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ABSTRACT
In this paper we present an approach to incremental design of dis-
tributed embedded systems for hard real-time applications. We start
from an already existing system running a set of applications and the
design problem is to implement new functionality so that the already
running applications are not disturbed and there is a good chance
that, later, new functionality can easily be added to the resulted sys-
tem. The mapping and scheduling problem are considered in the con-
text of a realistic communication model based on a TDMA protocol.

1.  INTRODUCTION
In this paper we concentrate on aspects related to the synthesis of
distributed embedded systems for hard real-time applications.
There are several complex design steps to be considered during the
development of such a system: the underlying architecture has to be
allocated(which implies the allocation of components like proces-
sors, memories, and busses together with the decision on a certain
interconnection topology), tasks and communication channels have
to bemappedon the architecture, and all the activities in the system
have to bescheduled. The design process usually implies an itera-
tive execution of these steps until a solution is found such that the
resulted system satisfies certain design constraints [7].

Several notable results have been reported, aimed at supporting
the designer with methodologies and tools during the hardware/
software cosynthesis of embedded systems. Initially, researchers
have considered architectures consisting of a single programmable
processor and an ASIC. Their goal was to partition the application
between the hardware and software domain, such that performance
constraints are satisfied while the total hardware cost is kept at a
minimum [8, 6, 10, 4]. Currently, similar architectures are becom-
ing increasingly interesting, with the ASIC replaced by a dynami-
cally reconfigurable hardware coprocessor [14].

Distributed embedded systems with multiple processing ele-
ments are becoming common in various application areas ranging
from multimedia to robotics, industrial control, and automotive
electronics. In [19] allocation, mapping, and scheduling are formu-
lated as a mixed integer linear programming (MILP) problem. A dis-
advantage of this approach is the complexity of solving the MILP
model. Therefore, alternative problem formulations and solutions
based on efficient heuristics have been proposed [21, 13, 22, 3, 1, 2].

Although much of the above work is dedicated to specific
aspects of distributed systems, researchers have often ignored or
very much simplified issues concerning the communication infra-
structure. One notable exception is [20], in which system synthesis
is discussed in the context of a distributed architecture based on
arbitrated busses. Many efforts dedicated to communication synthe-
sis have concentrated on the synthesis support for the communica-
tion infrastructure but without considering hard real-time
constraints and system level scheduling aspects [11, 16, 17].

Another characteristic of research efforts concerning the code-
sign of embedded systems is that authors concentrate on the design,
from scratch, of a new system optimized for a particular applica-
tion. For many application areas, however, such a situation is
extremely uncommon and only rarely appears in design practice. It
is much more likely that one has to start from an already existing
system running a certain application and the design problem is to
implement new functionality on this system. In such a context it is
very important to operate no (or as few as possible) modifications to
the already running application. The main reason for this is to avoid
unnecessarily large design and testing times. Performing modifica-

tions on the (potentially large) existing application increases design
time and, even more, testing time (instead of only testing the newly
implemented functionality, the old application, or at least a part of
it, has also to be retested). However, this is not the only aspect to be
considered. Such an incremental design process, in which a design
is periodically upgraded with new features, is going through several
iterations. Therefore, after new functionality has been imple-
mented, the resulting system has to be structured such that addi-
tional functionality, later to be mapped, can easily be accommodated.

The contribution of this paper is twofold. First, we consider
mapping and scheduling for hard real-time embedded systems in
the context of a realistic communication model. Because our focus
is on hard real-time safety critical systems, communication is based
on a time division multiple access (TDMA) protocol as recom-
mended for applications in areas like, for example, automotive elec-
tronics [12]. For the same reason we use a non-preemptive static
task scheduling scheme. We accurately take into consideration
overheads due to communication and consider, during the mapping
and scheduling process, the particular requirements of the commu-
nication protocol.

As our main contribution, we have considered, for the first time
to our knowledge, the design of distributed embedded systems in
the context of an incremental design process as outlined above.
This implies that we perform mapping and scheduling of new func-
tionality so that certain design constraints are satisfied and:

a. the already running functionality is not disturbed;
b. there is a good chance that, later, new functionality can easily

be mapped on the resulted system.
Supporting such a design process is of critical importance for

current and future industrial practice, as the time interval between
successive generations of a product is continuously decreasing,
while the complexity due to increased sophistication of new func-
tionality is growing rapidly.

