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1. Introduction

Test has always been one of the most time and resource consuming tasks of the electronic
system design cycle. Due to the increased complexity of such systems, traditional gate-level
methods are not any more practical and more and more work has to be done at higher levels
of abstraction.

An extremely important aspect, related to system testing, which has to be handled with
priority in the early phases of the design process, is design for testability (DfT). In the early
phases, system synthesis is performed starting from an implementation independent
specification. Among the synthesis tasks at the system level are the selection of an efficient
implementation architecture and also the partitioning of the specified functionality into
components, which will be implemented by hardware and software respectively. It is very
important that all these design tasks be performed with careful consideration of the overall
testability of the resulting system.

The main goal of workpackage 3 of the COTEST project was assessment of the feasibility
and evaluation of test-oriented system modifications. In the following we introduce some
possible techniques and discuss their effectiveness for early DfT support.

2. Main Achievements

Our work has formed on the development of a framework to support reasoning about
system testability and provide methods for DfT modifications in the early phases of the
design cycle. The framework consists of the following tasks and is depicted in Figure 1:

• Hierarchical Test Generation at the Behavioral Level,

• High-Level BIST Insertion, and

• Hybrid BIST Architecture and Analysis.

Our approach starts from an implementation independent behavioral specification, which
is analyzed by using a hierarchical test generation approach. This gives us an early estimate
about testability of different modules in the specification. The obtained information is used in
the high-level built-in self-test (BIST) insertion environment, which performs detailed
analysis of previously identified hard to test modules and insertion of BIST resources into the
design. The supported self-test architecture is a hybrid BIST architecture, which can be
implemented either in hardware or in software. Our approach can find the right trade-off
between two and this gives us the optimal solution in terms of test cost (test length and area
overhead) without losing in test quality.

We have also implemented several key components of the proposed design environment to
support DfT modifications in early phases of the design cycle. This environment will be
discussed in detail in the chapter “Experimental Results”.
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3. Hierarchical Test Generation at the Behavioral Level

In our approach preliminary testability evaluation of the system is performed by an
automatic test pattern generation (ATPG) algorithm and the obtained testability data is
subsequently used for guiding DfT modifications. As discussed in COTEST report D2 [5],
there exists a gap between the fault coverage figures attained by test sequences generated
purely on a high-level and those by the gate-level ones. Therefore we have investigated
possibilities of taking into account structural information during the test generation process
and developed a novel high-level hierarchical test generation (HTG) algorithm. HTG is a
technique which has been successfully used until now for hardware test generation at the
gate, logical and register-transfer (RT) levels. Our HTG is employing constraint logic
programming techniques and uses a decision diagram (DD) based representation. As a result
of this project we demonstrate that HTG can be used successfully also at higher levels of
abstraction. Another important advantage of our methodology is that, based on the divide and
conquer strategy, it allows to generate tests for more complex systems, based on predesigned
test vectors for the system modules. The test vectors for the individual modules can be
generated based on different techniques suitable for the respective entities.

RTL VHDL

Hierarchical
ATPG

Symbolic Testability Analysis
&

BIST Insertion

Stuck-at Fault 
Coverage

Gate-Level Netlist

FU Library

FU Library

S'VHDL

High-level
Synthesis

Logic
Synthesis

Fault Simulation

Hybrid BIST Architecture
&

Analysis

Figure 1: Framework for Early DfT Analysis and Modifications
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3.1. Behavioral modeling

3.1.1. S’VHDL

The design work starts with a behavioral specification. In our approach we are using for
the subsequent synthesis step the CAMAD high-level synthesis tool [4], which is developed
at Linköping University. It accepts as an input a behavioral specification specified in
S’VHDL, which is the input format for our testability analysis and DfT toolflow.

S’VHDL [3] is defined as a subset of VHDL with the purpose of using it as input for high-
level hardware synthesis. It is designed to accommodate a large behavioral subset of VHDL,
particularly those constructs relevant for synthesis and to make available most of VHDL’s
facilities that support concurrency in the design.

3.1.2. Decision Diagrams

Decision Diagrams (DD) (previously known as Alternative Graphs) [18], [19] may
represent a set of digital (Boolean or integer) functions y=F(X) corresponding to components
or subcircuits in digital systems. Here, y is
an output variable, and X is a vector of
input variables of the component or
subcircuit.

A DD describing digital systems on the
behavioral level captures behavior instead
of structure of the desired system. In DD,
the variables in nonterminal nodes can be
either Boolean (describing flags, logical
conditions etc.) or integer (describing
instruction words, control fields, etc.).
The terminal nodes are labeled by
constants, variables (Boolean or integer)
or by expressions for calculating Boolean
or integer values. The number of DDs,
used for describing a digital system, is
equal to the number of output and internal
variables used in the instruction set
description.

Figure 2 depicts an example of DD
describing the behavior of a simple
function. For example, variable A will be
equal to IN1+2, if the system is in the
state q=2 (Figure 2c). If this state is to be
activated, condition IN1≥0 should be true
(Figure 2b) and in our terminology this is
a path activation constraint for activating
a path to the specified state (q=2). The
DDs, extracted from a specification, will

if (IN1 < 0) then
  A := IN1 * 2;  ------ q=1
else
  A := IN1 + 2; ------- q=2
endif;

B := IN1*29;    --------q=3
A := B*2;
B := A+43;     -------- q=4

a) Specification (comments start with “--“)
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b) Control-flow DD (q denotes the state variable and
q’ is the previous state)
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c) Data-flow DD

Figure 2: A DD example
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be used as a computational model in HTG for symbolic path activation.

3.2. Constraint Logic Programming

Most digital systems can be viewed as a set of constraints, which are a mathematical
formalization of relationships that hold in the system [10]. In the view of test generation,
there are two types of constraints: system constraints and test constraints. The system
constraints describe the relationships between the system variables, which capture the system
functionality and requirements. Test constraints describe the relationships between the system
variables in order to generate tests for the system. Constraint solving can be viewed as a
procedure to find a solution to satisfy the desired test constraints in a system if such a solution
exists.

