------------------- 16≈=
126



VERIFICATION
For each new simulation phase (Line 3 in Figure 6.4), a new sim-
ulation length is calculated according to Equation 6.28. The new 
value will be more accurate than the previous ones, as more 
data, on which the calculation is based, have been collected. 

The only reason for not reaching 100% coverage with this sim-
ulation technique, is that obtaining a coverage enhancement 
plan took too long time and timed out. In such cases, the param-
eter  will be large. Analysing Equation 6.28 gives that the 
larger  is, the larger simulation length  should be chosen 
(considering that both C and D are negative, and that the quo-
tient inside the logarithm generally is less than 1). As a conse-
quence, when more and more coverage enhancement attempts 
fail, the simulation phase becomes longer. Spending more time 
in the simulation phase results in a bigger collection of encoun-
tered markings (states), which increases the probability of find-
ing a transition-marking pair with a small distance 
(Definition 6.6), and thereby influences coverage in a positive 
way. 

6.2.9 EXPERIMENTAL RESULTS

The proposed formal method-aided simulation technique has 
been tested on a variety of models and assertions. The results 
are presented in Table 6.5. The table compares the time needed 
and the coverage obtained using the static and dynamic stop cri-
terion respectively. The values given are the average values of 
several runs on the same model and assertions. The complexity 
of the models is given in terms of number of transitions. 
Although this number is generally not enough to characterise 
the complexity of a model, it still provides a hint about the size 
of the model and is used due to the lack of a more accurate, but 
still concise, metrics. Examples 1 through 27 consist of randomly 
generated models. Examples 28 through 33 model a control unit 
for a mobile telephone, traffic light controller and a multiplier 
respectively. Each model is verified for two different properties.

tver
tver σ
127



CHAPTER 6
Table 6.5: Experimental results

Time (s) Time 
Diff. 
(%)

Coverage (%) Cov. 
Diff
(%)Ex. Trans. Dyn. Static Dyn. Static

1 28 22.67 24.54 -7.62 100 100 0.00
2 28 51.75 38.30 35.12 100 100 0.00
3 35 42.40 39.74 6.69 100 100 0.00
4 35 62.55 60.78 2.91 100 100 0.00
5 42 55.38 58.77 -5.77 100 100 0.00
6 42 82.67 78.71 5.03 100 100 0.00
7 49 70.45 80.42 -12.40 100 100 0.00
8 49 101.64 105.16 -3.35 100 100 0.00
9 56 93.60 378.28 -75.26 100 99 1.01
10 56 143.36 120.73 18.74 100 100 0.00
11 63 137.14 289.89 -52.69 100 99 1.01
12 63 157.23 161.75 -2.79 100 100 0.00
13 70 298.81 151.43 97.33 99.5 100 -0.50
14 70 345.21 196.22 75.93 99.5 100 -0.50
15 7 6.29 4.43 41.99 100 100 0.00
16 14 261.98 399.91 -34.49 95 95 0.00
17 14 270.23 277.01 -2.45 95 95 0.00
18 21 627.27 550.78 13.89 95 94 1.06
19 21 891.39 821.83 8.46 89 90 -1.11
20 7 7.57 4.66 62.45 100 100 0.00
21 7 16.41 10.49 56.43 100 100 0.00
22 14 253.19 240.65 5.21 98 95 3.16
23 14 265.08 388.45 -31.76 93 95 -2.04
24 30 15.27 10.42 46.55 100 100 0.00
25 75 119.37 93.06 28.27 100 100 0.00
26 150 564.54 504.37 11.93 100 100 0.00
27 225 1768.35 1604.84 10.19 100 100 0.00
28 31 1043.97 935.68 11.57 98 99 -1.01
29 31 599.19 417.30 43.59 95 100 -5.00
30 36 216.41 157.01 37.83 100 100 0.00
31 36 279.46 250.10 11.74 100 100 0.00
32 8 13.12 10.21 28.50 100 100 0.00
33 8 330.47 316.21 4.51 100 100 0.00
128



VERIFICATION
It should be emphasised that the simulation length used for 
the static stop criterion was obtained by empirically evaluating 
several different values, finally choosing the one giving the 
shortest validation time for comparison. The performance given 
by this method can consequently not be achieved in practice, and 
only serves as a reference. 

As can be seen, in most cases using the dynamic stop criterion 
results in validation times close to those for the static stop crite-
rion. There exist however cases where there is a big difference. 
This situation occurs if one method did not reach as high cover-
age as the other and, thus, had more timeouts in its coverage 
enhancement phase, thus adding to total time. 

It can be deduced from the figures that, in average, the 
dynamic approach is 15% slower than using the static stop crite-
rion (if that one could be used in practice, which is not the case).
However, in 30% of the cases, the dynamic approach was actu-
ally faster. This situation may occur, since choosing the simula-
tion length for the static stop criterion is not a very accurate 
process. It could happen that the dynamic stop criterion finds a 
simulation length closer to the actual optimum. The loss in cov-
erage is, on the other hand, very small. In average, coverage is 
0.12% lower using the dynamic approach.

Although the dynamic approach performs slightly worse on 
both aspects, it should be remembered that, in practice, it is 
impossible to reach the values listed in the table with the static 
approach. As mentioned previously, the values were obtained by 
trying several alternatives for the static simulation length, thus 
validating the system multiple times. It cannot be known in 
advance which simulation length results in the shortest valida-
tion time. 

All models and all assertions have in addition been validated 
with pure model checking. The model checker found a solution, 
but in one order of magnitude longer time than the proposed 
approach. In some of the cases the model checker ran out of 
memory (2GB) before any result could be delivered. 
129



CHAPTER 6
The models were moreover also verified with pure simulation. 
The simulation went on for as long time as was used by the 
dynamic stop criterion. The total coverage obtained by the sim-
ulation process after this time, was always less than or, in some 
cases, equal to our proposed mixed approach.
130



P
ar

t 
II

I

PART  III
Integration 
Verification





INTEGRATION VERIFICATION METHODOLOGY
Chapter 7
Integration Verification 

Methodology

HIS CHAPTER PROVIDES an overview of the proposed 
integration verification methodology. It emphasises the 
particular problems related to such verification, also 

briefly mentioned in Chapter 4. The details are explained thor-
oughly in Chapter 8 and Chapter 9. 

The chapter begins with introducing an example used to 
explain the verification process and its challenges.

7.1 Explanatory Example
To illustrate the methodology, an example of a military aircraft, 
built on the General Avionics Platform (GAP) [Loc91] model, is 
presented.

The system is centred around one single component, the MCC 
(Mission Control Computer). All other components communicate 
only with the MCC which then coordinates all requests and 
responses. Besides the MCC, the system consists of the following 
components: Radar, Display & Controls, Tracker and Weapon.

T

133



CHAPTER 7
The Radar component repeatedly sends signals, with a regu-
lar time interval, concerning the current situation in the sky to 
keep other components updated. The Display & Controls compo-
nent displays the information it receives from the radar, via the 
MCC, on a screen. It also notifies the MCC about the status of 
the controls, for instance if a “fire” command is issued. The 
Tracker component, when activated, traces one single enemy 
plane and issues orders to Weapon to aim at it. The Weapon 
component receives aiming and firing instructions.

The whole setting is illustrated in Figure 7.1 at a high level of 
abstraction, not taking communication details into account. 
Messages sent by one component are delivered to the recipient 
without loss. However, we would also like to specify and model 
the communication mechanism through which the components 
interact. A single segment LAN is chosen for this purpose. The 
selected protocol is connection based. This yields the situation in 
Figure 7.2, where the LAN is placed in the centre between the 
components and the protocol adapters. Note that from a formal 
and methodological point of view, all boxes in the figure includ-
ing the LAN and the protocol handlers are also components. 

target_update update lock fire update lock_req aim aim_req fire_req

radar_in update_disp lock_req fire_req update_track lock aim_req aim fire

m

MCC

Radar Display & Controls Tracker Weapon

Figure 7.1: A high level model of the GAP example

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

134



INTEGRATION VERIFICATION METHODOLOGY
What remains to be added is the glue logics, represented by the 
clouds between the components.

As mentioned previously, a connection based protocol is used 
in the design. However, the components in the high-level model 
in Figure 7.1 are not designed to communicate over such a pro-
tocol. Thus, the functionality of establishing and maintaining a 
connection must be added in the glue logic. The same glue logic 
also has to handle errors in case the connection was refused. The 
model of such a glue logic between the Radar and its Protocol 
adapter can be seen in Figure 7.3 (the time delay intervals on 
the transitions are not shown in the figure for the sake of reada-
bility). 

Before Radar can send any message, the glue logic must con-
nect to the MCC. This is reflected in the figure by the fact that 
transition  is not enabled until the protocol reported that it 
has successfully been connected and a token appears in . To 

radar_in update_disp lock_req fire_req update_track lock aim_req aim fire

MCC (= Mission Control Computer)

target_update update lock fire update lock_req aim aim_req fire_req

Radar Display & Controls Tracker Weapon

Single Segment LAN

Figure 7.2: Refined GAP model

Protocol Adapter

Protocol Adapter Protocol Adapter Protocol Adapter Protocol Adapter

t2
p2
135



CHAPTER 7
achieve this, a token with value  is passed to the 
Protocol adapter ( ), indicating that a connection to component 
MCC is requested. When the connection is established,  
will be passed to the Protocol adapter ( ). The first element of 
the tuple is a command to the protocol (”sd” is a shorthand for 
”send”) and the second element is an argument to the command. 

s

m

n

n

0

Radar

Protocol Adapter

target

inoutstatus

sendrec

update

Figure 7.3: The glue logic between Radar and its Protocol

con MCC,〈 〉

sd m,〈 〉

s connected=[ ]

s disconnected=[ ]

s rejected=[ ]

s others=[ ]

n 1+

n 5<[ ] t2 t1

t3

t4

t5

t6

t7

t10

t8

t9
t11

p1

p2

p3

p6 p5

p4

0 0,〈 〉

n

s
s

s

con MCC,〈 〉
t1

sd m,〈 〉
t2
136



INTEGRATION VERIFICATION METHODOLOGY
Here the argument is a tuple of the destination of the message 
and the message itself. 

If, however, the connection failed ( ), the glue logic will con-
tinue to attempt to connect, at most five times ( ). It has been 
decided by the designer that it is always the peripheral compo-
nents (not the MCC) which initiate any connection requests. The 
MCC, on the other hand, must always listen for connection 
requests from the other components.

7.2 Objective and Assumptions
The objective of the proposed methodology is to verify the inter-
face properties of the components.

The methodology is based on the following three assumptions:

 • The components themselves are already verified.
 • The components have some requirements on their interfaces 

expressed in a formal notation.
 • A particular model of the component is provided which is 

used in the verification process to represent the component.

The first assumption states that the components themselves are 
already verified by their providers, so they are considered to be 
correct. What remains to be verified is the interaction between 
the components through the glue logic, i.e. the integration. 

According to the second assumption, the components impose 
certain requirements on their interfaces, which the environment 
must satisfy in order for the component to function correctly. 
The requirements are expressed with (T)CTL formulas, 
described in Section 3.3, in terms of the ports in the specific 
interface. It is important to note that these formulas do not 
describe the behaviour of the component itself, but rather 
describe how the component requires the rest of the system (its 
environment) to behave in order to work correctly. 

t6
t8
137



CHAPTER 7
Review the example introduced in Section 7.1. The communi-
cation protocol chosen in the example was connection based 
(Figure 7.2). A Protocol adapter implementing the chosen proto-
col was supplied and verified by a provider. (T)CTL formulas 
describing the expected input on each interface of the compo-
nent were also supplied. 

Two of the formulas provided together with the Protocol 
adapter component are:

(7.1)

(7.2)

Equation 7.1 states that the protocol can never receive a send 
command when it is disconnected. Equation 7.2 requires that as 
long as the protocol is already connected, it is prohibited to con-
nect again. Note that all formulas are expressed only using val-
ues on the ports of one interface. In this example, the interface is 
considered to be formed by all ports of the Protocol adapter con-
nected to the Radar through the glue logic.

The third assumption states that in order to verify the inter-
face, models of the components connected to the interface are 
needed. Such models are called stubs and are formally defined in 
Chapter 8. 

Consider the Protocol adapter component in Figure 7.3. The 
glue logic is connected to the interface , 
but the component has more ports than those in this interface, 
namely the ports  and . The behaviour of the ports in  
depends actually also on the token exchange through these 
other ports. Consequently, a mechanism to abstract away unat-
tached ports, in this case  and , is needed. 

Figure 7.4 shows how a simple stub for interface  of the Pro-
tocol adapter might look like. When the Protocol receives a con-
nect (con) or listen (lis) command in port , transition  

AG status disconnected init∨=( )
A status connected= R in¬ send _ ,〈 〉=[ ]

→(
)

AG status connected
A status disconnected= R 

in¬ connect _ ,〈 〉 in¬ listen -,〈 〉=∧=( )
[

]

→=(

)

I in out status, ,{ }=

send rec I

send rec
I

in s1
138



INTEGRATION VERIFICATION METHODOLOGY
becomes enabled. In the real component, the response to such a 
request is the result of token exchange on the ignored ports.
However, since those ports are abstracted away in the stub, the 
result of this exchange is considered non-deterministic from the 
point of view of interface . This non-determinism is modelled in 
Figure 7.4 with the conflicting transitions  and . The 

c

inoutstatus

arg

arg

rejected

connected

true

false

true

disconnected

cmd arg,〈 〉

cmd con= cmd∨ lis=[ ]

cmd disc=[ ]

cmd sd=[ ]

c true=[ ]

c

c

c

c true=[ ]

c true=[ ]

c false=[ ]

sendrec

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

q1

q2

q3

q5

q4

isconnected

Figure 7.4: A simple stub of the Protocol adapter

false 0,〈 〉

discon
n

ected

I
s4 s5
139



CHAPTER 7
response can either be ”rejected” or ”connected”. When con-
nected, messages can be received from the party to which the 
component is currently connected. Transition  models the 
receive behaviour, by emitting tokens to port . It is, however,
only able to do so when the component is connected. Analo-
gously, send commands (sd) are simply consumed (transition 

). Disconnect commands (disc) are taken care of similarly by 
transitions  and , depending on whether the Protocol was 
previously connected or not. Transition  takes care of the case 
where the other party disconnects.

7.3 The Impact on Verification Using Different 
Stubs

Since a component has several interfaces, it has naturally also 
several stubs. This fact can be exploited by the verification proc-
ess in order to reduce verification time. 

Consider the situation in Figure 7.5. The system consists of 
two components, Doubler and Strange, and there is a glue logic 
connecting them. Doubler accepts a token with an integer value 
at in-port arg. In response, it will issue a token at out-port out-
put with the value two times the value it received. Component 
Strange will issue one token on out-port action as an answer to 

s8
out

s3
s9 s10

s7

Doubler Strange

arg

output

action

input

0 0,〈 〉

i
i

i

i 1+

r r

Figure 7.5: Example for stub demonstration
140



INTEGRATION VERIFICATION METHODOLOGY
each token it receives on in-port input. The glue logic will pro-
vide the Doubler with an argument, starting with value 0 and 
increasing each time by one. The reply of the Doubler is given to 
Strange which will acknowledge by issuing a token on out-port 
action, which in turn will cause a new integer to eventually be 
provided to the Doubler.

Figure 7.6 lists a set of stubs corresponding to the example in 
Figure 7.5. The stub for interface  simply consumes any 
token which arrives, and the stub for  produces tokens 

arg

output

arg

output

Figure 7.6: Stubs used in the example in Figure 7.5

input

action

arg{ }

output{ }

action{ }

input{ }

action

input

x

2x

arg output,{ }

action input,{ }

2 random⋅

arg{ }
output{ }
141



CHAPTER 7
with only even token values since Doubler only produces even 
values as a result of its input.  and  consumes 
and produces tokens respectively. No other behaviour can be 
observed by only looking at one individual port of Strange. The 
stubs for interfaces  and  contain 
all ports of their respective components. Consequently, their 
stubs model the full component. 

Let us elaborate on how this variety of stubs can be exploited 
for verification considering the following formulas:

(7.3)

(7.4)

(7.5)

(7.6)

To check Equation 7.3 (if there is a token in place input, then the 
value of that token must be an even number), only the stubs for 
the interfaces  and  are needed.  is 
needed because tokens must be consumed in order to obtain a 
deadlock-free system.  is enough to produce tokens 
with only even numbers. The satisfiability of the property does 
not depend on the input on port . More complicated stubs 
like  and  can also be used to 
obtain a correct result. However, as will be discussed in Chapter 
8, using fewer and smaller stubs may reduce the verification 
time. 

Equation 7.4 (if one argument is received by Doubler, another 
argument may not arrive until the result of the first one is pro-
duced), requires all ports to be included in the stubs since the 
causality between the ports is important for the property. Hence, 
stubs corresponding to the interfaces  and 

 must be used. Equation 7.5 (if there is a token 
in place arg, then the value of that token is non-negative) can be 

action{ } input{ }

arg output,{ } action input,{ }

AG input even input( )→( )

AG arg A arg U A output R arg¬[ ][ ]→( )

AG arg arg 0≥→( )

AGEF input 0<

output{ } input{ } input{ }

output{ }

arg
arg output,{ } action input,{ }

arg output,{ }
action input,{ }
142



INTEGRATION VERIFICATION METHODOLOGY
checked using any set of stubs, since this property is satisfied due 
to a mechanism in the glue logic which does not depend on any 
component.

Let us look at Equation 7.6 (there is always a possibility that a 
negative value may arrive at port input) which obviously is not 
satisfied. However, if stubs with interfaces containing only a sin-
gle port are used, the verification will indicate that the formula is
satisfied, since the stub corresponding to interface  
may produce negative numbers. But if the stub corresponding to 

 is used, the verification will point out that the 
property is not true, which is the correct conclusion. Using simple 
stubs on this formula results in the property being satisfied 
whereas it is unsatisfied in reality, which is proven using more 
complex stubs. The situation for the other properties is that the 
properties are unsatisfied using simple stubs, whereas they are 
satisfied in reality, which is proven using more complex stubs. The 
reason for this difference is that Equation 7.6 is not an ACTL for-
mula as opposed to the other formulas.

It is obvious that using the stubs covering all ports connected 
to the glue logic (called top-level stubs) for all components, we 
will get a correct verification for properties specified by any for-
mula. However, we have many different stubs for each compo-
nent. Thus, the following question has to be answered: Do we 
always have to use the top-level stubs in order to verify a certain 
formula? If the answer is “no”, then which stub or combination of 
stubs to use for verification? These questions are of both theoret-
ical and practical importance. From the practical point of view, 
selecting a certain combination of stubs can reduce the complex-
ity of the verification process and, by this, the verification time. 
On the other hand, it can happen that certain stubs, possibly the 
top-level ones, are not available. Thus, it is important to provide 
a theoretical platform which allows designers to decide if it is 
possible to perform a correct verification with a certain combina-
tion of available stubs. This theoretical framework will be 
described in Chapter 8.

output{ }

arg output,{ }
143



CHAPTER 7
It could be the case, though, that the property being verified 
depends on a specific feature of the environment of the compo-
nent, so that the behaviour described by the stubs is too general. 
We assume that these additional features are described as logic 
formulas capturing constraints related to ports not in the inter-
face under verification. In such cases, it is possible to construct a 
model corresponding to these logic formulas. These models are 
then included in the verfication process together with the com-
ponents. An algorithm to construct such a model for PRES+ is 
presented in Chapter 10.

7.4 Verification Methodology Roadmap
In order to support the designer, it is necessary to introduce 
some structure to the verification process, so that the designer 
clearly knows the sequence of steps to follow and if the results 
obtained at a certain moment are valid or not. If the results turn 
out not to be valid, the verification process should suggest what 
should be done in order to obtain a valid result. For this purpose, 
a roadmap has been developed. It should work as a guideline 
which the designer can follow to obtain good results in reasona-
ble time.

The roadmap will be presented in the rest of the thesis as the 
particular aspects of the integration verification process are dis-
cussed in more detail. 

The integration verification methodology consists of two main 
parts, presented in Chapter 8 and Chapter 9 respectively. The 
first part assumes that stubs are already given by the compo-
nent providers. The problem is then to find the most appropriate 
set of them. The second part assumes that a model of the whole 
component is provided and that appropriate stubs can be auto-
matically generated given this model. 

Since the methodology includes these two distinct parts, the 
first question, in the roadmap, to be answered by the designer is 
144



INTEGRATION VERIFICATION METHODOLOGY
intended to guide the verification into either part. Figure 7.7
presents the first question.

In the roadmap presented in this thesis, diamonds denote Yes 
and No questions to be answered by the designer. Depending on 
the answer for a particular case, different paths are taken as 
indicated on the edge of the diamond. Squares denote activities 
which have to be performed. Rounded squares (ovals) denote ter-
minals where a verification result is reached. 

Since there are, in general, several components connected to 
the glue logic under verification, stubs must be selected or cre-
ated for each of them. Consequently, there is one instance of the 
roadmap for each stub or component. The instances are followed 
independently of each other, with synchronisation points where 
the actual verification itself takes place. 

For example, one component already has stubs provided 
together with it, and another component does not, so they have 
to be created given the model of that component. A (set of) stub 
to represent each connected component must have been selected 
or created when the actual verification of the interface is per-
formed.

Are stubs provided
by the component designer?

Start

Yes

No

Figure 9.17

Figure 8.12

Figure 7.7: The start of the roadmap
145



CHAPTER 7
The following chapters will now go into the details of verifica-
tion methodology.
146



VERIFICATION OF COMPONENT-BASED DESIGNS
Chapter 8
Verification of 

Component-based 
Designs

N THIS CHAPTER the theoretical framework underlying 
the integration verification methodology is presented. It 
gives formal definitions and presents important properties 

and relations. Experiments have also been performed. The chap-
ter ends with a continuation of the roadmap introduced in Sec-
tion 7.4.

8.1 Definitions
In Section 7.2 it was concluded that some representation of the 
components is necessary in the integration verification process. 
We have previously called such a representation describing the 
behaviour at an interface of a component “stub”. In this section, 
a mathematical definition of a stub be given. Before defining a 
stub, some auxiliary concepts have to be defined. 

I

147



CHAPTER 8
Definition 8.1: Interface compatibility. Interfaces  and 
 are compatible if and only if there exists a bijection 

 such that if , then  and  are both 
either in-ports or out-ports in their respective interface.

Remembering that interfaces are sets of ports (Definition 3.5), it 
is intuitive to see that two interfaces are compatible if they have 
equally many in-ports and equally many out-ports. Figure 8.1

I1
I2
f :I1 I2→ f p( ) q= p q

(a) Incompatible interfaces

(b) Incompatible interfaces

(c) Compatible interfaces

Figure 8.1: Illustration of interface compatibility
148



VERIFICATION OF COMPONENT-BASED DESIGNS
illustrates this concept further. The interfaces in Figure 8.1(a) 
are not compatible since the left-hand component has two out-
ports and one in-port, whereas the situation in the right-hand 
component is the reverse. The interfaces in Figure 8.1(b) contain 
a different number of ports and are thus not compatible either. 
Only the interfaces in Figure 8.1(c) are compatible, since they 
have an equal number of in-ports and out-ports respectively.

Definition 8.2: Event. An appearing event is a tuple 
, where  is a place and  is a token. 

An appearing event represents the fact that a token  with 
value  is put in place  at time moment . A disappear-
ing event is a tuple  where  is a place and  is a 
timestamp. A disappearing event represents the fact that a 
token in place  is removed at time . Observe that for dis-
appearing events we are not interested in the token value. 
An event  is either an appearing event or a disappearing 
event. 

Definition 8.3: Observation. An observation  is a set of 
events . Given observation  and an inter-
face , the restricted observation 

. An input
observation  is an observation which only contains 
appearing events defined on in-ports and disappearing 
events defined on out-ports. An output observation  is an 
observation which only contains appearing events defined on 
out-ports and disappearing events defined on in-ports.

Figure 8.2 illustrates the concept of observations according to 
Definition 8.3. The figure shows the flow of events as described 
by observation , defined in the figure. Initially, at time , 
the ports do not contain any token. The observation states that a 
token with value 2 appears in port  at time moment 1. At time 

e+ p k,〈 〉= p k vk rk,〈 〉=
k

vk p rk
e- p r,〈 〉= p r

p r

e

o
o e1 e2 …, ,{ }= o

I
o

I
p k,〈 〉 o∈ p I∈{ } p r,〈 〉 o p I∈∈{ }∪=

in

out

o t 0=

p

149



CHAPTER 8
 another token appears in  and at time   disap-
pears. A token with value 3 then appears in port  at  and 
at time  both tokens in  and  disappear.

The restricted operation of  with respect to interface  is 
 and the one 

restricted with respect to  is . 
Moreover, in this particular case, .

Assuming that  is an in-port and  is an out-port, then the 
observation  is an input 
observation and  is an output 
observation. 

The concept of input and output observations is defined from 
the point of view of the component. Events caused by the envi-
ronment of the component are considered to be inputs and 
events caused by the component itself are considered to be out-
puts. Since consuming tokens from in-ports is an action per-
formed by the component, such disappearing events are 

o p 2 1,〈 〉,〈 〉 q 5 3,〈 〉,〈 〉 p 4,〈 〉 p 3 8,〈 〉,〈 〉 p 9,〈 〉 q 9,〈 〉, , , , ,{ }=

p

q

t 0=

p

q

t 1=

2 1,〈 〉
p

q

t 3=

2 1,〈 〉

5 3,〈 〉

p

q

t 4=

5 3,〈 〉

p

q

t 8=

5 3,〈 〉

3 8,〈 〉
p

q

t 9=

Figure 8.2: Illustration of observations

t 3= q t 4= p
p t 8=

t 9= p q
o p{ }

o
p{ } p 2 1,〈 〉,〈 〉 p 4,〈 〉 p 3 8,〈 〉,〈 〉 p 9,〈 〉, , ,{ }=

q{ } o
q{ } q 5 3,〈 〉,〈 〉 q 9,〈 〉,{ }=

o
p q,{ } o=

p q
in p 2 1,〈 〉,〈 〉 p 3 8,〈 〉,〈 〉 q 9,〈 〉, ,{ }=

out q 5 3,〈 〉,〈 〉 p 4,〈 〉 p 9,〈 〉, ,{ }=
150



VERIFICATION OF COMPONENT-BASED DESIGNS
considered to be outputs, and vice versa regarding consuming 
tokens from an out-port. 

Definition 8.4: Operation. Consider an arbitrary input 
observation  of component . If events occur in the way 
described by , we can obtain the output observation  
by executing the PRES+ model of . For each , several dif-
ferent observations  are possible due to non-determinism. 
The set of all possible output observations  of  being 
the result of applying the input observation  to component 

, is called the operation of component  from  and is 
labelled . Given an operation 

 and an interface  of component , 
the restricted operation . 

Intuitively, the operation of a component describes all possible 
behaviours (outputs) of that component, given a certain input 
pattern. 

We are now ready to define stubs. In Chapter 7, stubs were 
described as a piece of PRES+ modelling the behaviour of a com-
ponent with respect to a specific interface. Ports belonging to 
other interfaces should be abstracted away by introducing non-
determinism. 

Definition 8.5: Stub. Let us consider two components,  
and .  is the interface of  containing all ports of .  
is any interface of .  is a stub of  with respect to inter-
face  iff:

1. Interface  is compatible with interface .
2. For any input observation  of component , satisfying 

all requirements on ports not in , 
.

in C
in out

C in
out

out C
in

C C in
O pC in( )

O pC in( ) o1 o2 …,,{ }= I C
O pC in( )

I
o1 I

o2 I
, …{ , }=

S
C IS S S IC

C S C
IC

IS IC
in C

IC
O pC in( )

IC

O pS in
IS

( )=
151



CHAPTER 8
Since the left-hand side is restricted to interface , it is clear 
that events on ports not belonging to this interface are not con-
sidered. All possible inputs to  are considered, though. The 
meaning of the expression on the left-hand side is thus, the set of 
all possible output behaviours occurring in ports of  obtained 
by firing the PRES+ model of  given any possible input.

The set on the right-hand side denotes the set of all possible 
behaviours obtained by firing the PRES+ model of  given the 
same input as , but only those events belonging to a port in  
(implicitly applying the bijective function defined by the inter-
face compatibility in Definition 8.1). The output does not need to 
be restricted since only output compatible with  is produced. 
However, the input must be restricted so that only events corre-
sponding to ports existing in  are considered. The other 
events are left to non-determinism as discussed previously. 

8.2 Relations between Stubs
As the concept of stubs has now been formally defined, we can 
investigate how stubs belonging to different interfaces of a com-
ponent relate to each other. This will later be used to improve 
the verification process.

Definition 8.6: Top-level interface. The top-level interface 
of a component , with respect to a glue logic , is the set of 
all ports of the component to which the glue logic is con-
nected, . We will use the simple notation 

, if it is either not important or it is clear from the con-
text, to which component and glue logic we refer.

Returning to the example in Figure 7.3, which shows a glue logic 
between the two components Radar and Protocol adapter, 

 and 
. For the sake of understanding 

IC

C

IC
C

S
C IS

IC

IS

C G

Imax
C G, C G∩=

Imax

Imax
Protocol G, in out status, ,{ }=

Imax
Radar G, targetupdate{ }=
152



VERIFICATION OF COMPONENT-BASED DESIGNS
the rest of this chapter, it should be noted that the involved com-
ponents do have other interfaces connected to  than the top-
level one. For instance, ,  and  are 
all examples of such interfaces of the Protocol adapter compo-
nent, but none of them is a top-level interface with respect to the 
glue logic. Each of these interfaces has an associated stub as 
defined by Definition 8.5. Top-level interfaces are unique and 
they always exist if the glue logic is connected to the component.

The ports of a component , can be divided into interfaces in 
many different ways. More precisely, every subset of  can 
be considered an interface for which a stub can be constructed. 
Figure 8.3 presents a partial order (it is actually even a lattice) 
of interfaces, and hence also of stubs, of a component connected 
to a glue logic through two in-ports (I1 and I2) and two out-ports 
(O1 and O2), based on the subset relation. The lattice induces 

G
in out,{ } in status,{ } out{ }

Figure 8.3: A partial order of interfaces

I1I2O1O2

I1I2O1 I1I2O2 I1O1O2 I2O1O2

I1I2 I2O1 I1O1 I1O2 I2O2 O1O2

I1 I2 O1 O2

∅
level 0:

level 1:

level 2:

level 3:

level 4:

∅ IN ∅ OUT

C
Imax
153



CHAPTER 8
distinct levels of generality of the stubs. The top-level stub (the 
stub for the top-level interface), with interface 

, exhibits exactly the same behaviour as 
its corresponding component, from the point of view of the glue 
logic connected to that interface. In the bottom of the lattice, we 
have the empty interface, for which there does not exist any stub 
and which is only of theoretical interest. If, for a certain verifica-
tion, no stubs situated at level 1 or higher are applied at a cer-
tain port, then a so called empty stub is connected to that port. 
In the case of in-ports, the empty stub, , denotes the stub 
that consumes any token at any point in time. Similarly, the 
empty stub, , denotes the stub that generates tokens with 
random values at any point in time. The models of these stubs 
are presented in Figure 8.4. It is useful to introduce the notation 

 to denote the empty stub at port . Whether  is equal to 
 or to  depends on whether  is an in-port or an out-

port. We further elaborate on the use of empty stubs in Section 
8.3. 

Between  and , stubs of different levels of generality 
can be found. For each level up in the lattice as more and more 
ports are included in the interfaces, the stubs become more and 
more specialised, which is manifested by the introduced causal-
ity between in-ports and out-ports of the respective interfaces. 

On level 1, stubs for one-port interfaces are situated. If the 
interface only contains an in-port, the functionality of the stub is 
to consume the token at random times which, however, corre-
spond to times when the full component could be able to con-
sume the token, if it would be consumed at all. If it only contains 

Imax I1 I2 O1 O2, , ,{ }=

∅ IN

(a) ∅ IN

random

(b) ∅ OUT

Figure 8.4: The models of the empty stubs

0..∞[ ] 0..∞[ ]

∅ OUT

∅ p p ∅ p
∅ IN ∅ OUT p

Imax ∅
154



VERIFICATION OF COMPONENT-BASED DESIGNS
an out-port, the functionality is to issue a new token with ran-
dom value at random occasions. The value and time are random 
to the extent that the issued values could, in some circumstance, 
be issued by the full component at the time in question. Note the 
difference between these stubs and  and , respec-
tively. The empty stubs produce/consume tokens with random 
values and times with no regard to the component.

If higher level (level > 1) stubs contain both in-ports and out-
ports, a certain degree of causality is introduced. The out-ports 
can no longer produce any arbitrary value on the tokens, but 
rather any value consistent with the token values arriving at 
the in-ports given the behaviour of the full component. Hence, 
for instance, in Figure 7.4 no token on port out can be issued 
unless the stub has received a connection or listen request at 
port in and accepted it. If there are other in-ports of the compo-
nent, not represented in the interface of the stub, the output is 
considered non-deterministic from the point of view of the 
absent in-port, as in the case with the non-deterministic issuing 
of rej and con as an answer to a connect request described previ-
ously in Figure 7.4. 

8.3 Verification Environment
In Section 7.3, the impact of using different sets of stubs was 
briefly discussed. It was concluded that it is enough to use sim-
ple stubs, from here on called low-level stubs referring to the lat-
tice in Figure 8.3, in order to verify some properties. Other 
properties still required complicated, or high-level, stubs, where 
the causality between ports is still kept. This section tries to 
bring some order into that discussion and proposes a methodol-
ogy which takes advantage of the variety of stubs to reduce ver-
ification time. First, the mathematical foundation must be set.