The paper is divided into 6 sections. The next section presents the
hardware architecture, the process model and a brief introduction of
the mapping problem. Section 3 presents the detailed problem formu-
lation and the quality metrics we have introduced. Our mapping strat-
egies are outlined in Section 4, and the experimental results are
presented in Section 5. The last section presents our conclusions.

2.  PRELIMINARIES
2.1  System Architecture
We consider architectures consisting of nodes connected by a
broadcast communication channel. Every node consists of a CPU, a
communication controller, a local memory and an I/O interface to
sensors and actuators.

Communication between nodes is based on a TDMA protocol
like, for example, the TTP [12] which integrates a set of services
necessary for fault-tolerant real-time systems.

The communication channel is a broadcast channel, so a mes-
sage sent by a node is received by all the other nodes. The bus access
scheme is TDMA (Figure 1): each nodeNi can transmit only during
a predetermined time interval, the so called TDMA slotSi. In such a
slot, a node can send several messages packaged in a frame. A

Figure 1.  Buss Access Scheme
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sequence of slots corresponding to all the nodes in the architecture
is called a TDMA round. A node can have only one slot in a
TDMA round. Several TDMA rounds can be combined together in
a cycle that is repeated periodically.

Every node has a communication controller that implements
the protocol services, and runs independently of the node’s CPU.
The communication controller provides each CPU with a timer
interrupt based on a local clock, synchronized with the local clocks
of the other nodes. Thus, a global time-base of known precision is
created throughout the system.

We have designed a software architecture which runs on the
CPU in each node, and which has a real-time kernel as its main
component. Each kernel has a schedule table that contains all the
information needed to take decisions on activation of processes
and transmission of messages, based on the current value of time.
For more details about the software architecture and the message
passing mechanism the reader is referred to [18].
2.2  The Process Graph
As an abstract model for system representation we use a directed, acy-
clic, polar graphG(V, E). Each nodePi∈V represents oneprocess. An
edgeeij∈E from Pi to Pj indicates that the output ofPi is the input of
Pj. A process can be activated after all its inputs have arrived and it
issues its outputs when it terminates. Once activated, a process
executes until it completes. Each process graphG is characterized
by its periodTG and its deadlineDG ≤ TG. The functionality of an
application is described as a set of process graphs.
2.3  Application Mapping
Considering a system architecture like the one presented in section
2.1, the mapping of a process graphG(V, E) is given by a function
M: V→PE, wherePE={N1, N2, ..,Nnpe} is the set of nodes (processing
elements). For aprocessPi∈V, M(Pi) is the node to whichPi is
assigned for execution. Each processPi can potentially be mapped
on several nodes. LetNPi⊆PE be the set of nodes to whichPi can
potentially be mapped. For eachNi∈NPi, we know the worst case
execution timetPi

Ni of processPi, when executed onNi.
In order to implement an application, represented as a set of

process graphs, the designer has to map the processes to the system
nodes and to derive a schedule such that all deadlines are satisfied.
We first illustrate some of the problems related to mapping and
scheduling, in the context of a system based on a TDMA commu-
nication protocol, before going on to explore further aspects spe-
cific to an incremental design approach.

Let us consider the example in Figure 2 where we want to map
an application consisting of four processesP1 to P4, with a period
and deadline of 50 ms. The architecture is composed of three
nodes that communicate according to a TDMA protocol, such that
Ni transmits in slotSi. According to the specification, processesP1
andP3 are constrained to nodeN1, while P2 andP4 can be mapped
on nodesN2 or N3, but notN1. The worst case execution times of
processes on each potential node, the sizemi,j of the messages
passed betweenPi and Pj, and the sequence and size of TDMA
slots, are presented in Figure 2.

In [5] we have shown that by considering the communication
protocol during scheduling, significant improvements can be made
to the schedule quality. The same holds true in the case of map-
ping. Thus, if we are to mapP2 andP4 on the faster processorN3,
the resulting schedule length (Figure 2a) will be 52 ms which does
not meet the deadline. However, if we mapP2 andP4 on the slower
processorN2, the schedule length (Figure 2b) is 48 ms, which is
the best possible solution and meets the deadline. Note, that the
total traffic on the bus is the same for both mappings and the initial
processor load is 0 on bothN2 andN3. This result has its explana-
tion in the impact of the communication protocol.P3 cannot start
before receiving messagesm2,3 andm4,3. However, slotS2 corre-
sponding to nodeN2 precedes in the TDMA round slotS3 on
which nodeN3 communicates. Thus, the messages whichP3 needs
are available sooner in the caseP2 andP4 are, counter-intuitively,
mapped on the slower node.

