
ABSTRACT
We present an approach to process scheduling for
synthesis of safety-critical distributed embedded systems.
Our system model captures both the flow of data and that
of control. The communication model is based on a time-
triggered protocol. We take into consideration overheads
due to communication and the execution environment.
Communications have been optimized through packaging
of messages into slots with a properly selected order and
lengths. Several experiments demonstrate the efficiency
of the approach.

1. INTRODUCTION
In this paper we concentrate on process scheduling for time-
triggered systems consisting of multiple programmable processors
and ASICs interconnected by a communication channel. For such
systems, scheduling has a decisive influence on the correct
behaviour of the system with respect to its timing requirements.

Process scheduling for performance estimation and synthesis of
embedded systems has been intensively researched in the last years.
Preemptive scheduling with static priorities using rate monotonic
analysis is performed in [13]. In [11] the problem is formulated
using mixed integer linear programming while the solution
proposed in [10] is based on constraint logic programming. Static
non-preemptive scheduling of a set of processes on a
multiprocessor architecture has been discussed in [5, 6, 12]. Several
approaches consider architectures consisting of a single
programmable processor and an ASIC. Under such circumstances
deriving a static schedule for the software component practically
means the linearization of the dataflow graph [1, 4].

For process interaction (if considered) the mentioned
approaches are based on a dataflow model representation.
Communication aspects have been treated in a very simplified way
during process scheduling. One typical solution is to consider
communication tasks as processes with a given execution time
(depending on the amount of information transferred) and to
schedule them as any other process [5, 10, 11], without considering
issues like communication protocol, packaging of messages, clock
synchronization, etc. These aspects are, however, essential in the
context of safety-critical distributed applications and one of the
objectives of this paper is to develop a strategy which takes them
into consideration for process scheduling.

In our approach, an embedded system is viewed as a set of
interacting processes mapped on an architecture consisting of
several programmable processors and ASICs interconnected by a
communication channel. Process interaction is not only in terms of
dataflow but also captures the flow of control, since some processes

can be activated depending on conditions computed by previously
executed processes. We consider a non-preemptive execution
environment in which the activation of processes and
communications is triggered at certain points in time, and we
generate a schedule table and derive a worst case delay which is
guaranteed under any condition. Such a scheduling policy is well
suited to a large class of safety-critical applications [7].

The scheduling strategy is based on a realistic communication
model and execution environment. We take into consideration the
overheads due to communications and to the execution environment
and consider during the scheduling process the requirements of the
communication protocol. Moreover, our scheduling algorithm per-
forms an optimization of parameters defining the communication
protocol which is essential for the reduction of the execution delay.

Our system architecture is built on a communication model
which is based on the time-triggered protocol (TTP) [8]. TTP is
well suited for safety critical distributed real-time control systems
and represents one of the emerging standards for several application
areas like, for example, automotive electronics [7, 14].

The paper is divided into 7 sections. In section 2 we present our
graph-based abstract system representation. The architectures
considered for system implementation are presented in section 3.
Section 4 formulates the problem and section 5 presents the
scheduling strategy proposed. The algorithms, one based on a
greedy approach and the other on simulated annealing, are
evaluated in section 6, and section 7 presents our conclusions.

2. CONDITIONAL PROCESS GRAPH
As an abstract model for system representation we use a directed,
acyclic polar graph with conditional edges (Figure 1) [3].

Each node in this graph represents a process which is assigned
to a processing element. An edge from process Pi to Pj indicates
that the output of Pi is the input of Pj. Unlike a simple edge, a
conditional edge (depicted with thicker lines in Figure 1) has an
associated condition. Transmission of a message on a conditional
edge will take place only if the associated condition is satisfied and
not, like on simple edges, for each activation of the input process Pi.
A process can be activated only after all its inputs have arrived, and
issues its outputs when it terminates. However, a conjunction
process (where the alternative paths corresponding to different
values of a condition meet, e.g., P10) can be activated after
messages coming on one of the alternative paths have arrived. Once
activated, the process can not be preempted by other processes.