3.3. SICStus Prolog representation of Decision Diagrams

At the behavioral level there exist two types of DDs: control-flow DD and data-flow DDs.
The control-flow DD carries two types of information: state transition information and path
activation information. The state transition information captures the state transitions that are
given in the FSM corresponding to the specified system. The path activation information
holds conditions associated to state transitions.

For  each internal or primary output variable corresponds one data-flow DD. In a certain
system state, the value of a variable is determined by the terminal node in the data graph. In
this case, the relationship between the terminal node and the variable can be viewed as a
functional constraint on the variable at the state.

For solving different constraints we are employing a commercial constraint solver SICStus
[15] and have developed a framework for representing a DD model in the form of constraints.
First, we are translating the control-flow DD into a set of state transition predicates and path
activation constraints can be extracted along the activated path. Then all the data graphs are
parsed as functional constraints at different states by using predicates. Finally, a DD model is
represented as a single Prolog module [17].

3.4. Test Generation Algorithm

There are two types of tests which we consider in our current approach. One set targets
nonterminal nodes of the control-flow DD (conditions for branch activation) and the second
set aims at  testing operators, depicted in terminal nodes of the data-flow DD. This approach
enables us to test the behavior of the system and also explore information related to the final
implementation of the system.

The whole test generation task is performed in the following way. Tests are generated
sequentially for each nonterminal node of the control-flow DD. Symbolic path activation is
performed and functional constraints are extracted. Solving the constraints gives us the path
activation conditions to reach to the particular segment of the specification. In order to test
the operations, presented in the terminal nodes of the data-flow DD, we employ a gate-level
test pattern generator. In this way we can incorporate accurate structural information into the
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high-level test pattern generation environment while keeping the propagation and justification
task still on a high abstraction level. In the following chapter the test pattern generation
algorithm is described in more detail.

3.4.1. Conformity Test

For the nonterminal nodes of the control-flow DD, conformity tests will be applied. The
conformity tests target errors in branch activation. In order to test nonterminal node IN1 in
Figure 3, for example, one of the output branches of this node should be activated. Activation
of the output branch means activation of a certain set of program statements. In our example,
activation of the branch IN1<0 will activate the branches in the data-flow DD where q=1
(A:=X). For observability  the values of the variables calculated in all the other branches of
IN1 have to be distinguished from the value of the variables calculated by the activated
branch. In our example, node IN1 is tested, in the case of IN1<0, if X≠Y. The path from the
root node of the control-flow DD to the node IN1 has to be activated to ensure the execution
of this particular specification segment and the conditions, generated here, should be justified
to the primary inputs of the module. This process will be repeated for each output branch of
the node. In the general case there will be n(n-1) tests, for every node, where n is the number
of output branches.

q q'
0

...

IN1 1

2

<0

A q
1

2

X

Y

Figure 3: Conformity test

3.4.2. Testing Arithmetic Operators

Synthesis is the translation of a behavioral representation of a design into a structural one.
One of the most important parameters guiding the synthesis process is the technology that
will be used in the final implementation. By defining the technology, we can have among
other information also the implementation of the functional units that will be used in the final
design. Our hierarchical test generation algorithm employs this structural information for
generating tests and estimating testability of the final implementation when using one or
another library of functional units (FUs).

Tests are generated in cooperation with low-level test pattern generators as depicted in
Figure 4. The arithmetic operator test generation is performed one by one for every FU given
in the specification as depicted in Figure 5, where an example of generating low-level tests
for an adder is given.

 ≠

 ≠

Control-flow DD:

Data-flow DD:
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We start by choosing a not tested operator from the specification and employ a gate level
ATPG to generate a test pattern targeting structural faults in the corresponding FU. In our
approach a PODEM like ATPG [6] is used but, in general, any arbitrary gate-level test pattern
generation algorithm can be applied. If necessary, pseudorandom patterns can be used for this
purpose as well. Test patterns which are generated by our current approach have typically
some undefined bits. As justification and propagation are performed at the behavioral level
by using symbolic methods those undefined bits have to be set to a defined value. Selecting
the exact values is an important procedure as not all possible values can be propagated
through the given behavior and can therefore have impact to the final fault coverage. The
vectors that do not have any undefined bits are thereafter forwarded to the constraint solver,
where together with the environmental constraints it is forming a test case. Solving such a test
case guarantees that the generated low-level test vector can be justified till primary inputs and
the fault effect is observable at primary outputs. If the constraint solver can not find an input
combination, which would satisfy the given constraints, another combination of values for the
undefined bits has to be chosen and the constraint solver should be employed again. This
process is continued until a solution is found or timeout occurs. If there is no input
combination which satisfies the generated test case, this particular low-level test pattern will
be abandoned and gate-level ATPG will be employed again to generate a new low-level test
pattern. This task is continued until low-level ATPG can not generate any more test patterns.

We are generating tests for every FU one by one and finally the fault coverage for every
individual FU under given environmental constraints can be reported, which gives the
possibility to rank all modules according to their testability. This ranking will be used in the
next step, when modules for DfT modifications will be selected and self test structures will be
inserted.

Figure 4: Hierarchical Test Generation Environment

Constraint Solver Interface

Hierarchical Test Pattern
Generation  Environment

VHDL2DD

Behavioral VHDL

Test Cases Generator

DD Model

DD2Prolog

Test CasesProlog DD model

Constraint Solver
(SICStus - external tool)

Test Vectors

FU Library

Gate-level ATPG
(external tool)
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4. High Level BIST Insertion

Built-in self-test is one of the mainstream DfT techniques and by appearance of SoC
solutions it is making its way to the industrial deep submicron designs. The objective of our
approach is to merge a Symbolic Testability Analysis (STA) based approach and novel HTG
based approach to obtain an integrated framework for inserting self-test structures. In this
framework, HTG will serve as a front-end tool for testability analysis and can provide
preliminary information concerning hard to test modules. The framework will target a hybrid
BIST architecture as the final implementation platform. By using the hybrid BIST
architecture we can guarantee a solution which is cost effective and flexible.