∅ IN ∅ OUT
155



CHAPTER 8
Definition 8.7: Interface partition. An interface partition 
 is a set of non-empty interfaces  such 

that  for any  and , .

It should be pointed out that each port can, at most, belong to 
one interface in every partition. As a consequence of 
Definition 3.5, all ports in the same interface must belong to the 
same component. By convenience, the set of all ports belonging 
to the interfaces in partition  is denoted .

In the example of Figure 7.6, , 
 and 

 are all interface parti-
tions.  and 

. How-
ever, ,  and 

 are all examples of sets 
which are not interface partitions since  contains the empty 
set,  contains a set which in turn contains ports from different 
components and the interfaces of  are not disjoint.

Definition 8.8: Partition precedence. Partition  precedes 
partition , , if and only if .

For every , there exists at most one  that satisfies 
the subset relation. This is due to the fact that every port can at 
most belong to one interface in the partition.

Using ,  and  as defined above, , since all inter-
faces in  are subsets of an interface in . It is also true that 

 and . However, it is not the case that  since 
 is not a subset of any set in . Intuitively, the 

stubs corresponding to interfaces in  are more specialised than 
those in  or , since they capture more of the causalities and 
dependencies between their ports. 

Theorem 8.1: The partition precedence relation is a partial 

P P P1 P2 …, ,{ }=
Pi P j∩ ∅= i j i j≠

P Ports P( ) i
i P∈∪=

P arg{ } output{ },{ }=
Q arg{ } output{ } action input,{ }, ,{ }=
R arg output,{ } action input,{ },{ }=

Ports P( ) arg output,{ }=
Ports Q( ) Ports R( ) arg output action input, , ,{ }= =

S { } input{ },{ }= T arg action,{ }{ }=
U action{ } action input,{ },{ }=

S
T

U

P
Q P Q∝ p P q Q: p q⊆∈∃∈∀

p P∈ q Q∈

P Q R P Q∝
P Q

P R∝ Q R∝ R Q∝
arg output,{ } Q

R
P Q
156



VERIFICATION OF COMPONENT-BASED DESIGNS
order.

Proof: Reflexivity:  which is 
trivially true since every set is a subset of itself.  
Antisymmetry: Assume  and . The given assump-
tion is equivalent to 

 according to 
Definition 8.8. Due to the observation that the existentially 
quantified  and  are uniquely determined, it is valid that 

. Since all elements of  and  are 
equal, then .  
Transitivity: Assume  and . 

, since the existentially quantified  in the 
first clause of the formula is included among the universally 
quantified ’s in the second clause. 

Theorem 8.2: The partition precedence relation has a top 
element , including the top-level interfaces of all con-
nected components, and bottom element .

Proof: Assume  which contains only top-level interfaces 
and the empty partition . Consider an arbitrary par-
tition .  by definition since  only contains top-
level interfaces and all interfaces of  must be a subset of one of 
the top-level interfaces due to the interface subset relation (Fig-
ure 8.3).  is trivial. 

In fact, the precedence relation does not only have top and bot-
tom elements, but also this partial order is a lattice. 

Definition 8.9: Environment. The environment correspond-
ing to a partition  with respect to a set of 
ports  where , is defined as

P P p1 P p2 P. p1 p2⊆∈∃∈∀⇔∝

P Q∝ Q P∝

p P q Q: p q⊆∈∃∈∀( ) q Q p P:q p⊆∈∃∈∀( )∧

p q
p q q p p⇒⊆∧⊆ q= P Q

P Q=
P Q∝ Q R∝

p P q Q: p q⊆∈∃∈∀( ) q Q r R:q r⊆∈∃∈∀( )∧  ⇒
p P r R: p r⊆∈∃∈∀ q

q

Pmax
Pmin ∅=

Pmax
Pmin ∅=

P P Pmax∝ Pmax
P

Pmin ∅ P∝=

P I1 I2 …, ,{ }=
J Ports P( ) J⊆
157



CHAPTER 8
 where 
each  is the stub for interface , and  is the empty stub 
attached to port .

Let us consider the example in Figure 7.5 with the stubs of the 
components in Figure 7.6. With 

, Figure 8.5(a) shows the 
environment . Since port out-
put is not included in the partition, the empty stub  (see 
Figure 8.4) has been added. Figure 8.5(b) shows a similar exam-
ple for . In Figure 8.5(c), no empty 

Env P J,( ) Sii P∈∪( ) ∅
p J Ports P( )–∈∪ p

( )∪=
Si i ∅ p

p

arg

output
2⋅random

arg

output

x

2⋅x

action

input

(a)

arg

action

input

(b)

(c)
Figure 8.5: A few environments for the example in 

Figure 7.5

∅ output

∅ action

∅ input

J arg output action input, , ,{ }=
Env arg{ } action input,{ },{ } J,( )

∅ output

Env arg{ } output{ },{ } J,( )
158



VERIFICATION OF COMPONENT-BASED DESIGNS
stub needs to be added for 
, since all ports in 

 are included in the partition.
If all the individual stubs in  together are viewed as 

one single component, we obtain the environment corresponding 
to partition  with respect to the set of ports . The name stems 
from the fact that such a component acts as the environment of 
the glue logic, connected to the ports in , in the verification 
process. A synonymous name is Verification Bench. Based on 
Theorem 8.1 and Theorem 8.2, it is possible to construct a par-
tial order (lattice) of partitions, i.e. environments, similar to that 

Env arg output,{ } action{ } input{ }, ,{ } J,( )
J

∅

{i1} {o1}

{i1,o1}

o1

i1

Figure 8.6: Components and corresponding interfaces

(a) Components and glue logic

(b) Interface lattices

Component

Component 1 Component 2

i2

Component

∅ IN ∅ OUT

{i2}

∅

∅ IN

1
2

Env P J,( )

P J

J

159



CHAPTER 8
done with individual stubs and their interfaces (Figure 8.3). 
Figure 8.6 introduces a very simple example consisting of two 
interconnected components. Figure 8.6(b) shows the interface 
(stub) lattice corresponding to each of the components. 
Figure 8.7 depicts the corresponding partition (environment) 
lattice.

Definition 8.10: Surrounding. The surrounding of a glue 
logic , , is the part of the design  not including  
or any component  connected to , . 

∅

{{i1}} {{o1}} {{i2}}

{{i1},{o1}} {{i1},{i2}} {{o1},{i2}}

{{i1},{o1},{i2}}{{i1,o1}}

{{i1,o1},{i2}}

Figure 8.7: Partition (environment) lattice of the situation 
in Figure 8.6

G Sur G( ) Γ G
C G C G∩ ∅≠

Sur G( ) Γ G C
C C ′ C ′ is a comp. in Γ( ) C ′ G∩ ∅≠∧{ }∈∪∪( )–=
160



VERIFICATION OF COMPONENT-BASED DESIGNS
Figure 7.3 shows a glue logic  and its connected components 
Radar and Protocol adapter. These three entities are only a part 
of the design of the whole system shown in Figure 7.2. The 
whole system except , Radar and Protocol adapter, is said to 
be the surrounding of , . The glue logic  in 
Figure 7.5 does not have any surrounding, .

8.4 Formal Verification with Stubs
Having shown that there are many possibilities in choosing the 
proper stubs, i.e. choosing the verification environment, for the 
verification problem at hand, a mechanism for helping the 
designer making this choice is needed. Such an approach is pre-
sented in this section through the following definitions and the-
orems.

Theorem 8.3: Given an input observation , two parti-
tions  and , , and a set of ports  where 

, then 
. 

Proof: Assume an arbitrary observation . 
This means that  is a possible output observation given the 
input observation . By definition of partition precedence, 

. Hence the restriction operator in 
 (see Definition 8.5) filters out more 

elements from the unrestricted operation when  
than when . Consequently  must also pass the 
filter of  and can be an output of , i.e. 

.

Definition 8.11: Generalised operation. The generalised 
operation  for component  is the union of all opera-

G

G
G Sur G( ) G ′

Sur G ′( ) ∅=

in
P1 P2 P1 P2∝ J

Ports P1( ) Ports P2( ), J⊆
O pEnv P1 J,( ) in( ) O pEnv P2 J,( ) in( )⊇

o O pEnv P2 J,( ) in( )∈
o

in
p1 P1 p2 P2: p1 p2⊆∈∃∈∀

O pC in( )
IC

O pS in
IS

( )=
IS IC p2= =

IS IC p1= = o
p1 Env P1 J,( )

o O pEnv P1 J,( ) in( )∈

O pC C
161



CHAPTER 8
tions for every possible input observation, 
.

According to Definition 8.4, an operation is the set of all possible 
outputs given a certain input. The generalised operation is the 
set of all possible outputs no matter what the input is. The gener-
alised operation allows us to generalise Theorem 8.3 into the fol-
lowing corollary.

Corollary 8.1: Given partitions  and , , and a 
set of ports  where , then 

.

Proof: Follows directly from Theorem 8.3 and Definition 8.11.

Definition 8.12: State sequence generator. A state, in this 
context, is a marking of ports. A state sequence generator is a 
function , where  is an observation and  is an 
initial state. The observation  may only contain appearing 
events and disappearing events on ports. The result of the 
function is a sequence of states obtained by iteratively apply-
ing the events in  to the previously obtained state (initially 

) in the order indicated by their timestamps.

Let  denote the timestamp of an event . Assume 
 or , depending on whether it is an 

appearing or disappearing event, and 
, i.e. the set of events with the lowest 

timestamp in . Then Definition 8.12 can be recursively refor-
mulated as , where  
denotes the head, , and the tail, , of a sequence, and  
denotes the resulting state (marking) after applying all events 
in  on the initial state (marking) . The basis of the recur-
sion is .

O pC O pC in( )
in∪=

P1 P2 P1 P2∝
J Ports P1( ) Ports P2( ), J⊆

O pEnv P1 J,( ) O pEnv P2 J,( )⊇

σ o M0,( ) o M0
o

o
M0

re e o∈
e p v re,〈 〉,〈 〉= e p re,〈 〉=

E e e ′ o: re ′ re<( )∈∃¬{ }=
o

σ o M0,( ) M0:σ o E– M0 E( ),( )[ ]= h:T[ ]
h T M0 E( )

E M0
σ ∅ M0,( ) M0[ ]=
162



VERIFICATION OF COMPONENT-BASED DESIGNS
Figure 8.2 has illustrated the result of applying the state 
sequence generator on the given observation with an empty ini-
tial marking. Describing the contents of the ports in each time 
step mathematically, Equation 8.1 gives the solution.

(8.1)

The definitions given so far provide the necessary means to 
express the semantics of CTL formulas in the context of the the-
oretical framework we have introduced. First, recall the classi-
cal definitions [Cla99] for the two example formulas  and 

 for any CTL formula  (  means that formula  
holds in state , and  denotes equivalence between two 
formulas):

(8.2)

(8.3)

 denotes the set of all possible sequences of states in 
model  where the first state is . It should be noted that  in 
these equations does not refer to the state sequence generator 
introduced in Definition 8.12, but is a variable quantified over a 
set of sequences of states. From these sample equations it is pos-
sible to extract how the state path quantifiers (A, E) and the 
time quantifiers (G, F) translate into the semantics of our theo-
retical framework. The difference between this model and ours, 
is that all definitions in our model are based on events, not 
states. The link between these two views is based on the state 
sequence generator in Definition 8.12. Equation 8.4 and Equa-
tion 8.5, where  is the set of all possible input observations of 
component , express the same semantics as Equation 8.2 and 
Equation 8.3 in terms of observations and operations.

(8.4)

σ o ∅,( ) ∅ p 2 1,〈 〉,〈 〉{ } p 2 1,〈 〉,〈 〉 q 5 3,〈 〉,〈 〉,{ }
q 5 3,〈 〉,〈 〉{ } p 3 8,〈 〉,〈 〉 q 5 3,〈 〉,〈 〉,{ } ∅

, ,
, , ,

[
]

=

AF ϕ
EG ϕ ϕ s    ϕ ϕ

s ϕ ψ⇔

s    AF ϕ σ∀ PM s( ) j∃ 0:σ j[ ]     ϕ≥∈⇔

s    EG ϕ σ∃ PM s( ) j∀∈ 0:σ j[ ]     ϕ≥⇔

PM s( )
M s σ

IN
C

M0    AF ϕ o∀ O pC i∀ IN j∃∈∈ 0:σ o i∪ M0,( ) j[ ]     ϕ≥⇔
163



CHAPTER 8
(8.5)

The union is taken of both all possible input observations, 
, and all possible output observations, , and is 

passed to the state sequence generator to be used as in the clas-
sical definitions. The observations are quantified in the same 
way as the state sequences would have been done in Equation 
8.2 and Equation 8.3. 

In [Alu90] equivalent formulas to Equation 8.2 and Equation 
8.3 are given for TCTL. Based on the discussion above, they can 
be trivially extended to formulas similar to Equation 8.4 and 
Equation 8.5.

Theorem 8.4: Assume the partitions  and , , 
a set of ports  where , an initial 
marking  on the ports in  and a (T)ACTL formula, e.g. 

, also expressed only on the ports in . If  
for component , then it is also true that 

 for component .

Proof:  

, where 
 is the set of all input observations on ports in the partitions, 

according to Equation 8.4. As a consequence of Corollary 8.1 and 
the fact that  and  are universally quantified, it is possible to 
conclude .

The key point in the proof is the universal quantifiers of the 
observations  and . For this reason the theorem only applies 
to (T)ACTL formulas, since they are exactly those formulas 
which can guarantee the universal quantifier. 

Figure 8.8 illustrates the theorem. The area inside the outer 
circle denotes the set of behaviours (observations), i.e. the oper-

M0    EG ϕ o∃ O pC i∃ IN j∀∈∈ 0:σ o i∪ M0,( ) j[ ]     ϕ≥⇔

i IN∈ o O pC∈

P1 P2 P1 P2∝
J Ports P1( ) Ports P2( ), J⊆

M0 J
AF ϕ J M0    AF ϕ

Env P1 J,( )
M0    AF ϕ Env P2 J,( )

M0    AF ϕ ⇔
o∀ O pEnv P1 J,( ) i IN j∃∈∀ 0:σ o i∪ M0,( ) j[ ]     ϕ≥∈

IN

o i
o∀ O pEnv P2 J,( ) i IN j∃∈∀ 0:σ o i∪ M0,( ) j[ ]     ϕ≥∈

o i
164



VERIFICATION OF COMPONENT-BASED DESIGNS
ation of  ( ). According to Definition 8.9, 
this operation is produced by the union of all stubs correspond-
ing to the interfaces in . The area inside the inner circle 
denotes the set of behaviours of  ( ). 
This set is a subset of the first one according to Corollary 8.1
since  by assumption. If a certain (T)ACTL formula 
holds for all behaviours in the bigger set, it does also hold for all 
behaviours in the subset. Seen in this way, the necessity of 
(T)ACTL formulas, as opposed to arbitrary (T)CTL formulas, 
becomes evident. An arbitrary (T)CTL formula cannot guaran-
tee that the property holds for all behaviours, only that there is 
at least one behaviour satisfying it. 

8.4.1 DISCUSSION

Theorem 8.4 provides the answers to the questions identified at 
the end of Section 7.3. Let us assume that we have a set C of two 
or more components which have been interconnected by a glue 
logic. A certain interface property, expressed as a (T)CTL for-
mula , has to verified. The following situations can occur:

1. The verification is unmanageable in the context defined 
above. This is the case when formula  is expressed in terms 
of ports which do not belong to any component in the set C or 
which, although they belong to a component in C, are not 

Set of behaviours (observations) of .P1

Set of behaviours (observations) of .P2

Figure 8.8: Illustration of Theorem 8.4

Env P1 J,( ) O pEnv P1 J,( )

P1
Env P2 J,( ) O pEnv P2 J,( )

P1 P2∝

ϕ

ϕ

165



CHAPTER 8
part of the interface environment of the interface being veri-
fied. 

2. If the verification is manageable, the following two situa-
tions can be identified: 
(a) Formula  is not a (T)ACTL formula. In this case the ver-
ification has to be performed with top-level stubs for all con-
nected components.  
(b) Formula  is a (T)ACTL formula. In this case, if the for-
mula is satisfied using stubs at any level, the property can be 
considered as satisfied (this is a direct consequence of 
Theorem 8.4).

Case 2(b) above is important, as it offers a certain degree of free-
dom in the case of verification with (T)ACTL formulas. If some 
top-level stubs are not available, but the property can be verified 
with lower-level stubs, this is sufficient for validation of the sys-
tem. On the other hand, for reasons of complexity, the designer 
can choose to perform the verification with simpler low-level 
stubs. If the property is satisfied, such a verification is sufficient. 
If not, however, the verification using high-level stubs can still 
satisfy the property and thus demonstrate that the system is 
correct. Some experiments discussed in Section 8.5 illustrate 
this process.

8.5 Experimental Results
The following experiments concern the verification of systems 
resulted after the interconnection of components through a glue 
logic, according to the discussed methodology. 

8.5.1 GENERAL AVIONICS PLATFORM

In the first set of experiments, we have verified the interfaces 
connected to the glue logic in Figure 7.3. The glue logic intercon-
nects the Radar and Protocol component as part of the General 

ϕ

ϕ

166



VERIFICATION OF COMPONENT-BASED DESIGNS
avionics platform (Figure 7.1 and Figure 7.2) [Loc91]. We illus-
trate the verification of four properties. Property A is 

 (the tokens in port “update” will always be con-
sumed). Property D is  (the tokens in port “out” will 
always be consumed). Properties B and C are identical to Equa-
tion 7.1 and Equation 7.2. As can be seen, all formulas are 
ACTL. Three possible partitions were used whose relations are 
shown in the lattice in Figure 8.9. The results of the verification 
are shown in Table 8.1. The letters F and T in each cell of the 
table denote whether the property was satisfied (T) or not (F) 
with the corresponding environment. The numbers denote the 
verification time in seconds. It can be observed that all four 
properties imposed by the interconnected components are satis-
fied with the actual glue logic. For property D, the verification 

1

3

2

Figure 8.9: Partition lattice in the GAP example

{{update},{in,out,status}}

{{update},{in},{out,status}}

{{update},{out,status}}

AGAF update¬
AGAF out¬

Table 8.1: Experimental results for GAP example

Property

Partition

1 2 3

A F 1.97 F 4.1 T 0.24

B F 0.39 F 0.69 T 0.12

C F 0.43 F 0.75 T 0.13

D T 0.21 T 0.36 T 0.12
167



CHAPTER 8
can be done using the lowest level of the three interfaces (as the 
property is expressed by an ACTL formula, point 2(b) in Section 
8.4.1 applies). 

8.5.2 SPLIT TRANSACTION BUS

The second example refers to a split transaction bus (STB) in a 
multiprocessor DSP [Ack00]. An overview of the system is 
shown in Figure 8.10. The I/O interface and memory controller 
handles the interaction of the processing elements with the 

Figure 8.10: Schematic view of the STB example

Processing
Element

Processing
Element

Processing
Element

Processing
Element

I/O
Interface

and
Memory

Controller

Split Transaction Bus

STB Address Bus

STB Data Bus

Processing
Element

Protocol
AdapterVerified

glue logic
168



VERIFICATION OF COMPONENT-BASED DESIGNS
memory system and the outside world, while the processing ele-
ments perform the real functionality. Each processing element 
contains one 32-b V8 SPARC RISC Core with a co-processor and 
reconfigurable L-1 cache memory. As suggested in the figure, the 
split transaction bus consists in fact of two buses, an address bus 
and a data bus. When the protocol adapter wants to send data, 
on request from the processing element, it must first request 
access to the address bus. After acknowledgement from the 
address bus, the protocol adapter suggests an identifier for the 
message transfer and associates it with the address of the recip-
ient. This identifier is broadcast to all protocol adapters con-
nected to the bus in order to notify all of them about used 
identifiers. The next step is to request access to the data bus. 
When the data bus has acknowledged the request, the identifier 
is sent followed by some portion (restricted in size by the bus) of 
the data. Then, the data bus is again requested and the same 
procedure continues until the whole block of data has been 
transmitted. The protocol adapter is now ready to service 
another request from the processing element. One functionality 
of the verified glue logic is to deliver messages from the protocol 
to the correct bus. Another aspect is to process the results and 
acknowledgements so that they can be correctly treated by the 
protocol adapter. For instance, the protocol component expects 
two different commands from an identifier broadcast (described 
above) of the address bus, depending on whether the protocol 
component currently in hold of the address bus is the component 
connected to this particular glue logic or the broadcast is the 
result of another component proposing an identifier.

Table 8.2 shows the verification results from the STB exam-
ple. The high number of ports in the components yields a large 
lattice of environments. The one depicted in Figure 8.11 is not 
the full lattice. Only those environments which are involved in 
this particular experiment are included. Environment 12 con-
169



CHAPTER 8
sists of the top-level stubs for all three connected components. 
Environment 1 consists of only level 1 stubs on out-ports.

In order to give a better understanding of the properties, we 
will have a closer look at two of them. Property B, for instance, 
concerns with the fact that the glue logic must issue different 
commands to the protocol component when the address bus 
broadcasts the identifiers, depending on the source causing this 
event to happen. It is formulated as 

 where 

Table 8.2: Experimental results for STB example

Property

Partition

1 2 3 4 5 6

A F 0.41 F 3.28 F 0.34 F 162 T 156 F 345

B T 0.14 T 0.41 T 0.16 T 17.6 T 24.8 T 16.9

C F 0.23 F 0.74 F 0.23 F 19.7 F 29.7 F 18.6

D F 0.38 F 0.89 F 0.37 F 129 F 45.9 F 97.7

E T 0.20 T 0.58 T 0.21 T 28.1 T 54.2 T 29.2

F F 0.34 F 0.68 F 0.31 T 18.7 T 26.2 T 16.5

G F 0.41 T 0.43 F 0.44 T 18.5 T 26.3 T 17.0

H T 0.21 T 1.30 T 0.22 F 167 F 438 F 344

Property

Partition

7 8 9 10 11 12

A F 330 F 68.2 T 17.7 F 636 T 30.4 T 12.6

B T 23.6 T 1.69 T 1.38 T 26.9 T 1.54 T 1.29

C F 28.8 F 3.25 F 3.27 F 32.7 F 4.09 F 4.01

D F 313 F 20.1 T 3.32 F 292 T 10.2 T 7.04

E T 48.9 T 2.80 T 1.20 T 53.3 T 4.48 T 4.39

F T 25.2 F 6.51 F 2.85 T 28.8 T 1.76 T 1.36

G T 26.7 T 2.47 T 0.94 T 30.0 T 2.36 T 1.94

H F 325 F 66.4 F 11.9 F 689 F 87.2 F 38.0

AG rec rec TRAN a,〈 〉≠ a this_component≠∧→( )
170



VERIFICATION OF COMPONENT-BASED DESIGNS
TRAN (transaction) is the command to be received by the proto-
col component when the source causing the event is the protocol 
adapter connected to the glue logic under verification. It should 
not be possible to receive such an event where the address is dif-
ferent from the one of the current component. Another property, 
D, , 
states a requirement according to which commands are to be 
given to the address bus: when the bus has acknowledged a 
request, it expects that the address and identifier are passed. 

Properties A to G are expressed as ACTL formulas, while 
property H is not. It can be noticed that property C is not at all 
satisfied in the system. That is why the verification results for 
that property is false, no matter which environment is used. On 
the other extreme we find properties B and E which are satisfied 
even with the lowest level environment. Hence, being expressed 
as an ACTL formula, the property is satisfied with any environ-
ment. Property H is not an ACTL formula and can hence not be 

AG addr.out ACK=( ) AF addr.in→ drive_addr=( )

Figure 8.11: Partition lattice in the STB example

1

2 3

4

5 67

8

9

1011

12
171



CHAPTER 8
expected to behave according to the same pattern. Its behaviour 
can be described as the inverse of the behaviour of ACTL formu-
las, i.e. the property is satisfied when verified with low-level 
stubs, but is not satisfied with high-level stubs. Property G, also 
expressed as an ACTL formula, is also satisfied. This can be ver-
ified by using the top-level environment, but also by verifying 
with environment 2. According to point 2b in Section 8.4.1, the 
verification performed with environment 2 also guarantees that 
the property is satisfied with environments 4, 5, 6, 7, 8, 9, 10, 11 
and 12, which means the complete system. This is, of course, not 
the case with property H which is expressed by a non-ACTL for-
mula. Verification with environments 1 to 11 are not valid. The 
only verification which makes sense is using the top-level envi-
ronment. 

Let us have a look at verification times. For the two examples, 
taking each separately, the verification time with different envi-
ronments is in the range 0.12-689 seconds. For a given property 
the verification times are small for the very low-level stubs and 
for the top-level stubs. This is due to the simplicity of the low-
level stubs, on the one side, and the high degree of determinism 
of the top-level stubs (which reduces the state space) on the 
other side. Between these two extremes we can observe a, some-
times very sharp, increase of verification times for the stubs 
which are at a level close to the top. If a complete set of stubs is 
available, one can perform the verification using the top-level 
stubs. For non-(T)ACTL formulas, this is the only alternative. 
However, (T)ACTL formulas could be verified even if the top-
level stubs are not at hand. In this case, a good strategy could be 
to start with the lowest level stubs, iteratively going upwards in 
the lattice of stubs until the property is satisfied. 
172



VERIFICATION OF COMPONENT-BASED DESIGNS
8.6 Verification Methodology Roadmap
This section will continue the roadmap of Section 7.4 based on 
the work presented in this chapter.

The answer to the question leading the designer to this part of 
the roadmap (see Figure 7.7) gives us the assumption that stubs 
already exist and are provided by the designer of the compo-
nents. The second question to be answered is shown in 
Figure 8.12. As the experimental results suggest, using top-level 
stubs, if they exist, gives a relatively short verification time and 
accurate results avoiding iterations. For this reason it is proba-
bly most efficient to immediately use top-level stubs. 

If top-level stubs exist, the procedure is very simple as 
described in Figure 8.13. If the property is satisfied and it is 
ACTL, then it can be deduced according to Theorem 8.4 that the 
property really is satisfied. Otherwise if not ACTL, the property 
can only be proven satisfied to the extent given by the compo-
nents, i.e. a particular behaviour of the surrounding is not taken 
into consideration (we will further elaborate on the aspects 

Are top-level stubs
available?

No

Yes

Figure 7.7

Is the property
(T)ACTL?

Yes

No

Figure 8.15

Figure 8.13

Figure 8.14

Figure 8.12: Continuation of the roadmap from Figure 7.7
173



CHAPTER 8
related to the surrounding in Chapter 10). The procedure is 
analogous when the property was not satisfied. 

In the case top-level stubs do not exist, a choice between two 
similar procedures must be made depending on whether the 
property is ACTL or not. Figure 8.14 shows the procedure for 
ACTL formulas and Figure 8.15 for non-ACTL formulas. Start 
the iterative process by using stubs at the lowest level, since ver-
ification times are short when using such stubs. However, the 
experienced designer may directly use stubs at higher level if it 
is obvious that the property is not satisfied using the lowest level 
stubs. The verification result is evaluated as indicated by the 

Use top-level
stubs

Verify property

Is the property
satisfied?

Yes

No

Figure 8.12

Property is
proven satisfied

Is the property
(T)ACTL?

No

Yes
Property is

proven satisfied
without consideration about

design specific particularities
in the surrounding

Is the property
(T)ACTL?

Property is
proven not satisfied

No

Property is
proven not satisfied

without consideration about
design specific particularities

in the surrounding

Yes

Figure 8.13: Roadmap when using top-level stubs, 
continuation from Figure 8.12
174



VERIFICATION OF COMPONENT-BASED DESIGNS
roadmap. When increasing the level of stubs, it is important that 
this is done by following a path in the stub lattice so that the 
assumptions in Theorem 8.4 are not violated. The diagnostic 
trace resulting from the model checking is very useful for guid-
ance. 

Verify property

Use an environment
at equal or higher level

Use a low-level
environment

Is the property
satisfied?

No

Yes

Are stubs of higher
level available?

No

Yes

Property is
proven satisfied

Unknown verification
result

Figure 8.12

Figure 8.14: Roadmap when using lower-level stubs on 
ACTL formulas, continuation from Figure 8.12
175



CHAPTER 8
Verify property

Use an environment
at equal or higher level

Use a low-level
environment

Is the property
satisfied?

Are stubs of higher
level available?

No

Yes

Unknown verification
result

Figure 8.12

Property is
proven not satisfied

No

Yes

Figure 8.15: Roadmap when using lower-level stubs on 
non-ACTL formulas, continuation from Figure 8.12
176



AUTOMATIC STUB GENERATION
Chapter 9
Automatic Stub 

Generation

HAPTER 8 INTRODUCED a verification methodology 
where stubs are provided by the provider of the reusable 
components to represent the components in the integra-

tion verification process. If stubs of the desired level are not 
available, other stubs at lower level can be used instead. An 
alternative situation is that a PRES+ model of the system is 
available, but no particular stubs. In this chapter algorithms for 
automatically generating stubs, given the model of the compo-
nent and the interface, are presented together with a methodol-
ogy which explains how to use such stubs. Here, we assume that 
we do not know anything about the surrounding environment, 
as opposed to Chapter 10. Experimental results are also pre-
sented.

C

177



CHAPTER 9
9.1 Pessimistic Stubs
The stub definition presented in Section 8.1 (Definition 8.5) is 
quite strict, requiring equality between the operations of the 
component and stub. That strictness makes it very difficult to 
automatically create stubs. The following definition relaxes the 
definition of a stub.

Definition 9.1: Pessimistic stub. Let us consider two com-
ponents,  and .  is the interface of  containing all 
ports of .  is any interface of .  is a pessimistic stub 
of  with respect to interface  iff:

1.  and  are compatible.
2. For any possible input  of component , 

.

A pessimistic stub is consequently a stub which can generate 
more observations than its corresponding component and hence 
is more “pessimistic” about the set of possible observations. Of 
course, this might influence the accuracy of the verifications in 
which they are involved. However, for properties expressed as 
(T)ACTL formulas this does not necessarily lead to uncertain 
results. Stubs following Definition 8.5 are in this chapter called 
exact stubs in order to differentiate between the two types.

The following theorem helps us to evaluate the result of veri-
fication with pessimistic stubs.

Theorem 9.1: Assume two environments  and  of the 
same set of components and , an initial mark-
ing  and a (T)ACTL formula, e.g.  expressed only on 
the ports of the stubs in  and . If  for com-
ponent , then it is also true that  for compo-
nent .

S C IS S
S IC C S

C IC

IC IS
in C

O pC in( )
IC

O pS in IS
( )⊆

E1 E2
O pE1

O pE2
⊆

M0 AF ϕ
E1 E2 M0    AF ϕ

E2 M0    AF ϕ
E1
178



AUTOMATIC STUB GENERATION
Proof:  
, 

where  is the set of all input observations on ports in the par-
titions, according to Equation 8.4. As a consequence of the fact 
that  and  are universally quantified, it is straight-forward to 
conclude that .

The intuition behind this theorem is the same as the intuition 
behind Theorem 8.4 illustrated in Figure 8.8. The set of behav-
iours of  includes all the behaviours of  according to the 
assumption. Hence, if a certain (T)ACTL property is true for all 
behaviours of , it must also be true for all behaviours of . 

Theorem 9.1 allows us to use pessimistic stubs when verifying 
(T)ACTL formulas. The behaviours of the exact stub (see 
Definition 8.5) are also produced by the pessimistic one which, 
however, produces additional behaviours. This fulfils the 
assumptions of the theorem. So, if a property is satisfied using 
pessimistic stubs, we can confidently deduce that the property 
would also have held if exact stubs had been used instead. How-
ever, if the property is not satisfied, no conclusion can be drawn 
at all. In this case, the stubs must be made less pessimistic in 
order to exclude the undesired behaviour, which caused the 
property to be unsatisfied, from the operation of the stub. 

9.2 The Naïve Approach
The straight-forward way to create a stub of a component, is to 
keep the original model of the component and add transitions 
with completely random time intervals and, in the case of an in-
port, a random function, on all other ports than those given in 
the interface of the stub. This will clearly fulfill the require-
ments of a stub, according to Definition 9.1, since it is able to 
produce the same events as the component is able to. The differ-
ence between the naïve stub and the exact top-level stub is that 

M0    AF ϕ o∀ O pE2
i IN j∃∈∀ 0:σ o i∪ M0,( ) j[ ]     ϕ≥∈⇔

IN

o i
o∀ O pE1

i IN j∃∈∀ 0:σ o i∪ M0,( ) j[ ]     ϕ≥∈

E2 E1

E2 E1
179



CHAPTER 9
the naïve stub assumes the most hostile surrounding possible 
whereas the exact stub complies with the assumptions on the 
other interfaces (see Definition 8.5). 

The example component in Figure 9.1 will be used to explain 
and analyse the stub generation algorithms in this chapter. In 
all cases, a stub for the marked interface  will be gener-
ated. The naïve stub for this component and interface is shown 
in Figure 9.2. 

Figure 9.3 illustrates the difference between an exact stub 
and a naïve stub further. Figure 9.3(a) shows the model of a sim-
ple component. It is designed assuming input on ports  and 

 satisfying the formulas in Equation 9.1 (if there is a token in 
, then there must arrive a token in  in the future) and 

Equation 9.2 (no token may arrive in  unless there was first a 
token in ).