Figure 1. Conditional Process Graph

P7

P10

P8 P9

P2

P0

P1

P6P5P4

CC
C

D
D

P3

P11

source

sink

Scheduling with Optimized Communication for
Time-Triggered Embedded Systems

Paul Pop, Petru Eles, Zebo Peng
Dept. of Computer and Information Science, Linköping University, S-58183 Linköping, Sweden

{paupo, petel, zebpe}@ida.liu.se

Activation of processes at a certain execution depends on the
values of the conditions, which are unpredictable. At a certain
moment during the execution, when the values of some conditions
are already known, they have to be used in order to take the best
possible decisions on when and which process to activate.
Therefore, after the termination of a process that produces a
condition, the value of the condition is broadcasted from the
corresponding processor to all other processors. This broadcast is
scheduled as soon as possible on the communication channel, and
is considered together with the scheduling of the messages. Thus,
in the following of the paper we will not treat communication of
the conditions explicitly when scheduling messages.

Release times of some processes as well as multiple deadlines
can be easily modeled by inserting dummy nodes between certain
processes and the source or the sink node respectively.

3. SYSTEM ARCHITECTURE

3.1 Hardware architecture
We consider architectures consisting of nodes connected by a
broadcast communication channel (Figure 2). Every node consists
of a TTP controller [9], a CPU, a RAM, a ROM and an I/O
interface to sensors and actuators. A node can also have an ASIC
in order to accelerate parts of its functionality.

Communication between nodes is based on the TTP [8]. TTP
was designed for distributed real-time applications that require
predictability and reliability (e.g, drive-by-wire). It integrates all
the services necessary for fault-tolerant real-time systems. The
TTP services of importance to our problem are: message transport
with acknowledgment and predictable low latency, clock synchro-
nization within the microsecond range and rapid mode changes.

The communication channel is a broadcast channel, so a mes-
sage sent by a node is received by all the other nodes. The bus access
scheme is time-division multiple-access (TDMA) (Figure 3). Each
node Ni can transmit only during a predetermined time interval, the
so called TDMA slot Si. In such a slot, a node can send several
messages packaged in a frame. We consider that a slot Si is at least
large enough to accommodate the largest message generated by
any process assigned to node Ni, so the messages do not have to be
split in order to be sent. A sequence of slots corresponding to all
the nodes in the architecture is called a TDMA round. A node can
have only one slot in a TDMA round. Several TDMA rounds can
be combined together in a cycle that is repeated periodically. The
sequence and length of the slots are the same for all the TDMA
rounds. However, the length and contents of the frames may differ.

Every node has a TTP controller that implements the protocol
services, and runs independently of the node’s CPU.
Communication with the CPU is performed through a so called
message base interface (MBI) which is usually implemented as a
dual ported RAM (see Figure 4).

The TDMA access scheme is imposed by a so called message
descriptor list (MEDL) that is located in every TTP controller. The
MEDL basically contains: the time when a frame has to be sent or
received, the address of the frame in the MBI and the length of the
frame. MEDL serves as a schedule table for the TTP controller
which has to know when to send or receive a frame to or from the
communication channel.

The TTP controller provides each CPU with a timer interrupt
based on a local clock, synchronized with the local clocks of the
other nodes. The clock synchronization is done by comparing the
a-priori known time of arrival of a frame with the observed arrival
time. By applying a clock synchronization algorithm, TTP
provides a global time-base of known precision, without any
overhead on the communication.

Information transmitted on the bus has to be properly
formatted in a frame. A TTP frame has the following fields: start of
frame, control field, data field, and CRC field. The data field can
contain one or more application messages.

3.2 Software Architecture
We have designed a software architecture which runs on the CPU
in each node, and which has a real-time kernel as its main
component. Each kernel has a schedule table that contains all the
information needed to take decisions on activation of processes
and transmission of messages, based on the values of conditions.

In order to run a predictable hard real-time application the
overhead of the kernel and the worst case administrative overhead
(WCAO) of every system call has to be determined. We consider a
time-triggered system, so all the activity is derived from the
progression of time which means that there are no other interrupts
except for the timer interrupt.