Our current approach for high level BIST insertion is based on Symbolic Testability
Analysis (STA) [14] extended with BIST based controllability and observability
enhancement strategies and resource optimisation [13]. The STA based BIST approach
provides solution to the problem of justification of test vectors and propagation of test
responses by searching one or more control and observation paths, known as Test
Environment (TE) for each FU. These TEs provide  justification and propagation paths from
on-chip test pattern generators and signature analysers to each separate FU.

The test environments for a FU under test, if such a TE exists, are obtained by looking at its
input lines and tracing back the propagation paths that can be used to set its values from the primary
input ports or pseudorandom pattern generators (PRPGs). To derive the test environments, it is
necessary to force intermediate active functional modules to take particular values to assist in
propagating test data from PRPGs to the FU under test and from the FU under test to an appropriate
primary output or a multiple input signature register (MISR).

Figure 5: Testing Functional Units

if (IN1 > 0)
    X=IN2+3;      --- q=1
else {
    if (IN2 >= 0)
        X=IN1+IN2; -- q=2
    else
        X=IN1*5;  --- q=3
}

Y=X-10;      -------- q=4
X=Y*2;       -------- q=5
OUT=X+Y;     -------- q=6

Behavioral Description

OUT q’

X+Y

OUT’

0,1,2,3,4,5

6

Gate-level netlist

     

     

1

X

X

0

0

X

Fragment of a gate-level netlist
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4.1. Problem Formulation

Initially, all primary input registers are converted into pseudorandom pattern generators
(PRPG) and all primary output registers to multiple input signature registers (MISR).
Additional BIST registers for self-test enhancement will then be used, if necessary. The
particular problem we address is to optimize BIST resources usage under self-test time
constraints. We aim at creating a tool to analyze the testability of the design and to determine
the minimal possible testing time, Tmin, which can be achieved as a result of the parallelism
inherited by the nature of the design itself. Given a certain required maximum testing time,
Treq, the following alternatives are taken:

• If Treq < Tmin, return no solution;

• If Treq=Tmin, optimize BIST hardware, so that minimal overhead is left and return
the current testing time, Tmin, and the modified RTL design;

• If Treq>Tmin, optimize the BIST hardware, such that minimal overhead is left and
testing time TBIST ≤ Treq, and return TBIST and the modified RTL design.

The input to our BIST time analysis and resource optimization tool is an RTL design
represented in Control Dataflow Graphs. The outputs are a test schedule, an RTL design with
minimal added BIST resources and a merged design and BIST controller.

4.2. Proposed Methodology

STA defines four Boolean values for controllability and observability of each Test Control
Data Flow (TCDF) variable. General controllability, Cg(n), of a TCDF variable on the nth

control cycle is the ability to control the variable to any arbitrary value from the
corresponding PRPGs. Similarly, controllability to the constant value 1, C1(n), and
controllability to the constant value 0, C0(n), are defined. Observability, Ov(n), of a TCDF
variable V in nth control cycle is the ability to observe any value of the variable at a MISR. If
one or several of the controllability values needed to test a module, are false, then the
associated variable is uncontrollable in the given control step.

Our main idea is illustrated in Figure 6. Inputs and outputs of the operations are variables,
and the test environments of each operation are used to test the associated functional module
that performs the operation. To test multiplier node *3 using PRPGs placed at the inputs of
operations *1 and *2, and a MISR at the output of +4, we need to control V6 and V7 to
general controllability values in the second control cycle and observe the value of V8 in the
third control cycle. The test environments for operation *3 are given by "Cg(2)V6 and Cg(2)V7

and Ov(3)V8" and are derived as follows. Cg(2)V6:={Cg(1)V1 AND C1(1)V2 } OR {C1(1)V1 AND
Cg(1)V2}, Cg(2)V7:={Cg(1)V3 AND C1(1)V4} OR {C1(1)V3 AND Cg(1)V4} and Ov(3)V8:=Ov(4)V9

AND C0(1)V5.  In total, there are four different alternative test environments for testing *3
(Table 1).

To illustrate our next idea, let us derive TEs for operation +5 (Figure 6) which are given as
"Cg(2)V1 and Cg(2)V4 and Ov(3)V10". For left input, Cg(2)V1:=Cg(1)V1, for right input,
Cg(2)V4:=Cg(1)V4 and for observability of output, Ov(3)V10 :=Ov(4)V10. 
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Figure 6: TCDF example.

For controlling operation For observing responses
TEs V1 V2 V3 V4 V5

TE1 of op *3 Cg(1) C1(1) Cg(1) C1(1) C0(1)
TE2 of op *3 Cg(1) C1(1) C1(1) Cg(1) C0(1)
TE3 of op *3 C1(1) Cg(1) Cg(1) C1(1) C0(1)
TE4 of op *3 C1(1) Cg(1) C1(1) Cg(1) C0(1)
TE1 of  op +5 Cg(1) - - Cg(1) -

Table 1: Alternative TEs for testing *3 and +5

If a given TCDF variable, say Vk,
needs to be controlled to the same
value in the same control cycle in test
environments of different operations,
say OPFU1, OPFU2… OPFUn, then this
common controllability value can be
shared by those operations to perform
their concurrent testing. For example,
consider variables V1 and V4 in the
TEs of *3 and +5. Both the second TE
alternative of *3 (TE2 of op *3) and
the TE of +5 need V1 and V4 to be
controlled to Cg(1). Therefore, V1 and
V4 can be shared to perform
concurrent testing of both operations
using the test environment TE2 of
operation *3. Our overall approach is
described in Figure 7.

Extract all alternative
TE options

Symbolic Testability Analysis

Extract MISR incompatibility sets

Testability enhancement

BIST engine generation

Further testability enhancement, resource optimization and test
responses redirection

MISR based operation scheduling for conc. testing,  Tmin

Figure 7: Overview of the BIST time analysis and
resource optimization

BISTed datapath and controller (VHDL or RTL generation)

No solution
Yes

No

Treq < Tmin
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4.3. BIST Synthesis

4.3.1. Initial Testability Enhancement

Uncontrollable nodes induce controllability problems to successor nodes. Our
controllability enhancement strategy first enhances the node that is the source of
controllability problems. Therefore, enhancing one node can improve controllability of most
of the successor nodes. We do this by multiplexing the uncontrollable node with a node that
is directly controllable from a primary input register or by adding a new dedicated PRPG and
multiplexing it with the uncontrollable node.