(9.1)

(9.2)

Figure 9.1: Example of a component for stub generation

p1

p2

p3

p4

q1

q2

q3

q4

q5

q6

t1 t2

t3

t4

t5t6

t7

t8

t9

x

x

t10

x

x

xx
x

x
x

q7x x

x mod 4 0≠[ ]

x mod 4 0=[ ]
2x

d[ ]

d[ ]

t5min..t5max[ ]

t2min..t2max[ ]

t7min..t7max[ ]

t6min..t6max[ ]

p1 p2,{ }

p3
p4
p3 p4

p4
p3

AG p3 AF p4→( )

AG p4 init∨( ) A A p3 R p4¬[ ]  R p4[ ]→( )
180



AUTOMATIC STUB GENERATION
In Figure 9.3(b), the naïve stub for the interface  is pre-
sented. Transitions are added to ports  and  as discussed 
previously. The transitions are added disregarding the assump-
tions captured in the formulas above. The exact stub is shown in 
Figure 9.3(c). This stub satisfies the assumptions. 

To verify a design using naïve stubs is tremendously time con-
suming (see experimental results in Section 9.5). For this rea-
son, an algorithm generating smaller stubs reducing verification 
time has been developed and is presented in the following sec-
tions. 

9.3 Stub Generation Algorithm
The basic idea of the stub generation algorithm is to identify the 
parts of the given component which have an influence on the 
interface for which a stub should be generated. This is done by 
analysing the dataflow in the component. Once these parts have 

Figure 9.2: A naïve stub of the component in Figure 9.1

p1

p2

p3

p4

q1

q2

q3

q4

q5

q6

t1 t2

t3

t4

t5t6

t7

t8

t9

x

x

t10

x

x

xx
x

x
x

q7
x

x

x mod 4 0≠[ ]

x mod 4 0=[ ]
2x

d[ ]

d[ ]

t5min..t5max[ ]

t2min..t2max[ ]

random

0..∞[ ]

0..∞[ ]

t7min..t7max[ ]

t6min..t6max[ ]

p1 p2,{ }
p3 p4
181



CHAPTER 9
been identified, the parts of the model which were excluded 
must be compensated for. This is the point where pessimism is 
introduced in the stub. 

The stub generation algorithm consists of the three parts pre-
sented below. Each of them is explained separately in the follow-
ing sections.

1. Dataflow analysis
2. Identification of stub nodes
3. Compensation for the excluded parts of the component

p3

p4

p1

p2

p1

p2

p1

p2

(a) The component

(b) The naïve stub

(c) The exact stub

Figure 9.3: Comparison between exact and naïve stubs

random

p3

p4

p3

p4
182



AUTOMATIC STUB GENERATION
9.3.1 DATAFLOW ANALYSIS

The first step when identifying the parts to be included in the 
stub is to investigate the dataflow. This is a very simple proce-
dure namely a graph search algorithm, as shown in Figure 9.4. 
These procedures are called once for each port in the interface of 
the stub. traceBack is called for out-ports and traceForward in 
the case of in-ports. visited is a mapping from places and transi-
tions in the component to a boolean value. Initially, all places 
and transitions are mapped to false. 

During the search through the graph, each node (place or 
transition) is moreover marked with the node that was immedi-
ately previously visited (Line 5 and Line 12) so that it is possible 
to obtain the path from an arbitrary node to a port in the inter-
face. These markings represent the dataflow in the model. The 
dataflow marking must not only be able to distinguish the paths 
but also to which port each path leads. The dataflow marking is 
stored in a data structure (DF) for later use. The data structure 
associates a place or transition together with the original port to 

1 procedure traceBack(e: place or transition, p: port)
2 if not visited[e] then
3 visited[e] := true;
4 for each d ∈ ° e do
5 DF[d, p] := DF[d, p] ∪ { e };
6 traceBack(d, p);
7
8 procedure traceForward(e: place or transition, p: port)
9 if not visited[e] then
10 visited[e] := true;
11 for each d ∈ e° do
12 DF[d, p] := DF[d, p] ∪ { e };
13 traceForward(d, p);

Figure 9.4: Algorithms for searching the dataflow
183



CHAPTER 9
a set of neighbouring places or transitions which were immedi-
ately visited before the node just being visited. The algorithms 
in Figure 9.4 and the outlined data structure implement 
Definition 9.2.

Definition 9.2: Dataflow marking. A dataflow marking 
 is a set of nodes (places or transitions), which con-

stitute the first step on a path from node  to port  in 
component  with an interface . If  or  are evident 
from the context they may be omitted from the notation. As 
an extension we also define . 

Figure 9.5 reveals the dataflow marking for the example compo-
nent. Every node is annotated with a set of arrows, solid and hol-
low. The type of the arrow reflects towards which port it points. 
In the figure, solid arrows point towards  and hollow ones 
point towards . Place  is visited by the search algorithms 
both starting from  (traceForward) and  (traceBack). This 
means that both ports can be reached from . As indicated in 
the figure, the path from  to  goes through , and the path 

df I
C n p,( )

n p I∈
C I C⊆ C I

df n( ) df I n p,( )
p I∈∪=

Figure 9.5: The dataflow marking of the component in 
Figure 9.1

p1

p2

p3

p4

q1

q2

q3

q4

q5

q6

t1
t2

t3

t4

t5t6

t7

t8

t9

x

x

t10

x

x

xx
x

x
x

q7x x

x mod 4 0≠[ ]

x mod 4 0=[ ]
2x

d[ ]

d[ ]

t5min..t5max[ ]

t2min..t2max[ ]

p1
p2 q3

p1 p2
q3

q3 p1 t2
184



AUTOMATIC STUB GENERATION
from  to  through either  or . There is no path to  
from , since  was never reached in the dataflow search 
from  (traceForward). 

A dataflow marking is, intuitively, the set of arrows (main-
taining their types) associated to a node obtained from the 
search. For future reference, it is also useful to introduce the fol-
lowing definitions based on the dataflow marking.

Definition 9.3: Divergence node. A node  is a divergence 
node if and only if , i.e. there are several different 
paths leading to ports in the interface, or the arrows of  
point in different directions.

Definition 9.4: Intersect node. A node  is an intersect 
node if and only if , 
i.e. at least two arrows pointing in different directions are of 
different type (solid or hollow).

In Figure 9.5, amongst others, nodes , , ,  and  are 
divergence nodes. Nodes , ,  and  are examples of 
intersect nodes. , ,  and  are nodes which are neither 
divergence nor intersect nodes.

9.3.2 IDENTIFICATION OF STUB NODES

In order to describe the algorithm, the concept of separation 
point (SP) must first be defined.

Definition 9.5: Separation point. A separation point (SP) is 
a node (place or transition), which denotes the border 
between the parts of the component to be included in the 
stub and the part not to be included.

An SP can be situated at two different types of nodes:

1. Divergence node (e.g. , ,  and  in Figure 9.5).

q3 p2 t6 t7 p1
q4 q4
p1

n
df n( ) 1>

n

n
p I :df I n p,( ) ∅ df I n( ) df I n p,( )≠∧≠∈∃

t1 q1 q4 p3 p2
t1 q1 t6 t7

p4 t10 q7 t4

p3 q3 q4 t6
185



CHAPTER 9
2. The node is a port in the interface (  and  in Figure 9.5).

The search for SPs starts in the ports not belonging to the spec-
ified interface and it must be repeated once for each such port. 
Figure 9.6 (traceNode) presents the algorithm.

Similar to traceForward and traceBack, traceNode is also a 
depth first search algorithm. During the search, three cases in 
particular can occur:

p1 p2

1 procedure traceNode(e: place or transition)
2 if not tr_visited[e] then
3 tr_visited[e] := true;
4 if e is a port in the specified interf. or e is an intersect node then 
5 constructStub(e); 
6 else if e is a divergence node then 
7 tr_visited[e] := false;
8 node spcand := traceCutEdge(e);
9 if spcand = NULL then
10 constructStub(e); 
11 else
12 traceNode(spcand); 
13 else
14 traceNode(the only element in DF[e]);
15
16 function traceCutedge(e: place or transition) returns place or transition
17 if not tr_visited[e] and e is not an intersect node then
18 tr_visited[e] := true;
19 for each d∈ DF[e] do
20 if <e,d> is a cutedge then
21 return d;
22 else
23 node cecand := traceCutedge(d);
24 if cecand ≠ NULL then
25 return cecand;
26 return NULL;

Figure 9.6: Algorithms for identifying which parts of a 
component to include in the stub
186



AUTOMATIC STUB GENERATION
1. The node being visited is a port or an intersect node.
2. The node being visited is a divergence node.
3. The node being visited is neither of the above.

If node  being visited is a port, the stub is constructed using  
as a separation point (Line 4).  is also used as a separation 
point if it is an intersect node. All nodes on the path between two 
ports in the specified interface, and only those nodes, are inter-
sect nodes. For this reason, intersect nodes must be included in 
the resulting stub. 

Otherwise, if node  being visited is a divergence node 
(Line 6), it is a candidate for being the separation point. How-
ever, there might be better separation point candidates if the 
search is continued (traceCutedge). 

If node  being visited does not belong to either of the two cat-
egories above, the search continues following the dataflow as 
indicated by  (Line 14).

Let us return to the case where node  being visited is a diver-
gence node. As mentioned,  is a candidate for being a separa-
tion point. The reason is that in divergence nodes, the dataflow 
is influenced from more than one direction and all influences in 
the dataflow should be kept in the stub. However, it might be the 
case that there is a cutedge1 along the path between  and the 
ports in the specified interface (Line 8). The presence of a cut-
edge means that all data has to flow through the cutedge before 
reaching , cancelling the importance of keeping  as a separa-
tion point since the dataflow between the ports in the specified 
interface will not be influenced by the divergence node . If no 
cutedge was found,  is used as separation point (Line 10). Oth-
erwise, the procedure starts all over from the cutedge (Line 12).

Searching for a cutedge (traceCutedge) is also a depth first 
search. If node  being visited is an intersect node, the search 

1. An arc is a cutedge if the component becomes divided into two parts if 
the arc was to be removed from the graph.

e e
e

e

e

df e( )
e

e

e

e e

e
e

e

187



CHAPTER 9
stops due to reasons already discussed (Line 17). Otherwise, all 
paths indicated by the dataflow marking are examined 
(Line 19). If, in that case, a cutedge is found, the neighbouring 
node of  is returned as being a new candidate for SP (Line 21). 
If a cutedge was not found, the search continues until one is 
found (Line 23). In case a cutedge was not found in the whole 
component, NULL is returned to indicate this situation 
(Line 26).

When a separation point is finally found, the stub is con-
structed originating from that point. As the other algorithms, 
this procedure is also a depth first search. Figure 9.7 shows the 
code of the algorithm.

All nodes visited by the algorithm are added to the resulting 
stub (Line 4). res is a global variable which will contain the gen-
erated stub when the stub generation algorithm has finished. 
The search progresses through the component by following the 
dataflow, i.e. the arrows created by traceForward and traceBack
(Line 5). 

Continuing the example in Figure 9.5, the search starts, for 
instance, from port .  is a divergence node (but not an 
intersect node) and according to the algorithm, a search for cut-
edges is started (Line 8 in Figure 9.6) while keeping in mind 
that  might be chosen as a separation point in case traceCut-
edge fails. traceCutedge will eventually recognise that the arc 
between  and  is a cutedge and returns  back to trace-

e

1 procedure constructStub(e: place or transition)
2 if not visited[e] then
3 visited[e] := true;
4 res := res ∪  {e}; // including all arcs connecting e with res;
5 for each d ∈  DF[e] do
6 constructStub(d);

Figure 9.7: Algorithm for adding places and transitions to 
the resulting stub given a separation point

p3 p3

p3

q2 t2 t2
188



AUTOMATIC STUB GENERATION
Node which assigns this value to spcand. The search continues 
as before now starting from  (Line 12). However, since  is an 
intersect node, it is chosen as a separation point and the stub is 
constructed starting from this point (Line 5). Figure 9.8 shows 
the resulting stub. At this point, everything is added except . 
Time delay intervals, transition function and transition guards 
will be added later.

The procedure is repeated for port . The first divergence 
node discovered in the search is . According to the algorithm, 
a search for cutedge is started (Line 8 in Figure 9.6) while keep-
ing  as a candidate for being a separation point. traceCutedge
discovers that both  and  are intersect nodes (Line 17) and 
returns NULL indicating that a cutedge was not found. As a 
result, traceNode concludes that  must be chosen as a separa-
tion point (Line 10). At this point,  is also added to the stub 
completing Figure 9.8. 

Figure 9.8: The places and transitions in the 
automatically generated stub

p1

p2

q1

q3

q4

q5

q6

t1 t2

t6

t7

t8

t9

t2 t2

q4

p4
q4

q4
t6 t7

q4
q4
189



CHAPTER 9
9.3.3 COMPENSATION

All places and transitions on a path between two ports are 
included in the resulting stub as a result of the previous steps. 
However, there will be some nodes (either places or transitions) 
of which not all nodes in the postset or preset are also included 
in the stub. This means that they will not deliver or receive all 
needed output or input. These nodes are called fork or join nodes 
respectively and need additional treatment.

Definition 9.6: Fork node. Assume a component  and a 
stub . A node  is a fork node if and only if the 
corresponding node  in the component has a node 
in its postset which is not in the stub, .

Definition 9.7: Join node. Assume a component  and a 
stub . A node  is a join node if and only if the 
corresponding node  in the component has a node 
in its preset which is not in the stub .

Figure 9.9(a) introduces an example of a component which will 
be used to explain how fork and join nodes are modified in the 
stub. Figure 9.9(b) shows the stub as generated by the algo-
rithms in Figure 9.6, whereas Figure 9.9(c) presents the result-
ing stub after the compensation of the excluded parts. The exact 
procedure of compensation will be described shortly.

It is sometimes necessary to introduce randomness in the 
transition functions. This is denoted by a set of values, from 
which a value can be randomly chosen. The notation 

 consequently means that transition  may 
produce randomly any even integer number. The function does 
not have any arguments in this case, meaning that an even 
number is produced disregarding the token values in its input 
places. In the general case, the functions may have arguments, 

C
S C⊆ n V S( )∈

n V C( )∈
n ′ n°:n ′ S∉∈∃

C
S C⊆ n V S( )∈

n V C( )∈
n ′ °n:n ′ S∉∈∃

f t 2x Z∈ x Z∈{ }= t
190



AUTOMATIC STUB GENERATION
x 1+x

2..3[ ]

x

x x

x

x

3x

x

x x

x
x 2–

x 5+

x

x2x

y y

x
xy3

yy

4..7[ ]

3..5[ ]

4..6[ ]

1..3[ ]

1..4[ ]

1..3[ ]

2..3[ ]

3..4[ ] 1..2[ ]

1..1[ ]

3..4[ ]

Figure 9.9: Example component and stub explaining the 
compensation of excluded parts

p1

p2

p3

p4

p5

p6

p7

p8

q1

q3

q2

q4

q5

t1

t2

t3 t4

t5

t6

t7

t8

t9

t10

t11t12

x 1+x

2..3[ ]

x

x

y y

xy3

yy

2..3[ ]

3..4[ ] 1..2[ ]

3..4[ ]

p1

p2

q1

q3

q4

t1

t2

t3 t4

t5

x 1+x

2..3[ ]

x

x

y y

xy U∈ x 0≠ x U∈∧{ }3

yy

2..∞[ ]

3..4[ ] 1..∞[ ]

3..4[ ]

p1

p2

q1

q3

q4

t1

t2

t3
t4

t5

3..∞[ ]

x 0≠[ ]

x 0=[ ]

x 0≠[ ]

1..∞[ ]

t6,7

t9

t10

1..∞[ ]

x 2– U∈ x U∈{ }

x 5+ U∈ x U∈{ }

(b) Stub as generated by the 
algorithms in Figure 9.6

(a) Component

(c) Stub
191



CHAPTER 9
i.e. , where attention has also to be paid to 
the input token values.

Such transition functions are created with respect to a certain 
universe U containing all values possible in the design. In this 
chapter, for the sake of example, it is assumed that the universe 
consists of all integers, .

Case 1: fork place

If the fork node is a place (i.e.  in Figure 9.9(a)), it means that 
tokens can disappear out of the stub, into the part of the net 
which is excluded. To model this, a new transition ( ) is 
added to consume these tokens. The time interval of this transi-
tion is from the minimum delay of all postset transitions not 
included in the stub, to infinity ( ). 

The reason is that tokens can inherently not disappear before 
the stated lower limit, but, on the other extreme, the token 
might not be consumed at all. 

Case 2: join place

If the join node is a place ( ), it means that a token might 
appear in the place from outside the stub. This is modelled by 
adding all missing transitions in the preset of the place (  and 

). The newly added transitions are modified in the following 
manner: 

The upper bound of the time interval is set to infinity. The 
lower bound is left unchanged. This models the fact that the cor-
responding transition in the full component might never be ena-
bled. 

The function of the added transition is the same as the func-
tion of the corresponding transition in the component except 
that all arguments contain random values conformant to a pos-
sible transition guard. Equation 9.3 expresses this formally.

(9.3)

f t y( ) xy x Z∈{ }=

U Z=

q1

t6 7,

min 3 4,( )..∞[ ] 3..∞[ ]=

q3

t9
t10

f t ′ f t x1 … xn, ,( ) U∈ gt x1 … xn, ,( ) x1 … xn, , U∈∧{ }=
192



AUTOMATIC STUB GENERATION
The transition guard is set to . 
The guards are not shown in Figure 9.9(c) for space reasons. 

Moreover, the guards are redundant in this case since they are 
always true, .

(9.4)

(9.5)

Case 3: join transition

If the join node is a transition ( ), the enabling of that transi-
tion depends on the part of the component excluded from the 
stub. The exact enabling times can therefore not be known. 
Accordingly, the maximum time delay is changed to infinity. 
Moreover, some parameters for the transition function lack a 
value. 

The transition function  is updated in a similar manner as 
for join places, with the exception that some parameters are 
fixed, as they come from preset places inside the stub. Equation 
9.6 expresses this formally.  are parameters coming from 
places outside the stub, and  from places inside the stub. 

(9.6)

The guard of the transition is set to .
The guard is not shown in Figure 9.9(c) for space reasons. 

Similar to the join place case, the guard is not necessary in the 
example. Equation 9.7 and Equation 9.8 explain why.

(9.7)

(9.8)

f t ′ ∅≠

f t9
′ f t10

′ Z ∅≠= =

f t9
′ x 2– Z∈ x Z∈{ } Z= =

f t10
′ x 5 Z∈+ x Z∈{ } Z= =

t4

f t ′

xi
yi

f t ′ y1 … ym, ,( ) f t x1 … xn y1 … ym, , , , ,( ) U
gt x1 … xn y1 … ym, , , , ,( ) x1 … xn, , U∈∧

∈{
}

=

f t ′ y1 … ym, ,( ) ∅≠

f t4
′ y( ) xy Z∈ x 0≠ x Z∈∧{ }=

y U∈∀ : f t4
′ y( ) ∅≠
193



CHAPTER 9
Case 4: fork transition

If the fork node is a transition ( ), a token in one of its excluded 
output places might disable the transition (forced safe PRES+). 
This fact is modelled by setting the maximum time delay of the 
fork transition to infinity. 

To illustrate this situation, imagine the case where there are 
tokens in both  and  and the token in  is never con-
sumed by the glue logic connected to it. Transition  will never 
become enabled. 

Figure 9.10 shows the final result of applying this algorithm to 
the example in Figure 9.1 with respect to the interface 

.
In all cases described above, some degree of pessimism is 

introduced. At some points, transition functions are ran-
domised, as for  in Figure 9.10. In the stub, this transition 
produces any value, since it assumes that any input is possible. 
In the full component, this is actually not the case since 
(Figure 9.1), which provides input for , only can produce even 

t2

p5 q2 p5
t2

Figure 9.10: An automatically generated stub

p1

p2

q1

q3

q4

q5

q6

t1 t2

t5t6

t7

t8

t9

x

x

x

xx
x

x
x

x mod 4 0≠[ ]

x mod 4 0=[ ] t5min..∞[ ]

t2min..∞[ ]

t7min..t7max[ ]

U
t6min..t6max[ ]

p1 p2,{ }

t5

t10
t5
194



AUTOMATIC STUB GENERATION
numbers. Consequently, the stub is more pessimistic about pos-
sible values than an exact or naïve stub. 

In particular cases, the algorithm may result in an empty 
model. This occurs when the data path from a certain port does 
not intersect that of another port in the interface. Obviously, as a 
special case, this occurs when the interface only contains one 
single port. Those ports are by definition either join or fork 
places and are modified accordingly. 

In certain models, an SP may be situated at a port outside the 
specified interface. Such ports are neither join, nor fork places. 
Random transitions are in such cases added to the port, in the 
same way as random transitions were added for naïve stubs.

9.3.4 COMPLEXITY ANALYSIS

The algorithm is based on depth first search, which has time 
complexity , where  is the number of nodes and  the 
number of edges in a graph. Consequently, both traceForward
and traceBack have this complexity. 

Checking whether an edge is a cutedge or not is also a depth 
first search where you try to find another path from one node on 
the edge to the other, except through the particular cutedge can-
didate. The complexity is also .

Compensating for the excluded parts of the component is a 
scan through all nodes with a constant operation on each of 
them, leading to a complexity of . 

In the worst case, every edge has to be checked whether it is a 
cutedge or not. The overall worst case complexity hence becomes 

. Assuming that there are 
more edges than nodes, the theoretical worst case complexity of 
the algorithm is quadratic in the number of edges, . How-
ever, it should be noted that, in practice, very few edges are 
checked for being cutedges. Consequently, execution time is 
practically close to linear.

O n a+( ) n a

O n a+( )

O n( )

O n a n a+( )+( ) O n an a2+ +( )=

O a2( )
195



CHAPTER 9
9.4 Reducing Pessimism in Stubs
If a certain property was not satisfied using the generated stubs, 
it is necessary to consider the possibility that this is due to the 
pessimistic nature of the stub and not to a design error. The 
problem could be that the operation of the generated stub con-
tains more observations than the corresponding component. 

The operation of the stub must consequently be refined, i.e. 
the degree of pessimism must be reduced. The solution to this 
problem is to add some parts of the component, which were 
excluded in the stub generation, to the stub. However, in the 
general case, the designer does not have any detailed knowledge 
about the internals of the component and its stubs, so this pro-
cedure cannot be done manually. This leads to the necessity of 
automating the pessimism reduction procedure. Such an auto-
matic procedure is possible assuming that all transition func-
tions are invertible in the sense that, given a value, it is possible 
to obtain which set of arguments result in the given value. 

What the designer must know in order to use the component is 
stated in the user documentation of the component, i.e. the 
events occurring on the ports. By following the diagnostic trace, 
obtained as a result from the verification, the designer can iden-
tify an unwanted behaviour on one of the ports of the compo-
nent. If the unwanted behaviour is causal, i.e. the value itself is 
allowed at the particular port, but not at that particular order-
ing compared to other values, then it is not a matter of reducing 
pessimism, but it is a sign that the stub does not cover enough 
ports (compare with Section 8.2). Unwanted values and overes-
timation of the firing delay of transitions are, on the other hand, 
a matter of stub pessimism reduction. This fact is a consequence 
of the proposed stub generation algorithm and of the definition 
of pessimistic stubs. 

Firing delays are overestimated with infinity in the stub gen-
eration algorithm. The reason for this was that there is no guar-
antee that the transitions will ever become enabled. However, 
196



AUTOMATIC STUB GENERATION
assuming the most hostile surrounding possible, this can never 
be guaranteed in the full component either. Consequently, no 
pessimism reduction algorithm may ever be able to reduce this 
type of pessimism. Chapter 10 introduces a technique to also 
incorporate certain aspects of the surrounding into the verifica-
tion process, and thereby solve this problem. 

Thus, pessimism reduction of stubs is only applied when there 
is a value  in a port of the interface which cannot occur in that 
port in the full component. Pessimism can be reduced by itera-
tively adding transitions and places, which were previously 
removed from the component by the stub generation algorithm, 
until the unwanted value is eliminated. When adding a previ-
ously removed place or transition, all nodes in both the preset 
and postset of the place must also be modelled in accordance 
with the fork and join node cases of the stub generation algo-
rithm on page 192. In the extreme case, the naïve stub is 
obtained when the stub is extended with all parts of the compo-
nent. In order to automatically reduce the pessimism in a stub 
efficiently, in a way such that the possibility of value  to occur 
in a certain port is removed, the diagnostic trace resulting from 
the verification is helpful. 

In order to explain the pessimism reduction algorithm, let us 
return to the previous example and the stub in Figure 9.10. In 
order to keep the example simple, it is assumed that the compo-
nent is connected to a second component through a glue logic as 
depicted in Figure 9.11. The result of verifying the property 

 (All tokens arriving in  must have an 

v

v

The example
Component

x

x
x x

x x

p1

p2

s1

s2

r2

r1

u1

Figure 9.11: An example system

AG r1 even r1( )→( ) r1
197



CHAPTER 9
even value.) is clearly unsatisfied, since transition  produces 
completely random values. A possible diagnostic trace given by 
the model checker is the following sequence of transitions (pro-
duced values in parenthesis, if any): , , , , , 

, . Figure 9.12 outlines the pessimism reduction algo-
rithm presented below.

By following the trace backwards from the end towards its 
beginning (Line 7), the possible nodes where the stub can be 
extended are discovered. The possible extension points are nat-
urally those nodes where something was omitted in the stub 
generation, i.e. the join transitions. Join places do not exist in a 
generated stub since transitions in their presets are added due 
to case 2 on page 192. The first join transition encountered in 
the example sequence is , which produced value  
(Line 8). 

t5

s1 t1 t2 t5 3( ) t6 3( )
t8 3( ) s2 3( )

1 function pessRed(stub: PRES+; comp: PRES+; tr: trace) returns PRES+
2 for each n∈ stub do
3 visited[n] := true;
4 oldStub := copy of stub;
5 newStub := oldStub;
6 repeat
7 Follow tr backwards until a join transition, t, is encountered;
8 u := the value resulting from t, also indicated by the trace;
9 visited[t] := false;
10 success := buildStub(newStub, t, u); // Defined in Figure 9.13
11 if not success then
12 newStub := oldStub;
13 else
14 oldStub := newStub;
15 until tr is finished;
16 return newStub;

Figure 9.12: The pessimism reduction algorithm

t5 u 3=
198



AUTOMATIC STUB GENERATION
The part of the component not included in the stub is then 
examined backwards starting from the selected join transition 
( ) towards the ports ( ), exploring the part of the component 
not included in the stub (Line 10 in Figure 9.12 and the function 
in Figure 9.13). The exploration is done in a depth first manner.

For each transition  visited, a value  to be eliminated is 
maintained. If the transition function of , , is constant, the 
algorithm fails if  since it is impossible to avoid  in  

1 function buildStub(stub: PRES+; t: transition; u: value) returns boolean
2 if not visited[t] then
3 visited[t] := true;
4 stub := stub ∪  { t };
5 if ft is constant then
6 return ft ≠ u;
7 else
8 W := ft

-1(u);
9 for each w∈ W do
10 if gt(w) then
11 for each parameter wi of ft do
12 pi := the place corresponding to wi;
13 if pi has an initial token with value wi then
14 return false;
15 stub := stub ∪  { pi };
16 if °pi = ∅  then
17 return false;
18 else
19 for each ti ∈ ° pi do
20 success := buildStub(stub, ti, wi);
21 if not success then
22 return false;
23 return true;

Figure 9.13: Auxiliary function for the pessimism 
reduction algorithm

t5 p4

t u
t f t

f t u= u t
199



CHAPTER 9
(Line 6 in Figure 9.13). Otherwise, the value  is avoided by 
having included the transition in the stub (Line 4). 

If the function is not constant, it is needed to find out which 
set of function arguments can produce the unwanted value. This 
is done using the inverted function , as defined in Equation 
9.9 (Line 8). In order to succeed, all arguments resulting in  
must be in turn eliminated (Line 9) only taking into considera-
tion those values which are satisfied by the guard (Line 10). 

(9.9)

Each function argument may consist of several parameters, 
for instance transition  in Figure 9.9(a). Each such parameter 
corresponds to a place. If the place has an initial token with a 
token value equal to , it is impossible to eliminate the value, so 
the algorithm fails (Line 14). Otherwise, the place is added to 
the resulting stub (Line 15). It is also impossible to eliminate 
the value if the preset of the place is empty, i.e. the place is a port 
towards the surrounding (Line 17). 

Otherwise, the search continues from the transitions in the 
preset of the place, trying to eliminate the value associated to 
the place (Line 20). If the algorithm fails for one transition, the 
total result will be a failure (Line 22).

Let us return to Figure 9.12. If buildStub failed, the modifica-
tions made on the stub are reverted, so that a new iteration can 
start with a fresh copy (Line 12). The algorithm then searches 
for the next join transition in the diagnostic trace (Line 7). This 
procedure continues until the whole trace has been examined 
(Line 15). 

The first join transition encountered in the example in 
Figure 9.1 is  with the value .  is not con-
stant, so the transition must be further examined. The set of val-
ues resulting in 3 is . The transition 
does not have any guard and has only one parameter corre-

u

f t
1–

u

f t
1– x( ) x1 … xn, ,〈 〉 f t x1 … xn, ,( ) x= x1 … xn, , U∈∧{ }=

t4

u

t5 u 3= f t5
x( ) x=

f t5

1– u( ) f t5

1– 3( ) 3{ }= =
200



AUTOMATIC STUB GENERATION
sponding to place .  has in turn only one transition in its 
preset, .

The function of , , is not constant either. 
, which means that buildStub stops and reports suc-

cess. The unwanted value is eliminated. 
Since there are no more join transitions in the diagnostic 

trace, pessRed also finishes by returning the stub in 
Figure 9.14.  only produces even values, so  also only pro-
duces even values, which in turn causes the property to be satis-
fied.

9.4.1 COMPLEXITY ANALYSIS

buildStub is a depth first search with complexity , 
where  is the number of nodes and  is the number of edges in 
the graph. The main uncertainty in this analysis is the time it 
takes to invert a function. Assuming that the time for inverting 
and computing the functions in the graph takes  in the 
worst case, the total time complexity of buildStub is 

.

q7 q7
t10

t10 f t10
x( ) 2x=

f t10

1– 3( ) ∅=

Figure 9.14: The resulting stub after pessimism reduction

p1

p2

q1

q3

q4

q5

q6

t1 t2

t5t6

t7

t8

t9

x

x

x

xx
x

x
x

x

x mod 4 0≠[ ]

x mod 4 0=[ ] t5min..∞[ ]

t2min..∞[ ]

t7min..t7max[ ]

x

2x U∈ x U∈{ }

q7 t10t6min..t6max[ ]

t10 t5

O n a+( )
n a

O inv( )

O n inv⋅ a+( )
201



CHAPTER 9
buildStub is called once for each join transition in the diagnos-
tic trace. The overall time complexity is consequently 

, where  is the number of join transitions in 
the trace. Assuming that the number of join transitions in the 
trace are few and  is close to constant, we obtain a complex-
ity close to linear.

9.5 Experimental Results
The proposed methodology is demonstrated on two examples: 
the General Avionics Platform (GAP), introduced in Section 7.1, 
and a cruise controller. 

9.5.1 GENERAL AVIONICS PLATFORM

The two components in the GAP example which were modelled 
and whose interconnection was especially verified were Tracker 
and Weapon (Figure 9.15). Tracker receives information from 
component Radar regarding the location of enemy aeroplanes. 
The pilot may point at a particular aeroplane on his screen and 
lock the weapons on it. Upon lock, Tracker repeatedly sends 
information to Weapon about the direction and distance of the 

O t n inv⋅ a+( )( ) t

inv

Tracker Weapon

lock

radar

ready

aimrel

newstat

aimabs fire

0 0,〈 〉

0..0[ ]

1..2[ ]

0..1[ ]

nv

nv

ov
v v ov+

Figure 9.15: The verified glue logic in the GAP example
202



AUTOMATIC STUB GENERATION
target aeroplane as long as the lock situation holds. Weapon con-
tinuously informs Tracker that it keeps up with the aiming 
instructions given by Tracker.

Three properties were checked in this setting:

1. Weapon must keep up with the aiming instructions given by 
Tracker. 

2. Tracker must be able to send the aiming instructions at a 
certain rate. 

3. Tracker must only send aiming instructions within a certain 
direction (and distance) interval, e.g. it cannot aim back-
wards. 

The properties (all are (T)ACTL) were verified following the 
methodology described in this chapter. It was assumed that the 
only information given by the component provider was the 
model of the complete component. In particular, no predesigned 
stubs were provided. 

Table 9.1 shows the verification results and times in seconds. 
T means that the property was satisfied in the corresponding 
verification environment and F means that it was unsatisfied. 

First, stubs were obtained by running the models of Tracker 
and Weapon through the algorithm described in Section 9.3
(Env 0). In the case when the property was unsatisfied, the diag-

AG aimrel AF ready→( )

AG aimrel AF 5≤ aimrel¬→( )

AG aimabs aimabs min max,[ ]∈→( )

Table 9.1: Verification results and times for the GAP example

Prop. Env 0
Pessimism 
Reduction Env 1 Sum Naïve

1 T 0.200 - (T 15.104) 0.200 N/A

2 T 0.122 - (T 4.159) 0.122 N/A

3 F 0.031 ≈120 T 3.191 ≈123 N/A
203



CHAPTER 9
nostic trace was investigated and the proper stub had its pessi-
mism reduced (Env 1). The properties were also verified using 
naïve stubs. 