But finding a valid schedule is not enough if we are to support

an incremental design process as discussed in the introduction. In
this case, starting from a valid design, we have to improve the
mapping and scheduling so that not only the design constraints are
satisfied, but also there is a good chance that, later, new functional-
ity can easily be mapped on the resulted system.

To illustrate the role of mapping and scheduling in the context
of an incremental design process, let us consider the example in
Figure 3. With black we represent the already running set of appli-
cationsψ while the current applicationΓcurrent to be mapped and
scheduled is represented in grey. We consider a single processor,
and we present three possible scheduling alternatives for the cur-
rent application. Now, let us suppose that in future a third applica-
tion, Γfuture, has to be mapped on the system. In Figure 3,Γfuture is
depicted in more detail, showing the two processesP1 andP2 it is
composed of. We can observe that the new application can be
scheduled only in the first two cases, presented in Figure 3a and b.
If Γcurrenthas been implemented as in Figure 3c, we are not able to
schedule processP2 of Γfuture. The way our current application is
mapped and scheduled will influence the likelihood of successfully
mapping additional functionality on the system without being
forced to redesign and test already running applications.

3.  PROBLEM FORMULATION
We model an applicationΓcurrent as a set of process graphs
Gi∈Γcurrent, each with a periodTGi and a deadlineDGi≤ TGi. For
each processPi in a process graph we know the setNPi of potential
nodes on which it could be mapped and its worst case execution
time on each of these nodes. The underlying architecture, as pre-
sented in section 2.1, is based on a TDMA protocol. We consider a
non-preemptive static cyclic scheduling policy for both processes
and message passing.

Our goal is to map and schedule an applicationΓcurrent on a
system that already implements a setψ of applications so that:

a.the constraints onΓcurrent are satisfied without any modifica-
tion on the implementation of the set of applicationsψ;

b. new applicationsΓfuturecan be mapped on the resulting system.
If no solution is possible that satisfies a) (the algorithm IM dis-

cussed in section 4 fails) we have to change the scheduling and
possibly the mapping of applications inψ in order to meet the con-
straints onΓcurrent. However, even with serious modifications per-
formed onψ, it is still possible that certain constraints are not
satisfied. In this case the hardware architecture has to be changed.
In this paper we will not discuss the modification of the running
applications or of the hardware architecture. We will concentrate
on the situation where a possible mapping and scheduling which
satisfies requirement a) can be found and this solution has to be
further improved by considering requirement b).

In order to achieve our goal we need certain information to be
available concerning the set of applicationsψ as well as the possi-
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ble future applicationsΓfuture. We assume that the only information
available on the existing applicationsψ consists of the local sched-
ule tables for each node. This means that we know the activation
time for each process on the respective node and its worst case exe-
cution time. As for messages, their length as well as their place in
the particular TDMA frame are known.

TheΓcurrent application can interact with the previously mapped
applicationsψ by reading messages generated on the bus by pro-
cesses inψ. In this case, the reading process has to be synchro-
nized with the arrival of the message on the bus, which is easy to
solve during scheduling ofΓcurrent.

What do we suppose to know relative to the familyΓfuture of
applications which do not exist yet? Given a certain limited appli-
cation area (e.g. automotive electronics), it is not unreasonable to
assume that, based on the designers’ previous experience, the
nature of expected future functions to be implemented, profiling of
previous applications, available uncomplete designs for future ver-
sions of the product, etc., it is possible to characterize the family of
applications which possibly could be added to the current imple-
mentation. This is an assumption which is basic for the concept of
incremental design. Thus, we consider that, relative to the future
applications, we know the setSt={ tmin,...ti,...tmax} of possible
worst case execution times for processes, and the set
Sb={ bmin,...bi,...bmax} of possible message sizes. We also assume
that over these sets we know the distributions of probabilityfSt(t)
for t∈St and fSb(b) for b∈Sb. For example, we might have worst
case execution timesSt={50, 100, 200, 300, 500 ms}. If there is a
higher probability of having processes of 100 ms, and a very low
probability of having processes of 300 ms and 500 ms, then our
distribution function fSt(t) could look like this: fSt(50)=0.20,
fSt(100)=0.50, fSt(200)=0.20,fSt(300)=0.05, andfSt(500)=0.05.