Observability of an operation imposes restrictions on the values of other nodes
(operations) in order for the test responses to be propagated to MISRs. If the restrictions are
not able to force propagation of the values to MISR or some nodes are forced to have
contradictory values simultaneously to enable observability then these operations become
unobservable (Figure 8).

If node N1 in Figure 8 is to be tested, controllability value Cg is to be set at V1 and V2

while the output of N2 has to be controlled to C0 to enable observability of the output of N1
at a MISR. Since V2 is also connected to N2, whatever value is set at V3, C0 can not be
guaranteed at the output of N2, hence, test responses at the output of N1 can not reach the
MISR.

One solution to the observability problem discussed above is to introduce a MISR at the
output of the node N1 or redirect test responses from N1 to an existing MISR in the design.
However, in more complex designs, this has to be done in a way such that MISR resources
are efficiently used. Therefore, our BIST observability enhancement strategy is to add a
dedicated MISR at the output of a node situated at the end of a chain of unobservable nodes.
If a MISR is added to an unobservable node that is not at the end of the unobservable chain,
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Figure 8: Observability problem due to
contradictory values on intermediate nodes
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unobservable chains and MISR
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then the downstream modules will still be unobservable. This idea is illustrated in Figure 9.
Before BIST enhancement, the design has three primary input variables (V1, V2 and V3) and
three constant nodes (C1, C2 and C3). STA reveals existence of two unobservable chains. The
first one consists of nodes *opN21, *opN24 and *opN22 whereas the second consists of
*opN22, *opN28 and –opN25. To enhance the observability of these chains, our approach
selects to enhance observability of lines c and f, which are at the end of the first and second
unobservable chains respectively. As a result, observability of all three nodes in each of the
two chains is enhanced. Had we, for example, enhanced observability of lines b instead, only
observability of node *opN22 would have been enhanced. Consequently, it would have been
necessary to add more MISRs to improve the observability of the remaining four nodes.
Therefore, our approach selects places to enhance observability such that the smallest number
of MISRs is added into the design.

4.3.2. Alternative Test Environment Options

STA reveals the existence of possibly more than one TE for controlling input operands and
observing test responses for each operation. If we want to observe node N1 in Figure 10, we
need to observe arc Atbo (Atbo and Atbc stand for arc to be observed and arc to be constrained to
controllability value C0 respectively). Based on STA,
this implies constraining Atbc to C0, and observing the
value of Atbo at any of the observable output arc (Ao1,
Ao2,…, Aon) at the output of node N3. Therefore, the
number of observability alternatives increases when the
node N3 has multiple observability paths, which, in this
case, are also inherited by the node N1, provided that
Atbc can be constrained to C0.

altC0(Ai) is defined as the number of compatible
alternative test environment options (ATEO) that can be
used to set arc Ai to a controllability value C0. Similarly,
we define altC1(Ai), and altCg(Ai). altO(Ai) is the number
of compatible alternative test environment options that
can be used to enable observability of an arc Ai at some
signature registers.

Two TE alternatives are compatible if and only if each of the TCDF variables that is
included in both of them needs to be controlled to the same value and at the same control
step. However, two ATEOs need not necessarily have exactly the same number and type of
variables. They can have some different variables, but the common ones have to be
consistent. Therefore, the total number of observability alternative options for arc Atbo can be
derived as follows,

altO(Atbo) = altC0(Atbc) ×  altO(Ao1) + altC0(Atbc) ×  altO(Ao2) + …+ altC0(Atbc) ×  altO(Aon) … (1)

∑
=

×=
n

i
oialttbcalt AOAC

1
0 )()(

Out of these alternatives, that particular TE alternative option which minimizes MISR
conflicts and can lead to packing as many operations as possible in each test session will be
chosen during test session selection process. Consequently, the total number of test sessions
will be minimized. In addition, TEs of all operations in a test session must be simultaneously

Figure 10: Multiple alternative
observability paths
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supported. When the best choice of TE alternatives that give the smallest feasible number of
test sessions is achieved, the associated testing time is known as minimal testing time, Tmin.

4.3.3. MISR Incompatibility Sets (MISRISs)

MISR incompatibility sets consist of operations that cannot be tested concurrently due to
MISR sharing conflicts. Two operations are contained in the same set if they share the same
MISR for test response analysis and, therefore, cannot be tested concurrently.

To extract MISRISs we group operations based on the MISRs that are used to analyze
their responses. Each MISR, Mi, corresponds to one set, Gi, which will include all operations
that it analyzes. All operations in the same set are known as MISR incompatible operations.

The number of incompatible operations in the largest MISRIS determines a lower bound
on the minimal number of test sessions that are needed for testing the whole design. In
reality, the total testing time is not only determined by MISR sharing incompatibilities, but
also is constrained by the choice of good TE options, which determine whether the TEs are
conflict free.

When an operation has multiple independent observability paths it will be included in
more than one MISRIS. As discussed in previous section, the operation can also have many
alternative test environments. We have investigated how different choices of the alternative
observability paths impact TE complexity and the resulting number of test sessions. Based on
the results we can develop a heuristic to choose the best observability path if a FU is
observable through multiple observability paths.

4.3.4. Concurrent Test Session Selection

Concurrent test sessions are selected based on MISRIS. A group consisting of one
operation from each MISRIS can possibly be tested concurrently if their TEs constraints are
not in conflict.

If the TE constraints are not considered, it can be possible to schedule a minimal number
of test sessions equal to the maximum number of operations in the most congested MISRIS.
However, these may not be correct test sessions because the availability of MISRs for
concurrent observation of responses does not guarantee that those operations can be properly
controlled and the responses properly propagated to the corresponding MISR at the same time
for all operations in a given test session. In this way, controllability constraints imposed by
the TEs of individual operations may cause an increased number of test sessions. This is due
to the fact that there may exist operations that use different MISRs for signature analysis, but
compete for the same variables to control their inputs or propagate test response to the
appropriate MISR, hence cannot be simultaneously controlled.