For properties 1 and 2 the verifications went very fast and 
using Env 0 was sufficient. Property 3 was however unsatisfied 
in Env 0, so the stub representing the Tracker component 
needed to have its pessimism reduced. The time accounted for 
pessimism reduction was spent on manual work like investigat-
ing the diagnostic trace and running the pessimism reduction 
algorithm. A low estimation of the time for pessimism reduction 
was 2 minutes, shown in the third column of Table 9.1. 

Verifying with Env 1 took longer time due to its larger model 
complexity. For curiosity properties 1 and 2 were also verified 
using Env 1 although it would not have been necessary accord-
ing to the methodology. Not surprisingly, it took substantially 
longer time than verifying them with Env 0. In either case, ver-
ifying the properties with stubs obtained by the algorithms was 
tremendously much faster than using naïve stubs. 

Using naïve stubs took substantially longer time than using 
Env 0 or Env 1. The available verification equipment was not 
capable of efficiently handling the big amount of required mem-
ory leading to verification times of several weeks. For this rea-
son, no results can be presented.

9.5.2 CRUISE CONTROLLER

The second set of experiments was done on a model of a car 
cruise controller (Figure 9.16). When the cruise controller is 
activated by the driver of the car, a signal is sent to the cruise 
controller module (CCM). The CCM immediately records the 
current speed (reference speed) which it will try to keep until the 
cruise controller is turned off. If it notices that the current speed 
of the car is lower than the reference value, it sends signals to 
the engine controller module (ECM) to increase the torque. If the 
204



AUTOMATIC STUB GENERATION
speed is higher than expected, the opposite command is issued. 
In case the driver pushes the brake pedal, a signal is sent to the 
CCM to turn off itself. 

The properties to be verified are the following:

1. The brake signal must be processed sufficiently fast. 

2. The requested torque is below 100%. 

3. The reference value is positive. 

All properties are (T)ACTL and it is assumed that no stubs were 
provided by the designer of the components. 

CCM
ECM

ccset

vs

cccanc

ccsp

bp

reqtorque

rpm

0..0[ ]

2..2[ ]

1..1[ ]

t t

Figure 9.16: The verified glue logic in the cruise controller 
example

brp

tcc

t

t

2..2[ ]

t4

t1

t2

t3

off

on

AG bp AF 1< bp¬→( )

AG reqtorque reqtorque 1≤→( )

AG ccsp ccsp 0≥→( )

Table 9.2: Verification results and times for the CCM example

Prop Env 0
Pessimism 
Reduction Env 1 Sum Naïve

1 F 0.147 ≈120 - ≈120 N/A 

2 T 151.3 - (T 22905) 151.3 N/A 

3 F 0.146 ≈120 T 26095 ≈26220 N/A
205



CHAPTER 9
Table 9.2 presents the verification results and times in sec-
onds in the same style as the results given in Table 9.1. The 
same procedure was followed in these experiments as in the 
GAP example. 

The verification of property 1 showed that it was unsatisfied 
with Env 0. Hence, the diagnostic trace was examined. It turned 
out that the error was located in the glue logic, not in any of the 
stubs. The reason was that the brake signal (token) is never con-
sumed if the CCM was turned off as can be seen in Figure 9.16, 
transition . 

The difference of verification times between the GAP and 
CCM examples are several orders of magnitude. The reason is 
twofold:

1. Bigger interaction with inherently random system environ-
ment, e.g. turning on and off the system, braking or varying 
driving pattern (speed). 

2. The generated stubs are nearly as big as the components 
themselves, due to their structure. 

Although, the verification times are long, they are still far from 
the situation using naïve stubs. 

9.6 Verification Methodology Roadmap
This section continues the verification roadmap introduced in 
Section 7.4 based on the work presented in this chapter.

The question answered in Figure 7.7 gives us the assumption 
that we must ourselves generate the stubs used in the verifica-
tion. As indicated by the next question (Figure 9.17) it is neces-
sary to have a model of the whole component in order to be able 
to proceed with the verification. If such a model exists, a stub is 
created for the interface in question using the algorithm in Sec-
tion 9.3. In the next step, the property is verified using the gen-
erated stub. If the property was satisfied and (T)ACTL, it is 

t4
206



AUTOMATIC STUB GENERATION
proven that the system satisfies it. If the property was satisfied, 
but not ACTL, naïve stubs might need to be used (Figure 9.19). 
Otherwise, if the property was not satisfied and not (T)ACTL, it 
is proven unsatisfied in the system. However, if the property is 
(T)ACTL, pessimism has to be reduced in the stub (Figure 9.18).

Do you have access to
the internal model of

the component?

No

Build top-level stubs
from the component model

using the proposed algorithm

Yes

Verify property

Is the property
satisfied?

Is the property
(T)ACTL?

Yes

Yes

No

No

Figure 7.7

Verification impossible

Property is
proven satisfied

Figure 9.19

Figure 9.18

Is the property
(T)ACTL?

Property is
proven not satisfied

No

Yes

Figure 9.18

Figure 9.17: Continuation from Figure 7.7 when no stubs 
are provided by the designer
207



CHAPTER 9
Pessimism is reduced by first investigating the diagnostic 
trace obtained from the verification. If the trace indicated a fault 
in the glue logic, i.e. not in a stub, the property is proven not sat-
isfied. In case the fault was found in the stub and all functions of 
the component are invertible, pessimism is reduced according to 

Investigate the diagnostic
trace to identify the

failing point

Did the diagnostic trace
indicate a failure in

a stub?

Figure 9.17

Property is
proven not satisfied

No

Are all transition functions
in the component invertible?

Yes

No
Figure 9.19

Reduce pessimism in the stub using
the proposed algorithm

Yes

Was it possible to
extend the stub?

No
Figure 9.19

Figure 9.17

Yes

Figure 9.18: Continuation of the roadmap from 
Figure 9.17
208



AUTOMATIC STUB GENERATION
the algorithm presented in Section 9.4. If not all functions are 
invertible, naïve stubs have to be considered. The same happens 
if it was impossible to further reduce pessimism. When a new 
less pessimistic stub has been obtained, the property is verified 
again.

As mentioned above, if a verification result could not be con-
cluded, naïve stubs have to be considered (Figure 9.19). How-
ever, if the diagnostic trace suggested that assumptions on the 
surrounding are violated, using naïve stubs will not solve the 

Did the diagnostic trace
indicate that the failure

depends on assumptions about
other interfaces not taken

into consideration?

Figure 9.17
Figure 9.18

Figure 10.23

Yes

Use the naïve
stub

No

Verify property

Is the property
satisfied?

Property is
proven not satisfied

No

Property is
proven satisfied

Yes

Figure 9.19: Continuation of the roadmap from 
Figure 9.17 and Figure 9.18
209



CHAPTER 9
problem (see discussion around Figure 9.3 about the difference 
between naïve and exact stubs). The solution to that problem is 
presented in Chapter 10. Otherwise, the naïve stub is used 
straight-forwardly. 
210



MODELLING THE SURROUNDING
Chapter 10
Modelling 

the Surrounding

OGETHER WITH EACH COMPONENT, a set of (T)CTL 
formulas is provided as requirements on the input on all 
interfaces of the component. However, stubs generated 

by the algorithms presented in Chapter 9 disregard from this 
fact and always assume the worst case surrounding. A less pes-
simistic verification result might be obtained if the information 
provided by the formulas on other interfaces than those being 
verified are incorporated into the verification process in the 
place of those interfaces. Moreover, system specific assumptions 
about the surrounding might also have to be made in order to 
obtain a good verification result. In this way, stubs no longer 
assume the worst case surrounding but a surrounding satisfying 
certain given requirements. Figure 10.1 illustrates this mecha-
nism.

This chapter will present an algorithm which translates an 
arbitrary ACTL formula into a PRES+ model, such that this 
model can produce all possible observations (behaviours) still 

T

211



CHAPTER 10
consistent with the formula. The resulting PRES+ model is then 
attached to the component on the interface on which the formula 
was expressed. The component with the attached formula model 
(Figure 10.1) is then treated as a stub in the subsequent verifi-
cation.

Existing work has already approached this issue using finite 
automata on infinite words for LTL and ACTL [Gru94]. The 
work presented in this chapter is based on this translation 
method. In fact, many definitions presented in this chapter, in 
particular in Section 10.2.1, are based on similar definitions in 
[Gru94], although most of them are modified in order to fit the 
PRES+ representation and our interpretation of CTL formulas 
(see Section 3.3).

Other work tries to remove the restriction of ACTL and be 
able to derive automata for all CTL formulas [Kup96]. However, 
in this case the translation cannot be performed into normal 
automata on infinite words, but only into so called tree autom-
ata. Since there is no direct correspondence between tree autom-

S
tu

b Glue

Logic

Interface 1
Interface 2

(T)CTL Formulas
(T)CTL Formulas

Figure 10.1: Overview of the methodology presented 
in this chapter

S
u

rr
ou

n
d

in
g

F
or

m
u

la
m

od
el

(T)CTL Formulas

Interface 3

C
om

p
on

en
t

212



MODELLING THE SURROUNDING
ata and Petri-nets, this generalisation cannot be applied in our 
case. Consequently, the translation algorithm presented below 
assumes an ACTL formula, or a conjunction or disjunction of 
ACTL formulas. Conjunctions of formulas are of special interest 
since they allow to create one single PRES+ model from several 
formulas.

10.1 Preliminaries

10.1.1 INTRODUCTORY EXAMPLE

Consider the ACTL formula . The formula states that 
 must repeatedly hold some time in the future. It is however 

not defined when this future must come, only that it must come 
eventually. Figure 10.2(a) shows an ad hoc construction of a 
PRES+ model representing this formula. It should be noted that 
all generated models are connected to a component. Therefore, it 
might happen that tokens disappear or appear in the ports, 
without an explicit transition firing in the generated PRES+ 
model. 

Unfortunately, the model in Figure 10.2(a) does not fully cor-
respond to the formula, since there is nothing which will ever 
force the transition to fire. As a result, it is not certain that  
will be marked in the future.

In order to avoid this problem, the F and U operators in the 
ACTL formula must have an upper time bound, before which the 
subformula must hold, e.g. . The time bound is trans-

p

Figure 10.2: Petri-nets constructed ad hoc for the formula 
AGAF p

[0..5]

(a) (b)

p

AGAF p
p

p

AGAF p 5≤
213



CHAPTER 10
ferred to the corresponding transition. The model now has a 
mechanism to force the transition to fire and  will be repeat-
edly marked in the future. From here on, in the context of mod-
elling ACTL formulas in PRES+, it is assumed that such time 
bounds on F and U operators exist. A PRES+ model for the 
example formula is shown in Figure 10.2(b).

10.1.2 FORMULA NORMALISATION

In order to simplify the algorithm, the formula for which a 
PRES+ model should be generated must be written in a normal 
form according to the following rules:

1. Implications of the form  must be rewritten as , 
so that the only boolean operators in the formula are ¬ , ∧
and ∨ .

2. Subformulas of the form , where  is a port,  is a 
value and  is a relation, for example the equality relation 
=, must be rewritten as , where  is the comple-
mentary relation of , in this case the disequality relation ≠, 
in order to enforce the correct semantics.

3.  is rewritten as .
4.  is rewritten as .

Table 10.1 shows a few examples of ACTL formulas and their 
normalisation.  and  are abbreviated as  and  
respectively.

p

p q→ p¬ q∨

pℜ v( )¬ p v
ℜ

p¬ pℜ v∨ ℜ
ℜ

AG ϕ A false R ϕ[ ]
AF ϕ j≤ A true U ϕ j≤[ ]

Table 10.1: Examples of (T)ACTL formulas and 
their normalisation

Formula Normalisation

AG p p 5≤→( ) A f R p¬ p 5≤∨( )[ ]

AF 4≤ p A t U 4≤ p[ ]

AGAF 4≤ p A f R A t U 4≤ p[ ][ ]

AG p 10> AF 2≤ q 5≤→( ) A f R p¬ p 10≤ A t U 2≤ q 5≤[ ]∨ ∨( )[ ]

true false t f
214



MODELLING THE SURROUNDING
10.2 The ACTL to PRES+ Translation Algorithm
The algorithm consists of the following main steps: 

1. Place generation. 
2. Timer insertion for U operators
3. Transition generation
4. Insertion of initial tokens

Each of these four steps is explained in more detail in the follow-
ing sections. The steps are in principle executed in sequence 
with minor exceptions. Section 10.2.5 gives a summary of these 
steps and a final overview of the algorithm is presented.

The basic idea of the algorithm is to identify a set of states 
(markings) satisfying the particular ACTL formula. Each state 
represents a particular future behaviour of the model. The 
PRES+ model changes state as a response to inputs received and 
outputs emitted, in such a way that the formula will stay satis-
fied. The resulting PRES+ model will have one place for each 
such state of future behaviour. 

If a state represents a behaviour which includes that a certain 
event must occur within a certain time bound, it is necessary to 
insert a mechanism called timers into that state in order to 
guarantee that the specified event will occur in time. 

Transitions are then inserted to represent all possible state 
changes satisfying the formula.

All states satisfying the formula can potentially be the initial 
state. The selection must be made dynamically so that all possi-
bilities are accounted for in the verification. A mechanism for 
selecting the initial state is included at the last step of the algo-
rithm.

The formula  will be used as an example 
for explaining the algorithm presented in this chapter. This for-
mula is rewritten as stated in Equation 10.1 according to the 
normalisation rules. It is further assumed that  is an out-port 

AG p AF 3≤ q 10<→( )

p

215



CHAPTER 10
and  is an in-port of an attached component. Section 10.3 pro-
vides further examples. 

(10.1)

10.2.1 PLACE GENERATION

The first step of the algorithm is to create places to the PRES+ 
model. Before describing the algorithm, a few definitions and 
concepts must be presented.

Definition 10.1: Set of elementary formulas. The set 
of elementary formulas of the formula  is defined by the fol-
lowing equations ([Gru94] modified).

1. If  or , then . If 
(where  is a port of a component) or , then 

. If , then . 
2. If  or , then 

. 
3. If , then 

. 
If , then 

.

Considering the example formula , the set of elementary for-
mulas is shown in Equation 10.2.

(10.2)

q

ψ A f R p¬ A t U q 10< 3≤[ ]∨( )[ ]=

el ϕ( )
ϕ

ϕ true= ϕ false= el ϕ( ) ∅= ϕ p=
p ϕ p¬=

el ϕ( ) p{ }= ϕ pℜ v= el ϕ( ) p pℜ v,{ }=
ϕ ϕ1 ϕ2∧= ϕ ϕ1 ϕ2∨=

el ϕ( ) el ϕ1( ) el ϕ2( )∪=
ϕ A ϕ1U ϕ j≤ 2[ ]=

el ϕ( ) AX A ϕ1U ϕ j≤ 2[ ]{ } el ϕ1( ) el ϕ2( )∪ ∪=
ϕ A ϕ1 R ϕ2[ ]=

el ϕ( ) AX A ϕ1 R ϕ2[ ]{ } el ϕ1( ) el ϕ2( )∪ ∪=

ψ

el ψ( ) AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ]

1

p
2

AX A t U q 3≤ 10<[ ]

4

q
8

q 10<
16

, ,

, ,













=

                 {

         {   
216



MODELLING THE SURROUNDING
An elementary formula expresses a certain aspect about the 
model. AX formulas describe a certain future behaviour, 
whereas atomic propositions say something about the current 
state of the system.

In the rest of this chapter, large sets of subsets of  will 
very often be referred. In order to achieve an acceptably con-
dense representation, we will use a numerical notation for sub-
sets of . 

Each subset will be labelled , where  is a number accord-
ing to the following scheme. Every elementary formula is 
assigned a power of 2, see Equation 10.2.  is the sum of the 
numbers corresponding to the formulas included in the desired 
set. Table 10.2 lists all subsets of  with their associated  
annotation.

Definition 10.2: Subformula. The set  of subformu-
las of the formula  is defined by the following equations
([Gru94] modified).

1. If  or  or  or  (an 
atomic proposition), then . If , then 

.
2. If  or  or  or 

, then 
.

Equation 10.3 presents the set of all subformulas of the example 
formula .

(10.3)

Definition 10.3: Atomic propositions. The set of atomic 
propositions in a formula  is defined as 

. This function can also be 
lifted to sets of formulas: . It is con-

el ϕ( )

el ϕ( )
Si i

i

el ψ( ) Si

sub ϕ( )
ϕ

ϕ true= ϕ false= ϕ p= ϕ pℜ v=
sub ϕ( ) ϕ{ }= ϕ p¬=

sub ϕ( ) ϕ p,{ }=
ϕ ϕ1 ϕ2∧= ϕ ϕ1 ϕ2∨= ϕ A ϕ1U j≤ ϕ2[ ]=

ϕ A ϕ1 R ϕ2[ ]=
sub ϕ( ) ϕ{ } sub ϕ1( ) sub ϕ2( )∪∪=

ψ

sub ψ( ) A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] f
p¬ A t U q 10< 3≤[ ]∨ p¬ p A t U q 10< 3≤[ ] t q 10<

, ,
, , , , ,

{
}

=

ϕ
AP ϕ( ) el ϕ( ) AX ϕ1 el ϕ( )∈{ }–=

AP Ψ( ) AP ϕ( )ϕ Ψ∈∪=
217



CHAPTER 10
Table 10.2: Listing of all subsets of 

Subset of 
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

el ψ( )

Si el ψ( )
∅
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ]{ }
p{ }
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] p,{ }
AX A t U q 3≤ 10<[ ]{ }
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] AX A t U q 3≤ 10<[ ],{ }
p AX A t U q 3≤ 10<[ ],{ }
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] p AX A t U q 3≤ 10<[ ], ,{ }
q{ }
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] q,{ }
p q,{ }
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] p q, ,{ }
AX A t U q 3≤ 10<[ ]( ) q,{ }
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] AX A t U q 3≤ 10<[ ] q, ,{ }
p AX A t U q 3≤ 10<[ ] q, ,{ }
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] p AX A t U q 3≤ 10<[ ] q, , ,{ }
q 10<{ }
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] q 10<,{ }
p q 10<,{ }
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] p q 10<, ,{ }
AX A t U q 3≤ 10<[ ] q 10<,{ }
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] AX A t U q 3≤ 10<[ ] q 10<, ,{ }
p AX A t U q 3≤ 10<[ ] q 10<, ,{ }
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] p AX A t U q 3≤ 10<[ ] q 10<, , ,{ }
q q 10<,{ }
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] q q 10<, ,{ }
p q q 10<, ,{ }
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] p q q 10<, , ,{ }
AX A t U q 3≤ 10<[ ] q q 10<, ,{ }
AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ] AX A t U q 3≤ 10<[ ] q q 10<, , ,{ }
p AX A t U q 3≤ 10<[ ] q q 10<, , ,{ }

el ψ( )
218



MODELLING THE SURROUNDING
venient to additionally define  and  to 
mean the set of atomic propositions which denote in-ports 
and out-ports of a connected component, respectively. Fur-
thermore, let  
denote the set of atomic propositions with relations, and 

 and  those atomic propositions with 
relations which refer to an in-port or out-port respectively.

In the example formula, , 
 and . 

 and .
The atomic propositions with relation in a set of elementary 

formulas  impose certain restrictions on the token values in 
the ports corresponding to the atomic proposition. The universe 
from which values are chosen is denoted U (see also Section 
9.3.3). U contains all values which could possibly occur in the 
design. In all examples of this chapter, it is assumed that the 
universe is the set of all integers, . 

Definition 10.4: Port values. The set of in-port values of 
the set of elementary formulas  is defined as 

. The 
set of out-port values is defined with respect to a particular 
out-port  as , where 

. 

The set of in-port values of a set of elementary formulas  is the 
set of values in the universe U which satisfy all relations, with 
an atomic proposition referring to an in-port, in . The atomic 
propositions in the relations do not need to be the same. There 
must still exist a value which satisfies all in-port relations in the 
set. The reason that all in-port relations must be satisfied simul-
taneously disregarding the atomic proposition in the relation 
stems from the fact that transitions in PRES+ only can have one 

APin ϕ( ) APout ϕ( )

APrel ϕ( ) AP ϕ( ) APin ϕ( )– APout ϕ( )–=

APrin ϕ( ) AProut ϕ( )

AP ψ( ) p q q 10<, ,{ }=
APout ψ( ) p{ }= APin ψ( ) q{ }=
APrel ψ( ) AProut ψ( ) q 10<{ }= = APrin ψ( ) ∅=

s

U Z=

s
PVin s( ) k U∈ pℜ v s∈ : p APin s( )∈ kℜ v→( )∀{ }=

p PVout s p,( ) k U∈ pℜ v s∈ :kℜ v∀{ }=
p APout s( )∈

s

s

219



CHAPTER 10
function. The values produced by that function must simultane-
ously satisfy all atomic propositions with relation corresponding 
to in-ports in .

In the case of out-ports, each atomic proposition is examined 
separately, as opposed to in-ports, since transition functions may 
have several arguments. 

In the example,  and 
. 

 and  does not exist since  is 
not an out-port.

Having defined port values, it is possible to determine which 
sets of elementary formulas are legal. 

Let  denote the formula for which a PRES+ model is to be 
constructed. Let  be defined as indicated by Equation 10.4, 
where .  is the power set of  but 
where subsets containing a contradictory set of elementary for-
mulas are removed. A set of elementary formulas  can be con-
tradictory for two reasons:

1. The set contains an atomic proposition with relation ( ), 
but not the atomic proposition itself ( ). Such a set is contra-
dictory since the relation says that place  contains a token 
related in the particular way, but the absence of the atomic 
proposition  indicates that , on the contrary, does not con-
tain any token, in other words . (E.g. 

)
2. The set contains atomic propositions with relations, where 

there does not exist any value that can satisfy all relations 
corresponding to in-ports at the same time, . 
The same holds for out-ports, but for each atomic proposition 
taken separately, in other words 

. (E.g. )

(10.4)

s

PVin S9( ) … 1– 0 1 2 …, , , , ,{ } Z= =
PVin S25( ) k Z∈ k 10<{ } … 1– 0 1 2 … 9, , , , , ,{ }= =
PVout S27 p,( ) Z= PVout S27 q,( ) q

ψ
S ψ( )

p pℜ v, AP ψ( )∈ S ψ( ) el ψ( )

s

pℜ v
p

p

p p
p∃ ℜ v s∈ : p s∉

pℜ v q AX A f R q[ ], ,{ }

PVin s( ) ∅=

p APout ψ( ):PVout s p,( )∈∃ ∅= q q 10 q 20>,<,{ }

S ψ( ) 2el ψ( ) s 2el ψ( )∈ p∃ ℜ v s∈ : p s∉{ }–

s 2el ψ( )∈ PVin s( ) ∅= p APout ψ( ):PVout s p,( )∈∃ ∅=∨{ }
–=
220



MODELLING THE SURROUNDING
Definition 10.5: Legal (Contradictory) set of elementary 
formulas. A set of elementary formulas, , is legal if and only 
if , and  is contradictory if and only if , 
where  is defined as in Equation 10.4.

The set  is contradictory since the for-
mula  is not a member of the set, but  is.

 is also a contradictory set assuming that 
both  and  are in-ports, since there does not exist any value 
which is both less than 10 and greater than 20. However, assum-
ing than  is an out-port and  is an in-port makes the same set 
legal.  is a legal set of elemen-
tary formulas, even assuming that both  and  are in-ports.

Continuing with the example formula  in Equation 10.1,
. Elements  to  are not 

included into , since they contain  but not  and hence 
are contradictory. 

Identifying  simplifies the rest of the algorithm, in the 
sense that it no longer needs to consider contradictory situa-
tions. From now on, only legal sets of elementary formulas are 
considered. 

After having identified the legal sets of elementary formulas, 
it is needed to find out which legal sets of elementary formulas 
satisfy the formula  for which a PRES+ model should be gen-
erated. Definition 10.6 introduces a function, , for this pur-
pose.

Definition 10.6: . Formula mapping  from 
 to  is defined recur-

sively as follows [Gru94]:

1. , . If , then 
. If , then 

.

s
s S ψ( )∈ s s S ψ( )∉

S ψ( )

AX A p R q[ ] p 10<,{ }
p p 10<

p 10< p q 20 q,>, ,{ }
p q

p q
AX A p R q[ ] p 10 p q 5 q,>, ,<,{ }

p q
ψ

S ψ( ) S0..S15 S24..S31,{ }= S16 S23
S q 10< q

S ψ( )

ψ
Φ

Φ ϕ( ) Φ ϕ( )
el ψ( ) sub ψ( ) true false,{ }∪ ∪ S ψ( )

Φ true( ) S ψ( )= Φ false( ) ∅= ϕ el ψ( )∈
Φ ϕ( ) s S ψ( ) ϕ s∈∈{ }= ϕ ϕ1¬=
Φ ϕ( ) S ψ( ) Φ ϕ1( )–=
221



CHAPTER 10
2. If , then . If 
, then . 

3. If , then 
. If 

, then 
. 

 denotes the maximal set of legal elementary formulas sat-
isfying the formula . This intuitively means that the algorithm 
should generate a PRES+ model which realises , i.e. can 
produce all events described by the sets in .

The following results are useful for later illustration of the 
example and were obtained as partial results while computing 

. 

 •  

 •  

 •  
 

 •

 •  
 

 •  

 •

Definition 10.7: Progress formulas. A progress formula is 
any elementary formula except atomic propositions. Assum-

ϕ ϕ1 ϕ2∧= Φ ϕ( ) Φ ϕ1( ) Φ ϕ2( )∩=
ϕ ϕ1 ϕ2∨= Φ ϕ( ) Φ ϕ1( ) Φ ϕ2( )∪=

ϕ A ϕ1 U ϕ2[ ]=
Φ ϕ( ) Φ ϕ2( ) Φ ϕ1( ) Φ AX ϕ( )∩( )∪=
ϕ A ϕ1 R ϕ2[ ]=
Φ ϕ( ) Φ ϕ2( ) Φ ϕ1( ) Φ AX ϕ( )∪( )∩=

Φ ϕ( )
ϕ

Φ ψ( )
Φ ψ( )

Φ ψ( )

Φ ψ( ) Φ A f R p¬ A t U q 10< 3≤[ ]∨( )[ ]( )
S1 S5 S7 S9 S13 S15 S25 S27 S29 S31, , , , , , , , ,{ }

= =

Φ AX A f R p¬ A t U q 10< 3≤[ ]∨( )[ ]( )
S1 S3 S5 S7 S9 S11 S13 S15 S25 S27 S29 S31, , , , , , , , , , ,{ }

=

Φ p¬ A t U q 10< 3≤[ ]∨( )
S0 S1 S4 S5 S6 S7 S8 S9 S12 S13 S14 S15

S24 S25 S26 S27 S28 S29 S30 S31

, , , , , , , , , , , ,
, , , , , , ,

{
}

=

Φ p¬( ) S0 S1 S4 S5 S8 S9 S12 S13 S24 S25 S28 S29, , , , , , , , , , ,{ }=

Φ A t U q 3≤ 10<[ ]( )
S4 S5 S6 S7 S12 S13 S14 S15 S24 S25 S26 S27 S28

S29 S30 S31

, , , , , , , , , , , , ,
, ,

{
}

=

Φ AX A t U q 3≤ 10<[ ]( )( )
S4 S5 S6 S7 S12 S13 S14 S15 S28 S29 S30 S31, , , , , , , , , , ,{ }

=

Φ q 10<( ) S24 S25 S26 S27 S28 S29 S30 S31, , , , , , ,{ }=
222



MODELLING THE SURROUNDING
ing a set of elementary formulas , . 
This function can also be lifted to sets of sets of formulas, 

. 

For example, .  since 
 and 

. 
Progress formulas express how the system should behave 

(progress) over a period of time and therefore tell us something 
about the future. Atomic propositions, on the other hand, only 
express the current state of the system. For this reason, we need 
to treat progress formulas and atomic propositions separately.

Each set of elementary formulas will correspond to a state 
(marking) in the final PRES+ model.  consequently 
denotes the set of all states satisfying the property . All these 
states, as well as transitions between them, must thus be cap-
tured by the final PRES+ model. Each set of possible progress 
formulas  (The sets in  which only 
contain progress formulas) will have a corresponding place. In 
this way, it is possible to express all states. The intersection is 
added to ensure that all sets of progress formulas for which a 
place is to be created are indeed satisfied by the property.

In our example introduced on page 215, the resulting PRES+ 
model will have two places corresponding to the two sets in 

. A token in the place correspond-
ing to the set of progress formulas  and another token in port 

 reflects the state (set of elementary formulas) . State 
is modelled by a token in the place corresponding to progress for-
mulas  together with a token in  with a value less than 10. 
This state actually also corresponds to , an observation which 
is important in the context of redundancy (Definition 10.12).

Figure 10.3 shows the algorithm (createInitialPlaces) for creat-
ing the places which initially have to be present in the resulting 

Ψ PF Ψ( ) Ψ AP Ψ( )–=

PF Γ( ) PF Ψ( )Ψ Γ∈∪=

PF S31( ) S5= PF Φ ψ( )( ) S1 S5,{ }=
PF S1( ) PF S9( ) PF S25( ) PF S27( ) S1= = = =
PF S5( ) PF S7( ) PF S13( ) PF S15( ) PF S29( ) = = = = =
PF S31( ) S5=

Φ ψ( )
ψ

pf PF Φ ψ( )( ) Φ ψ( )∩∈ Φ ψ( )

PF Φ ψ( )( ) Φ ψ( )∩ S1 S5,{ }=
S5

p S7 S25

S1 q
S9
223



CHAPTER 10
PRES+ model. The variable net is a global variable of type 
PRES+ which in the end will contain the final resulting model. 
The procedure createPlace is taken out from the main procedure 
since it will be needed later for creating additional places to the 
model.

One place for each member set  (Line 2, 
Line 3 and Line 9) is created. Denote the set of progress formu-
las that a place  corresponds to as  (Line 10). Dually, for 
each place , a set of places associated to a set of elementary 
formulas , , is maintained. It will record the places that 
have to be marked when the PRES+ model enters the state rep-
resented by . Their function will become clear in Section 10.2.3, 
where transitions will be added to the model. Initially, 

 (Line 11).  maps a set of elementary 
formulas to the place. As opposed to ,  will not be 
modified during the course of later steps of the algorithm. In the 
end, a mechanism called timers may have to be added to the 

1 procedure createInitialPlaces(ψ: ACTL)
2 for each s ∈  PF(Φ(ψ)) ∩ Φ(ψ) do
3 createPlace(s);
4 for each p ∈  AP(ψ) do
5 add a place pp to net;
6 P(p) := pp;
7
8 procedure createPlace(s: set of ACTL)
9 add a place pi to net;
10 Ψ(pi) := s;
11 Pin(s) := { pi };
12 P(s) := pi;
13 addTimers(pi); -- defined in Figure 10.4

Figure 10.3: The algorithm for creating the places in the 
resulting PRES+ model

s PF Φ ψ( )( ) Φ ψ( )∩∈

pi Ψ pi( )
pi

s Pin s( )

s

Pin s( ) pi{ }= P s( ) pi=
Pin s( ) P s( )
224



MODELLING THE SURROUNDING
place (Line 13). The purpose of timers, their functionality and 
how they are added will be described in Section 10.2.2.

Ports corresponding to the atomic propositions (without rela-
tions) occurring in the formula must also be added to the model 
(Line 5). They are moreover associated to their corresponding 
atomic proposition through the mapping  (Line 6). 

In our example, the resulting model has two places (excluding 
timers),  and , corresponding to formulas in  and 
respectively. This means that , , and 

 and . Moreover, the formula 
has two atomic propositions  and , so two places  and  
are created for this reason. , and . 

10.2.2 TIMER INSERTION FOR U OPERATORS

In Section 10.1.1, it was concluded that F and U operators are 
forced to have an associated upper time bound (deadline) before 
which a certain specified event has to occur. Since F operators 
are rewritten as U operators in the normalisation, only U oper-
ators need to be considered. 

In order to make sure that the desired events eventually will 
happen and that they will happen in time, timers must be intro-
duced. 

In Definition 10.8, it should be remembered that  
denotes the set of progress formulas for which the place  was 
created. See also Line 3 in Figure 10.3.

Definition 10.8: Set of U formulas. The set of U formulas 
in place  is expressed as 

.

Place  in the example does not have any U formula, 
 and place  has got one, 

.

P p( )

p1 p5 S1 S5
Ψ p1( ) S1= Ψ p5( ) S5=

Pin S1( ) p1{ }= Pin S5( ) p5{ }=
p q pp pq

P p( ) pp= P q( ) pq=

Ψ pi( )
pi

pi
U pi( ) A ϕ1Uϕ2[ ] AX A ϕ1Uϕ2[ ] Ψ pi( )∈{ }=

p1
U p1( ) ∅= p5
U p5( ) A t U q 10< 3≤[ ]{ }=
225



CHAPTER 10
One timer per U formula in a place must be added, so that the 
deadline of each U formula can be timed independently from 
each other. Figure 10.4 presents the algorithm for adding timers 
to a place . The algorithm is also illustrated in Figure 10.5 for 
the case when  has two U formulas ( ). 

A timer is a piece of the PRES+ model consisting of two places 
(e.g.  and ) between which there exists a transition from 

 to  with a time delay interval of the type  for any 
non-negative number  (e.g ). Place  is called the start 
place of the timer, and  is called the end place. Places  
and  and transition  together constitute another timer.