Another information is related to the period of process graphs
which could be part of future applications. In particular, the small-
est expected periodTmin is assumed to be given, together with the
expected necessary processor timetneed, and bus bandwidthbneed,
inside such a periodTmin. As will be shown later, this information
is treated in a flexible way during the design process and is used in
order to provide a fair distribution of slacks.

The execution times inSt as well astneedare considered rela-
tive the slowest node in the system. All the other nodes are charac-
terized by a speedup factor relative to this slowest node. A
normalization with these factors is performed when computing the
metricsC1

PandC2
P  discussed in the following section.

For the sake of simplifying the discussion, we will not address
here the memory constraints during process mapping and the
implications of memory space in the incremental design process.
3.1  Quality Metrics
A designer will be able to map and schedule an applicationΓfuture
on top of a system implementingψ andΓcurrent only if there are
sufficient resources available. In our case, the resources are proces-
sor time and the bandwidth on the bus. In the context of a non-pre-
emptive static scheduling policy, having free resources translates
into having free time slots on the processors and having space left
for messages in the bus slots. We call these free slots of available
time on the processor or on the bus,slack. It is to be noted that the
total quantity of computation and communication power available
on our system after we have mapped and scheduledΓcurrent on top
of ψ is the same regardless of the mapping and scheduling policies
used. What depends on the mapping and scheduling strategy is the
distribution of slacks along the time line and the size of the indi-
vidual slacks. It is exactly this size and distribution of the slacks
that characterizes the quality of a certain design alternative. In this
section we introduce two criteria in order to reflect the degree to
which one design alternative meets the requirement b) presented

above. For each criterion we provide metrics which quantify the
degree to which the criterion is met. The first criterion reflects how
well the resulted slack sizes fit to a future application, and the sec-
ond criterion expresses how well the slack is distributed in time.
3.1.1  Slack Sizes (the first criterion)
The slack sizes resulted after implementation ofΓcurrenton top of
ψ should be such that they best accommodate a given family of
applicationsΓfuture, characterized by the setsSt, Sb and the proba-
bility distributionsfSt andfSb, as outlined before.

Let us consider the example in Figure 3, where we have a sin-
gle processor and the applicationsψ and Γcurrent are already
mapped. Suppose that applicationΓfuture consists of the two pro-
cessesP1 and P2. It can be observed that the best configuration,
taking in consideration only slack sizes, is to have a contiguous
slack. Such a slack, as depicted in Figure 3a, will best accommo-
date any future application. However, in reality it is almost impos-
sible to map and schedule the current application such that a
contiguous slack is obtained. Not only is it impossible, but it is also
undesirable from the point of view of the second design criterion,
discussed below. As we can see from Figure 3c, if we schedule
Γcurrent so that it fragments too much the slack, it is impossible to
fit Γfuture because there is no slack that can accommodate process
P2. A situation as the one depicted in Figure 3b is desirable, where
the resulted slack sizes can accommodate the characteristics of the
Γfuture application.

In order to measure the degree to which the slack sizes in a
given design alternative fit the future applications, we provide two
metrics,C1

P andC1
m. C1

P captures how much of the largest future
application which theoretically could be mapped on the system if
the slacks would be contiguous, can be mapped on the current
design alternative.C1

m is similar relative to the slacks in the bus
slots. The largest application is determined knowing the total size
of the available slack, and the characteristics of the application:St,
ft, Sb, fb. For example, if our total slack size on the processors is of
2800 ms then, considering the numerical example given in section
3, the largest application will result as having a total of 20 pro-
cesses: 4 processes of 50 ms, 10 processes (half,ft(100)=0.50) of
100 ms, 4 of 200 ms, and one of 300 and 500 ms. After we have
determined the largestΓfuture we apply abin-packing algorithm
[15] using thebest-fit policyin which we consider processes as the
objects to be packed, and the slacks as containers. The total execu-
tion time of unpacked processes relative to the total execution time
of the process set gives theC1

P metric. The same applies for the
C1

mmetric. Thus, C1
P = 0% in Figure 3a and 3b (both are perfect

from the point of view of slack size), and 75% -- the worst case
execution time ofP2 relative the total slack size -- in Figure 3c.
3.1.2  Distribution of Slacks (the second criterion)
In the previous section we provided a metric of how well the sizes
of the slacks fit a possible future application. A similar metric is
needed to characterize the distribution of slacks over time.