TEs have two components. The first component consists of the controllability values
necessary to justify the inputs of the operations and the second component consists of the
controllability values necessary to propagate test responses to the corresponding MISR. Thus,
when constraints required to justify input operands and those imposed to propagate test
responses to appropriate MISR are taken into account during test session selection process, an
increase in the number of test sessions can be noticed. Consequently, the MISRs will be less
effectively used, with some of them remaining idle during several test sessions. After all
constraints are taken into consideration, the resulting number of test sessions represents the
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minimal testing time, Tmin. Thus, it is possible to test the design in Tmin test sessions as a result
of the nature of parallelism inherited from the design itself.

Our heuristic for selecting concurrent test sessions is based on an equal length test-
scheduling algorithm [2]. We extended the algorithm to take into consideration controllability
and observability constraints when choosing operations to be included in a given test session.
Therefore, operations are included in the same test session not only if they do not share
MISR, but also if controllability and observability constraints are simultaneously satisfied for
all of them.

4.4. BIST Resources Optimization

MISRs are not effectively used in some test sessions. Our approach recovers some MISRs
and converts them back to normal registers. The operations that use recovered MISRs are
redirected to other free MISRs in the same test session.

Let Lu represents a MISR that is least used in all test sessions. This means that Lu remains
idle in most of the test sessions as compared to other MISRs. Let U be a set consisting of test
sessions in which Lu is used. During execution of the algorithm, Mc is the set of currently
used MISRs. When a MISR is recovered and converted back to a normal register, it is
removed from Mc. F is a set consisting of MISRs that are free in every test session in which
Lu is used. Among the free MISRs in set F, P is the one that is mostly packed, which means,
P analyzes responses from the greatest number of operations as compared to the other MISRs
in F. Let G be the set of all MISR incompatibility sets. Given a certain MISR called X, GX

represents the incompatibility set corresponding to MISR X.

The algorithm below minimizes the set MC of used MISRs and produces the corresponding
incompatibility sets. This optimization is performed without increasing the number of test
sessions.

Begin
G  set of all incompatibility sets; Best_selection_obtained  FALSE;
While  ( best_selection_obtained != TRUE )

Lu  X, X ∈ MC and X is least used; U  All test sessions in which Lu is used; 
F  Free MISRs in sessions U;
If  F ≠φ  then

P  X, X ∈ F and X is most packed;
G  G – { G P, G Lu };  G P  G P U G Lu;  G  G U { G P }; M C  M C - { L u };

else
best_selection_obtained  TRUE;

return  MC, G;
End.

The figures below illustrate how the MISR recovery algorithm works. For Diff example
MISR4 is recovered and test responses for opN32 are redirected to MISR3. Similarly, for the
EX design, MISRw is recovered and test responses from opN30 are redirected to MISRx.



Report on Early DfT Support Page 15

COTEST/D3 Hybrid BIST

 Linköping University - all rights reserved rev. 41 - 02-05-13 15:56

TS1:

TS2:

TS3:

TS4:

OpN29 OpN32

OpN23

OpN24

OpN30

OpN21TS5:

OpN28

OpN25

OpN22TS6:

OpN26TS7:

MISR1 MISR2 MISR3 MISR4

MISR recovery for Diff. Design

TS1:

TS2:

TS3:

TS4:

OpN21 OpN25

OpN22

OpN24

OpN27

OpN29TS5:

OpN28 OpN30

MISRc MISRf MISRx MISRw

MISR recovery for EX design

Figure 11: MISR recovery algorithm

4.5. Combined Use of HTG and STA for BIST Insertion

Our approach for testability enhancement and BIST insertion is based on combined use of
HTG and STA as discussed above. We can use the results from HTG to group FUs into three
sets.

The first set consists of FUs which testability is above the user-defined threshold fault
coverage. These FUs will be tested together in a single test session with the long LFSR
situated at the primary input and a long MISR at the primary output. FUs in this set can be
tested in the first test session so that the test vectors will also be indirectly used to capture
some of the faults in the next sets of FUs as discussed below.

The second set consists of FUs which testability is below threshold fault coverage. The
FUs in this set will be tested based on our STA based BIST testing methodology. Alternative
TEs for each of the FU in this group will be searched and appropriate test sessions selected
and finally BIST resources for these FUs will be optimized. We also look at the possibilities
of reducing the length of the test sessions in this group by taking into account some of the test
vectors that were applied when testing the FUs from the first set. In other words, faults that
are already indirectly detected in the first session will not be considered, hence, only the
remaining faults will be targeted. Appropriate seed and polynomials for minimizing the
number of test vectors for detecting the few remaining faults can also be appropriately
selected.

The third set consists of random resistant FUs. These FUs have to be tested by using
deterministic test vectors. FUs in this set will also be tested by using STA based approach to
guarantee that deterministic test vectors are supplied to appropriate FUs.

Finally, a global total testability (GTT) metric to compute total FC of the whole design can
be used. The value of GTT can fine-tune the results by making a good trade-off between TE
complexity and BIST overhead when using HTG and STA approaches.

5. Hybrid BIST

A typical BIST architecture consists of a test pattern generator (TPG), a test response
analyzer (TRA) and a BIST control unit (BCU), all implemented on the chip. The classical
way to implement the TPG for logic BIST (LBIST) is to use linear feedback shift registers



Report on Early DfT Support Page 16

COTEST/D3 Hybrid BIST

 Linköping University - all rights reserved rev. 41 - 02-05-13 15:56

(LFSR). But as the test patterns generated by the LFSR are pseudorandom by their nature, the
LFSR-based approach often does not guarantee a sufficiently high fault coverage (especially
in the case of large and complex designs) and demands very long test application times in
addition to high area overheads. Therefore, several proposals have been made to combine
pseudorandom test patterns, generated by LFSRs, with deterministic patterns, to form a
hybrid BIST solution.

In our approach we propose to use a hybrid test set, which consists of a limited number of
pseudorandom and deterministic test vectors. The main idea is to first apply a limited number
of pseudorandom test vectors, which is followed by the application of the stored deterministic
test set specially designed to shorten the pseudorandom test cycle and to target the random
resistant faults. The basic idea of Hybrid BIST is discussed in [7].