1 procedure addTimers(pi: place)
2 for each ϕ ∈  U(pi) do
3 add places pix and pix’ as indicated by Figure 10.5 to net;
4 add transition tix asin indicated by Figure 10.5 to net;
5 set time delay of tix to [0..j] where j is the upper bound  

associated to the U operator in ϕ;
6 Pin(Ψ(pi)) := Pin(Ψ(pi)) ∪  { pix };
7 Timerin(pi, ϕ) := pix;
8 Timerout(pi, ϕ) := pix’ ;

Figure 10.4: Algorithm for adding timers to a place

pi

pi pia

pia’

0.. ja[ ]

Figure 10.5: Adding timers to a place

tia

pib

pib’

0.. jb[ ]
tib

pi U pi( ) 2=

pia pia ′
pia pia ′ 0.. j[ ]

j tia pia
pia ′ pib

pib ′ tib
226



MODELLING THE SURROUNDING
All timers must be simultaneously started when the PRES+ 
model enters the state represented by . The mapping 

 contains all places to be marked when the Petri-net 
should enter the particular state. Consequently, all start places 

 are added to the mapping (Line 6). 
The exact use of these mappings will become clear in Section 

10.2.3.  and  record the start 
and end places respectively of the timer corresponding to U for-
mula , for future reference (Line 7 and Line 8).

In the case of the example formula  (defined on page 215), 
only place  has a timer. Figure 10.6 presents the result of 
adding the timer corresponding to the only U formula in that 
place. At this point, . It still holds that 

. 
Moreover,  and 

.

pi
Pin Ψ pi( )( )

pix

Timerin pi ϕ,( ) Timerout pi ϕ,( )

ϕ

p5

Figure 10.6: Adding timers to the example model

p5a

p5a’

0..3[ ]t5a

p1

ψ
p5

Pin Ψ p5( )( ) p5 p5a,{ }=
Pin Ψ p1( )( ) p1{ }=

Timerin p5 A t U q 10< 3≤[ ],( ) p5a=
Timerout p5 A t U q 10< 3≤[ ],( ) p5a ′=
227



CHAPTER 10
10.2.3 TRANSITION GENERATION

The major remaining step, after adding places and timers, is to 
add the transitions to the PRES+ model. 

Definition 10.9: Target formulas. The set of target formu-
las of a place  is defined as .

Definition 10.10: Target places. The set of target places of 
a place  is defined as .

The set of target formulas contains the sets of elementary for-
mulas representing the events which can happen next, given 
that there is a token in . Consequently, as a basic rule, one 
transition will be added for each set of elementary formulas in 

 realising the particular event described by that set of 
elementary formulas. However, as will be seen later, no transi-
tions will be added for sets of elementary formulas which do not 
contain any atomic proposition, since these sets do not contrib-
ute to any event on the ports.

The set of target places contains the sets of progress formulas 
representing places in the PRES+ model (see Section 10.2.1) to 
which there is a target formula. In other words,  is the 
set of what is left when all atomic propositions have been 
removed from all sets in . 

In our example, 
 and  

 according to the more detailed computation 
in Equation 10.5. In addition, . 

(10.5)

pi TF pi( ) Φ ϕ( )AX ϕ Ψ pi( )∈∩=

pi TP pi( ) PF TF pi( )( )=

pi

TF pi( )

TP pi( )

TF pi( )
TF p1( ) Φ ψ( ) S1 S5 S7 S9 S13 , ,, , ,{= =

S15 S25 S27 S29 S31, , , , } TF p5( ) S5 S7 S13 S15 , , , ,{=
S25 S,

27
S,

29
S31, }

TP p1( ) TP p5( ) S1 S5,{ }= =

TF p5( ) Φ ψ( ) Φ A t U q 10< 3≤[ ]( )∩
S1 S5 S7 S9 S13 S15 S25 S27 S29 S31, , , , , , , , ,{ }
S4 S5 S6 S7 S12 S13 S14 S15 S24 S25 S26 S27

S28 S29 S30 S31

, , , , , , , , , , , ,
, , ,

{
}

∩

S5 S7 S13 S15 S25 S27 S29 S31, , , , , , ,{ }

= =

=

228



MODELLING THE SURROUNDING
Let us assume that  is an in-port of a component, 
. Assume further that the PRES+ model is in a 

state , i.e. a token in the place  and another token in 
. Assume further that this state satisfies the formula , 

. Since the PRES+ model is connected to a 
component at , a transition in that component may consume 
the token, which forces the model to change state to  (just a 
token in , and no token in ). However, it is possible that 
state  might not satisfy formula , , so the pos-
sibility of involuntarily ending up in this state must be elimi-
nated. Remember that the model ended up in this state as a 
result of an act of the component connected at port , not as a 
result of the model representing the ACTL property itself. The 
concept of validity is defined to identify such situations.

Definition 10.11: Valid elementary set. A set of elementary 
formulas, , is a valid elementary set in place , if for all 

, 
 and 

 is recursively a valid elementary set. 

In the example,  is a valid elementary set in place , since 
 and  is the only atomic 

proposition corresponding to an out-port. An example of a situa-
tion where a set of elementary formulas is not valid is given in 
Section 10.3.2.

Although the resulting model will be correct, adding a transi-
tion for each element in  might lead to a model with 
unnecessarily many transitions. That could lead to longer verifi-
cation times than needed. Some transitions might namely be 
redundant. 

Definition 10.12: Redundant elementary set. A set of ele-
mentary formulas  is redundant with respect to a set of sets 
of elementary formulas , if and only if there exists a set 

q
q APin el ψ( )( )∈

pi q{ }∪ pi
q ϕ
Ψ pi( ) q{ }∪ Φ ϕ( )∈

q
pi

pi q
pi ϕ Ψ p j( ) Φ ϕ( )∉

q

s pi
p APin s( )∈
s p{ }– pℜ v s∈{ }– APout s( ) AProut s( )–– TF pi( )∈
s p{ }– pℜ v s∈{ }–

S27 p1
S27 q{ }– q 10<{ }– S1 TF p1( )∈= q

TF pi( )

s
S

229



CHAPTER 10
, , with , , 
 and  and 

.

Intuitively,  is redundant with respect to , if there is another 
set  with the same progress formulas and the same atomic 
propositions but where  can produce more values than , and 
accept more values than  on each of their input places. The 
transition corresponding to  can hence produce the very same 
events as  (and more). The conclusion is that the transition cor-
responding to  is redundant and does not need to be included in 
the resulting model.

It is, for example, not necessary to add a transition  for a set 
containing , if there already is a transition  for a set con-
taining , but not , since  anyway is able to produce all 
events produced by . 

In our example, it is evident that, in place , a transition for 
 is not needed since there exists a transi-

tion for , , 
, 
 and . 

Hence  is redundant with respect to, for instance, 
. 

The detailed procedure of how to add transitions differs a bit 
depending on whether a timer has been added to a particular 
place or not. 

No timer was added to the place

Given a place ,  contains sets of elementary formulas 
representing events which may happen next, considering that 
the PRES+ model is in the state represented by place . For 
each set of elementary formulas , a transition  
must, consequently, be added to enable the event described by 
the set  to happen (see Figure 10.7, Line 3 to Line 5). No tran-

s ′ S∈ s s ′≠ PF s( ) PF s ′( )= APin s( ) APin s ′( )=
APout s( ) APout s ′( )= PVin s( ) PVin s ′( )⊆

p APout s( )∈ :PVout s p,( ) PVout s ′ p,( )⊆∀

s S
s ′

s ′ s
s

s ′
s

s

t
q 10< t ′

q q 10< t ′
t

p1
S25 S1 q q 10<,{ }∪=

S9 S1 q{ }∪= PF S25( ) PF S9( ) S1= =
APin S25( ) APin S9( ) q{ }= =
APout S25( ) APout S9( ) ∅= = PVin S25( ) PVin S9( )⊆

S25
S1 S5 S9 S23 S25 S31, , , , ,{ }

pi TF pi( )

pi
s TF pi( )∈ t

s

230



MODELLING THE SURROUNDING
sition is, however, added if  does not contain any atomic propo-
sition ( ), since such sets do not contribute with any 
events on the ports and therefore are useless. As a result, a tran-
sition is added only if . Similarly, the tran-
sition is not added either if it is redundant or not valid in the 
target place.

Realising the events described by  is performed by moving 
the token from the source place  to the place indicated by the 
progress formulas in the particular elementary set, . At 
the same time, tokens must be placed in or consumed from the 
ports as indicated by the atomic propositions in , . 
Review the discussion about how a state is represented in the 
PRES+ model, on page 223. A state corresponding to  is a 

s
s TP pi( )∈

1 procedure addTransitions(pi: place)
2 if Ψ(pi) ≠ ∅ then
3 for each s ∈  TF(pi) - TP(pi) do
4 if s is not redundant with respect to TF(pi) and 

s is valid in P(PF(s)) then
5 add transition t to net;
6 °t := { pi };
7 if there is no place corresponding to PF(s) then
8 createPlace(PF(s));
9 t° := Pin(PF(s));
10 connectToPorts(t, s);
11 set time delay of t to findTimeDelay(s, pi);
12 else
13 for each f ∈ 2AP(ψ) - { ∅ } do
14 add transition t to net;
15 °t := { pi };
16 t° := { pi };
17 connectToPorts(t, f);
18 set time delay of t to [0..∞];

Figure 10.7: The standard algorithm for adding the 
transitions belonging to place .pi

s TF pi( ) TP pi( )–∈

s
pi

PF s( )

s AP s( )

s

231



CHAPTER 10
marking where there is a token in the place representing the 
progress formulas in , , and there are tokens in the ports 
occurring as atomic propositions in , , with token values 
consistent with all relations given in . 

The preset of the added transition  must consequently be 
 (Line 6), since we are leaving  and no timers have been 

added to it. The postset must contain all places in  
(Line 9), since we are entering the place corresponding to 

. Thereby, possible timers associated to that place are also 
started. However, if the target place has not previously been cre-
ated in the model, it must first be created using the procedure 
described in Figure 10.3 (Line 8). 

Besides this, the ports corresponding to the atomic proposi-
tions must be included in the preset and postset. Exactly how to 
do this, including assigning a transition function and guard 
(Line 10), as well as determining the time delay interval of the 
transition (Line 11), is explained next.

A special case is if the source place corresponds to the empty 
set of elementary formulas (Line 12). In this case, there is no 
restriction on what events are allowed to happen next, as speci-
fied by its target formulas , where . 
In order to avoid unnecessary state space explosion, this behav-
iour can be modelled by adding transitions which together cover 
all possible scenarios (Line 13 and Line 14). One transition is 
thus added for each combination of atomic propositions in the 
formula. The model will stay in this state forever (Line 15 and 
Line 16), as there is no restriction on future behaviour. 

Figure 10.8 presents the algorithm for connecting a transition 
to the ports according to a given set of elementary formulas. The 
transition  is connected to the ports as follows. Each atomic 
proposition in  corresponding to an out-port is incorporated 
into ’s preset (Line 2). Similarly, each atomic proposition in  
corresponding to an in-port is incorporated into ’s postset 
(Line 3). 

s PF s( )
s AP s( )

s
t

pi{ } pi
Pin PF s( )( )

PF s( )

TF p0( ) S ψ( )= Ψ p0( ) ∅=

t
s

t s
t

232



MODELLING THE SURROUNDING
Next, the atomic propositions with relations must be taken 
care of. If the atomic proposition refers to an out-port, the rela-
tion is added in conjunction with the other such relations to form 
the guard of the transition (Line 6). If there are no atomic prop-
ositions with relation referring to out-ports, the transition does 
not have any guard, i.e. the guard is always true (Line 4). 

The transition function is set to return randomly any value 
from  (Line 8).

What remains to be determined is the time delay of the tran-
sition (Line 11 in Figure 10.7). Figure 10.9 shows how this delay 
is computed. Normally, there is no requirement on the time 
when a certain event has to be performed. This means that the 
transition should be able to fire after 0 time units and before 

1 procedure connectToPorts(t: transition, s: set of elementary formulas)
2 °t := °t ∪  P(APout(s));
3 t° := t° ∪  P(APin(s));
4 g := true;
5 for each pℜ v ∈  AProut(s) do
6 g := g ∧  pℜ v;
7 set guard of t to g;
8 set function of t to return a random value from PVin(s);

Figure 10.8: The algorithm for adding interaction with 
the ports to transition  as specified by the set .t s

PVin s( )

1 function findTimeDelay(s: set of elementary formulas, pi: place) returns 
time interval

2 if Ψ(pi) ∪  APout(s) ∪  AProut(s) ∉  TF(pi) then
3 return [0..0];
4 else
5 return [0..∞];

Figure 10.9: Algorithm for finding the correct time delay 
interval of a transition
233



CHAPTER 10
infinity inclusive, i.e. . However, there are circumstances 
when the transition must be taken immediately, i.e. have the 
time delay interval . This situation may occur when a 
token arrives at an out-port. The arrival of this token means 
that the model changed state from  to 

, where  is the set of elemen-
tary formulas corresponding to the transition in question and 

 is the current place. It might be the case that this new state 
is not satisfied by the property in the current state, i.e. 

 (Line 2). The PRES+ 
model must immediately move to a state where it does hold by 
firing the transition at hand. Therefore, the time delay has to be 

.
Place  in the example does not have any timer, so it follows 

the procedure above for creating its transitions. Figure 10.10
shows the result of adding the transitions to . Some arcs on 
transitions are not attached to any place in the figure, but they 
are associated to an atomic proposition. This is a short-hand 
meaning that they are attached to the port representing the 
atomic proposition. The transition has, in such cases, a function 
which produces random values from U. If the atomic proposition 
is denoted with a relation, the function produces random values 
which still satisfy all relations involved, i.e. its port values. 

For example,  has an output arc labelled . This means that 
the arc is connected to port , and that the function associated 
to transition  generates random values from U. Transition  
has an output arc with the associated relation . That arc 
is also connected to , but the transition has an associated func-
tion which only produces random values less than 10. 

Remember from the previous discussion that 
. No 

transitions are created for  and  since they do not contain 
any atomic propositions. , which means that the 
target places are  and a token should 
also be consumed from port . The token should be consumed, 

0..∞[ ]

0..0[ ]

Ψ pi( )
Ψ pi( ) APout s( ) AProut s( )∪ ∪ s

pi

Ψ pi( ) APout s( ) AProut s( )∪ ∪ TF pi( )∉

0..0[ ]
p1

p1

t2 q
q

t2 t5
q 10<

q

TF p1( ) S1 S5 S7 S9 S13 S15 S25 S27 S,
29

S31, , , , , , , ,{ }=
S1 S5

S7 S5 p{ }∪=
Pin PF S7( )( ) Pin S5( )=

p

234



MODELLING THE SURROUNDING
i.e. belong to the preset, as opposed to produced, since  is an 
out-port of an attached component. The transition  is added to 
represent . It has no guard and its function produces a com-
pletely random value since there is no atomic proposition with 
relation involved. The time delay interval is set to  since 

. Since  has a timer associated to it, 
. Moreover, all transitions have source 

place .
Next, a transition corresponding to  should be 

considered. As can be seen, the target place is equal to the 
source place, i.e. . Since  contains an atomic proposition 
corresponding to an out-port, the validity of this set of elemen-

p5 p5a

p5a’

0..3[ ]

Figure 10.10: The result of adding the transitions of place 
 to the example formulap1

t5a

p1

0..0[ ]t1

p

q

0..∞[ ]

q

0..0[ ]

p

q

0..∞[ ]

t3

t4

t2

p

0..0[ ]

t5 q<10

p
t1

S7

0..0[ ]
S1 p{ } S3=∪ TF p1( )∉ p5
Pin S5( ) p5 p5a,{ }=

p1
S9 S1 q{ }∪=

p1 S9
235



CHAPTER 10
tary formulas must be checked. In this case, as with all other 
sets of elementary formulas in this example,  is valid due to 

. Neither is the set redundant. It is 
concluded that the transition, , should indeed be added. In 
addition, a token with a completely random value is placed in 
the port corresponding to  when fired. Since  does not con-
tain an atomic proposition corresponding to an out-port, and 
hence , the time delay is set to . 
The procedure progresses similarly for the sets ,  and 

. The remaining sets of elementary formulas among the tar-
get formulas are redundant with respect to , and conse-
quently no transitions are added for these sets. 

The place has a timer

For places with timers, it is necessary to identify whether a cer-
tain set of elementary formulas among the target formulas has 
to occur before the deadline stipulated by the timers or not. 

Definition 10.13: Requiring U formulas. The set of requir-
ing U formulas of a place  and a set of elementary formu-
las  is defined as 

.

Intuitively, the set of requiring U formulas is the set of U formu-
las in  which require  to occur before its associated upper 
time bound.

Definition 10.14: Timer triggered formulas. The set of 
timer triggered formulas of a set of U formulas, , is defined 
as .

The timer triggered formulas denote the set of sets of elemen-
tary formulas corresponding to events of which one has to be 
performed before the deadlines of all the U formulas in .

S9
S9 q{ }– S1 TF p1( )∈=

t2

q S9

S1 ∅ S1=∪ TF p1( )∈ 0..∞[ ]
S13 S15

S27
TF p1( )

pi
s

RUF pi s,( ) A ϕ1 U ϕ2[ ] U pi( )∈ s Φ ϕ2( )∈{ }=

pi s

U
TTF U( ) Φ ϕ2( )A ϕ1 U ϕ2[ ] U∈∩=

U

236



MODELLING THE SURROUNDING
In the example, , but 
. The timer triggered formulas of  are 

 and more explicitly 
.

Figure 10.11 presents the algorithm for adding transitions to 
a place with timers. Similar to the non-timer case, transitions 
are added for each non-redundant and valid (Line 3) set 

 (Line 2). There are basically two cases. 
Either  or , i.e. either the target 
place is the same as  or it is not. 

In the first case (Line 4 in Figure 10.11), all U formulas 
requiring the event  are examined (Line 5). If  is not redun-
dant with respect to the set of the timer triggered formulas, a 
transition corresponding to  is added (Line 7). The end places 
of all timers requiring  are connected to the transition as input 
(Line 9). Since  stipulates that the model should stay in the 
same state, the timers must be restarted, as a result of firing the 
transition, in order to guarantee a new occurrence of a timer 
triggered event. The output of the transition is therefore the 
start places of the timers (Line 10). The time delay interval is 
set to  as no further time may elapse after the timer has 
fired (Line 12). That might exceed the deadline imposed by the 
timer.

If  does not have any requiring U formulas, the timers need 
not to be involved in the transition. Place  is both an input 
and an output place of the added transition (Line 14 to Line 18).

In order to leave a state with timers (Line 19),  must be trig-
gered by all timers. Otherwise, the event prescribed by some 
timer will not be fulfilled. The input of the added transition is  
together with the end places of all timers (Line 21 to Line 23), 
and output is the places corresponding to the new state 
(Line 26). The time delay interval is set to  for the same 
reasons as on Line 12. 

RUF p5 S25,( ) A t U q 10< 3≤[ ]{ }=
RUF p5 S7,( ) ∅= U p5( )
TTF U p5( )( ) Φ q 10<( )=
TTF U p5( )( ) S24 S25 S26 S27 S28 S29 S30 S31, , , , , , ,{ }=

s TF pi( ) TP pi( )–∈
PF s( ) Ψ pi( )= PF s( ) Ψ pi( )≠

pi

s s

s
s

s

0..0[ ]

s
pi

s

pi

0..0[ ]
237



CHAPTER 10
In the example, place  contains one U formula. Remember 
that , and 

. 
Figure 10.12 shows the result of the procedure. 

1 procedure addTransitionsForTimers(pi: place)
2 for each s ∈  TF(pi) - TP(pi) do
3 if s is valid in P(PF(s)) then
4 if PF(s) = Ψ(pi) then
5 if RUF(pi, s) ≠ ∅  then
6 if s is not redundant w.r.t TTF(RUF(pi, s)) then
7 add transition t to net;
8 for each ϕ ∈  RUF(pi, s) do
9 °t := °t ∪  { Timerout(pi, ϕ) };
10 t° := t° ∪  { Timerin(pi, ϕ) };
11 connectToPorts(t, s);
12 set time delay of t to [0..0];
13 else if s is not redundant w.r.t TF(pi) then
14 add transition t to net;
15 °t := { pi };
16 t° := { pi };
17 connectToPorts(t, s);
18 set time delay of t to findTimeDelay(s, pi);
19 else if s ∈  TTF(U(pi)) and s is not red. w.r.t. TTF(U(pi)) then
20 add transition t to net;
21 °t := { pi };
22 for each ϕ ∈  RUF(pi, s) do
23 °t := °t ∪  { Timerout(pi, ϕ) };
24 if there is no place corresponding to PF(s) then
25 createPlace(PF(s));
26 t° := Pin(PF(s)); 
27 connectToPorts(t, s);
28 set time delay of t to [0..0];

Figure 10.11: The algorithm for adding transitions to a 
place with timers

p5
TF p5( ) S5 S7 S13 S15 S25 S27 S,

29
S31, , , , , ,{ }=

TTF U p5( )( ) S24 S25 S26 S27 S28 S29 S30 S31, , , , , , ,{ }=
238



MODELLING THE SURROUNDING
As usual, no transition is added for , since that set does not 
contain any atomic propositions. 
(Line 4 in Figure 10.11), but . Since  is not 
required by any timer and is not redundant, the transition is 
added as a loop around place  (Line 13), see transition  in 
the figure. The same goes for  and , which result in tran-
sitions  and  respectively.  and 

, implying that the transition, , is added 
between  and  (Line 23 and Line 26).  is 
handled similarly, resulting in transition . The target place 
of both  and  is , and 

 which means that the 

p5 p5a

p5a’

0..3[ ]

Figure 10.12: The result of adding the transitions of place 
 to the example formulap5

t5a

p1

0..0[ ]t1

p

q<10

q

0..∞[ ]

q

0..0[ ]

p

q

0..∞[ ]

t3

t4

t2

0..0[ ] t11 0..0[ ]
t12

q<10

p

p

0..∞[ ]t6

q

0..∞[ ]

t7 p

q

0..∞[ ]t8

0..0[ ] t9

q<10

p

0..0[ ]

t5 q<10

pq<10

0..0[ ]t10

S5
PF S7( ) S5 Ψ p5( )= =

RUF p5 S7,( ) ∅= S7

p5 t6
S13 S15

t7 t8 PF S25( ) S1=
S25 TTF U p5( )( )∈ t9

p5 p5a ′,{ } Pin S1( ) S27
t10

S29 S31 p5
RUF p5 S29,( ) RUF p5 S31,( ) ∅≠=
239



CHAPTER 10
timer must be restarted (Line 9 and Line 10) as illustrated by 
transitions  and  in the figure. 

10.2.4 INSERTION OF INITIAL TOKENS

The last step of the algorithm is to insert initial tokens in the 
PRES+ model. Figure 10.13 presents the algorithm for this pur-
pose.

In Section 10.2.1, one place was created for each member in 
. Any of these places (or sets of places if tim-

ers were introduced) are randomly and dynamically chosen for 
the initial token. This selection mechanism is in practice mod-
elled with non-determinism. A place  is added to the model 
(Line 7). For each candidate for the initial place, i.e. 

, a transition is added from  to that can-
didate (Line 8 to Line 12). The transition has time delay  
since this choice must be performed instantly before any other 
time consuming action is taken in the system.

In case there is only one candidate for the initial place, i.e. 
, there is naturally no need for adding 

t11 t12

1 procedure insertInitialToken
2 if | PF(Φ(ψ)) ∩ Φ(ψ) | = 1 then
3 add token in Pin(the only elt of PF(Φ(ψ))) with value <0, 0>;
4 else if ∃ pi such that Ψ(pi) = { AX ψ } then
5 add token in Pin(Ψ(ψ)) with value <0, 0>;
6 else
7 add place start to net with an initial token with value <0, 0>;
8 for each s ∈  PF(Φ(ψ)) ∩ Φ(ψ) do
9 add transition t to net;
10 °t := { start };
11 t° := Pin(s);
12 set time delay of t to [0..0];

Figure 10.13: The algorithm for adding an initial token

PF Φ ψ( )( ) Φ ψ( )∩

start

PF Φ ψ( )( ) Φ ψ( )∩ start
0..0[ ]

PF Φ ψ( )( ) Φ ψ( )∩ 1=
240



MODELLING THE SURROUNDING
this mechanism for choosing the initial place. The only existing 
place is directly chosen to be the initial one (Line 3).

If one of the candidate places corresponds to a set of elemen-
tary formulas consisting of only the one formula expressing that 
the whole property  shall continue to hold, , then that 
place can safely be chosen as the initial state (Line 5). The rea-
son is that it by its nature will guarantee that the future behav-
iour of the model conforms to the property . 

In the example, there are two candidates for the initial token, 
 and . However,  and consequently the place 

corresponding to that set, , is chosen as the initial place 

ψ AXψ

ψ

Figure 10.14: The resulting PRES+ model of the 
example formula

<0, 0>

p5 p5a

p5a’

0..3[ ]

t5a

p1

0..0[ ]t1

p

q<10

q

0..∞[ ]

q

0..0[ ]

p

q

0..∞[ ]

t3

t4

t2

0..0[ ] t11 0..0[ ]
t12

q<10

p

p

0..∞[ ]t6

q

0..∞[ ]

t7 p

q

0..∞[ ]t8

0..0[ ] t9

q<10

p

0..0[ ]

t5 q<10

pq<10

0..0[ ]t10

S1 S5 S1 AXψ{ }=
p1
241



CHAPTER 10
(Line 5 in Figure 10.13). The final PRES+ model representing 
the example property is shown in Figure 10.14. 

10.2.5 SUMMARY

Section 10.2 has so far presented all steps of the PRES+ genera-
tion procedure from an arbitrary ACTL formula. Figure 10.15
presents the overall algorithm where the previously presented 
steps are put into context. 

The first step is to create the places corresponding to a state 
representing different requirements on the future behaviour in 
the PRES+ model. Places corresponding to atomic propositions, 
i.e. ports are also created (Line 2). Timers are moreover added 
as part of the place creation process. After that, transitions cor-
responding to events as given by sets of elementary formulas are 
added (Line 3). This is performed in different ways depending on 
whether timers were added to the place (Line 5 or Line 7 respec-
tively). The last step is to insert the initial tokens (Line 8).

1 function generateFormulaStub(ψ: ACTL) returns PRES+
2 createInitialPlaces(ψ);
3 for each place pi in net corr. to a set of elementary formulas do
4 if | U(Ψ(pi)) | > 0 then
5 addTransitionsForTimers(pi);
6 else
7 addTransitions(pi);
8 insertInitialTokens;
9 return net;

Figure 10.15: The algorithm for generating a PRES+ 
model given an ACTL formula
242



MODELLING THE SURROUNDING
10.3 Examples
In order to highlight and emphasise certain aspects of the algo-
rithms presented in Section 10.2, a few examples are presented 
in this section. The reader is encouraged to follow the algo-
rithms presented previously as the examples are explained.

10.3.1 PLACE WITH EMPTY CORRESPONDING ELEMENTARY SET

This section provides an example leading to a PRES+ model 
with a place of which the corresponding set of elementary formu-
las is empty. The formula which will be used is .  is 
in this example an in-port.

The first task when generating the PRES+ model correspond-
ing to a formula is to normalise it, i.e. .

The next step is to find out its elementary formulas  and 
. 

(10.6)

, because  and  are con-
tradictory since they contain  but not . 

 •

 •

 •

, which means 
that the resulting model will only have one state place, . 
However, since there is one U formula in , a timer is added. 

Figure 10.16 shows the resulting PRES+ model after transi-
tions have been added and initial tokens have been inserted.

AF p 10< 3≤ p

ψ A t U p 10< 3≤[ ]=
el ψ( )

Φ ψ( )

el ψ( ) AX A t U p 10< 3≤[ ]

1

p
2

p 10<
4

, ,
 
 
 

=

           {   

S ψ( ) S0 S1 S2 S3 S6 S7, , , , ,{ }= S4 S5
p 10< p

Φ ψ( ) Φ A t U p 10< 3≤[ ]( ) S1 S3 S6 S7, , ,{ }= =

Φ AX A t U p 10< 3≤[ ]( ) S1 S3 S7, ,{ }=

Φ p 10<( ) S6 S7,{ }=

PF Φ ψ( )( ) Φ ψ( )∩ S0 S1,{ } Φ ψ( )∩ S1{ }= =
p1

p1
243



CHAPTER 10
 and . 
No transition is added for  since it does not contain any 
atomic propositions. As for , it is valid since 

, so a transition corresponding to that 
set must be added. , but no timer 
requires it, , so the transition is added as a 
loop around , see transition  in the figure. 

Since  for which there does not yet exist a place 
in the model, such a place is created,  in the figure.  is fur-
thermore valid in its target place due to the fact that 

. A transition, , corre-
sponding to  is added between  and . 

Due to the fact that  and the timer 
requires it, , a transition  
is added between the end and start places of the timer. 

Place  is associated with an empty set of elementary formu-
las. From that place, all possible behaviours can occur. Since the 
property only contains one atomic proposition, , only one tran-
sition ( ), , which can produce all possible output to the 
port representing , is added to the model.

p1 p1a

p1a’

Figure 10.16:  The resulting PRES+ model of the formula 
AF p 10< 3≤

t1a

p0

0..3[ ]

t1
0..∞[ ]

p

p<10

t2 0..0[ ]

<0, 0> <0, 0>

t3
0..0[ ]

p<10
p

t4
0..∞[ ]

TF p1( ) S1 S3 S6 S,
7

, ,{ }= TTF U p1( )( ) S6 S,
7

{ }=
S1

S3
S3 p{ }– S1 TF p1( )∈=

PF S3( ) S1 Ψ p1( )= =
RUF p1 S3,( ) ∅=
p1 t1

PF S6( ) ∅=
p0 S6

S6 p{ }– p 10<{ }– ∅ TF p0( )∈= t2
S6 p1 p1a ′,{ } p0

PF S7( ) S1 Ψ p1( )= =
RUF p1 S7,( ) A t U p 10< 3≤[ ]{ }= t3

p0

p
21 1– t4

p

244



MODELLING THE SURROUNDING

 

 

 

The model only has one start place since 
. This implies that the initial tokens are 

directly inserted to . 
Note that  only has to be satisfied once, both according 

to the PRES+ model and according to the formula. 

10.3.2 PLACE WITH MORE THAN ONE TIMER

This example aims to highlight what happens with a place with 
more than one timer. The formula used to illustrate this is 

. After normalisation, 
.

(10.7)

. No sets have to be removed, since the for-
mula does not contain any atomic propositions with relation.

 •

 •  

 •

 •

 •

 •

PF Φ ψ( )( ) Φ ψ( )∩ 1=
Pin S1( )

p 10<

AG AF p 2≤ AF q 5≤∨( )
ψ A f R A t U p 2≤[ ] A t U q 5≤[ ]∨( )[ ]=

el ψ( ) AX A f R A t U p 2≤[ ] A t U q 5≤[ ]∨( )[ ]

1

AX A t U p 2≤[ ]

2

p
4

AX A t U q 5≤[ ]

8

q
16

,

, , ,













=

                  

       {        {

S ψ( ) S0..S31{ }=

Φ ψ( ) S3 S5 S7 S9 S11 S13 S15 S17 S19 S21 S23 S25
S27 S29 S31

, , , , , , , , , , , ,
, ,

{
}

=

Φ AX ψ( ) S1 S3 S5 S7 S9 S11 S13 S15 S17 S19 S21
S23 S25 S27 S29 S31

, , , , , , , , , , ,
, , , ,

{
}

=

Φ A t U p 2≤[ ] A t U q 5≤[ ]∨( ) S2..S31{ }=

Φ A t U p 2≤[ ]( ) S2..S7 S10..S15 S18..S23 S26..S31, , ,{ }=

Φ AX A t U p 2≤[ ]( ) S2 S3 S6 S7 S10 S11 S14 S15 S18
S19 S22 S23 S26 S27 S30 S31

, , , , , , , , ,
, , , , , ,

{
}

=

Φ p( ) S4 S5 S6 S7 S12 S13 S14 S15 S20 S21 S22 S23
S28 S29 S30 S31

, , , , , , , , , , , ,
, , ,

{
}

=

245



CHAPTER 10
 •

 •

 •

Three places are created corresponding to each set in 
.  and  only have one U 

formula and therefore will only have one timer each. Transitions 
are added to them in a similar way as in Figure 10.14. In this 
section, we will concentrate on place , corresponding to set 

, which contains two U formulas. Figure 10.17 shows the 
part of the resulting PRES+ model corresponding to this set of 
progress formulas.

Φ A t U q 5≤[ ]( ) S8..S31{ }=

Φ AX A t U q 5≤[ ]( ) S8..S15 S24..S31,{ }=

Φ q( ) S16..S31{ }=

p11 p11a

p11a’

0..2[ ]

Figure 10.17: The resulting PRES+ model corresponding 
to progress formulas  of the formula S11

AG AF p 2≤ AF q 5≤∨( )

t11a

p11b

p11b’

0..5[ ] t11b

p3 Pin S3( ) p9Pin S9( )

0..0[ ]
t1

p

t5t2 t4

p qp q p q

t3

q

0..0[ ]

0..0[ ]
0..0[ ]

0..0[ ]

PF Φ ψ( )( ) Φ ψ( )∩ S3 S9 S11, ,{ }= S3 S9

p11
S11
246



MODELLING THE SURROUNDING
. 
. 