Let Pi be a process with periodTPi that belongs to a future
application, andM(Pi) the node on whichPi will be mapped. The
worst case execution time ofPi is tPi

M(Pi) . In order to schedulePi
we need a slack of sizetPi

M(Pi) that is available periodically, within
a periodTPi, on processorM(Pi). If we consider a group of pro-
cesses with periodT, which are part ofΓfuture, in order to imple-
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Figure 3.  Example for the First Design Criterion
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ment them a certain amount of slack is needed which is available
periodically, with a periodT, on the nodes implementing the
respective processes.

During implementation ofΓcurrent we aim for a slack distribu-
tion such that the future application with the smallest expected
periodTmin and with the minimum necessary processor timetneed,
and bandwidthbneed, can be accommodated.

Thus, for each node, we compute the minimum periodic slack,
inside aTmin period. By summing these minimums, we obtain the
slack which is available periodically toΓfuture. This is theC2

P met-
ric. TheC2

m metric characterizes the minimum periodically avail-
able bandwidth on the bus and it is computed in a similar way.

In Figure 4 we consider a situation withTmin=120 ms,tneed=80
ms, andbneed=40 ms. The length of the schedule table of our sys-
tem implementingψ andΓcurrent is 360 ms. The system consists of
three nodes. Let us consider the situation in Figure 4a. In the first
period,Period 0, there are 40 ms of slack available on nodeN1, in
the second period 80 ms, and in the third period no slack is avail-
able onN1. Thus, the total slack a future application of periodTmin
can use on nodeN1 is min(40, 80, 0)=0 ms. Neither nodeN2 can
provide slack for this application as inPeriod 1 there is no slack
available. However, onN3 there are at least 40 ms of slack avail-
able in each period. Thus, with the configuration in Figure 4a we
haveC2

P =40 ms, which is not enough to accommodatetneed=80
ms. However, in the situation presented in Figure 4b,C2

P =120 ms
> tneed, andC2

m=60 ms >bneed.
3.2  Cost Function and Exact Problem Formulation
In order to capture how well a certain design alternative meets the
requirement b) stated in section 3, the metrics discussed before are
combined in an objective function, as follows:

where the metric values are weighted by the constantswi. Our
mapping and scheduling strategy will try to minimize this function.

The first two terms measure how well a future application fits
to the resulted slack sizes. In order to obtain a balanced solution,
that favors a good fitting both on the processors and on the bus, we
have used the squares of the metrics.

A design alternative that does not meet the second design crite-
rion is not considered a valid solution. Thus, using the last two
terms, we strongly penalize the objective function if eithertneedor
bneed is not satisfied, by using high values for thew2 weights.

At this point, we can give an exact formulation to our problem.
Given an existing set of applicationsψ which are already mapped
and scheduled, and an applicationΓcurrent to be mapped on top of
ψ, we are interested to find a mapping and scheduling ofΓcurrent
which satisfies all deadlines and minimizes the objective function
C, considering a family of future applications characterized by the
setsSt andSb, the functionsfSt and fSb as well as the parameters
Tmin, tneed, andbneed.

4.  THE MAPPING STRATEGY
Our mapping and scheduling strategy has two steps. In the first
step we try to obtain a mapping with a valid schedule (which is a
schedule that meets the deadlines). Starting from such a solution, a
second step iteratively improves on the design in order to minimize
the objective functionC. The minimization of the objective func-
tion will hopefully lead to the situation where it is possible to map
new applications on the resulting system.

For the algorithm Initial Mapping (IM) that constructs an ini-
tial mapping with a valid schedule, we used as a starting point the
Heterogeneous Critical Path (HCP) algorithm presented in [9].
HCP is based on the classical list scheduling algorithm, and uses a
ready list Lof processes ready to execute, i.e. all their predecessors
have been scheduled. In each iteration, a processPi is selected
from L according to apriority function based on its critical path
length (CP), and assigned to the “best processor”M(Pi). Then, pro-
cessPi is scheduled onM(Pi). For details on the process and pro-
cessor selections the reader is referred to [9]. We have modified the
HCP algorithm to consider during scheduling a set of previous

applicationsψ that have already occupied parts of the schedule
table, and to schedule the messages according to the TDMA proto-
col. Furthermore, for the selection of the process from the ready
list we have used instead of the CP priority function the MPCP pri-
ority function introduced by us in [5]. MPCP takes into consider-
ation the particularities of the communication protocol for
calculation of communication delays. These delays are not esti-
mated based only on the message length, but also on the time when
slots assigned to the particular node which generates the message,
will be available. For the example in Figure 2, our initial mapping
algorithm will be able to produce the optimal solution with a
schedule length of 48 ms.