In our STA based BIST approach we proposed a methodology for analyzing testability of
the design and proposed an approach to enhance testability to get 100% controllability and
observability for each of the functional modules. Initially it was done by converting primary
input registers to PRPGs and primary output registers to MISRs. Further testability
enhancement demanded conversion of some of the inner registers to BIST registers. Though
some of the MISR registers could be recovered after our resource optimization approach was
used, still we had to pay for BIST area and wiring overhead.

5.1. Hybrid BIST architecture

To reduce the hardware overhead in the LBIST
architectures the hardware LFSR implementation can
be replaced by software, which is especially attractive
to test SoCs, because of the availability of computing
resources directly in the system (a typical SoC
usually contains at least one processor core). On the
other hand, the software based approach implies large
memory requirements (to store the test program and
test patterns).

A hardware based hybrid BIST architecture is
depicted in Figure 12, where the pseudorandom
pattern generator (PRPG) and the Multiple Input
Signature Analyzer (MISR) are implemented inside
the core under test (CUT). The deterministic test
pattern are precomputed off-line and stored inside the
system.

To avoid the hardware overhead caused by the PRPG and MISR, and the performance
degradation due to excessively large LFSRs, a software based hybrid BIST can be used where
pseudorandom test patterns are produced by the test software. Our the cost calculation and
optimization algorithms are general, and can be applied as well to the hardware based as to
the software based hybrid BIST optimization.

In case of the software based solution, the test program, together with test data (LFSR
polynomials, initial states, pseudorandom test length, signatures), is kept in a ROM. The
deterministic test vectors are generated during the development process and are stored in the

Figure 12: Hardware based hybrid
BIST architecture
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same place. For transporting the test patterns, we assume that some form of test access
mechanism is available.

In test mode the test program is executed in the processor core. The test program proceeds
in two successive stages. In the first stage the pseudorandom test pattern generator, which
emulates the LFSR, is executed. In the second stage the test program will apply precomputed
deterministic test vectors to the core under test.

The pseudorandom TPG software is the same for all cores in the system and is stored as
one single copy. All characteristics of the LFSR needed for emulation are specific to each
core and are stored in the ROM. They will be loaded upon request. Such an approach is very
effective in the case of multiple cores, because for each additional core, only the BIST
characteristics for this core have to be stored. The general concept of the software based
pseudorandom TPG is depicted in Figure 13.

Although it is assumed that the best
possible pseudorandom sequence is used, not
always all parts of the system are testable by a
pure pseudorandom test sequence. It can also
take a very long test application time to reach a
good fault coverage level. In case of hybrid
BIST, we can dramatically reduce the length
of the initial pseudorandom sequence by
complementing it with deterministic stored test
patterns, and achieve the 100% fault coverage.

Our previous approach required insertion of additional hardware based PRPGs and
MISRs. When using a hybrid BIST approach those modifications are not required and only
additional wiring for transporting pseudo-random and deterministic test vectors to inner
locations of the circuitry for testability enhancement is needed. Similarly, test responses can
be directed from internal unobservable lines to the software based signature analyzer. Thus,
in our new testability and enhancement framework, we use our BIST based STA approach to
pinpoint hard to test functional modules in the design and instead of adding additional test
structures to the places suggested by our testability analysis, we use wiring transformation to
enhance controllability and observability. This gives us significant reduction of hardware
overhead while providing a mechanism for testing random resistant faults and consequently
increasing test quality.

5.2. Cost calculation for Hybrid BIST

In a hybrid BIST technique the length of the pseudorandom test L is an important
parameter, which determines the behavior of the whole test process. It is assumed in this
report that for the hybrid BIST the best polynomial for the pseudorandom sequence
generation will be chosen. Removing the latter part of the pseudorandom sequence leads to a
lower fault coverage achievable by the pseudorandom test. The loss in fault coverage should
be covered by additional deterministic test patterns. In other words, a shorter pseudorandom
test set implies a larger deterministic test set. This requires additional memory space, but at
the same time, it shortens the overall test process. A longer pseudorandom test, on the other
hand, will lead to longer test application time with reduced memory requirements. Therefore

SoC ROMCPU Core
LFSR1: 001010010101010011
N1: 275

LFSR2: 110101011010110101
N2: 900
...

load (LFSRj);
  for (i=0; i<Nj; i++)
   ...
end;

Core j Core j+1
Core j+...

Figure 13: LFSR emulation
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it is crucial to determine the optimal length of the pseudorandom test LOPT  in order to
minimize the total testing cost.

Figure 14 illustrates the total cost calculation for the hybrid BIST consisting of
pseudorandom test and stored test, generated off-line. We can define the total test cost of the
hybrid BIST CTOTAL as:

                   CTOTAL = CGEN + CMEM = αL + βS                (2)

where CGEN  is the cost related to the time for generating L pseudorandom test patterns
(number of clock cycles), CMEM is related to the memory cost for storing S precomputed test
patterns to improve the pseudorandom test set, and α, β are constants to map the test length
and memory space to the costs of the two parts of the test solutions to be mixed. Figure 14
illustrates how the cost of pseudorandom test is increasing when striving to higher fault
coverage (the CGEN curve). The total cost CTOTAL is the sum of the above two costs. The
weights α and β reflect the correlation between the cost and the pseudorandom test time
(number of clock cycles used) and between the cost and the memory size needed for storing
the precomputed test sequence, respectively.

Creating the curve CGEN =αL is not difficult. For this purpose, the cumulative fault
coverage for the pseudorandom sequence generated by a LSFR should be calculated by a
fault simulation. More difficult is to find the values for CMEM = βS. For this purpose we can
use either ATPG based or fault table based approach and for reducing the number of
calculations a Tabu search based optimization algorithm is proposed [8].

