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Abstract

Didributed embedded systems implemented with mixed, event-
triggered and time-triggered task sets, which communicate over bus
protocols consisting of both static and dynamic phases, are emerging
as the new standard in application areas such as automotive
electronics. In a previous paper, we have developed a holigtic timing
analysis and scheduling approach for this category of systems. Based
on this result, in the present paper, new design problems are solved,
which we identified as characteristic for such hybrid systems:
partitioning of the system functionality into time-triggered and event-
triggered domains and the optimization of parameters corresponding
to the communication protocol. We addressed both problems in the
context of a heuristic which performs mapping and scheduling of the
system functionality. e demonstrated the efficiency of the proposed
technique with extensive experiments.
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1. Introduction

There are two basic approachesfor handling tasksin real-time appli-
cations[7]. In the event-triggered approach (ET), activitiesareiniti-
ated whenever aparticular event is noted. In the time-triggered (TT)
approach, activities are initiated at predetermined points in time.
There has been along debate in the real-time and embedded systems
communities concerning the advantages of each approach[1, 8, 12].

If welook at the communication infrastructure, message passing
activities can be triggered either dynamically, in response to an
event, as with the controller area network (CAN) bus [3], or stati-
caly, at predetermined moments in time, as in the case of time-di-
vision multiple access (TDMA) protocols and, in particular, the
time-triggered protocol (TTP) [7].
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In[8] the authors comparethe ET and TT approachesfrom anin-
dustrial perspective (considering, in particular, automotive applica
tions). Their conclusion isthat one has to choose the right approach
depending on the particularities of the actual tasks. This means not
only that thereis no single “best” approach to be used, but also that
inside a certain application the two approaches can be used togeth-
er, sometasks being TT and others ET.

Inthiscontext, itisnot surprising that several activities have been
started aiming at the devel opment and standardi zation of bus proto-
colswhich support both static (ST) and dynamic (DY N) communi-
cation. Such aprotocol has been suggestedin [9] and [10]. Also, the
first mixed protocol has been proposed by a consortium, to be used
in automotive applications [6]. In [4], the authors describe the so
called Universal Communication Model (UCM), a framework for
modelling at a high level of abstraction the communication infra-
structure in automotive applications.

New, highly sophisticated automotive applications consist of both
TT and ET task sets implemented on top of complex distributed ar-
chitectures based on mixed ST/DY N bus protocols. In[13] we have
presented an approach to scheduling and schedul ability analysisfor
such mixed time/event triggered systems. Such an analysis and
scheduling procedure constitutes the fundament for any synthesis ap-
proach aiming at an efficient, highly optimized implementation of a
distributed application which is also guaranteed to meet the timing
constraints.

Starting from such aholistic scheduling and analysis, this paper is
the first one to address specific design issues of hybrid ET/TT sys-
tems like those outlined above. The proposed approach solves the
problems of partitioning a certain functiondity into ET and TT,
mapping thefunctionality on adistributed architecture and adjusting
the parameters of the communication protocol such that the timing
constraints of the final implementation are guaranteed.

The paper is organized in 7 sections. In the next section we
present the architecture of the distributed systems and the applica
tion model that we are studying. Section 3 describes briefly the ho-
listic scheduling and schedulability analysis we have developed in
[13]. Some specific optimization issues are presented in Section 4.
Section 5 states the design problem we intend to solve and outlines
our solution, while Section 6 presents some experimental results.
The last section presents our conclusions.

2. System Architecture and Application M odel

2.1 Hardware Architecture and Bus Access

We consider architectures consisting of nodes connected by a
unique broadcast communication channel. Each node consists of a
communication controller, a CPU, memories (RAM, ROM), and an
1/0 interface to sensors and actuators (see Figure 1).

We model the bus access scheme using the Universal Communica
tion Model [4]. The bus access is organized as consecutive cycles,
each with the duration T,s. We consider that the communication cy-
cle is partitioned into static and dynamic phases (Figure 1). Static
phases consist of time dots, and during ad ot only onenodeisallowed
to send ST messages; thisisthe node associated to that particular dot.
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Figure 1. System Architecture

During adynamic phase, al nodesare allowed to send DY N messages
and the conflicts between nodes trying to send simultaneoudly are
solved by an arbitration mechanism based on priorities assigned to
messages. The bus access cycle hasthe same structure during each pe-
riod Ty,s- Every node hasacommunication controller that implements
the static and dynamic protocol services. The controller runsindepen-
dently of the node's CPU.

2.2 Software Architecture

For the systems we are studying, we have designed a software ar-
chitecture which runs on the CPU of each node. The main compo-
nent of the software architecture is a rea-time kernel which
supports both time-triggered and event-triggered activities. An ac-
tivity is defined as either the execution of atask or as the transmis-
sion of amessage on the bus. For the TT activities, the kernel relies
on astatic schedul e table which contains all the information needed
to take decisions on activation of TT tasks or transmission of ST
messages. For the ET tasks, the kernel maintains a prioritized ready
gueuein which tasks are placed whenever their triggering event has
occurred and they are ready for activation, or when they have been
pre-empted.

Thereal-timekernel will alwaysactivateaTT task at the particular
timefixed for that task in the schedule table. If at that moment, an ET
task is running on that node, that task will be pre-empted and placed
into the ready queue according to its priority. If no tasks are active,
ET tasksare extracted from the ready queue and are (re)activated. ET
tasks can pre-empt each other based on their priority.

The transmission of messages is handled in a similar way: for
each node, the sending and receiving times of ST messages are
stored in the schedule table; the DY N messages are organized in a
prioritized ready queue. ST messages will be placed at predeter-
mined time moments into a bus slot assigned to the sending node.
DYN messages can be potentially sent during any dynamic phase
and conflicts are solved by the communication controllers based on
message priorities. Once the transmission of a DYN message has
started, no other message will be sent on the bus until the current
transmission finishes.