As usual, each set of elementary formulas in  is 
examined.  is not added since it does not contain any atomic 
propositions.  is not added either because 

 and . 
, on the other hand, and 

, so the transition is added so 
that it restarts the corresponding timer, see transition . No 
transition is added for  for the same reason as . No tran-
sition is added for  either as it is not valid in its target place, 

.  does not have the 
target place , but , so transition  is 
added with .  causes transition  
to be created for similar reasons as .  is analogous to 

, resulting in transition . The target place of  is , 
and both timers require it. Transition  is added to the model 
in a similar fashion as  and  with the difference that it is 
connected to both timers.

10.3.3 GUARDS ON TRANSITIONS

Formulas containing out-port atomic propositions with relation 
lead, in general, to a PRES+ model with guards on certain tran-
sitions. This phenomenon will be demonstrated using the for-
mula , where  is an out-port and  is 
an in-port of a connected component. Normalisation gives the 
formula .

(10.8)

TF p11( ) S11 S13 S15 S19 S21 S,
23

S27 S29 S31, , , , , , ,{ }=
TTF U p11( )( ) S20 S21 S22 S23 S28 S29 S30 S31, , , , , , ,{ }=

TF p11( )
S11

S13
PF S13( ) S9 S11≠ Ψ p11( )= = S13 TTF U p11( )( )∉
PF S15( ) S11 Ψ p11( )= =
RUF p11 S15,( ) A t U p 2≤[ ]{ }=

t1
S19 S13

S21
S21 p q,{ }– S1 TF S1( )∉ Φ ψ( )= = S23

p11 S23 TTF U p11( )( )∈ t2
p11 p,

11a
′ p11b ′,{ } ° t2= S27 t3

S15 S29
S23 t4 S31 p11

t5
t1 t3

AG p 2=( ) AF 7≤ q→( ) p q

ψ A f R p¬ p 2≠ A t U 7≤ q[ ]∨ ∨( )[ ]=

el ψ( ) AX A f R p¬ p 2≠ A t U 7≤ q[ ]∨ ∨( )[ ]

1

p
2

p 2≠
4

AX A t U 7≤ q[ ]

8

q
16

, ,

, ,













=

                   {

          {
247



CHAPTER 10
, since 
in all other sets ,  but . Hence, those sets are 
contradictory.

 •

 •  

 •  

 •

 •

 •

 •  

 •

, so two places  and  are 
created in the resulting PRES+ model. Place  contains a U 
formula, so a timer is added for that place. Figure 10.18 shows 
the resulting PRES+ model.

Starting with adding transitions for place , 
. 

No transitions are added for  and  since they do not con-
tain any atomic proposition. The set  results in transition . 
It contains the atomic proposition with relation . Due to 
the fact that  is an out-port, that relation will become a guard 
of . Transition  is added for the set , it contains , but 
not . The time delay is set to , since 

. No transition is added for  due to 
redundancy with .  and 

, so . 

S ψ( ) S0..S3 S6..S11 S14..S19 S22..S27 S30 S31, , , , ,{ }=
s p 2≠ s∈ p s∉

Φ ψ( ) S1 S7 S9 S11 S15 S17 S19 S23 S25 S27 S31, , , , , , , , , ,{ }=

Φ AX A f R p¬ p 2≠ A t U 7≤ q[ ]∨ ∨( )[ ]( )
S1 S3 S7 S9 S11 S15 S17 S19 S23 S25 S27 S31, , , , , , , , , , ,{ }

=

Φ p¬ p 2≠ A t U 7≤ q[ ]∨ ∨( ) S0 S1 S6..S11 S14..S19
S22..S27 S30 S31

, , , ,
, ,

{
}

=

Φ p¬( ) S0 S1 S8 S9 S16 S17 S24 S25, , , , , , ,{ }=

Φ p 2≠( ) S6 S7 S14 S15 S22 S23 S30 S31, , , , , , ,{ }=

Φ A t U 7≤ q[ ]( ) S8..S11 S14..S19 S22..S27 S30 S31, , , ,{ }=

Φ AX A t U 7≤ q[ ]( ) S8 S9 S10 S11 S14 S15 S24
S25 S26 S,

27
S30 S31

, , , , , , ,
, , ,

{
}

=

Φ q( ) S16..S19 S22..S27 S30 S31, , ,{ }=

PF Φ ψ( )( ) Φ ψ( )∩ S1 S9,{ }= p1 p9
p9

p1
TF p1( ) S1 S7 S9 S11 S15 S17 S19 S23 S25 S27 S31, , , , , , , , , ,{ }=

S1 S9
S7 t1

p 2≠
p

t1 t2 S11 p
p 2≠ 0..0[ ]

S1 p{ }∪ S3 TF p1( )∉= S15
S11 PVout S11 p,( ) Z=

PVout S15 p,( ) Z 2{ }–= PVout S15 p,( ) PVout S11 p,( )⊆
248



MODELLING THE SURROUNDING
, ,  and  causes , ,  and  to be added 
respectively. No transitions are added for  and  due to 
redundancy with  and  respectively.

Let us continue with place  containing a timer. 
 and 

. No transition is 
added for  as usual. , but 

, hence it must be added as a loop around 
, see transition .  is redundant with  and not added. 

Transition  is added due to .  so it 
must originate from the timer with the delay interval . 

 results in  for similar reasons. For  and , transi-

p9 p9a

p9a’

0..7[ ]

Figure 10.18: The resulting PRES+ model of the formula 
AG p 2=( ) AF 7≤ q→( )

t9a

p1

0..0[ ]t2

p

q

0..∞[ ]

q

0..0[ ]

p

p
0..∞[ ]

t5

t6

t1

0..0[ ] t10 0..0[ ]
t11

q

p

p

0..∞[ ]t7

q

0..0[ ] t8

q

<0, 0>

p 2≠[ ]

q

0..∞[ ]

t3

p
q0..0[ ]

t4

p q

t9

0..0[ ]

S17 S19 S25 S27 t3 t4 t5 t6
S23 S31

S19 S27
p9

TF p9( ) S9 S11 S15 S17 S19 S,
23

S25 S27 S31, , , , , , ,{ }=
TTF U p9( )( ) S16..S19 S22..S27 S30 S31, , ,{ }=

S9 PF S11( ) S9 Ψ p9( )= =
RUF p9 S11,( ) ∅=
p9 t7 S15 S7

t8 S17 S17 TTF U p9( )( )∈
0..0[ ]

S19 t9 S25 S27
249



CHAPTER 10
tions  and  are added respectively. Both 
 and their target place is , meaning 

that the timer is restarted.  and  are redundant.
Finally, since  and , 

the place corresponding to , , is determined to be the ini-
tial place.

10.4 Verification Methodology Roadmap
This section continues the verification methodology roadmap 
from Section 9.6 and in particular Figure 9.19. Figure 10.19
shows the continuation of the roadmap.

The first question to answer is if the diagnostic trace, obtained 
from the previous verification, indicates that the verification 
result is due to an unwanted input from the surrounding. Such 
an input has its origin in a random transition attached to at 
least one component port that is connected to the surrounding of 
the glue logic (Section 6.2). In this case, the verification outcome 
could be the result of the fact that the surrounding does not sat-
isfy the requirements of the component on the other interfaces 
than the one connected to the glue logic on which the verification 
is performed. If that is not the case, then the property is proven 
not satisfied. Otherwise, a PRES+ model is generated corre-
sponding to that property, as described in this chapter.

The generated PRES+ model is then connected to the stub and 
the system is verified. If the property is satisfied, it is proven 
satisfied in the whole system. Otherwise, the newly obtained 
diagnostic trace is examined again in order to find out if it vio-
lates another requirement on the surrounding. If it does, a new 
PRES+ model is generated given both the previous formulas and 
the new one as a conjunction. The iteration continues until a 
final verification result is obtained.

t10 t11
S25 S27, TTF U p9( )( )∈ p9

S23 S31
PF Φ ψ( )( ) Φ ψ( )∩ S1 S9,{ }= S1 AX ψ=

S1 p1
250



MODELLING THE SURROUNDING
Did the diagnostic trace indicate
that one of the properties of the

surrounding was violated?

Create the PRES+ model
of that formula in conjunction

with possible previously
created formulas

Yes

Verify property

Was the property satisfied?

Property is
proven satisfied

Yes

No

Figure 9.19

Property is
proven not satisfied

No

Figure 10.19: Continuation of the roadmap in Figure 9.19, 
useFormulas
251



CHAPTER 10
252



CASE STUDY: A MOBILE TELEPHONE DESIGN
Chapter 11 
Case Study: 

A Mobile Telephone Design

HE PRESENTED INTEGRATION verification methodol-
ogy provides a powerful means to verify large systems. 
This chapter describes a case study to demonstrate how 

a real-life system can be verified using the methodology. The ver-
ified system is a mobile telephone design.

11.1 The Mobile Telephone System
Figure 11.1 shows an overview picture of the model and how the 
components forming the model are connected. It consists of the 
following seven components communicating via an AMBA bus. 

1. Microphone. The microphone sends voice data to the trans-
mitter.

2. Buttons. When dialling, the buttons component sends infor-
mation about which buttons were pressed to the controller.

3. Speaker. The speaker receives voice signals from the receiv-
er and converts them to sound.

T

253



CHAPTER 11
Arbiter

A
M

B
A

 b
u

s

Microphone
(master)

Buttons
(master)

Speaker
(slave)

Display
(slave)

Receiver
(master)

Transmitter
(slave)

Controller
(master/slave)

Figure 11.1: Overview model of the case study system, 
a mobile telephone design
254



CASE STUDY: A MOBILE TELEPHONE DESIGN
4. Display. The display shows on a small screen information 
sent to it by the controller.

5. Receiver. The receiver receives data from the base-station of 
the mobile telephone network and passes it on to the desig-
nated component.

6. Transmitter. The transmitter receives data from other com-
ponents in the telephone and passes it on to the base-station. 

7. Controller. The controller coordinates the tasks of the other 
components.

As mentioned previously, these components are supposed to 
communicate over an AMBA bus. However, since the AMBA bus 
imposes a certain protocol and the components are not designed 
for that protocol, glue logics adapting the components to this 
protocol are inserted. 

A few of the components which are directly involved in the 
example are explained in more detail in the following sections.

11.1.1 BUTTONS AND DISPLAY

The peripheral components, such as Buttons and Display, which 
are used to interact with the end user, are modelled in a simplis-
tic way as shown in Figure 11.2.

In this case study, we assume that the telephone has eleven 
buttons: the numbers 0 to 9 plus the button “enter”. When the 
end user wants to dial a number, he enters the number, presses 
the button “enter”, after which the telephone tries to satisfy the 
request. From the point of view of the component Buttons, the 

0..∞[ ]

0..9 enter,{ }

bt1

(a) Buttons

0..0[ ]dt1

(b) Display

Figure 11.2: Models of components Buttons and Display
255



CHAPTER 11
buttons can be pressed in any order at any time. This is mod-
elled by a transition with time delay interval  and the 
function “random value from the set ”. The Buttons 
component has no idea about the semantics of each button being 
pressed. It is the task of the controller to determine what should 
happen when a particular button is pressed.

The situation is similar but reverse for Display. Display 
receives commands about what to show on its screen. In PRES+ 
terms, this means that tokens in its port are consumed as they 
appear. The time delay interval depends on how fast the infor-
mation is processed by the component. In this example, it is 
assumed that the information is immediately taken care of, i.e. 
the time delay interval is .

11.1.2 CONTROLLER

The controller component keeps track of what is happening in 
the system and acts accordingly. Figure 11.3 shows a model of 
the component. 

Places  and  are marked when the 
controller is able or is not able to process button data respec-
tively. The data is simply discarded if it is not immediately 
accepted. Transitions  to  take care of this functionality. 
The transitions have guards so that different actions can be 
taken depending on which button was pressed. This model only 
makes a difference between if a number was pressed, 

, or if “enter” was pressed, . When dialling 
a number, signals (tokens) are also sent in order to update the 
display. Having pressed “enter” the telephone number is sent to 
the transmitter.

Places  and  record whether a phone call is 
taking place or not. Transition  therefore updates these 
places when a phone call is to be made. Transition  takes 
care of incoming phone calls and  and  handle the end of a 
call.

0..∞[ ]
0..9 enter,{ }

0..0[ ]

accbutton noaccbutton

ct1 ct4

b 0..9{ }∈ b enter=

calling nocall
ct5

ct7
ct8 ct9
256



CASE STUDY: A MOBILE TELEPHONE DESIGN
Figure 11.3: Model of the Controller component

button display ring

transmit hang_up receive

0..0[ ]

b

b

cp1

noaccbutton

accbutton

cp2

b 0..9{ }∈[ ]
b

b enter=[ ]

b

b 0..9{ }∈[ ]

b

b

b enter=[ ]

cp3

nocall

calling

0..0[ ]

0..0[ ]

1..1[ ]

1..1[ ]

1..1[ ]
1..1[ ]

1..1[ ]

1..1[ ]
1..1[ ]

ct10

ct1

ct2

ct3

ct4

ct5

ct6

ct7

ct8
ct9

0..0[ ]0..0[ ]

cp4 cp5

ct11 ct12
257



CHAPTER 11
11.1.3 AMBA BUS

All components communicate through an AMBA bus [Roy03]. 
The AMBA bus was previously introduced in Section 6.1.2. Here, 
however, it will be described in more detail and adapted to the 
PRES+ model used in this case study. 

The AMBA bus consists of two parts, Arbiter and Bus. 
Figure 11.4 and Figure 11.5 introduce PRES+ models of these 
two parts, respectively. The components communicating over the 
bus are furthermore divided into two categories, master and 
slave. Figure 11.1 indicates to which category each component 
in the example belongs. Components sending messages are mas-
ters and components receiving messages are slaves.

Any master wanting to send data on the bus must first request 
access to it from the arbiter by emitting the signal HREQBUS. 
The arbiter will eventually grant access (HGRANT) to any mas-
ter requesting it, and at the same time, avoid starvation. Once a 
master is granted access, it may send one bunch of data every 
clock cycle (time unit, in terms of PRES+). All bunches of data do 
not necessarily have to be addressed to the same slave. When 
sending the last bunch, the master notifies this by emitting the 
signal HTRANS. 

However, if a slave is not ready to receive, it is able to put the 
transaction on hold, or in AMBA bus terms split (HRESP), until 
it eventually becomes ready (HREADY). During the time period 
when it is not yet ready to receive, the arbiter might give the 
access to the bus to another requesting master. When the slave 
declares itself ready to receive the split data, the master on hold 
is automatically granted access to the bus again. 

The AMBA bus actually consists of two buses, one address bus 
and one data bus. When a master sends a bunch of data on the 
bus, it sends the address of the receiving slave on the address 
bus and the data on the data bus.
258



CASE STUDY: A MOBILE TELEPHONE DESIGN
Figure 11.4 shows a part of the model of the arbiter corre-
sponding to one particular master. The part in the figure is cop-
ied once for each master. Places  represent which 
master currently holds the token in a round-robin schedule. The 
master holding the token has the opportunity to get access to the 
bus. If a request has not arrived from that particular master, the 
token moves to the place corresponding to the next master, 
(in the case of master 2) or  (in the case of master 1). The 
dashed arcs on transition  are connected to place  of 

Figure 11.4: Model of the Arbiter component

HREQBUS HGRANT HTRANS

H
R

E
S

P
H

R
E

A
D

Y

1..1[ ]

1..1[ ]

1..1[ ]

0..0[ ]
0..0[ ]

2..2[ ]

2..2[ ]

at1

at2

at3

at4

at5

at6

at7

ap1

ap2

nomask

mask

master1

master2

masterx

at6
at7

at7 nomask
259



CHAPTER 11
master 2 in a similar way as . Place  is marked when a 
slave has split the transaction of that master.  is 
marked otherwise. 

The bus itself distributes tokens sent to it to all components 
connected to it. Figure 11.5 shows a model of the Bus compo-
nent. All transitions have time delay interval  and transi-
tion function identity. Consequently, the bus distributes exactly 
the same token as received to the rest of the components in zero 
time.

Port HRESP is directly connected to the arbiter through the 
port with the same name. 

at6 mask
nomask

HADDR HDATA HRESP HADDR HDATA HRESP

H
R

E
S

P

m1 m1 m1 m2 m2 m2

HADDR HDATA HRESP HRESP
s1 s1 ins1 outs1

HADDR HDATA HRESP HRESP
s2 s2 ins2 outs2

ut1 ut2
ut3

um1t1

um1t2 um2t1 um2t2

us1t1

us2t2

uaddr udata

uresp

Figure 11.5: Model of the Bus component

0..0[ ]
260



CASE STUDY: A MOBILE TELEPHONE DESIGN
11.1.4 GLUE LOGICS

As has been shown, the components do not contain any function-
ality to communicate with and over the bus. For this reason, it is 
necessary to adapt the components and insert a glue logic 
between the component and the bus. 

This design principally contains two types of glue logic, one for 
handling the master functionality and one for handling the slave 
functionality for each type of component respectively. Conse-
quently, the glue logics which are situated between the bus and 
a slave component (see Figure 11.1) is a slave functionality glue 
logic, whereas the glue logics situated between the bus and a 
master component is a master functionality glue logic.

Master functionality

A model of the glue logic which is active when the controller 
serves as a master, is shown in Figure 11.6. The main problem to 
be solved by the glue logic is in case of a slave splitting a trans-
action initiated by the current master. For this purpose, the glue 
logic must always remember the last transaction. The address is 
stored during one clock cycle in  and the data in . 
After one clock cycle the stored items are removed by  and 

 respectively. When the master is regranted access to the 
bus, transitions  and  become enabled and resend
the data. The tokens, however, stay in their respective places in 
case the resent data is again split. 

Meanwhile a transaction is split, no new data can be sent by 
the component. Presence or absence of tokens in  
and  regulate this behaviour. 

The glue logic may receive tokens from HRESP even though 
its master did not send anything. This can be the result of a 
transaction of another master being split. Remember that the 
bus distributes split requests to all connected components. In 

cmp7 cmp9
cmt11

cmt14
cmt12 cmt15

cmanosplit1
cmdnosplit1
261



CHAPTER 11
Figure 11.6: A model of the glue logic for the master func-
tionality of the controller

Controller
transmit display ring

Arbiter Bus
HREQBUS HTRANS HADDRHGRANT HDATA HRESP

cmaddr cmdata

[0..0] [0..0] [0..0]
d

d

d

d

d

d

cmt1 cmt2 cmt3

trans-
addr

display-
addr speaker-

addr

[0..0]
[0..0]

[0..0]cmt4
cmt5

cmt6

cmp1 cmp2

cmanosplit1

cmp3

cmp4 cmp5

cmp6

cmp7

cmp10

[1..1]

cmt7

a

a

[0..0]
cmt10

a

a

cmt9

[0..0]

a

a

cmasplit

[1..1]
cmt12

cmanosplit2

cmt11
[1..1]

cmp11

cmp12

[0..0]

[1.5..1.5]

cmt18

cmt19

[0..0]
cmt17

cmdnosplit2

cmdnosplit1

[0..0]
cmt13 [1..1]

cmt14
cmdsplit

[1..1]

[0..0]
cmt16

cmt15

cmp8

cmp9

cmt8
[1..1]

d

d

d

a

d

d

d

d

HRESP
262



CASE STUDY: A MOBILE TELEPHONE DESIGN
order to keep track of whether such a split request is intended 
for the current master or not the structure consisting of places 

 to  is created. A token in  means that the 
current master has just sent and a possible split request is con-
sequently intended for itself. Before the next clock cycle the 
token is however moved back to  through transition 

. With a token in  incoming split requests are 
immediately consumed leading to no further action since they 
are not intended for this master.

Slave functionality

The main function of the glue logics handling the slave function-
ality is to split a transaction in case the component is not ready 
to receive. Afterwards, when the component is ready to receive a 
message again, the glue logic must notify the arbiter by placing 
a token in the port HREADY. A model of the glue logic handling 
the slave functionality of the controller is shown in Figure 11.7.

When the slave is ready to receive data, a token is located in 
place . Otherwise, there are tokens in both places 

 and . It is necessary to have two places 
 since transition  might disturb transition  in 

case of incoming data from the bus. The intended behaviour is 
that  shall fire 2 time units after enabling. With only one 
place , firing  would instantly first disable and 
then enable  again, erroneously resulting in a new enabling 
time for . 

Meanwhile, if the slave is not ready and data is sent to it, a 
token is placed in  to indicate that the transaction is 
split, (transition ). Furthermore, the address and data 
being sent at the time must also be removed. This is also true 
when the transaction of another master was split, (transition 

). 
In this case study, it is assumed that the controller is ready to 

receive data again 2 clock cycles after a previous reception 

cm p10 cmp12 cmp12

cmp11
cmt19 cmp11

ready
notread y1 notread y2
notready cst7 cst5

cst5
notready cst7

cst5
cst5

HRESPout
cst7

cst10
263



CHAPTER 11
Figure 11.7: A model of the glue logic for the slave func-
tionality of the controller

Controller

Arbiter BusHRESP

HREADY HRESP
in

HADDR HDATAHRESP
out

button hang_up receive

csp1

csp2

csp3

csp4
csp5

ready

notready1

notready2

[0..0]

cst9

[1..1]

cst8

a

a

d

d

[0..0] [0..0]cst11 cst12

[0..0]

cst10

cst13[1..1]

[a ∉  { butaddr,
hangupaddr,
recaddr } ]

[1..1]

cst4

[a ∈  { butaddr,
hangupaddr,
recaddr } ]

[2..2]

cst5

[0..0]
cst6

[1..1]

cst7

[a ∈  { butaddr,
hangupaddr,
recaddr } ]

a

a

cst1

cst2 cst3[0..0]

[0..0]
[0..0]

d

d d
d

a a

a
[a = butaddr]

[a = hangupaddr]

[a = recaddr]
264



CASE STUDY: A MOBILE TELEPHONE DESIGN
( ). After these two cycles the slave indicates to the arbiter 
that it is ready again ( ).

11.2 Verification of the Model
The integration verification process is illustrated with three 
properties:

1. The controller only receives legal values for button. 

2. When a slave has split a transaction, it will be ready again in 
the future. 

3. When a master has been granted access to the bus, it must 
eventually close the transaction. 

The verification is conducted following the roadmap presented 
in previous chapters.

11.2.1 PROPERTY 1

The first property to be verified states that the controller must 
only receive legal values for button. The components included in 
the verification of this property were the controller, arbiter, bus 

cst5
cst6

AG button button 0..9 enter,{ }∈→( )

AG HRESP AF HREADY→( )

AG HGRANT AF HTRANS→( )

Controller

Arbiter AMBA bus

(master/slave)

Figure 11.8: The part of the system used to verify 
property 1 and property 2
265



CHAPTER 11
and the slave functionality glue logic as illustrated in 
Figure 11.8. Table 11.1 presents the result of the different 
stages in the verification process.

The property was first verified using empty stubs on all com-
ponents, except the bus for which a stub was generated. The 
property was not satisfied using this environment since any 
data could arrive on the HDATA port of the bus, as indicated by 
the diagnostic trace. It took about 1 second to obtain this result.

Since the property was not satisfied, the diagnostic trace must 
be examined. According to the diagnostic trace, the bus pro-
duced a value on port  which is not allowed. In order 
to do the verification, it was necessary to make an assumption 
about the surrounding. In this case, it has to be assumed that 
only data in the set  can occur in port . 
The property is formally given in Equation 11.1.

(11.1)

A PRES+ model for this formula was created together with a 
new version of the bus stub, now also including port , 
indicated by the shaded interface in Figure 11.8. Using this new 
stub, the property was satisfied using approximately 2 minutes 
verification time.

The positive verification result was obtained by making an 
assumption about the surrounding. In order to finally conclude 

Table 11.1: Verification results of property 1

Step Environment Res Time 

Initial All empty stubs, except 
bus generated

false 1.32s

Add assumption on 
HDATA

All empty stubs, except 
bus, assumption

true 125.33s

Verify assumption Buttons top-level stub, 
other stubs empty

true 7.58s

HDATAsx

0..9 enter,{ } HDATAmx

AG HDATAmx HDATAmx 0..9 enter,{ }∈→( )

HDATAmx
266



CASE STUDY: A MOBILE TELEPHONE DESIGN
the positive result, the correctness of the assumption in Equa-
tion 11.1 must first be established. 

The components involved in verifying the assumption were 
the buttons, arbiter, bus and master functionality glue logic
(Figure 11.9). A top-level stub for buttons and empty stubs for 
the other components was enough for obtaining a result within 
7.58 seconds.

11.2.2 PROPERTY 2

The second property states that when a slave has split a trans-
action, it must become ready again in the future. The compo-
nents included in the verification of this property were controller, 
arbiter, bus and the slave functionality glue logic, as also illus-
trated in Figure 11.8. Table 11.2 presents the result of the differ-
ent stages in the verification process.

This verification has been started with a faulty glue logic. The 
fault is due to that the slave functionality glue logic did not emit 
HRESP in time (Section 11.1.3). This fault was finally fixed after 

Table 11.2: Verification results of property 2

Step Environment Res Time 

Initial All empty stubs, except 
{HRESPin, HRESPout, 
HRESP}

false 2.47s

Use higher level 
stubs

Initial except Level 1 
stubs for HADDR, 
HDATA

false 28.39s

Correct design error Initial except Level 1 
stubs for HADDR, 
HDATA

false 87.57s

Use higher level 
stubs

Empty stubs for control-
ler and top-level stub for 
the bus

true 246.14s
267



CHAPTER 11
detection (see the third verification step below) by changing the 
time delay interval in one transition in the glue logic.

At first, the property was verified using empty stubs on all 
components, except that the bus had one generated stub corre-
sponding to interface . 
The property was however not satisfied in this environment. 
The diagnostic trace indicated that messages were sent too 
quickly on port HADDR and HDATA. In other words, an infinite 
amount of data was sent in the same clock cycle. In the real sys-
tem, only one bunch of data can be sent in the same clock cycle. 
The problem was solved by increasing the level of the stubs on 
ports HADDR and HDATA from empty to level one stubs. These 
stubs were given (created manually). 

The property was again verified in the updated environment, 
but it was still not satisfied. The diagnostic trace led to the 
design error in the glue logic as described previously. After fixing 
the error, the property was reverified using the very same envi-
ronment, but still with a negative verification result. 

The problem this time was a too pessimistic stub for the bus 
component. This caused the fact that no signal would ever be 
emitted on port HREADY. Due to the pessimism in the gener-
ated stub, it was exchanged with a given one1. After additional 4 
minutes, the property was finally satisfied.

11.2.3 PROPERTY 3

The third property states that when a master has been granted 
access to the bus, it must eventually close the transaction. The 
components included in the verification of this property were the 
buttons, arbiter, bus and master functionality glue logic, as illus-
trated in Figure 11.9. Table 11.3 presents the result of the differ-
ent stages in the verification process.

1. Another way to continue the verification would have been to continue 
with less pessimistic stubs generated automatically and, if needed, 
with added models corresponding to assumptions on the surrounding.

HRESPinsx HRESPoutsx HRESP, ,{ }
268



CASE STUDY: A MOBILE TELEPHONE DESIGN
This verification was also started with a faulty glue logic. The 
fault consisted in that the glue logic could not differentiate 
whether a particular split request was a result of its own 
attempts to send or not. The fault was fixed, after detection (see 
the fourth verification step below) during verification, by adding 
a structure to keep track of the necessary information.

As with the verification of the previous properties, the first envi-
ronment used consisted of empty stubs. In this environment, 
Arbiter may grant access to the bus without it even being 
requested. Consequently, after such an unrequested grant, data 

Arbiter

Buttons

AMBA bus

(master)

Figure 11.9: The part of the system used to verify 
property 3 and the additional assumption of property 1

Table 11.3: Verification results of property 3

Step Environment Res Time 

Initial All empty stubs false 0.14s

Use higher level 
stubs

Initial except arbiter 
stub

false 0.52s

Add property 2 as 
assumption

Arbiter stub given, but-
ton stub empty, bus 
with assumption

false 2.58s

Correct design error Arbiter stub given, but-
ton stub empty, bus 
with assumption

true 2467.42s
269



CHAPTER 11
will not be sent and in particular the transaction will not be 
closed. Thus, the property is not satisfied.

To avoid this problem revealed by the diagnostic trace, the 
empty stubs of the arbiter were replaced with a given stub. After 
half a second’s verification time, the property proved again 
unsatisfied. The diagnostic trace shows that the reason was that 
a transaction can be split, but the slave will never signal after a 
while that it is ready to receive data again. It is, however, a 
requirement on the slaves to eventually signal that they are 
again ready after a split. Therefore, a PRES+ model correspond-
ing to the formula  was gener-
ated and attached to the bus on the shaded interface in Figure 
11.9. Note that it is not necessary to verify this assumption as it 
is a requirement of the arbiter and the bus in order to work prop-
erly. Besides, the property was already verified in the previous 
section. Even with this extra assumption the property proved 
unsatisfied.

The diagnostic trace indicated an error in the glue logic. It did 
not record whether the split requests were a result of its own 
attempts to send or not. A mechanism for this was added and the 
property was reverified with the same environment. After 41 
minutes a positive result was obtained.

11.3 Discussion
This chapter has tried to demonstrate how to use the verification 
methodology presented in this thesis, in practice. 

The successive steps through the methodology are guided by 
the diagnostic trace, which all the time gives feedback to the 
user what to do next. It might indicate that too pessimistic stubs 
were used, that there is an error in the glue logic, or that 
assumptions regarding the surrounding have to be introduced. 

AG HRESP AF HREADY 5≤→( )
270



P
ar

t 
IV
PART  IV
Conclusions 

and 
Future Work





CONCLUSIONS
Chapter 12 
Conclusions and 

Future Work

HIS THESIS HAS PRESENTED verification techniques 
related both to component verification and integration 
verification of component-based embedded system 

designs. This chapter summarises these techniques and points 
out interesting issues for future work.

12.1 Conclusions
Embedded systems are becoming increasingly common in our 
everyday lives. These systems are also becoming increasingly 
complex. In order to reduce the design complexity, designers 
resort to using predesigned components, and utilise an IP-based 
design methodology. 

Due to the high complexity, the task of building such systems 
correctly becomes increasingly challenging. In order to meet this 
challenge, verification is introduced as an integrated part of the 
embedded systems design flow so that errors are found early in 

T

273



CHAPTER 12
the design process. In this process, both the components them-
selves and the integration of the components have to be verified. 

As for component verification, two techniques are proposed in 
the thesis. The first technique enables formal verification of Sys-
temC designs at several levels of abstraction. In order to be able 
to perform such a verification, SystemC designs are translated 
into a formal Petri-net based representation. 

For larger designs, the feasibility of formal verification might 
be impeded due to state space explosion. In such cases, the 
designer has to resort to simulation. The second component ver-
ification technique, proposed in this thesis, tries to enhance the 
performance and coverage of the simulation process by injecting 
formal methods. After some time of simulation, an uncovered 
(with respect to a certain coverage metrics) part of the state 
space is identified. A model checker is then invoked to obtain a 
coverage enhancement plan which is used to guide the simula-
tion into the uncovered part. The coverage enhancement plan 
consists of the diagnostic trace when checking the model for a 
certain property. The invocation frequency of the model checker 
is dynamically controlled with the aim of minimising total vali-
dation time. 

The proposed integration verification technique takes advan-
tage of the fact that the individual components in the system are 
already verified, for instance by using the component verifica-
tion techniques described above. The focus of the technique lies 
on the interfaces of the components and on the glue logics inter-
connecting them. Every component interface has a number of 
properties associated to it which must be satisfied by the rest of 
the system in order to work correctly. 

The interfaces of the components are verified one at a time for 
the properties associated to them. In order to actually perform 
such verification of the interfaces, high-level models of their 
components must also be included in the verification, so that the 
connected glue logic can interact with an environment through 
the interface. For this reason, so called stubs are introduced into 
274



CONCLUSIONS
the verification process. Stubs are models of the components 
with respect to a certain interface. From the point of view of this 
interface, it is not possible to distinguish between the stub and 
the full component. 

An interface is a set of ports. Since a component has several 
different interfaces, and stubs are defined with respect to an 
interface, there also exist several stubs to choose from. This fact 
can be exploited for properties expressed in (T)ACTL, in order to 
reduce verification time. Using stubs with interfaces containing 
few ports, i.e. lower-level stubs, generally leads to shorter verifi-
cation times. However, using low-level stubs might lead to a 
false verification result. If the property turns out to be unsatis-
fied using a certain set of stubs, another set consisting of stubs 
at a higher level must be used. This search for a new higher-
level stub is guided by the diagnostic trace obtained from the 
verification. The methodology iterates in this manner until the 
property is proven satisfied or top-level stubs are used.

Until this point, it has been assumed that the stubs are given 
by the designer of each component. In case no stubs have been 
provided by the designer of the component, it is possible to gen-
erate the stub automatically given a model of the component 
and an interface. The proposed algorithms generate stubs which 
actually produce more events than the full component does. We 
say that such stubs are pessimistic. This enforces an iterative 
approach where the pessimism in the stubs is reduced as long as 
the ACTL properties are not satisfied. An algorithm for such a 
pessimism reduction has also been presented in the thesis.