6. Experimental Results

The main goal of the COTEST project was assessment of feasibility and effectiveness of
high-level DfT modifications. For this purpose we have developed a prototype environment
for evaluating several key techniques, which serve as a platform for future developments. The
environment consists of our in-house tools, external academic as well as commercial tools
and is depicted in Figure 15. For high-level synthesis the in-house high-level synthesis tool
CAMAD [4] is utilized. Subsequent logic synthesis is performed by AutoLogic II from
Mentor Graphics [11] and stuck-at fault coverage at gate level is measured with the Turbo

Total Cost
CTOTAL

Figure 14: Cost calculation for hybrid BIST
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Tester toolset from Tallinn Technical University [6]. Additionally the library of functional
units was developed and is available at behavioral and gate levels as well as a set of
compilers for different intermediate formats.

6.1. Hierarchical ATPG

We have investigated possibilities to incorporate structural information into the behavioral
level test generation environment. Some of those results are already discussed in the
COTEST report D2 [5]. In the following we are presenting and discussing results obtained
with benchmark circuits defined in the COTEST report D1 [16].

We have investigated possibilities to apply our ATPG approach for industrial control-
dominated design F4 [16]. We have extracted two blocks from the F4 specification:
F4_InputHandler_1 and F4_OutputHandler_1. Results are compared with commercial gate-
level ATPG tool from Mentor Graphics (FlexTest [12]) and presented in Table 2:

High-level HTG Gate-level ATPG
Design

VHDL
Lines

[#]

Stuck-at
faults

[#] Test
length

CPU
[s]

FC
[%]

Test
length

CPU
[s]

FC
[%]

F4_InputHandler_1 175 4872 62 228 64.22% 219 811 38.22%

F4_OutputHandler_1 54 872 26 1.52 76.26% 170 5 81.30%

Table 2: ATPG results with F4 design

AutoLogic II

RTL VHDL

CAMAD Hierarchical
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Symbolic Testability Analysis
&

BIST Insertion

Stuck-at Fault 
Coverage

Gate-Level Netlist

TurboTester
Fault Simulator

Hybrid BIST
Analysis

FU Library
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Figure 15: Experimental environment
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As it can be seen, HTG can produce results which are comparable with results obtained at
the gate-level, while having shorter test generation time and reduced test length.

Another set of experiments was performed with the DIFFEQ design [16], which belongs to
the HLS’92 benchmark suite. This design was analyzed more thoroughly for obtaining data
for BIST insertion and the results are presented in Figure 16 and summarized in Table 3.

ENTITY diff IS
  PORT
      ( x_in     : IN integer;
        y_in     : IN integer;
        u_in     : IN integer;
        a_in     : IN integer;
        dx_in    : IN integer;
        x_out    : OUT integer;
        y_out    : OUT integer;
        u_out    : OUT integer
     ) ;
END diff ;

ARCHITECTURE behavior OF diff IS
BEGIN
  PROCESS
    variable x_var, y_var, u_var,
             a_var, dx_var  : integer;
    variable t1,t2,t3,t4,t5,
             t6,t7: integer ;
    BEGIN
        x_var := x_in;
        y_var := y_in;
        a_var := a_in;
        dx_var := dx_in;
        u_var := u_in;

    while x_var < a_var loop

    t1 := u_var * dx_var;
    -- Tested 5634 faults
    -- Untestable 0
    -- Aborted 14
    -- Fault coverage: 99.752125
    -- Fault efficiency: 99.752125
    -- 52 Vectors

    t2 := x_var * 3;
    -- Tested 4911 faults
    -- Untestable 0
    -- Aborted 737
    -- Fault coverage: 86.951133
    -- Fault efficiency: 86.951133
    -- 11 Vectors

    t3 := y_var * 3;
    -- Tested 4780 faults
    -- Untestable 0
    -- Aborted 868
    -- Fault coverage: 84.631728
    -- Fault efficiency: 84.631728
    -- 10 Vectors

    t4 := t1 * t2;
    -- Tested 5621 faults
    -- Untestable 0
    -- Aborted 27
    -- Fault coverage: 99.521955
    -- Fault efficiency: 99.521955
    -- 38 Vectors

    t5 := dx_var * t3;
    -- Tested 5616 faults
    -- Untestable 0
    -- Aborted 32
    -- Fault coverage: 99.433428
    -- Fault efficiency: 99.433428
    -- 35 Vectors

    t6 := u_var - t4;
    -- Tested 368 faults
    -- Untestable 0
    -- Aborted 60
    -- Fault coverage: 85.981308
    -- Fault efficiency: 85.981308
    -- 9 Vectors

    u_var := t6 - t5;
    -- Tested 424 faults
    -- Untestable 0
    -- Aborted 4
    -- Fault coverage: 99.065421
    -- Fault efficiency: 99.065421
    -- 15 Vectors

    t7 := u_var * dx_var;
    -- Tested 1123 faults
    -- Untestable 0
    -- Aborted 4525
    -- Fault coverage: 19.883144
    -- Fault efficiency: 19.883144
    -- 1 Vectors

    y_var := y_var + t7;
    -- Tested 389 faults
    -- Untestable 0
    -- Aborted 39
    -- Fault coverage: 90.887850
    -- Fault efficiency: 90.887850
    -- 11 Vectors

    x_var := x_var + dx_var;
    -- Tested 414 faults
    -- Untestable 0
    -- Aborted 14
    -- Fault coverage: 96.728972
    -- Fault efficiency: 96.728972
    -- 15 Vectors

  end loop ;

  x_out <= x_var;
  y_out <= y_var;
  u_out <= u_var;

  END PROCESS ;

END behavior;

Figure 16: DIFFEQ benchmark with testability figures for every individual functional unit
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In Figure 16 we have associated with every FU a total number of stuck-at faults in the FU,
when implemented in the target technology, a number of vectors, which were generated by a
gate-level ATPG and successfully justified till primary inputs and propagated till primary
outputs and the final stuck-at fault coverage for every FU. As it can be seen, fault coverage of
functional units differs significantly, depending of the location and type of every individual
FU. This information will be exploited at the latter stage of DfT flow, when selecting
modules for BIST insertion. In Table 3 the comparative results for the whole DIFFEQ design
are presented. Those results are discussed in detail in the COTEST report D2 [5].