Several activities, like polling of the I/O or diagnostics, take
place directly in the timer interrupt routine. The overhead due to
this routine is expressed as the utilization factor Ut. Ut represents a
fraction of the CPU power utilized by the timer interrupt routine,
and has an influence on the execution times of the processes.

We also have to take into account the overheads for process
activation and message passing. For process activation we consider
an overhead δPA. The message passing mechanism is illustrated in
Figure 4, where we have three processes, P1 to P3. P1 and P2 are
mapped to node N0 that transmits in slot S0, and P3 is mapped to
node N1 that transmits in slot S1. Message m1 is transmitted

TTP Controller

I/O Interface
RAM
ROM
ASIC

CPU

Sensors/Actuators
... ...

Node

Figure 2. System Architecture

TDMA Round
Cycle of two rounds

Slot

S0 S1 S2 S3

Figure 3. Buss Access Scheme

S0 S1 S2 S3

Frames

P1 P2

RT-Kernel

MBI

CPU

TTP Controller

P3

RT-Kernel

MBI

CPU

TTP Controller

S1 S0 S1

tm2

m1
m1

m2
m2

m2 m2

Figure 4. Message Passing Mechanism

N0 N1

Round 2

between P1 and P2 that are on the same node, while message m2 is
transmitted from P1 to P3 between the two nodes. We consider that
each process has its own memory locations for the messages it
sends or receives and that the addresses of the memory locations
are known to the kernel through the schedule table.

P1 is activated according to the schedule table, and when it
finishes it calls the send kernel function in order to send m1, and
then m2. Based on the schedule table, the kernel copies m1 from
the corresponding memory location in P1 to the memory location
in P2. The time needed for this operation represents the WCAO δS
for sending a message between processes located on the same
node1. When P2 will be activated it finds the message in the right
location. According to our scheduling policy, whenever a receiving
process needs a message, the message is already placed in the
corresponding memory location. Thus, there is no overhead on the
receiving side, for messages exchanged on the same node.

Message m2 has to be sent from node N0 to node N1. At a cer-
tain time, known from the schedule table, the kernel transfers m2 to
the TTP controller by packaging m2 into a frame in the MBI. The
WCAO of this function is δKS. Later on, the TTP controller knows
from its MEDL when it has to take the frame from the MBI, in
order to broadcast it on the bus. In our example the timing informa-
tion in the schedule table of the kernel and the MEDL is deter-
mined in such a way that the broadcasting of the frame is done in
the slot S0 of Round 2. The TTP controller of node N1 knows from
its MEDL that it has to read a frame from slot S0 of Round 2 and to
transfer it into the MBI. The kernel in node N1 will read the mes-
sage m2 from the MBI, with a corresponding WCAO of δKR.
When P3 will be activated based on the local schedule table of
node N1, it will already have m2 in its right memory location.

4. PROBLEM FORMULATION
As an input we consider a safety-critical application that has
several operating modes, and each mode is modeled by a
conditional process graph.The architecture of the system is given
as described in section 3.1. The overhead Ut of each kernel and the
WCAO of each system call are known. Each process of the process
graph is mapped on a CPU or an ASIC of a node.

We are interested to derive a delay on the system execution
time for each operating mode, so that this delay is as small as possi-
ble, and to synthesize the local schedule tables for each node, as well
as the MEDL for the TTP controllers, which guarantee this delay.

The worst case execution delay of a process is estimated taking
into account the overhead of the timer interrupt, the WCAO of the pro-
cess activation, and the WCAO of the message passing mechanism.
Therefore, the worst case execution delay of a process Pi will be:

where tPi is the worst case execution time of the code of process Pi,
θC1 is the overhead for communication from Pi to processes on the
same node, and θC2 is the overhead for communication between
processes on different nodes:

.

In the previous equations, is the number of messages to
be sent by the process Pi to other processes on the same node.