However, before using the IM algorithm, two aspects have to
be addressed. First, theprocess graphsGi∈Γcurrentare merged into a
single graphGcurrent, by unrolling of process graphs and insertion of
dummy nodes as shown in Figure 5. Inaddition, we have to consider
during scheduling the mismatch between the periods of the already
existing system and those of the current application. The schedule
table into which we would like to scheduleGcurrent has a length of
Tψ which is the global period of the existing systemψ. However,
the periodTcurrent of Gcurrent can be different fromTψ. Thus,
before schedulingGcurrent into the existing schedule table, the
schedule table is expanded to the least common multiplier of the
two periods. In this context, schedulingGcurrent means scheduling
it into the expanded schedule table inside each periodTcurrent. A
similar procedure is followed in the caseTcurrent > Tψ.

Starting from the valid design produced by IM, our next goal is
to improve on the design in order to minimize the objective func-
tion C. We iteratively improve the design using a transformational
approach. A new design is obtained from the current one by per-
forming a transformation calledmove. We consider the following
moves: moving a process to a different slack found on the same
node or on a different node, and moving a message to a different
slack on the bus. In order to eliminate those moves that will lead to
an infeasible design (that violates deadlines), we do as follows. For
each processPi, we calculate theASAPi andALAPi times consider-
ing the resources of the given hardware architecture.ASAPi is the
earliest timePi can start its execution, whileALAPi is the latest
time Pi can start its execution without causing the application to
miss its deadline. When movingPi we will consider slacks on the
target processor only inside the [ASAPi, ALAPi] interval. The same
reasoning holds for messages, with the addition that a message can
only be moved to slacks belonging to the same slot number, corre-
sponding to the sender node. Any violation of the data dependency
constraints is rectified by moving processes or messages concerned
in an appropriate way.

For the goal of improving a design as stated above, we first
propose a Simulated Annealing strategy (SA) [4] that aims at find-
ing the near-optimal mapping and schedule that minimizes the
objective functionC. One of the drawbacks of the SA strategy is
that in order to find the near-optimal solution it needs very large
computation times. Such a strategy, although useful for the final
stages of the system synthesis, cannot be used inside a design
space exploration cycle.

Thus, we introduce a Mapping Heuristic (MH), outlined in
Figure 6, that aims at finding a good quality solution in a reason-
able time. MH starts from an initial design produced by IM and
iteratively preforms moves in order to improve the design. Unlike
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SA that considers all the neighbors of a solution as potential
moves, MH tries to find those neighbors that have the highest
potential to improve the design, without evaluating for each of
them the objective function. MH has two main iterative improve-
ment loops. In the first loop it tries to find a solution that satisfies
the second design criterion (section 3.1.2). If such a solution can-
not be found, then a largerTmin is proposed to the designer. Pro-
posing a largerTmin means that the most demanding future
application with the requirementstneed and bneed that we can
accommodate, without modifying the existing applications or
changing the architecture, cannot have a period smaller than the
suggested value. The second loop tries to improve on the metric of
the first design criterion (section 3.1.1), without invalidating the
second criterion achieved in the first loop. The loop ends when
there is no improvement achieved on the first two terms of the
objective function, or a limit imposed on the number of iterations
has been reached. The intelligence of the Mapping Heuristic lies in
how the potential moves are selected. For each iteration a set of
potential moves is selected by thePotentialMoveX functions.Select-
MoveX then evaluates these moves with regard to the respective met-
rics and selects the best one to be performed. We now briefly discuss
the fourPotentialMoveX functions with the corresponding moves:

PotentialMoveC2
P andPotentialMoveC2

m

Consider Figure 4a. InPeriod 2on nodeN1 there is no avail-
able slack. However, if we move processP1 with 40 ms to the left
into Period 1, as depicted in Figure 4b, we create a slack inPeriod
2 and the periodic slack on nodeN1 will be min(40, 40, 40)=40,
instead of 0. Potential moves will be the shifting of processes
inside their [ASAP, ALAP] interval in order to improve the periodic
slack. The move can be performed on the same node or to the less
loaded nodes. The same is true for moving messages. For the
improvement of the periodic bandwidth on the bus, we also consider
movement of processes, trying to place the sender and receiver of a
message on the same processor and, thus, reducing the bus load.