High level ATPG Hierarchical ATPG testgen

FC

[%]

Len

[#]

CPU

[s]

FC

[%]

Len1

[#]

CPU

[s]

FC

[%]

Len

[#]

CPU

[s]

DIFFEQ 1 97.25 553 954 98.05 199 468 99.62 1,177 4,792

DIFFEQ 2 94.57 553 954 96.46 199 468 96,75 923 4,475

Table 3: Summarized HTG results for DIFFEQ benchmark circuit.

6.2. High-level BIST insertion

For high-level BIST insertion we performed experiments with several designs, including
COTEST benchmark design DIFFEQ. We have chosen more designs than included in the
COTEST benchmark report [16] for obtaining additional data for comparisons. At first the
standard STA based approach was applied and thereafter testability was enhanced till 100%.
The results are depicted in Table 4, where the first column gives information about the design
(name as well as number and type of functional units), the second column shows the number

                                                
1 The number of test patterns simulated at the gate-level is larger due to the fact that every behavioral-level test

pattern has to be expanded on gate-level over multiple timeframes.

Applying original STA 100% Testability enhancement approach
Design

%Testability Straightforward Optimized

Name Operations

Test
sessions
(Tmin) #PG #MISR Contr. Observ. #PGs #MISRs #PGs #MISRs

Diffeq 2+, 2-, 6* 7 4 3 40 70 5 4 5 2

Ex 1+, 3-, 4* 5 3 2 12.5 37.5 6 4 6 3

Tseng 4+, 2*, 1 /, 1 & 4 5 3 100 37.5 5 5 5 3

Paulin 2+, 2-, 6* 6 4 3 50 50 5 5 5 3

Table 4: BIST resources after applying STA and
testability enhancement and optimization to 100% testability
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of test sessions, and the third column shows the number of PGs, MISRs and the testability of
the design after applying STA, but before testability enhancement. Controllability and
observability sub-columns depict testability. Testability is computed as a percentage of
controllable or observable operations. Controllability is the ratio of the number of
controllable operations to the total number of operations in the design. Observability is the
ratio of the number of observable operations to the total number of operations. An operation
is controllable if both its left and right hand operands are simultaneously controllable. If any
input operand is not controllable the associated operation is not controllable. At the latter part
of the table the number of PGs and MISRs, after testability is enhanced to 100%, is given. At
first the number of PGs and MISRs after a straightforward testability enhancement is
presented and thereafter the number of PGs and MISRs, that remain in the design after
applying our BIST resource optimization and MISR recovery strategy is given. The results
show that by careful BIST optimization at the high level, the needed area overhead can be
reduced (between 25% and 50% in terms of MISRs).

6.3. Hybrid BIST

For the hybrid BIST approach
experiments were carried out on the
ISCAS’85 benchmark circuits for
comparing different algorithms, and for
investigating the efficiency of the Tabu
search method for optimizing the hybrid
BIST. ISCAS’85 circuits were chosen for
comparative purposes, as those circuits are
thoroughly investigated and experimental
data is available in the literature.
Experiments were carried out using the
Turbo Tester toolset [15] for deterministic
test pattern generation, fault simulation,
and test set compaction. The results are
presented in Table 5 and illustrated by a
diagram in Figure 17.

In the columns of Table 5 the following
data is depicted: ISCAS’85 benchmark
circuit name, L - length of the
pseudorandom test sequence, FC - fault
coverage, S - number of test patterns
generated by deterministic ATPG to be
stored in BIST, Cost – total cost of BIST

In Figure 17 the amount of
pseudorandom and deterministic test
patterns in the optimal BIST solution is
compared to the sizes of pseudorandom
and deterministic test sets when only either
of the sets is used. In the typical cases less
than half of the deterministic vectors and
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only a small fraction of pseudorandom vectors are needed, however the maximum achievable
fault coverage is guaranteed and achieved. Figure 18 compares the costs of different
approaches using for Hybrid BIST cost calculation an equation 2 with the parameters α = 1,
and β = B where B is the number of bytes of the input test vector to be applied on the CUT.
As pseudorandom test is usually the most expensive method. It has been selected as a
reference and given value 100%. The other methods give considerable reduction in terms of
cost and, as it can be seen, the hybrid BIST approach has significant advantages compared to
the pure pseudorandom or stored test approach, in most of the cases.

7. Conclusions

The main goal of this assessment project was the evaluation of different test and DfT
methodologies at higher levels of abstraction. With our work we have experimentally
demonstrated that it is feasible to reason about testability and to introduce DfT structures at
early phases of the design cycle. Particularly we obtained high quality results by
incorporating some structural information during the analysis at the behavioral level. We
have investigated the possibilities of inserting self-test structures, as one of the dominating
low-level DfT methodologies, in the early phases of the design flow. By introducing a hybrid
BIST architecture we have increased the flexibility of our approach  leading to very attractive
SoC solutions.

As it was demonstrated with our HTG algorithm, working at high levels of abstraction
allows to reduce the test generation effort  by a factor ranging from 3 to 10, while keeping the
same high quality. By inserting self-test structures our approach guarantees full (100%)
testability, while reducing area overhead in terms of signature analyzers compare to the
straightforward solution by 25% to 50%. This area overhead can further be reduced by using
a hybrid BIST architecture, where some of the required test structures can be implemented in
software. As it was demonstrated experimentally, with a hybrid BIST solution less than 50%
of deterministic patterns and only a small fraction of pseudorandom vectors are needed, while
the maximum achievable fault coverage is guaranteed.

Pseudorandom test Stored test Hybrid test
Circuit

L FC S FC L S Cost

C432 780 93.0 80 93.0 91 21 196

C499 2036 99.3 132 99.3 78 60 438

C880 5589 100.0 77 100.0 121 48 505

C1355 1522 99.5 126 99.5 121 52 433

C1908 5803 99.5 143 99.5 105 123 720

C2670 6581 84.9 155 99.5 444 77 2754

C3540 8734 95.5 211 95.5 297 110 1067

C5315 2318 98.9 171 98.9 711 12 987

C6288 210 99.3 45 99.3 20 20 100

C7552 18704 93.7 267 97.1 583 61 2169

Table 5: Hybrid BIST Experimental results
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