1 Overheads δS, δKS and δKR depend on the length of the transferred message;
in order to simplify the presentation this aspect is not discussed further.

 is the number of messages transferred to the MBI, and

 is the number of messages transferred from the MBI by
the kernel, during the execution of process Pi. It has to be noticed

that θC1 refers to the overhead caused by sending the
messages generated by process Pi which are directed to other
processes on the same node. However, θC2 considers the overhead
due to the remote communications which not necessarily originate
from Pi, but are scheduled to be performed by the kernel during the
period Pi is active. Thus, for example, transferring the message m2
(which is generated by P1) in Figure 4, to the MBI can be
scheduled during the time P2 is active. This can be due to the fact
that no place was available in the MBI before that moment.

For each message its length bmi is given. If the message is
exchanged by two processes mapped on the same node, the mes-
sage communication time is completely accounted for in the worst
case execution delay of the two processes as shown above. Thus,
from the scheduling point of view, communication of the message
is instant. However, if the message is sent between two processes
mapped onto different nodes, the message has to be scheduled
according to the TTP protocol. Several messages can be packaged
together in the data field of a frame. The number of messages that
can be packaged depends on the slot length corresponding to the
node. The effective time spent by a message mi on the bus is

 where bSi is the length of the slot Si and T is the trans-

mission speed of the channel. In Figure 4, tm2 depicts the time spent
by m2 on the bus. The previous equation shows that the communi-
cation time tmi does not depend on the bit length bmi of the mes-
sage mi, but on the slot length corresponding to the node sending mi.

The important impact of the communication parameters on the
performance of the application is illustrated in Figure 5 by means
of a simple example.

In Figure 5 d) we have a process graph consisting of four pro-
cesses P1 to P4 and four messages m1 to m4. The architecture con-
sists of two nodes interconnected by a TTP channel. The first node,
N0, transmits on the slot S0 of the TDMA round and the second
node, N1, transmits on the slot S1. Processes P1 and P4 are mapped
on node N0, while processes P2 and P3 are mapped on node N1.
With the TDMA configuration in Figure 5 a), where the slot S1 is
scheduled first and slot S0 is second, we have a resulting schedule
length of 24 ms. However, if we swap the two slots inside the

T Pi
δPA tPi

θC1
θC2

+ + +() 1 Ut+()⋅=

θC1
δSi

i 1=

Nout
loc Pi()

∑= θC2
δKSi

i 1=

Nout
rem Pi()

∑ δKRi

i 1=

Nin
rem Pi()

∑+=

Nout
loc Pi()

Nout
rem Pi()

Nin
rem Pi()

Nout
loc Pi()

tmi
bSi

T⁄=

P1

P2 P3

P4

m1 m2

m3 m4

m1 m2 m3 m4

m1 m2 m3 m4

m1 m2 m3 m4

P2 P3

P2 P3

P2 P3

P1 P4

P1 P4

P1

S1 S0

S1S0

S1S0

Round 1 Round 2 Round 3 Round 4 Round 5

Round 1 Round 2 Round 3 Round 4

Round 1 Round 2 Round 3

a) Schedule length of 24 ms

b) Schedule length of 22 ms

c) Schedule length of 20 ms

Figure 5. Scheduling Example
d) Graph example

P4

TDMA round without changing their lengths, we can improve the
schedule by 2 ms, as seen on Figure 5 b). Further more, if we have
the TDMA configuration in Figure 5 c) where slot S0 is first, slot
S1 is second and we increase the slot lengths so that the slots can
accommodate both of the messages generated on the same node, we
obtain a schedule length of 20 ms which is optimal. However,
increasing the length of slots is not necessarily improving a schedule,
as it delays the communication of messages generated by other nodes.

The sequence and length of the slots in a TDMA round are
determined by our scheduling strategy with the goal to reduce the
delay on the execution time of the system.

5. THE SCHEDULING STRATEGY
The problem of conditional process graph scheduling has been
addressed by us in [2, 3] without considering a specific
communication protocol and execution environment. We do not re-
discuss here those algorithms which are part of the function
schedule mentioned below. That work has been largely extended
by considering a realistic communication and execution
infrastructure, and by including aspects of the communication
protocol in the optimization process. For this reasons, the worst
case execution delays TPi of the processes are computed according
to the formula given in section 4. A major extension concerns the
scheduling of the messages on the TTP bus, considering a given
order of slots in the TDMA round and given slot lengths.