PotentialMoveC1
P andPotentialMoveC1

m

In order to avoid excessive fragmentation of the slack we will
consider moving a process to a position that snaps to another exist-
ing process. A process is selected for potential move if it has the

smallest “snapping distance”, i.e. in order to attach it to other pro-
cesses it has to travel the smallest distance inside the schedule
table. For a given process such a move is considered both on its
node, and to other nodes. We also consider moves that try to
increase the individual slacks sizes. Therefore, we first eliminate
slack that is unusable: it is too small to hold the smallest process of
the future application, or the smallest message. Then, the slacks
are sorted in ascending order and the smallest one is considered for
improvement. Such improvement of a slack is performed through
moving a nearby process or message, but avoiding to create as a
result an even smaller individual slack.

5.  EXPERIMENTAL RESULTS
For evaluation of our mapping strategies we first used process
graphs of 40, 160, 240, 320 and 400 processes generated for exper-
imental purpose. 30 graphs were generated for each graph dimen-
sion, thus a total of 150 graphs were used for experimental
evaluation. We considered an architecture consisting of 10 nodes
of different speeds. For the communication channel we considered
a transmission speed of 256 kbps and a length below 20 meters.
The maximum length of the data field in a bus slot was 8 bytes. All
experiments were run on a SUN Ultra 10. Also, throughout the
experiments we have considered an existing set of applicationsψ
consisting of 400 processes, with a schedule table of 6s on each
processor, and a slack of about 50% the total schedule size.

The first result concerns the quality of the designs produced by
our initial mapping algorithm IM (using the MPCP priority func-
tion which considers particularities of the TDMA protocol) com-
pared to the HCP algorithm. We have calculated the average
percentage deviations of the schedule length produced with HCP
and IM from the length of the best schedule among the two. Results
are depicted in Figure 7a. In average, the deviation with IM is 3.28
times smaller than with HCP. The average execution times for both
algorithms are under half a second for graphs with 320 processes.

For the next experiments we were interested to investigate the
quality of the mapping heuristic MH compared to a so calledad-
hoc approach(AH) and to the simulated annealing based algo-
rithm SA. The AH approach is a simple, straight-forward solution
to produce designs which, to a certain degree, support an incre-
mental process. Starting from the initial valid schedule of lengthS
obtained by IM for the graphG with N processes, AH uses a sim-
ple scheme to redistribute the processes inside the [0,D] interval,
whereD is the deadline of the process graphG. AH starts by con-
sidering the first process in topological order, let it beP1. It intro-
duces afterP1 a slack of size min(smallest process size ofΓfuture,
(D-S)/N), thus shifting allP1’s descendants to the right. The inser-
tion of slacks is repeated for the next process, with the current
larger value ofS, as long as the resulted schedule has anS≤ D.

MH, SA and AH have been used to map each of the 150 pro-
cess graphs on the target system. For each of the resulted designs,
the objective functionC has been computed. Very long and expen-
sive runs have been performed with the SA algorithm for each
graph and the best ever solution produced has been considered as
the near-optimum for that graph. We have compared the objective
function obtained for the 150 process graphs considering each of
the three mapping algorithms. Figure 7b presents the average per-
centage deviation of the objective function obtained with the MH
and AH from the value of the objective function obtained with the

Figure 6.  Mapping Heuristic to Support Iterative Design

MappingHeuristic
ASAP(Γcurrent); ALAP(Γcurrent) -- computes ASAP-ALAP intervals
InitialMapping(ψ, Γcurrent)
repeat -- try to satisfy the second design criterion

repeat
-- find moves with highest potential to maximizeC2

P orC2
m

move_set=PotentialMoveC2
P ∪ PotentialMoveC2

m

-- select and perform move which improves mostC2
P or C2

m

move = SelectMoveC2(move_set); Perform(move)
until  (C2

P ≥tneed and C2
m ≥bneed) or  limit reached

if C2
P <tneed or C2

m <bneed then
suggest larger Tmin

end if
until C2

P ≥tneed and C2
m ≥bneed

repeat -- try to improve the metric of the first design criterion
-- find moves with highest potential to minimize C1