The generated stubs might be too pessimistic to be used in 
verification, due to the fact that they assume that their sur-
rounding is as hostile as possible. They assume that tokens may 
appear at those ports of the component not belonging to the stub 
interface at any time with any value. This assumption about the 
surrounding is sometimes too pessimistic. There is consequently 
a need to be able to express properties about the surrounding 
and incorporate them into the verification process.
275



CHAPTER 12
Properties regarding the surrounding can also be expressed as 
ACTL formulas. An algorithm to generate a PRES+ model which 
produces all possible events still satisfying an ACTL formula 
has been presented. The generated model can then be attached 
to the components involved in the current verification.

A roadmap has also been developed to guide the designer 
throughout the integration verification methodology. A case 
study has, moreover, been presented in order to demonstrate the 
feasibility of applying the approach to realistic designs.

12.2 Future Work
This section presents a few issues which could be investigated 
further in order to improve, refine and extend the techniques 
presented in the thesis.

 • The translation approach from SystemC to PRES+ (Chapter 
5) would be strengthened if the result from the proposed 
translation procedure is proven correct based on a formal 
semantics of SystemC. Such a proof would not completely 
solve the problem of legitimacy of the translation approach 
by itself, although certain question marks would be straight-
ened out. The optimal scenario, although difficult, would be 
to directly prove equivalence with the reference implementa-
tion of SystemC itself. 

 • In the formal method-aided simulation technique (Section 
6.2), many parameters have to be considered. A more thor-
ough investigation of the optimality of these, including heu-
ristics to optimally determine them, is desired. A few 
examples of such parameters include the distance measure 
between a transition and a marking, stop criterion, time-out 
of the coverage enhancement plan obtainment, etc. 

 • The proposed stub generation algorithm generates pessimis-
tic stubs (Chapter 9), which must later be refined in case the 
verified ACTL formula was unsatisfied. A heuristic approach 
276



CONCLUSIONS
could be developed in which also the property to be verified is 
an input parameter, beside the interface and the model of the 
component, to the stub generation algorithm. The property 
might give additional hints on which parts of the component 
are absolutely necessary to include in the stub, and without 
which the property is deemed to be unsatisfied. The property 
to be verified might also be useful for the pessimism reduc-
tion algorithm.

 • At a certain point in the stub generation algorithm, edges 
(arcs) are checked if they are cutedges or not (Section 9.3.2). 
An edge is a cutedge if the graph (PRES+ model) becomes 
disconnected if removed. If such cutedges exist in a graph, it 
is said that it has connectivity 1. The stub generation algo-
rithm could be generalised and let the connectivity be given 
by the designer. If a connectivity of 2 is given, the stub would 
be cut at a point where two arcs, if removed, result in a dis-
connected model instead of 1. The higher connectivity value 
is chosen, the more pessimistic will the resulting stub be, 
since bigger parts of the component will be abstracted away. 
This feature could be useful in order to obtain smaller stubs 
in highly connected components. Heuristics to choose good 
connectivity values should also be developed. 

 • The algorithm to generate a PRES+ model from an ACTL 
formula (Chapter 10) imposes certain restrictions on the 
class of formulas it can handle, especially when it comes to 
the timing aspects. At present, timing requirements are only 
allowed on the F and U operators, and only as an upper 
bound. The possiblity to relax these constraints, allowing 
timing information on any operator, and with arbitrary rela-
tions on the time bounds, should be investigated.
277



CHAPTER 12
278



REFERENCES
References

[Ack00] B. Ackland, A. Anesko, D. Brinthaupt et al, “A Sin-
gle-Chip, 1.6-Billion, 16-b MAC/s Multiprocessor 
DSP”, in Journal of Solid-State Circuits, vol 35 no 3, 
2000

[Alb01] K. Albin, “Nuts and Bolts of Core and SoC Verifica-
tion”, in Proc. DAC, pp. 249-252, 2001

[Alu90] R. Alur, C. Courcoubetis, D.L. Dill, “Model Checking 
for Real-Time Systems”, in Proc. Symposium on 
Logic in Computer Science, pp. 414-425, 1990

[Alu94] R. Alur and D.L. Dill, “A theory of timed automata”, 
in Theoretical Computer Science, pp. 126:183-235, 
1994

[And02a] T.L. Anderson, “Verification reuse enables design 
reuse”, EETimes, 19 Dec. 2002

[And02b] T.L. Anderson, “Verification: Reuse It or Lose It”, in 
Proc. DesignCon, 2002

[Bai03] M. Baird, “SystemC 2.0.1 Language Reference Man-
ual”, Open SystemC Initiative, 2003
279



[Bal96] F. Balarin, “Approximate reachability analysis of 
timed automata”, in Proc. Real-Time Systems Sympo-
sium, 1996, pp. 52-61

[Ber05] S. Bernsen, “Combating Design Complexity with 
Electronic System Level (ESL) Methodology”, Infor-
mation Quarterly, Vol. 4 No. 2, pp. 36-40, 2005

[Bra93] D. Brand, “Verification of Large Synthesized 
Designs”, in Proc. ICCAD, pp. 534-537, 1993

[Bry86] R.E. Bryant, “Graph-Based Algorithms for Boolean 
Function Manipulation”, in Transactions on Comput-
ers, Vol. C-35, No 8, pp. 677-691, 1986

[Bur90] J.R. Burch, E.M. Clarke, K.L. McMillan, “Symbolic 
Model Checking: 1020 States and Beyond”, in Proc. 
LICS, pp. 428-439, 1990

[Cam96] R. Camposano, J. Wilberg, “Embedded System 
Design”, in Design Automation for Embedded Sys-
tems, vol. 1, pp. 5-50, Jan 1996

[Cha02] A. Chakrabarti, P. Dasgupta, P.P. Chakrabarti et al, 
“Formal Verification of Module Interfaces against 
Real Time Specifications”, in Proc. DAC, pp. 141-145, 
2002

[Cla86] E.M. Clarke, E.A. Emerson, A.P. Sistla, “Automatic 
Verification of Finite-State Concurrent Systems 
Using Temporal Logic Specifications”, in Transac-
tions on Programming Languages and Systems, pp. 
8(2):244- 263, 1986

[Cla99] E.M. Clarke, O. Grumberg, D.A. Peled, “Model 
Checking”, The MIT Press, 1999

[Cor00] L.A. Cortés, P. Eles, Z. Peng, “Verification of Embed-
ded Systems using a Petri Net based Representa-
tion”, in Proc. ISSS, pp. 149-155, 2000
280



REFERENCES
[Cor03] L.A. Cortés, P. Eles, Z. Peng, “Modeling and Formal 
Verification of Embedded Systems based on a Petri 
Net Representation”, in Journal of Systems Architec-
ture, pp. 49(12-15):571-598, 2003

[Cou90] O. Coudert, J.C. Madre, “A Unified Framework for 
the Formal Verification of Sequential Circuits”, in 
Proc. ICCAD, pp. 126-129, 1990

[Cyr94] D. Cyrluk, S. Rajan, N. Shankar et al, “Effective The-
orem Proving for Hardware Verification”, in Proc. 
Int. Conf. on Theorem Provers in Circuit Design, 
Theory, Practice and Experience, pp. 203-222, 1994

[Daw96] C. Daws, S. Yovine, “Reducing the number of clock 
variables of timed automata”, in Proc. Real-Time 
Systems Symposium, 1996, pp. 73-81

[Dre02] R. Drechsler, D. Große, “Reachability Analysis for 
Formal Verification of SystemC”, in Proc. Euromicro 
DSD, 2002, pp. 337-340

[Dru03] L. Druckner, “SystemC Verification Library speeds 
transaction-based verification”, in EETimes Online, 
http://www.eetimes.com/, 24 Feb. 2003

[Gaj00] D. Gajski, A C.-H. Wu, V. Chaiyakul et al, “Essential 
Issues for IP Reuse”, in Proc. ASP-DAC, pp. 37-42, 
2000

[Gir93] E. Girczyc, S. Carlson, “Increasing Design Quality 
and Engineering Productivity through Design 
Reuse”, in Proc. DAC, pp. 48-53, 1993

[Gra97] S. Graf, H. Saidi, “Construction of abstract state 
graphs with PVS”, in Lecture Notes in Computer Sci-
ence, Vol. 1254, pp. 72-83, 1997
281



[Gro03] D. Große, R. Drechsler, “Formal Verification of LTL 
Formulas for SystemC Designs”, in Proc. ISCAS, 
2003, pp. 245-248

[Gro05] D. Große, R. Drechsler, “CheckSyC: An Efficient 
Property Checker for RTL SystemC Designs”, in 
Proc. ISCAS, 2005, pp. 4167-4170

[Gru94] O. Grumberg, D.E. Long, “Model Checking and Mod-
ular Verification”, in ACM-TOPLAS, Vol 16 No 3, pp. 
843-871, 1994

[Haa99] J. Haase, “Design Methodology for IP Providers”, in 
Proc. DATE, pp. 728-732, 1999

[Hab05] A. Habibi, S. Tahar, “Design for Verification of Sys-
temC Transaction Level Models”, in Proc. DATE, 
2005, pp. 560-565

[Hab06] A. Habibi, S. Tahar, “Design and Verification of Sys-
temC Transaction-Level Models”, in Trans. on VLSI 
Systems, Vol 14(1), pp. 57-68, 2006

[Hen02] T.A. Henzinger, S. Qadeer, S.K. Rajamani et al, “An 
assume-guarantee rule for checking simulation”, in 
Trans. on Programming Languages and Systems, Vol 
24(1), pp. 51-64, 2002

[Hes03] A. Hessel, K.G. Larsen, B. Nielsen et al., “Time-opti-
mal Real-Time Test Case Generation using 
UPPAAL”, in Proc. FATES, pp. 114-130, 2003

[Kar01] D. Karlsson, P. Eles, Z. Peng, “A Front End to a Java 
Based Environment for the Design of Embedded Sys-
tems”, in Proc. DDECS, pp. 71-78, 2001

[Kar02] D. Karlsson, P. Eles, Z. Peng, “Formal Verification in 
a Component-based Reuse Methodology”, in Proc. 
ISSS, pp. 156-161, 2002 
282



REFERENCES
[Kar03] D. Karlsson, “Towards Formal Verification in a Com-
ponent-based Reuse Methodology”, Licentiate The-
sis No 1058, Linköping Institute of Technology, 2003, 
http://www.ep.liu.se/lic/science_technology/10/58/

[Kar04a] D. Karlsson, P. Eles, Z. Peng, “A Formal Verification 
Methodology for IP-based Designs”, in Proc. Euromi-
cro DSD, pp. 372-379, 2004 

[Kar04b] D. Karlsson, P. Eles, Z. Peng, “A Formal Verification 
Approach for IP-based Designs”, in Proc. FDL, pp. 
556-567, 2004 

[Kar05] D. Karlsson, P. Eles, Z. Peng, “Validation of Embed-
ded Systems using Formal Method aided Verifica-
tion”, in Proc. Euromicro DSD, pp. 196-199, 2005 

[Kar06] D. Karlsson, P. Eles, Z. Peng, “Formal Verification of 
SystemC Designs Using a Petri-Net Based Represen-
tation”, in Proc. DATE, 2006 

[Kea98] M. Keating, P. Bricaud, “Reuse Methodology Manual 
for System-on-a-Chip Designs”, Kluwer Academic 
Publishers, 1998

[Kro05] D. Kroening, N. Sharygina, “Formal Verification of 
SystemC by Automatic Hardware/Software Parti-
tioning”, in Proc. MEMOCODE, 2005, pp. 101-110

[Kup96] O. Kupferman, O. Grumberg, “Branching Time Tem-
poral Logic and Tree Automata”, Information and 
Computation, pp. 125(1):62-69, 1996

[Lo98] K.C. Lo, “Design for Reuse”, in Proc. Colloquium on 
Systems on a Chip, pp. 11/1-11/6, 1998

[Loc91] C.D. Locke, D.R. Vogel, T.J. Mesler, “Building a Pre-
dictable Avionics Platform in Ada: A Case Study”, in 
Proc. RTSS, pp. 181-189, 1991
283



[McM97] K.L. McMillan, “A compositional rule for hardware 
design refinement”, in Proc. Computer Aided Verifi-
cation, LNCS 1254, pp. 207-218, 1997

[Mis81] J. Misra, K.M. Chandy, “Proofs of networks of proc-
esses”, in Trans. on Software Engineering, Vol 7(4), 
pp. 417-426, 1981

[Piz04] A. Piziali, “Functional Verification Coverage Meas-
urement and Analysis”, Kluwer Academic Publish-
ers, 2004

[Ros05] A. Rose, S. Swan, J. Pierce et al., “Transaction Level 
Modeling in SystemC”, Open SystemC Initiative, 
2005

[Roy03] A. Roychoudhury, T. Mitra, S.R. Karri, “Using formal 
techniques to Debug the AMBA System-on-Chip Bus 
Protocol”, in Proc. DATE, pp. 828-833, 2003

[Rus01] J. Rushby, “Theorem Proving for Verification”, in Lec-
ture Notes in Computer Science, Vol. 2067, pp. 39-57, 
2001

[Sav00] W. Savage, J. Chilton and R. Camposano, “IP Reuse 
in the System on a Chip Era”, in Proc. ISSS, pp. 2-7, 
2000

[See02] R. Seepold, N.M. Madrid, A. Vörg et al, “A Qualifica-
tion Platform for Design Reuse”, in Proc. ISQED, pp. 
75-80, 2002

[Spi03] B. Spitznagel, D. Garlan, “A Compositional Formali-
zation of Connector Wrappers”, in Proc. ICSE, pp. 
374-384, 2003

[Swa97] G. Swamy, “Formal Verification of Digital Systems”, 
in Proc. International Conference on VLSI Design, 
pp. 213-217, 1997
284



REFERENCES
[Syn03] Synopsys whitepaper, “Hybrid RTL Formal Verifica-
tion Ensures Early Detection of Corner-Case Bugs”, 
2003

[Tas04] S. Tasiran, Y. Yu, B. Batson, “Linking Simulation 
with Formal Verification at a Higher Level”, IEEE 
Design & Test of Computers, Vol. 21:6, Nov-Dec 2004

[UPP] UPPAAL, http://www.uppaal.com/

[Var01] M. Varea, B. Al-Hashimi, “Dual Transitions Petri 
Net based Modelling Techniques for Embedded Sys-
tems Specification”, in Proc. DATE, pp. 566-571, 
2001

[Wan93] F. Wang, A. Mok, E. A. Emerson, “Symbolic model-
checking for distributed real-time systems”, Lecture 
Notes in Computer Science, Vol. 670,  1993
285



286



ABBREVIATIONS
Abbreviations

AMBA Advanced microprocessor bus architecture
ASIC Application specific integrated circuit
ACTL A (universal path quantifier) CTL
BDD Binary decision diagram
CCM Cruise controller module
CTL Computation tree logic
DSP Digital signal processor
ECM Engine controller module
GAP General avionics platform
HDL Hardware description language
IP Intellectual property
LAN Local area network
LTL Linear temporal logic
MCC Mission control computer
MUV Model under verification
PRES+ Petri-net based representation of embedded 

systems
RISC Reduced instruction set computer
RTL Register-Transfer level
SL Signal level
287



SP Separation point
SPARC Scalable processor architecture
STB Split transaction bus
TA Timed automata
TACTL Timed ACTL
TCTL Timed CTL
TL Transaction level
TLM Transaction level modelling
288



NOTATIONS
Notations

PRES+

Notation Description

, Component
Lower bound of the time delay interval of 
transition t
Upper bound of the time delay interval of 
transition t
Transition function of transition t
Transition guard of transition t
An arbitrary PRES+ model
Set of input arcs
Interface
Token
Marking
Initial marking
Marking of place p
Value of the token in p
Set of output arcs

, Place

C Ci
dt

-

dt
+

f t
gt
Γ
I
I
k
M
M0
M p( )
M p( )v
O
p pi
289



Set of input transitions of place p
Set of output transitions of place p
Set of places
Set of places in 
Token timestamp

, Transition
Set of input places of transition t
Set of output places of transition t
Set of transitions
Set of transitions in 
Token value
Set of nodes (places and transitions) in 

Computation Tree Logic (CTL)

Notation Description

A Universal path quantifier
E Existential path quantifier
F Temporal operator future

Temporal operator future with upper time 
bound x
CTL formula

G Temporal operator globally
Q Arbitrary path quantifier
R Temporal operator releases

Arbitrary relation on token values
Complementary relation of 

U Temporal operator until
Temporal operator until with upper time 
bound x

X Temporal operator next step

°p
p°
P
P Γ( ) Γ
r
t ti
°t
t°
T
T Γ( ) Γ
v
V Γ( ) Γ

F x≤

ϕ

ℜ
ℜ ℜ

U x≤
290



NOTATIONS
Formal Method Aided Simulation

Notation Description

Set of activation sequences corresponding to 
Number of activated assertions
Total number of assertions
Parameter in the function 
Total coverage
Assertion coverage
Transition coverage
Coverage obtained after simulation length 
Order number in an activation sequence
Parameter in the function 
Distance from t to M while respecting V
Parameter in the function  designating 
the anticipated maximum possible coverage
CTL atomic proposition representing a set of 
markings
Simulation length
Total expected time in the coverage 
enhancement phase
Average time to fire a transition, including the 
subsequent assertion checking
Total expected time in the simulation phase
Total expected verification time
Average time spent in the coverage 
enhancement phase
Number of fired distinct transtions
Total number of transitions

U Universe, set of all possible token values in a 
design
Set of token values

A ϕ( ) ϕ
aact
atot
C cov σ( )
cov
cova
covtr
cov σ( ) σ
d
D cov σ( )
dist t V M, ,( )
E cov σ( )

K

σ
tenh σ( )

t fir

tsim σ( )
ttot σ( )
tver

trfir
trtot

V

291



Verification of Component-based Designs

Notation Description

Event
Appearing event
Disappearing event
Environment corresponding to interface 
partition  with respect to the interface 
Glue logic
Interface of a component
Interface of a stub
Top-level interface
Top-level interface of  with respect to 
Input observation
Set of all possible input observations
Observation
Observation restricted to interface I
Generalised operation of 
Operation of  from 
Operation of  from  restricted to I
Output observation

, Interface partition
Partition containing only top-level interfaces
The empty interface partition
Set of ports occurring in an interface partition 

Stub
Surrounding of glue logic 
State sequence generator
Empty stub
Empty in-port stub
Empty out-port stub
Empty stub at port 
Partition precedence relation

e
e+

e-

Env P I,( )
P I

G
IC
IS
Imax
Imax

C G, C G
in
IN
o
o I
O pC C
O pC in( ) C in
O pC in( )

I
C in

out
P Pi
Pmax
Pmin
Ports P( )

P
S
Sur G( ) G
σ o M0,( )
∅
∅ IN
∅ OUT
∅ p p
  ∝
292



NOTATIONS
Automatic Stub Generation

Notation Description

Dataflow marking at node 
Dataflow marking at node  to port  in 
interface 
Dataflow marking at node  to port  in 
interface  of component 

, Environment
Inverted transition function of transition 
The ith element of sequence 
Universe, set of all possible token values in the 
design
Set of all integers

Modelling the Surrounding

Notation Description

Set of atomic propositions in 
Set of atomic propositions occurring in at least 
one formula in the set 
Set of atomic propositions in  which denote 
in-ports in the design
Set of atomic propositions in  which denote 
out-ports in the design
Set of atomic propositions with relation in 
Set of atomic propositions with relation in  
which refer to in-ports in the design
Set of atomic propositions with relation in  
which refer to out-ports in the design
Set of elementary formulas of 
Formula mapping of 
Port corresponding to the atomic proposition p

df n( ) n
df I n p,( ) n p

I
df I

C n p,( ) n p
I C

E Ei
f t

1– t
σ i[ ] σ
U

Z

AP ϕ( ) ϕ
AP Ψ( )

Ψ
APin ϕ( ) ϕ

APout ϕ( ) ϕ

APrel ϕ( ) ϕ
APrin ϕ( ) ϕ

AProut ϕ( ) ϕ

el ϕ( ) ϕ
Φ ϕ( ) ϕ
P p( )
293



Place corresponding to the set of progress 
formulas 
Set of progress formulas in a set of elementary 
formulas 
Set of places to be marked when entering the 
state represented by the set of progress 
formulas 
CTL formula for which a PRES+ shall be 
generated
Set of progress formulas corresponding to 
place 
Port values of  related to in-ports
Port values of  related to out-port 
Set of requiring U formulas of place  and set 
of elementary formulas 
Arbitrary set of elementary formulas
Set of legal sets of elementary formulas of 
A short-hand for a particular, explicitly 
defined, set of elementary formulas
Set of subformulas of 
Set of target formulas of place 
Start place of the timer in  corresponding to 
U formula 
End place of the timer in  corresponding to 
U formula 
Set of target places of place 
Set of timer triggered formulas of the set of U 
formulas 
Universe, set of all possible token values in the 
design
Set of U formulas in 
Set of all integers

P s( )
s

PF Ψ( )
Ψ

Pin s( )

s
ψ

Ψ pi( )
pi

PVin s( ) s
PVout s p,( ) s p
RUF pi s,( ) pi

s
s
S ψ( ) ψ
Si

sub ϕ( ) ϕ
TF pi( ) pi
Timerin pi ϕ,( ) pi

ϕ
Timerout pi ϕ,( ) pi

ϕ
TP pi( ) pi
TTF U( )

U
U

U pi( ) pi
Z

294


	Abstract
	mbedded systems
	E

	Acknowledgements
	any people have either
	M

	Contents
	Part I: Preliminaries 1
	1. Introduction 3
	1.1 Motivation 3
	1.2 Problem formulation 6
	1.2.1 Component Verification 7
	1.2.2 Integration Verification 8
	1.3 Contributions 8
	1.4 Thesis Overview 10

	2. Background 13
	2.1 Design of Embedded Systems 13
	2.2 IP Reuse 16
	2.2.1 IP Provider 16
	2.2.2 IP User 18
	2.3 Verification 19
	2.3.1 Model Checking 21
	2.3.2 Equivalence Checking 22
	2.3.3 Theorem Proving 23
	2.3.4 Simulation 24
	2.4 Verification of IP-based Designs 25
	2.4.1 Assume-Guarantee Reasoning 26
	2.4.2 Modelling the Environment in the Property Formulas 27
	2.5 Remarks 28

	3. Preliminaries 31
	3.1 SystemC 31
	3.1.1 Processes 32
	3.1.2 Scheduler 33
	3.1.3 Channels and Signals 33
	3.1.4 Events 34
	3.1.5 wait Statements 34
	3.1.6 Transaction-Level Modelling 35
	3.2 The Design Representation: PRES+ 35
	3.2.1 Standard PRES+ 36
	3.2.2 Dynamic Behaviour 38
	3.2.3 Forced Safe PRES+ 38
	3.2.4 Components in PRES+ 40
	3.3 Computation Tree Logic 43

	4. Verification Methodology Overview 47

	Part II: Component Verification 57
	5. PRES+ Representation of SystemC Models 59
	5.1 Related Work 60
	5.2 Basic Concepts 61
	5.3 Method Calls and Interfaces 64
	5.4 Scheduler 67
	5.4.1 SystemC Execution Mechanism 67
	5.4.2 PRES+ Model 68
	5.5 Events 72
	5.6 wait Statements 74
	5.7 Signals 78

	6. Verification 81
	6.1 Model Checking PRES+ Models 81
	6.1.1 Overview of our Model Checking Environment 81
	6.1.2 Experimental results 85
	6.1.3 Discussion 89
	6.2 Formal Method Aided Simulation 90
	6.2.1 Related Work 90
	6.2.2 Verification Strategy Overview 92
	6.2.3 Coverage Metrics 95
	6.2.4 Assertion Activation 96
	6.2.5 Stimulus Generation 100
	6.2.6 Assertion Checking 103
	6.2.7 Coverage Enhancement 114
	6.2.8 Stop Criterion 120
	6.2.9 Experimental Results 127


	Part III: Integration Verification 131
	7. Integration Verification Methodology 133
	7.1 Explanatory Example 133
	7.2 Objective and Assumptions 137
	7.3 The Impact on Verification Using Different Stubs 140
	7.4 Verification Methodology Roadmap 144

	8. Verification of Component-based Designs 147
	8.1 Definitions 147
	8.2 Relations between Stubs 152
	8.3 Verification Environment 155
	8.4 Formal Verification with Stubs 161
	8.4.1 Discussion 165
	8.5 Experimental Results 166
	8.5.1 General Avionics Platform 166
	8.5.2 Split Transaction Bus 168
	8.6 Verification Methodology Roadmap 173

	9. Automatic Stub Generation 177
	9.1 Pessimistic Stubs 178
	9.2 The Naïve Approach 179
	9.3 Stub Generation Algorithm 181
	9.3.1 Dataflow Analysis 183
	9.3.2 Identification of Stub Nodes 185
	9.3.3 Compensation 190
	9.3.4 Complexity Analysis 195
	9.4 Reducing Pessimism in Stubs 196
	9.4.1 Complexity Analysis 201
	9.5 Experimental Results 202
	9.5.1 General Avionics Platform 202
	9.5.2 Cruise controller 204
	9.6 Verification Methodology Roadmap 206

	10. Modelling the Surrounding 211
	10.1 Preliminaries 213
	10.1.1 Introductory Example 213
	10.1.2 Formula Normalisation 214
	10.2 The ACTL to PRES+ Translation Algorithm 215
	10.2.1 Place Generation 216
	10.2.2 Timer Insertion for U Operators 225
	10.2.3 Transition Generation 228
	10.2.4 Insertion of Initial Tokens 240
	10.2.5 Summary 242
	10.3 Examples 243
	10.3.1 Place with Empty Corresponding Elementary Set 243
	10.3.2 Place with More than One Timer 245
	10.3.3 Guards on Transitions 247
	10.4 Verification Methodology Roadmap 250

	11. Case Study: A Mobile Telephone Design 253
	11.1 The Mobile Telephone System 253
	11.1.1 Buttons and Display 255
	11.1.2 Controller 256
	11.1.3 AMBA Bus 258
	11.1.4 Glue Logics 261
	11.2 Verification of the Model 265
	11.2.1 Property 1 265
	11.2.2 Property 2 267
	11.2.3 Property 3 268
	11.3 Discussion 270


	Part IV: Conclusions and Future Work 271
	12. Conclusions and Future Work 273
	12.1 Conclusions 273
	12.2 Future Work 276


	PART I Preliminaries

	Chapter 1 Introduction
	erification is an important
	V
	1.1 Motivation
	. They are part of a larger system (host system), hence the term embedded, with which they continuously or frequently interact. Usually, the embedded system serves as a control unit inside the host system.
	Figure 1.1: Productivity gap


	1.2 Problem formulation
	. Verify that each component is correct
	1.2.1 Component Verification
	1.2.2 Integration Verification

	1.3 Contributions
	. Theoretical framework. A theoretical framework underlying the proposed integration verification methodology has been developed...
	. Translation of SystemC into a Petri-net based design representation. Translating SystemC into a well-defined design representa...

	1.4 Thesis Overview
	. Chapter 1 shortly motivates the importance of the area of formal verification in a component-based context. It furthermore introduces the problems discussed as well as the structure of the thesis.
	. Chapter 5 describes a translation mechanism from SystemC into the Petri-net based design representation which is used throughout the thesis.
	. Chapter 7 introduces the big picture in which context the chapters in this third part should be put. The main features of the proposed integration verification methodology are presented in this chapter.
	. Chapter 12 concludes the thesis and discusses possible directions for future work.


	Chapter 2 Background
	he purpose of this chapter
	T
	2.1 Design of Embedded Systems
	Figure 2.1: Embedded systems design flow

	2.2 IP Reuse
	2.2.1 IP Provider
	Figure 2.2: Impact of IP generality on various other parameters [Gaj00]

	2.2.2 IP User
	Figure 2.3: Two components interconnected by a glue logic


	2.3 Verification
	Figure 2.4: Verification Intent Overview [Piz04]
	2.3.1 Model Checking
	2.3.2 Equivalence Checking
	2.3.3 Theorem Proving
	(2.1)

	2.3.4 Simulation
	Figure 2.5: Simulation overview


	2.4 Verification of IP-based Designs
	2.4.1 Assume-Guarantee Reasoning
	(2.2)
	(2.3)

	2.4.2 Modelling the Environment in the Property Formulas
	(2.4)


	2.5 Remarks

	Chapter 3 Preliminaries
	his chapter presents
	T
	3.1 SystemC
	. Processes
	3.1.1 Processes
	3.1.2 Scheduler
	3.1.3 Channels and Signals
	3.1.4 Events
	3.1.5 wait Statements
	. Time: The process is declared ready again when the specified amount of simulated time has elapsed.

	3.1.6 Transaction-Level Modelling

	3.2 The Design Representation: PRES+
	3.2.1 Standard PRES+
	Definition 3.1: PRES+. A PRES+ model is a 5-tuple where is a finite non-empty set of places, is a finite non-empty set of transi...
	1. A token has values and timestamps, where is the value and is the timestamp. In Figure 3.1, the token in place has the value 4...
	2. A marking is an assignment of tokens to places of the net. The marking of a place is denoted . A place is said to be marked iff .
	3. A transition t has a function (ft) and a time delay interval () associated to it. When a transition fires, the value of the n...
	Figure 3.1: A simple PRES+ net
	4. The transitions may have guards (gt). A transition can only be enabled if the value of its guard is true (see transitions and ).
	5. The preset (postset ) of a transition is the set of all places from which there are arcs to (from) transition . Similar definitions can be formulated for the preset (postset) of places. In Figure 3.1, , , and .
	6. A transition is enabled (may fire) iff there is at least one token in each input place of and the guard of is satisfied.

	3.2.2 Dynamic Behaviour
	Figure 3.2: Examples of the dynamic behaviour of PRES+

	3.2.3 Forced Safe PRES+
	. A transition is enabled iff there is one token in each input place, there is no token in any of its output places and its guard is satisfied.
	1. Each place in the net is duplicated. Label the duplication . If has an initial token, then has not and vice versa.
	2. For each input arc , where and , an output arc is added.
	3. For each output arc , where and , an input arc is added.
	4. An exception to 2 and 3 is if is both an input place and an output place of , , in which case no arc is added (see arcs and in the figure.)
	Figure 3.3: Example of a PRES+ net with forced safe semantics and its equivalent in standard PRES+


	3.2.4 Components in PRES+
	Definition 3.2: Union. The union of two PRES+ models and is defined as
	Definition 3.3: Component. A component is a subgraph of the graph of the whole system such that:
	1. Two components , may only overlap with their ports (Definition 3.4), , where
	2. The pre- and postsets ( and ) of all transitions of a component , must be entirely contained within the component, .
	Definition 3.4: Port. A place is an out-port of component if and . A place is an in-port of if and . is a port of if it is either an in-port or an out-port of .
	Definition 3.5: Interface. An interface of component is a set of ports where .
	Figure 3.4: Component substitution


	3.3 Computation Tree Logic
	Figure 3.5: Illustration of different CTL formulas


	Chapter 4 Verification Methodology Overview
	his chapter presents
	T
	Figure 4.1: Relationship between component and integration verification
	Figure 4.2: Component verification overview
	Figure 4.3: Integration verification overview
	Figure 4.4: Several examples of glue logics constellations
	Figure 4.5: Several ways how to view the glue logics illustrated in Figure 4.4 (c) and (e) respectively
	Figure 4.6: Overview of the proposed methodology

	PART II Component Verification

	Chapter 5 PRES+ Representation of SystemC Models
	ystemC has gained
	S
	5.1 Related Work
	5.2 Basic Concepts
	Figure 5.1: Translation of statements and variables
	Figure 5.2: Example of an if statement
	Figure 5.3: Example of a while statement

	5.3 Method Calls and Interfaces
	Figure 5.4: Translation of method calls

	5.4 Scheduler
	5.4.1 SystemC Execution Mechanism
	. in the current delta cycle (immediate) The new process is immediately added to the set of ready processes in the scheduler. The process will, in particular, execute before any signal is updated.
	1. Select a process ready for execution and give control to it. New processes may be declared ready for execution during the execution of the process (immediate notification). Repeat for each ready process until no more ready processes exist.
	2. Update all signals.
	3. Let time advance to the ready time of the earliest pending process. Go to step 1.