The schedule_message function in Figure 6 is called in order
to schedule the highest priority message that is ready for
transmission at the current_time on the TTP bus, and also offers
important feedback information to the optimization heuristic
concerning the selection of slot lengths.

Depending on the current_time and the given TDMA
configuration, the function determines the first TDMA round
where the message can be scheduled in the slot corresponding to
the sender node. If the slot is full in the first selected round because
of previously scheduled messages, the message has to wait for the
next round. Our optimization heuristics have to consider enlarging
this slot in the hope to reduce the delay on the execution time
caused by scheduling of the message in the next round. A list of
recommended slot lengths for a node is kept for this purpose, and
updated by the schedule_message function. Function
schedule_message is called by the function schedule, which
generates the schedule and corresponding tables based on the given
slot order and slot lengths.

In order to get an optimized schedule we have to determine an
ordering of the slots and the slot lengths so that the execution delay
is as small as possible. We first present two variants of an
algorithm based on a greedy approach. A short description of the
algorithm is shown in Figure 7.

The algorithm starts with the first slot of the TDMA round and
tries to find the node which by transmitting in this slot will produce
the smallest delay on the system execution time. Once a node was
selected to transmit in the first slot, the algorithm continues in the
same manner with the next slots.

The selection of a node for a certain slot is done by trying out
all the nodes not yet allocated to a slot. Thus, for a candidate node,

the schedule length is calculated considering the TDMA round
given so far. Several lengths are considered for a slot bound to a
given candidate node. The first variant of this strategy, named
Greedy 1, tries all the slot lengths. It starts with the minimum slot
length determined by the largest message to be sent from the
candidate node, and it continues incrementing with the smallest
data unit (e.g. 2 bits) up to the largest slot length determined by the
maximum allowed data field in a TTP frame (e.g., 32 bits,
depending on the controller implementation). The second variant
of the greedy strategy, named Greedy 2, tries only the slot lengths
recommended by the schedule_message function.

A second algorithm we have developed is based on a simulated
annealing (SA) strategy. The greedy strategy constructs the
solution by progressively selecting the best candidate in terms of
the schedule length produced by the function schedule. Unlike the
greedy strategy, SA tries to escape from a local optimum by
randomly selecting a new solution from the neighbors of the
current solution. The new solution is accepted if it is an improved
solution. However, a worse solution can also be accepted with a
certain probability that depends on the deterioration of the cost
function and on a control parameter called temperature.

In Figure 8 we give a short description of this algorithm. An
essential component of the algorithm is the generation of a new
solution x’ starting from the current one xnow. The neighbors of the
current solution xnow are obtained by a permutation of the slots in
the TDMA round and/or by increasing/decreasing the slot lengths.
We generate the new solution by either randomly swapping two
slots (with a probability 0.3) or by increasing/decreasing with the
smallest data unit the length of a randomly selected slot (with a
probability 0.7).

For the implementation of this algorithm, the parameters TI
(initial temperature), TL (temperature length), α (cooling ratio),
and the stopping criterion have to be determined. They define the
so called cooling schedule and have a decisive impact on the
quality of the solutions and the CPU time consumed. We were
interested to obtain values for TI, TL and α that will guarantee the
finding of good quality solutions in a short time.

For graphs with 160 and less processes we were able to run an
exhaustive search that found the optimal solutions. For the rest of
the graph dimensions, we performed very long and expensive runs

schedule_message
slot = slot of the node sending the message
round = current_time / round_length
if current_time - round * round_length > start of slot in round then

round = next round
end if
if not message fits in the slot of round then

insert (needed slot length to fit, recommended slot lengths)
round = next round

end if
put in schedule table (message, round, slot)

end
Figure 6. The schedule_message function

greedy
for each slot

for each node not yet allocated to a slot
bind (node, slot, minimum possible length for this slot)
for (1)every slot length or (2)recommended slot lengths