P or C1
m

move_set=PotentialMoveC1
P ∪ PotentialMoveC1

m

-- select move which improves
-- and does not invalidate the second design criterion
move = SelectMoveC1(move_set); Perform(move)

until  has not changed or  limit reached
end MappingHeuristic
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near-optimal scheme. We have excluded from the results in Figure
7b, 37 solutions obtained with AH for which the second design cri-
terion has not been met, and thus the objective function has been
strongly penalized. The average run-times of the algorithms, in
seconds, are presented in Figure 7c. The SA approach performs
best in terms of quality at the expense of a large execution time.
The execution time can be up to 45 minutes for large graphs of 320
processes. MH performs very well, and is able to obtain good quality
solutions in a very short time. AH is very fast, but since it does not
address explicitly the two design criteria presented in Section 3 it has
the worst quality of solutions, according to the objective function.

The most important aspect of the experiments is determining to
which extent the mapping strategies proposed in the paper really
facilitate the implementation of future applications. To find this
out, we have mapped graphs of 40, 80, 160 and 240 nodes repre-
senting theΓcurrent application on top ofψ. After mapping and
scheduling each of these graphs we have tried to add a new appli-
cation Γfuture to the resulted system.Γfuture consists of a process
graph of 80 processes, randomly generated according to the fol-
lowing specifications:St={20, 50, 100, 150, 200 ms},ft(St)={10,
25, 45, 15, 5%},Sb={2, 4, 6, 8 bytes},fb(Sb)={20, 50, 20, 10%},
Tmin=250 ms,tneed=100 andbneed=20 ms. The experiments have
been performed two times, using first MH and then AH for map-
ping Γcurrent. In both cases we were interested if it is possible to
find a valid implementation forΓfuture on top ofΓcurrent using the
initial mapping algorithm IM. Figure 8 shows the number of suc-
cessful implementations in the two cases. In the caseΓcurrent has
been mapped with MH, this means using the design criteria and
metrics proposed in the paper, we were able to find a valid sched-
ule for 65% of the total process graphs considered. However, using
AH to mapΓcurrent has led to a situation where IM is able to find
valid schedules in only 21% cases. Another observation from
Figure 8 is that when the slack size available is large, as in the case
Γcurrent has only 40 processes, it is easy for both MH and AH to
find a mapping that allows adding future applications. However, as
Γcurrentgrows to 160, only MH is able to find a mapping ofΓcurrent
that supports an incremental design process, accommodating more
that 60% of the future applications. If the remaining slack is very
small, after we map aΓcurrent of 240, it becomes practically impos-
sible to map new applications without modifying the current system.

Finally, we considered an example implementing a vehicle
cruise controller (CC) modeled using one process graph. The
graph has 32 processes and it was to be mapped on an architecture
consisting of 4 nodes, namely: Anti Blocking System, Transmis-
sion Control Module, Engine Control Module and Electronic
Throttle Module. The period was 300 ms, equal to the deadline. In
order to validate our approach, we have considered the following
setting. The systemψ consists of 80 processes generated ran-
domly, with a schedule table of 300 ms and about 40% slack. The
CC is theΓcurrent application to be mapped. We have also gener-
ated 30 future applications of 40 processes each with the character-
istics of the CC, which are typical for automotive applications. By
mapping the CC using MH we were able to later map 21 of the
future applications, while using AH only 4 of the future applica-
tions could be mapped.

6.  CONCLUSIONS
We have presented an approach to the incremental design of dis-
tributed embedded systems for hard real-time applications. Such a
design process satisfies two main requirements when adding new
functionality: the already running functionality is not disturbed,
and there is a good chance that, later, new functionality can easily
be mapped on the resulted system. Our approach was considered in
the context of a non-preemptive static cyclic scheduling policy and
a realistic communication model based on a TDMA scheme.

We have introduced two design criteria with their correspond-
ing metrics, that drive our mapping strategies to solutions support-
ing an incremental design process. For constructing an initial valid
solution, we have shown that it is needed to take into account the
features of the communication protocol. Starting from an initial
solution, we have proposed two mapping algorithms, SA based on
a simulated annealing strategy and MH an iterative improvement heu-
ristic. SA finds a near-optimal solution at the expense of a large exe-
cution time, while MH is able to quickly produce good quality results.

The approach has been validated through several experiments.
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