	5.4.2 PRES+ Model
	Figure 5.5: The interface of the scheduler
	1. Give execution control to processes.
	2. Receive notice of a process becoming ready.
	3. Update signals.
	. in the current delta cycle (immediate)
	Figure 5.6: A scheduler



	5.5 Events
	Figure 5.7: The interface of an event
	Figure 5.8: An event

	5.6 wait Statements
	. waiting for a certain amount of time (time-triggered).
	Figure 5.9: Translation of a time-triggered wait statement
	Figure 5.10: Translation of an event-triggered wait statement

	. The method does not know which pid to put in mkimmready (actually the pid depends on which process has called the method)
	Figure 5.11: Invocation of a method containing a wait statement


	5.7 Signals
	Figure 5.12: The interface of a signal
	Figure 5.13: Translation of a signal


	Chapter 6 Verification
	A
	6.1 Model Checking PRES+ Models
	6.1.1 Overview of our Model Checking Environment
	Figure 6.1: Model checking environment overview
	Figure 6.2: A example PRES+ model to be translated into timed automata
	Figure 6.3: A system of timed automata corresponding to the PRES+ model in Figure 6.2

	6.1.2 Experimental results
	Router
	1. If a request is issued, then a response must come in the future.
	2. If a message is sent to slave 1, it will arrive there.
	3. If a message is sent to slave 2, it will arrive there.
	4. If a message is sent to slave 2, it will not arrive at slave 1.
	Table 6.1: Results from the Router example



	1
	3.6
	2
	1.2
	3
	1.2
	4
	1.5
	Packet switch
	1. No deadlock.
	2. All messages sent by a master will be received by a slave.
	3. Slaves may receive messages.
	4. The switch will forward every message it receives.
	Table 6.2: Results from the Packet Switch example


	1
	1.1
	58.54
	39.55
	18080.6
	2
	0.53
	1.64
	3.13
	9.46
	3
	0.44
	0.9
	1.48
	3.71
	4
	0.72
	28.74
	19.11
	15375.0
	AMBA bus
	1. No deadlock.
	2. If a master requests the bus, the request will eventually be granted.
	3. A master may request access to the bus.
	4. Messages sent by a master will always eventually be read and acknowledged by a slave.
	Table 6.3: Results from the TL AMBA example


	1
	8.95
	86.88
	81.65
	7358.26
	2
	19.17
	182.16
	219.94
	3281.34
	3
	1.00
	2.58
	2.88
	8.34
	4
	13.16
	90.95
	115.46
	3408.00
	Table 6.4: Results from the SL AMBA example

	1
	34.54
	506.09
	129.73
	4339.27
	2
	21.57
	328.79
	81.52
	3328.71
	3
	10.20
	64.73
	35.95
	219.41
	4
	35.83
	449.45
	139.47
	4212.40
	6.1.3 Discussion
	6.2 Formal Method Aided Simulation
	6.2.1 Related Work
	6.2.2 Verification Strategy Overview
	1 initialise;
	2 while coverage can be further enhanced do
	3 while not stop criterion reached do
	4 select r randomly among the enabled transitions;
	5 fire r;
	6 check that no assertion was violated;
	7
	8 obtain a coverage enhancement plan P;
	9 for each transition rŒP in order do
	10 fire r;
	11 check that no assertion was violated;
	Figure 6.4: Verification Strategy Overview
	Figure 6.5: An example PRES+ model
	(6.1)

	6.2.3 Coverage Metrics
	Definition 6.1: Assertion coverage. The assertion coverage (cova) is the percentage of assertions which have been activated (def...
	(6.2)
	Definition 6.2: Transition coverage. The transition coverage is the percentage of fired distinct transitions (trfir) with respect to the total number of transitions (trtot), as formalised in Equation 6.3.
	(6.3)
	Definition 6.3: Total coverage. The total coverage (cov) (coverage for short) is computed by dividing the sum of activated assertions and fired transitions with the sum of the total number of assertions and transitions, as shown in Equation 6.4.
	(6.4)
	(6.5)
	(6.6)
	(6.7)

	6.2.4 Assertion Activation
	Definition 6.4: Assertion activation sequence. An assertion activation sequence is a set of pairs , where d is an integer and K is a (T)CTL atomic proposition, representing a set of markings.
	(6.8)
	Definition 6.5: . The function returning a set of activation sequences given an ACTL formula is recursively defined as:
	(6.9)

	6.2.5 Stimulus Generation
	Figure 6.6: A MUV with stimulus generators
	(6.10)
	1 function selectTransition(MUV: PRES+, actseqs: set of activation sequences) returns transition
	2 entrans := the set of enabled transitions in MUV;
	3 p := random[0..1];
	4 if p < pc then
	5 if $ t Œ entrans, such that t leads to the first marking in any seq. in actseqs then
	6 return t;
	7 return any transition in entrans;

	Figure 6.7: The transition selection process

	6.2.6 Assertion Checking
	Figure 6.8: Part of an example monitor
	Figure 6.9: Assertion checking overview
	1 monitor: PRES+ := model corresponding to the assertion to be checked;
	2 curmarkings: set of markings := { initial marking of monitor };
	3 newmarkings: set of markings;
	4 ...
	5 oldtime := current time in MUV;
	6 fire r; -- Line 5 or Line 10 in Figure 6.4
	7 newtime := current time in MUV;
	8 curmarkings := validateTimeDelay(newtime - oldtime, curmarkings, monitor);
	9 if r provided MUV with an input then
	10 put the tokens produced by r as input to each marking in curmarkings;
	11 if r provided MUV with an output then
	12 e := marking in the out-ports of MUV;
	13 newmarkings := Æ;
	14 for each m Œ curmarkings do
	15 set marking of monitor to m;
	16 newmarkings := newmarkings » findOutput(e, monitor);
	17 curmarkings := newmarkings;
	18 if curmarkings = Æ then
	19 abort; -- Assertion not satisfied
	20 ...

	Figure 6.10: The assertion checking algorithm in the context of Figure 6.4
	1 function validateTimeDelay(d: delay, curmarkings: set of markings, monitor:PRES+) returns set of markings
	2 newmarkings : set of markings := Æ;
	3 for each m Œ curmarkings do
	4 set marking of monitor to m;
	5 let time advance in monitor with d;
	6 if not monitor exceeded the upper bound of the time delay interval of any enabled transition then
	7 newmarkings := newmarkings » { m };
	8 return newmarkings;

	Figure 6.11: Algorithm to check the timing aspect of an assertion
	1 function findOutput(e: output marking, monitor: PRES+) returns set of markings
	2 newmarkings : set of markings := Æ;
	3 fire all enabled timers;
	4 entrans := the set of enabled transitions in monitor;
	5 initmarking := the current marking of monitor;
	6 for each t Œ entrans do
	7 fire t in monitor;
	8 if output marking of monitor = e then
	9 if a timer has a token in its output place then
	10 move the token to the input place;
	11 newmarkings := newmarkings » { current marking of monitor };
	12 set marking of monitor to initmarking;
	13 return newmarkings;

	Figure 6.12: Algorithm for finding monitor transitions fulfilling the expected output
	(6.11)
	(6.12)
	(6.13)
	(6.14)
	(6.15)
	(6.16)
	(6.17)
	(6.18)
	(6.19)
	(6.20)
	(6.21)
	(6.22)
	(6.23)

	6.2.7 Coverage Enhancement
	Enhancing Assertion Coverage
	Enhancing Transition Coverage
	Definition 6.6: Distance. Let be a marking, a set of values, U a universe containing all possible values which can occur in the ...
	Figure 6.13: Example of computing distance

	Failing to Find a Coverage Enhancement Plan

	6.2.8 Stop Criterion
	Static Stop Criterion
	Figure 6.14: Relation between simulation length and validation time

	Dynamic Stop Criterion
	(6.24)
	(6.25)
	(6.26)
	Figure 6.15: Relation between simulation length and coverage
	(6.27)
	(6.28)
	(6.29)


	6.2.9 Experimental Results
	Table 6.5: Experimental results



	1
	28
	22.67
	24.54
	-7.62
	100
	100
	0.00
	2
	28
	51.75
	38.30
	35.12
	100
	100
	0.00
	3
	35
	42.40
	39.74
	6.69
	100
	100
	0.00
	4
	35
	62.55
	60.78
	2.91
	100
	100
	0.00
	5
	42
	55.38
	58.77
	-5.77
	100
	100
	0.00
	6
	42
	82.67
	78.71
	5.03
	100
	100
	0.00
	7
	49
	70.45
	80.42
	-12.40
	100
	100
	0.00
	8
	49
	101.64
	105.16
	-3.35
	100
	100
	0.00
	9
	56
	93.60
	378.28
	-75.26
	100
	99
	1.01
	10
	56
	143.36
	120.73
	18.74
	100
	100
	0.00
	11
	63
	137.14
	289.89
	-52.69
	100
	99
	1.01
	12
	63
	157.23
	161.75
	-2.79
	100
	100
	0.00
	13
	70
	298.81
	151.43
	97.33
	99.5
	100
	-0.50
	14
	70
	345.21
	196.22
	75.93
	99.5
	100
	-0.50
	15
	7
	6.29
	4.43
	41.99
	100
	100
	0.00
	16
	14
	261.98
	399.91
	-34.49
	95
	95
	0.00
	17
	14
	270.23
	277.01
	-2.45
	95
	95
	0.00
	18
	21
	627.27
	550.78
	13.89
	95
	94
	1.06
	19
	21
	891.39
	821.83
	8.46
	89
	90
	-1.11
	20
	7
	7.57
	4.66
	62.45
	100
	100
	0.00
	21
	7
	16.41
	10.49
	56.43
	100
	100
	0.00
	22
	14
	253.19
	240.65
	5.21
	98
	95
	3.16
	23
	14
	265.08
	388.45
	-31.76
	93
	95
	-2.04
	24
	30
	15.27
	10.42
	46.55
	100
	100
	0.00
	25
	75
	119.37
	93.06
	28.27
	100
	100
	0.00
	26
	150
	564.54
	504.37
	11.93
	100
	100
	0.00
	27
	225
	1768.35
	1604.84
	10.19
	100
	100
	0.00
	28
	31
	1043.97
	935.68
	11.57
	98
	99
	-1.01
	29
	31
	599.19
	417.30
	43.59
	95
	100
	-5.00
	30
	36
	216.41
	157.01
	37.83
	100
	100
	0.00
	31
	36
	279.46
	250.10
	11.74
	100
	100
	0.00
	32
	8
	13.12
	10.21
	28.50
	100
	100
	0.00
	33
	8
	330.47
	316.21
	4.51
	100
	100
	0.00
	PART III Integration Verification

	Chapter 7 Integration Verification Methodology
	his chapter provides
	T
	7.1 Explanatory Example
	Figure 7.1: A high level model of the GAP example
	Figure 7.2: Refined GAP model
	Figure 7.3: The glue logic between Radar and its Protocol

	7.2 Objective and Assumptions
	. The components themselves are already verified.
	(7.1)
	(7.2)
	Figure 7.4: A simple stub of the Protocol adapter


	7.3 The Impact on Verification Using Different Stubs
	Figure 7.5: Example for stub demonstration
	Figure 7.6: Stubs used in the example in Figure 7.5
	(7.3)
	(7.4)
	(7.5)
	(7.6)

	7.4 Verification Methodology Roadmap
	Figure 7.7: The start of the roadmap


	Chapter 8 Verification of Component-based Designs
	n this chapter
	I
	8.1 Definitions
	Definition 8.1: Interface compatibility. Interfaces and are compatible if and only if there exists a bijection such that if , then and are both either in-ports or out-ports in their respective interface.
	Figure 8.1: Illustration of interface compatibility
	Definition 8.2: Event. An appearing event is a tuple , where is a place and is a token. An appearing event represents the fact t...
	Definition 8.3: Observation. An observation is a set of events . Given observation and an interface , the restricted observation...
	Figure 8.2: Illustration of observations
	Definition 8.4: Operation. Consider an arbitrary input observation of component . If events occur in the way described by , we c...
	Definition 8.5: Stub. Let us consider two components, and . is the interface of containing all ports of . is any interface of . is a stub of with respect to interface iff:
	1. Interface is compatible with interface .
	2. For any input observation of component , satisfying all requirements on ports not in , .

	8.2 Relations between Stubs
	Definition 8.6: Top-level interface. The top-level interface of a component , with respect to a glue logic , is the set of all p...
	Figure 8.3: A partial order of interfaces
	Figure 8.4: The models of the empty stubs

	8.3 Verification Environment
	Definition 8.7: Interface partition. An interface partition is a set of non-empty interfaces such that for any and , .
	Definition 8.8: Partition precedence. Partition precedes partition , , if and only if .
	Theorem 8.1: The partition precedence relation is a partial order.
	Theorem 8.2: The partition precedence relation has a top element , including the top-level interfaces of all connected components, and bottom element .
	Definition 8.9: Environment. The environment corresponding to a partition with respect to a set of ports where , is defined as where each is the stub for interface , and is the empty stub attached to port .
	Figure 8.5: A few environments for the example in Figure 7.5
	Figure 8.6: Components and corresponding interfaces
	Figure 8.7: Partition (environment) lattice of the situation in Figure 8.6
	Definition 8.10: Surrounding. The surrounding of a glue logic , , is the part of the design not including or any component connected to , .

	8.4 Formal Verification with Stubs
	Theorem 8.3: Given an input observation , two partitions and , , and a set of ports where , then .
	Definition 8.11: Generalised operation. The generalised operation for component is the union of all operations for every possible input observation, .
	Corollary 8.1: Given partitions and , , and a set of ports where , then .
	Definition 8.12: State sequence generator. A state, in this context, is a marking of ports. A state sequence generator is a func...
	(8.1)
	(8.2)
	(8.3)
	(8.4)
	(8.5)
	Theorem 8.4: Assume the partitions and , , a set of ports where , an initial marking on the ports in and a (T)ACTL formula, e.g. , also expressed only on the ports in . If for component , then it is also true that for component .
	Figure 8.8: Illustration of Theorem 8.4
	8.4.1 Discussion
	1. The verification is unmanageable in the context defined above. This is the case when formula is expressed in terms of ports w...
	2. If the verification is manageable, the following two situations can be identified: (a) Formula is not a (T)ACTL formula. In t...


	8.5 Experimental Results
	8.5.1 General Avionics Platform
	Figure 8.9: Partition lattice in the GAP example
	Table 8.1: Experimental results for GAP example

	8.5.2 Split Transaction Bus
	Figure 8.10: Schematic view of the STB example
	Table 8.2: Experimental results for STB example
	Figure 8.11: Partition lattice in the STB example


	8.6 Verification Methodology Roadmap
	Figure 8.12: Continuation of the roadmap from Figure 7.7
	Figure 8.13: Roadmap when using top-level stubs, continuation from Figure 8.12
	Figure 8.14: Roadmap when using lower-level stubs on ACTL formulas, continuation from Figure 8.12
	Figure 8.15: Roadmap when using lower-level stubs on non-ACTL formulas, continuation from Figure 8.12


	Chapter 9 Automatic Stub Generation
	hapter 8 introduced
	C
	9.1 Pessimistic Stubs
	Definition 9.1: Pessimistic stub. Let us consider two components, and . is the interface of containing all ports of . is any interface of . is a pessimistic stub of with respect to interface iff:
	1. and are compatible.
	2. For any possible input of component , .

	Theorem 9.1: Assume two environments and of the same set of components and , an initial marking and a (T)ACTL formula, e.g. expressed only on the ports of the stubs in and . If for component , then it is also true that for component .

	9.2 The Naïve Approach
	Figure 9.1: Example of a component for stub generation
	Figure 9.2: A naïve stub of the component in Figure 9.1
	Figure 9.3: Comparison between exact and naïve stubs
	(9.1)
	(9.2)


	9.3 Stub Generation Algorithm
	1. Dataflow analysis
	2. Identification of stub nodes
	3. Compensation for the excluded parts of the component
	9.3.1 Dataflow Analysis
	1 procedure traceBack(e: place or transition, p: port)
	2 if not visited[e] then
	3 visited[e] := true;
	4 for each d Œ °e do
	5 DF[d, p] := DF[d, p] » { e };
	6 traceBack(d, p);
	7
	8 procedure traceForward(e: place or transition, p: port)
	9 if not visited[e] then
	10 visited[e] := true;
	11 for each d Œ e° do
	12 DF[d, p] := DF[d, p] » { e };
	13 traceForward(d, p);
	Figure 9.4: Algorithms for searching the dataflow
	Definition 9.2: Dataflow marking. A dataflow marking is a set of nodes (places or transitions), which constitute the first step ...

	Figure 9.5: The dataflow marking of the component in Figure 9.1
	Definition 9.3: Divergence node. A node is a divergence node if and only if , i.e. there are several different paths leading to ports in the interface, or the arrows of point in different directions.
	Definition 9.4: Intersect node. A node is an intersect node if and only if , i.e. at least two arrows pointing in different directions are of different type (solid or hollow).


	9.3.2 Identification of Stub Nodes
	Definition 9.5: Separation point. A separation point (SP) is a node (place or transition), which denotes the border between the parts of the component to be included in the stub and the part not to be included.
	1. Divergence node (e.g. , , and in Figure 9.5).
	2. The node is a port in the interface ( and in Figure 9.5).
	1 procedure traceNode(e: place or transition)
	2 if not tr_visited[e] then
	3 tr_visited[e] := true;
	4 if e is a port in the specified interf. or e is an intersect node then
	5 constructStub(e);
	6 else if e is a divergence node then
	7 tr_visited[e] := false;
	8 node spcand := traceCutEdge(e);
	9 if spcand = NULL then
	10 constructStub(e);
	11 else
	12 traceNode(spcand);
	13 else
	14 traceNode(the only element in DF[e]);
	15
	16 function traceCutedge(e: place or transition) returns place or transition
	17 if not tr_visited[e] and e is not an intersect node then
	18 tr_visited[e] := true;
	19 for each dŒDF[e] do
	20 if <e,d> is a cutedge then
	21 return d;
	22 else
	23 node cecand := traceCutedge(d);
	24 if cecand ¹ NULL then
	25 return cecand;
	26 return NULL;


	Figure 9.6: Algorithms for identifying which parts of a component to include in the stub
	1. The node being visited is a port or an intersect node.
	2. The node being visited is a divergence node.
	3. The node being visited is neither of the above.
	1 procedure constructStub(e: place or transition)
	2 if not visited[e] then
	3 visited[e] := true;
	4 res := res » {e}; // including all arcs connecting e with res;
	5 for each d Œ DF[e] do
	6 constructStub(d);


	Figure 9.7: Algorithm for adding places and transitions to the resulting stub given a separation point
	Figure 9.8: The places and transitions in the automatically generated stub

	9.3.3 Compensation
	Definition 9.6: Fork node. Assume a component and a stub . A node is a fork node if and only if the corresponding node in the component has a node in its postset which is not in the stub, .
	Definition 9.7: Join node. Assume a component and a stub . A node is a join node if and only if the corresponding node in the component has a node in its preset which is not in the stub .
	Figure 9.9: Example component and stub explaining the compensation of excluded parts
	Case 1: fork place
	Case 2: join place
	(9.3)
	(9.4)
	(9.5)

	Case 3: join transition
	(9.6)
	(9.7)
	(9.8)

	Case 4: fork transition
	Figure 9.10: An automatically generated stub


	9.3.4 Complexity Analysis

	9.4 Reducing Pessimism in Stubs
	Figure 9.11: An example system
	1 function pessRed(stub: PRES+; comp: PRES+; tr: trace) returns PRES+
	2 for each nŒstub do
	3 visited[n] := true;
	4 oldStub := copy of stub;
	5 newStub := oldStub;
	6 repeat
	7 Follow tr backwards until a join transition, t, is encountered;
	8 u := the value resulting from t, also indicated by the trace;
	9 visited[t] := false;
	10 success := buildStub(newStub, t, u); // Defined in Figure 9.13
	11 if not success then
	12 newStub := oldStub;
	13 else
	14 oldStub := newStub;
	15 until tr is finished;
	16 return newStub;

	Figure 9.12: The pessimism reduction algorithm
	1 function buildStub(stub: PRES+; t: transition; u: value) returns boolean
	2 if not visited[t] then
	3 visited[t] := true;
	4 stub := stub » { t };
	5 if ft is constant then
	6 return ft ¹ u;
	7 else
	8 W := ft-1(u);
	9 for each wŒW do
	10 if gt(w) then
	11 for each parameter wi of ft do
	12 pi := the place corresponding to wi;
	13 if pi has an initial token with value wi then
	14 return false;
	15 stub := stub » { pi };
	16 if °pi = Æ then
	17 return false;
	18 else
	19 for each ti Œ °pi do
	20 success := buildStub(stub, ti, wi);
	21 if not success then
	22 return false;
	23 return true;

	Figure 9.13: Auxiliary function for the pessimism reduction algorithm
	(9.9)

	Figure 9.14: The resulting stub after pessimism reduction
	9.4.1 Complexity Analysis

	9.5 Experimental Results
	9.5.1 General Avionics Platform
	Figure 9.15: The verified glue logic in the GAP example
	1. Weapon must keep up with the aiming instructions given by Tracker.
	2. Tracker must be able to send the aiming instructions at a certain rate.
	3. Tracker must only send aiming instructions within a certain direction (and distance) interval, e.g. it cannot aim backwards.
	Table 9.1: Verification results and times for the GAP example


	9.5.2 Cruise controller
	Figure 9.16: The verified glue logic in the cruise controller example
	1. The brake signal must be processed sufficiently fast.
	2. The requested torque is below 100%.
	3. The reference value is positive.
	Table 9.2: Verification results and times for the CCM example
	1. Bigger interaction with inherently random system environment, e.g. turning on and off the system, braking or varying driving pattern (speed).
	2. The generated stubs are nearly as big as the components themselves, due to their structure.




	9.6 Verification Methodology Roadmap
	Figure 9.17: Continuation from Figure 7.7 when no stubs are provided by the designer
	Figure 9.18: Continuation of the roadmap from Figure 9.17
	Figure 9.19: Continuation of the roadmap from Figure 9.17 and Figure 9.18


	Chapter 10 Modelling the Surrounding
	ogether with each component,
	T
	Figure 10.1: Overview of the methodology presented in this chapter

	10.1 Preliminaries
	10.1.1 Introductory Example
	Figure 10.2: Petri-nets constructed ad hoc for the formula

	10.1.2 Formula Normalisation
	1. Implications of the form must be rewritten as , so that the only boolean operators in the formula are Ø, Ÿ and ⁄.
	2. Subformulas of the form , where is a port, is a value and is a relation, for example the equality relation =, must be rewritt...
	3. is rewritten as .
	4. is rewritten as .
	Table 10.1: Examples of (T)ACTL formulas and their normalisation


	10.2 The ACTL to PRES+ Translation Algorithm
	1. Place generation.
	2. Timer insertion for U operators
	3. Transition generation
	4. Insertion of initial tokens
	(10.1)
	10.2.1 Place Generation
	Definition 10.1: Set of elementary formulas. The set of elementary formulas of the formula is defined by the following equations ([Gru94] modified).
	1. If or , then . If (where is a port of a component) or , then . If , then .
	2. If or , then .
	3. If , then . If , then .
	(10.2)
	Table 10.2: Listing of all subsets of
	Definition 10.2: Subformula. The set of subformulas of the formula is defined by the following equations ([Gru94] modified).
	1. If or or or (an atomic proposition), then . If , then .
	2. If or or or , then .
	(10.3)
	Definition 10.3: Atomic propositions. The set of atomic propositions in a formula is defined as . This function can also be lift...
	Definition 10.4: Port values. The set of in-port values of the set of elementary formulas is defined as . The set of out-port values is defined with respect to a particular out-port as , where .
	1. The set contains an atomic proposition with relation (), but not the atomic proposition itself (). Such a set is contradictor...
	2. The set contains atomic propositions with relations, where there does not exist any value that can satisfy all relations corr...
	(10.4)
	Definition 10.5: Legal (Contradictory) set of elementary formulas. A set of elementary formulas, , is legal if and only if , and is contradictory if and only if , where is defined as in Equation 10.4.
	Definition 10.6: . Formula mapping from to is defined recursively as follows [Gru94]:
	1. , . If , then . If , then .
	2. If , then . If , then .
	3. If , then . If , then .
	.
	.
	.
	.
	.
	.
	.
	Definition 10.7: Progress formulas. A progress formula is any elementary formula except atomic propositions. Assuming a set of elementary formulas , . This function can also be lifted to sets of sets of formulas, .
	1 procedure createInitialPlaces(y: ACTL)
	2 for each s Œ PF(F(y)) « F(y) do
	3 createPlace(s);
	4 for each p Œ AP(y) do
	5 add a place pp to net;
	6 P(p) := pp;
	7
	8 procedure createPlace(s: set of ACTL)
	9 add a place pi to net;
	10 Y(pi) := s;
	11 Pin(s) := { pi };
	12 P(s) := pi;
	13 addTimers(pi); -- defined in Figure 10.4

	Figure 10.3: The algorithm for creating the places in the resulting PRES+ model


	10.2.2 Timer Insertion for U Operators
	Definition 10.8: Set of U formulas. The set of U formulas in place is expressed as .
	1 procedure addTimers(pi: place)
	2 for each j Œ U(pi) do
	3 add places pix and pix’ as indicated by Figure 10.5 to net;
	4 add transition tix asin indicated by Figure 10.5 to net;
	5 set time delay of tix to [0..j] where j is the upper bound associated to the U operator in j;
	6 Pin(Y(pi)) := Pin(Y(pi)) » { pix };
	7 Timerin(pi, j) := pix;
	8 Timerout(pi, j) := pix’ ;

	Figure 10.4: Algorithm for adding timers to a place
	Figure 10.5: Adding timers to a place
	Figure 10.6: Adding timers to the example model

	10.2.3 Transition Generation
	Definition 10.9: Target formulas. The set of target formulas of a place is defined as .
	Definition 10.10: Target places. The set of target places of a place is defined as .
	(10.5)
	Definition 10.11: Valid elementary set. A set of elementary formulas, , is a valid elementary set in place , if for all , and is recursively a valid elementary set.
	Definition 10.12: Redundant elementary set. A set of elementary formulas is redundant with respect to a set of sets of elementary formulas , if and only if there exists a set , , with , , and and .
	No timer was added to the place
	1 procedure addTransitions(pi: place)
	2 if Y(pi) ¹ Æ then
	3 for each s Œ TF(pi) - TP(pi) do
	4 if s is not redundant with respect to TF(pi) and s is valid in P(PF(s)) then
	5 add transition t to net;
	6 °t := { pi };
	7 if there is no place corresponding to PF(s) then
	8 createPlace(PF(s));
	9 t° := Pin(PF(s));
	10 connectToPorts(t, s);
	11 set time delay of t to findTimeDelay(s, pi);
	12 else
	13 for each f Œ 2AP(y) - { Æ } do
	14 add transition t to net;
	15 °t := { pi };
	16 t° := { pi };
	17 connectToPorts(t, f);
	18 set time delay of t to [0...];
	Figure 10.7: The standard algorithm for adding the transitions belonging to place .
	1 procedure connectToPorts(t: transition, s: set of elementary formulas)
	2 °t := °t » P(APout(s));
	3 t° := t° » P(APin(s));
	4 g := true;
	5 for each p¬v Œ AProut(s) do
	6 g := g Ÿ p¬v;
	7 set guard of t to g;
	8 set function of t to return a random value from PVin(s);

	Figure 10.8: The algorithm for adding interaction with the ports to transition as specified by the set .
	1 function findTimeDelay(s: set of elementary formulas, pi: place) returns time interval
	2 if Y(pi) » APout(s) » AProut(s) œ TF(pi) then
	3 return [0..0];
	4 else
	5 return [0...];

	Figure 10.9: Algorithm for finding the correct time delay interval of a transition
	Figure 10.10: The result of adding the transitions of place to the example formula

	The place has a timer
	Definition 10.13: Requiring U formulas. The set of requiring U formulas of a place and a set of elementary formulas is defined as .
	Definition 10.14: Timer triggered formulas. The set of timer triggered formulas of a set of U formulas, , is defined as .
	1 procedure addTransitionsForTimers(pi: place)
	2 for each s Œ TF(pi) - TP(pi) do
	3 if s is valid in P(PF(s)) then
	4 if PF(s) = Y(pi) then
	5 if RUF(pi, s) ¹ Æ then
	6 if s is not redundant w.r.t TTF(RUF(pi, s)) then
	7 add transition t to net;
	8 for each j Œ RUF(pi, s) do
	9 °t := °t » { Timerout(pi, j) };
	10 t° := t° » { Timerin(pi, j) };
	11 connectToPorts(t, s);
	12 set time delay of t to [0..0];
	13 else if s is not redundant w.r.t TF(pi) then
	14 add transition t to net;
	15 °t := { pi };
	16 t° := { pi };
	17 connectToPorts(t, s);
	18 set time delay of t to findTimeDelay(s, pi);
	19 else if s Œ TTF(U(pi)) and s is not red. w.r.t. TTF(U(pi)) then
	20 add transition t to net;
	21 °t := { pi };
	22 for each j Œ RUF(pi, s) do
	23 °t := °t » { Timerout(pi, j) };
	24 if there is no place corresponding to PF(s) then
	25 createPlace(PF(s));
	26 t° := Pin(PF(s));
	27 connectToPorts(t, s);
	28 set time delay of t to [0..0];

	Figure 10.11: The algorithm for adding transitions to a place with timers
	Figure 10.12: The result of adding the transitions of place to the example formula


	10.2.4 Insertion of Initial Tokens
	1 procedure insertInitialToken
	2 if | PF(F(y)) « F(y) | = 1 then
	3 add token in Pin(the only elt of PF(F(y))) with value <0, 0>;
	4 else if $ pi such that Y(pi) = { AX y } then
	5 add token in Pin(Y(y)) with value <0, 0>;
	6 else
	7 add place start to net with an initial token with value <0, 0>;
	8 for each s Œ PF(F(y)) « F(y) do
	9 add transition t to net;
	10 °t := { start };
	11 t° := Pin(s);
	12 set time delay of t to [0..0];
	Figure 10.13: The algorithm for adding an initial token
	Figure 10.14: The resulting PRES+ model of the example formula

	10.2.5 Summary
	1 function generateFormulaStub(y: ACTL) returns PRES+
	2 createInitialPlaces(y);
	3 for each place pi in net corr. to a set of elementary formulas do
	4 if | U(Y(pi)) | > 0 then
	5 addTransitionsForTimers(pi);
	6 else
	7 addTransitions(pi);
	8 insertInitialTokens;
	9 return net;
	Figure 10.15: The algorithm for generating a PRES+ model given an ACTL formula


	10.3 Examples
	10.3.1 Place with Empty Corresponding Elementary Set
	(10.6)
	.
	.
	.
	Figure 10.16: The resulting PRES+ model of the formula


	10.3.2 Place with More than One Timer
	(10.7)
	.
	.
	.
	.
	.
	.
	.
	.
	.
	Figure 10.17: The resulting PRES+ model corresponding to progress formulas of the formula


	10.3.3 Guards on Transitions
	(10.8)
	.
	.
	.
	.
	.
	.
	.
	.
	Figure 10.18: The resulting PRES+ model of the formula



	10.4 Verification Methodology Roadmap
	Figure 10.19: Continuation of the roadmap in Figure 9.19, useFormulas


	Chapter 11 Case Study: A Mobile Telephone Design
	he presented integration
	T
	11.1 The Mobile Telephone System
	Figure 11.1: Overview model of the case study system, a mobile telephone design
	1. Microphone. The microphone sends voice data to the transmitter.
	2. Buttons. When dialling, the buttons component sends information about which buttons were pressed to the controller.
	3. Speaker. The speaker receives voice signals from the receiver and converts them to sound.
	4. Display. The display shows on a small screen information sent to it by the controller.
	5. Receiver. The receiver receives data from the base-station of the mobile telephone network and passes it on to the designated component.
	6. Transmitter. The transmitter receives data from other components in the telephone and passes it on to the base-station.
	7. Controller. The controller coordinates the tasks of the other components.

	11.1.1 Buttons and Display
	Figure 11.2: Models of components Buttons and Display

	11.1.2 Controller
	Figure 11.3: Model of the Controller component

	11.1.3 AMBA Bus
	Figure 11.4: Model of the Arbiter component
	Figure 11.5: Model of the Bus component

	11.1.4 Glue Logics
	Master functionality
	Figure 11.6: A model of the glue logic for the master functionality of the controller

	Slave functionality
	Figure 11.7: A model of the glue logic for the slave functionality of the controller



	11.2 Verification of the Model
	1. The controller only receives legal values for button.
	2. When a slave has split a transaction, it will be ready again in the future.
	3. When a master has been granted access to the bus, it must eventually close the transaction.
	11.2.1 Property 1
	Figure 11.8: The part of the system used to verify property 1 and property 2
	Table 11.1: Verification results of property 1
	(11.1)

	11.2.2 Property 2
	Table 11.2: Verification results of property 2

	11.2.3 Property 3
	Figure 11.9: The part of the system used to verify property 3 and the additional assumption of property 1
	Table 11.3: Verification results of property 3


	11.3 Discussion
	PART IV Conclusions and Future Work

	Chapter 12 Conclusions and Future Work
	T
	12.1 Conclusions
	12.2 Future Work
	. The translation approach from SystemC to PRES+ (Chapter 5) would be strengthened if the result from the proposed translation p...

	References
	[Ack00]
	[Alb01]
	[Alu90]
	[Alu94]
	[And02a]
	[And02b]
	[Bai03]
	[Bal96]
	[Ber05]
	[Bra93]
	[Bry86]
	[Bur90]
	[Cam96]
	[Cha02]
	[Cla86]
	[Cla99]
	[Cor00]
	[Cor03]
	[Cou90]
	[Cyr94]
	[Daw96]
	[Dre02]
	[Dru03]
	[Gaj00]
	[Gir93]
	[Gra97]
	[Gro03]
	[Gro05]
	[Gru94]
	[Haa99]
	[Hab05]
	[Hab06]
	[Hen02]
	[Hes03]
	[Kar01]
	[Kar02]
	[Kar03]
	[Kar04a]
	[Kar04b]
	[Kar05]
	[Kar06]
	[Kea98]
	[Kro05]
	[Kup96]
	[Lo98]
	[Loc91]
	[McM97]
	[Mis81]
	[Piz04]
	[Ros05]
	[Roy03]
	[Rus01]
	[Sav00]
	[See02]
	[Spi03]
	[Swa97]
	[Syn03]
	[Tas04]
	[UPP]
	[Var01]
	[Wan93]

	Abbreviations
	Notations
	PRES+
	Notation Description

	Computation Tree Logic (CTL)
	Notation Description

	Formal Method Aided Simulation
	Notation Description

	Verification of Component-based Designs
	Notation Description

	Automatic Stub Generation
	Notation Description

	Modelling the Surrounding
	Notation Description