schedule in the context of current TDMA round
remember the best schedule for this slot

end for
end for
bind (node, slot and length corresponding to the best schedule)

end for
return solution

end Figure 7. The Greedy Algorithm

simulated annealing
construct an initial TDMA round xnow

temperature = initial temperature TI
repeat

for i = 1 to temperature length TL
generate randomly a neighboring solution x’ of xnow

delta = schedule with x’ - schedule with xnow

if delta < 0 then xnow = x’
else

generate q = random (0, 1)
if q < e-delta / temperature then xnow = x’ end if

end if
end for
temperature = α * temperature;

until stopping criterion is met
return solution corresponding to the best schedule

end
Figure 8. The Simulated Annealing Algorithm

with the SA algorithm, and the best ever solution produced has
been considered as the optimum for the further experiments. Based
on further experiments we have determined the parameters of the
SA algorithm so that the optimization time is reduced as much as
possible but the optimal result is still produced. For example, for
the graphs with 320 nodes, TI is 500, TL is 400 and α is 0.97. The
algorithm stops if for three consecutive temperatures no new
solution has been accepted.

6. EXPERIMENTAL EVALUATION
For evaluation of our scheduling algorithms we first used
conditional process graphs generated for experimental purpose.
We considered architectures consisting of 2, 4, 6, 8 and 10 nodes.
40 processes were assigned to each node, resulting in graphs of 80,
160, 240, 320 and 400 processes. 30 graphs were generated for
each graph dimension, thus a total of 150 graphs were used for
experimental evaluation. Execution times and message lengths
were assigned randomly using both uniform and exponential
distribution. For the communication channel we considered a
transmission speed of 256 kbps and a length below 20 meters. The
maximum length of the data field was 8 bytes, and the frequency of
the TTP controller was chosen to be 20 MHz. All experiments
were run on a SPARCstation 20.

The first result concerns the quality of the schedules produced
by the two variants of the greedy algorithm. It is based on the percent-
age deviations of the schedule lengths produced by Greedy 1 and
Greedy 2 from the lengths of the (near)optimal schedules obtained
with the SA algorithm (see section 5). Table 1 presents the average
and maximum percentage deviation for each of the graph dimen-
sions, and the average execution time expressed in seconds.

Together with the greedy variants, a “naive designer’s”
approach is presented. The naive designer performs scheduling
without trying to optimize the access to the communication
channel, namely the TDMA round and the slot lengths. For the
naive designer’s approach we considered a TDMA round
consisting of a straightforward ascending order of allocation of the
nodes to the TDMA slots; the slot lengths were selected to
accommodate the largest message sent by the respective node.

Table 1 shows that considering the optimization of the access
to the communication channel, the results improve dramatically
compared to the naive designer’s approach. The greedy heuristic
performs very well for all the graph dimensions, and the variant
Greedy 1 (that considers all the possible slot lengths) performs
slightly better than Greedy 2. However, the execution times are
smaller for Greedy 2, than for Greedy 1. The average execution
times for the SA algorithm to find the (near)optimal solutions are
between 5 minutes for graphs with 80 processes and 275 minutes
for 400 processes.

As a conclusion, the greedy approach is able to produce accurate
results in a very short time. Therefore it can be also used for perfor-
mance estimation as part of a larger design space exploration cycle.
SA is able to find near-optimal results in reasonable time, and can
be used for the synthesis of the final implementation of the system.

Finally, we considered a real-life example implementing a
vehicle cruise controller. The conditional process graph that mod-

els the cruise controller has 32 processes, and it was mapped on an
architecture consisting of 4 nodes, namely: Anti Blocking System,
Transmission Control Module, Engine Control Module and Elec-
tronic Throttle Module. We considered one mode of operation with
a deadline of 110 ms. The naive designer’s approach resulted in a
schedule corresponding to a delay of 114 ms, that does not meet
the deadline. Both of the greedy approaches produced a delay of
103 ms on the worst case execution time of the system, while the
SA approach produced a schedule of 97 ms.

7. CONCLUSIONS
We have presented an approach to process scheduling for synthesis
of safety-critical distributed embedded systems. Our system model
captures both the flow of data and that of control. We have
considered communication of data and conditions for a time-
triggered protocol implementation that supports clock
synchronization and mode changes. We have improved the quality
of the schedule by taking into consideration the overheads of the
real-time kernel and the communication protocol. We have
optimized communications through packaging of messages into
slots with a properly selected order and lengths.

The scheduling algorithms proposed can be used both for
accurate performance estimations and for system synthesis. The
algorithms have been evaluated based on experiments using a large
number of graphs generated for experimental purpose as well as a
real-life example.

Acknowledgments
The authors are grateful to Jakob Axelsson from Volvo TD for his
support and for providing the automotive electronics case study.
The research has been partly supported by the Swedish Foundation
for Strategic Research.

8. REFERENCES
[1] Chou, P. , Boriello, G. Interval Scheduling: Fine-Grained Code

Scheduling for Embedded Systems. Proc. DAC, 1995, 462-467.
[2] Doboli, A., Eles, P. Scheduling under Control Dependencies

for Heterogeneous Architectures. International Conference on
Computer Design, 1998

[3] Eles, P., Kuchcinski, K., Peng, Z., Doboli, A., Pop, P. Schedul-
ing of Conditional Process Graphs for the Synthesis of
Embedded Systems. Proc. Des. Aut. & Test in Europe, 1998.

[4] Gupta, R. K., De Micheli, G. A Co-Synthesis Approach to
Embedded System Design Automation. Design Automation
for Embedded Systems, V1, 1/2, 1996, 69-120.

[5] Jorgensen, P.B., Madsen, J. Critical Path Driven Cosynthesis
for Heterogeneous Target Architectures. Proc. Int. Workshop
on Hardware-Software Co-design, 1997, 15-19.

[6] Kasahara, H., Narita, S. Practical Multiprocessor Scheduling
Algorithms for Efficient Parallel Processing. IEEE Trans. on
Comp., V33, N11, 1984, 1023-1029.

[7] Kopetz, H. Real-Time Systems-Design Principles for Distrib-
uted Embedded Applications. Kluwer Academic Publ., 1997

[8] Kopetz, H., Grünsteidl, G. TTP-A Protocol for Fault-Tolerant
Real-Time Systems. IEEE Computer, Vol: 27/1, 14-23.

[9] Kopetz H., et al. A Prototype Implementation of a TTP/C,
Controller. SAE Congress and Exhibition, 1997.

[10] Kuchcinski, K. Embedded System Synthesis by Timing Con-
straint Solving. Proc. Int. Symp. on System Synthesis, 1997.

[11] Prakash, S., Parker, A. SOS: Synthesis of Application-Specific
Heterogeneous Multiprocessor Systems. Journal of Parallel and
Distributed Computing, V16, 1992, 338-351.

[12] Wu, M.Y., Gajski, D.D. Hypertool: A Programming Aid for
Message-Passing Systems. IEEE Trans. on Parallel and Dis-
tributed Systems, V. 1, N. 3, 1990, 330-343.

[13] Yen, T. Y., Wolf, W. Hardware-Software Co-Synthesis of Distrib-
uted Embedded Systems. Kluwer Academic Publisher, 1997.

[14] X-by-Wire Consortium. URL:http://www.vmars.tuwien.ac.at/
projects/xbywire/xbywire.html

No.of
proc.

NaiveDesigner Greedy 1 Greedy 2

aver. max. aver. max. time. aver. max. time

80 3.16% 21% 0.02% 0.5% 0.25s 1.8% 19.7% 0.04s

160 14.4% 53.4% 2.5% 9.5% 2.07s 4.9% 26.3% 0.28s

240 37.6% 110% 7.4% 24.8% 0.46s 9.3% 31.4% 1.34s

320 51.5% 135% 8.5% 31.9% 34.69s 12.1% 37.1% 4.8s

400 48% 135% 10.5% 32.9% 56.04s 11.8% 31.6% 8.2s

Table 1: Percentage Deviation and Execution Times