TT activitiesare triggered based on alocal clock availablein each
processing node. The synchronization of local clocks throughout the
system is provided by the communication protocol.

2.3 Application Model

We model an application as a set of task graphs. Nodes represent
tasks and arcs represent communication (and implicitly dependen-
cy) between the connected tasks.

« A task can belong either to the TT or to the ET domain.

« Communication between tasks mapped to different nodes is per-
formed by message passing over the bus. Such a message pass-
ing is modelled as a communication task inserted on the arc
connecting the sender and the receiver tasks. The communica-
tion time between tasks mapped on the same node is considered
to be part of the task execution time. Thus, such a communica-
tion activity is not modelled explicitly. For the rest of the paper,
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Figure 2. Application Model Example

when referring to messages, we consider only the communica

tion activity over the bus.

» A message can belong either to the static (ST) or the dynamic
(DYN) domain.

« All tasks in a certain task graph belong to the same domain,
either ET, or TT, which is called the domain of the task graph.
However, the messages belonging to a certain task graph can
belong to any domain (ST or DYN). Thus, in the most genera
case, tasks belonging to a TT graph, for example, can communi-
cate through both ST and DY N messages.

* Each task T;; (belonging to the task graph I';), has a period Tj;, and
a deadline Dj; and, when mapped on node Proc, it has a worst
case execution time C;j;(Procy). Each ET task also has a given
priority Prio;.

* All tasks T;; belonging to atask graph I'; have the same period T
which isthe period of the task graph.

« For each message we know its size (which can be directly con-
verted into communication time on the particular communica-
tion bus). The period of a message is identical with that of the
sender task. DY N messages also have given priorities.

Figure 2 shows an application modelled as two task graphs
mapped on two nodes.

In order to keep the separation between the TT and ET domains,
which are based on fundamentally different triggering policies,
communication between tasksin the two domainsis not included in
the model. Technically, such a communication is implemented by
the kernel, based on asynchronous non-blocking send and receive
primitives (using proxy tasks if the sender and receiver are on dif-
ferent nodes). Such messages are typically non-critical and are not
affected by hard real-time constraints.

3. Halistic Scheduling

In[13], we introduced a scheduling and schedulability analysis ap-
proach for applications as those presented in Section 2. The algo-
rithm constructs a correct static schedule for the TT tasks and ST
messages (a schedule which meets all time constraints related to
these activities) and conducts the schedul ability analysisin order to
check that all ET tasks meet their deadlines. Two important aspects
should be noticed:

1. When performing schedulability analysis for the ET tasks and
DYN messages, one has to take into consideration the interfer-
ence from the statically scheduled TT tasks and ST messages.

2. Among the possible correct schedules for TT tasks and ST mes-
sages, it is important to construct one which favours, as much as
possible, the schedulability of ET tasks and DY N messages.
In[13], first we developed a schedul ability analysis algorithm for

aset of ET tasksand DY N messages, considering afixed given stat-

ic schedule of TT tasks and ST messages. Then, we introduced a

method for building avalid static schedule for the TT tasks and ST

messages, which favours the schedulability of ET tasks and DYN
messages. This static scheduleis computed over aperiod Tggwhich
is equa to the least common multiplier of the periods of TT task
graphs.

In order to guide the static scheduling processtowards“good” so-

Iutions, we use a metric which captures the “ degree of schedul abil-



ity” of the ET task set. For this purpose we used a cost function
similar with the one described in [15]:

N N,
fq = max(0, R;—D.;),iff;>0
DSCh: N N;
fa= ) 3 Ry=Dy),itf; =0

=1

« where N is the number of ET task graphs, N; is the number of
activitiesinthe ET task graph ', and R;; isthe response time com-
puted by the schedulability analysis for task Tj;.

If the ET task set is not schedulable, there exists at |east one task
for which R; > Dj;. Inthiscase, f; > 0 and the cost function isamet-
ric of how far we are from achieving schedul ability. If the set of ET
tasksis schedulable, f, < Oisused asametric. A valuef, = 0 means
that the task set is“just” schedulable. A smaller value for f, means
that the ET tasks are schedul able and a certain amount of processing
capacity is still available.

4. Design Problems

Considering a hard real-time system like the one described in Sec-

tion 2, several design problems emerge. There are, of course, the

classical issues as selection of an architecture (e.g. number and kind
of nodes), the mapping of tasks on the processing nodes, or the as-

signment of priorities to ET tasks and DYN messages [1, 5, 11].

However, due to the heterogeneous ET and TT nature of the appli-

cation and the mixed synchronous/dynamic bus protocol, some new

and very interesting problems can be identified:

« Partitioning of the system functionality into time-triggered and
event-triggered activities. During the design process, a decision
should be made on which tasks and messages will be imple-
mented as TT/ET and ST/DYN activities, respectively. Typi-
caly, this decision is taken, based on the experience and
preferences of the designer, considering aspects like the func-
tionality implemented by the task, the hardness of the con-
straints, sensitivity to jitter, etc. There exists, however, a subset
of tasks/messages which could be assigned to any of the
domains. Decisions concerning the partitioning of this set of
activities can lead to various trade-offs concerning, for example,
the size of the schedule table or the schedulability properties of
the system. For example, in Figure 3 we show a system with two
nodes on which three tasks are mapped: 1, on Nodey, T, and 13
on Nodey; T, is data dependant on T; worst case execution times
(C)) and deadlines (D;) are shown in the figure. In order to keep
the example simple, communication delays between 1, and 1,
are ignored. When all three tasks belong to the TT domain, the
system is unschedulable. In this case, either 1, (scheduling alter-
native depicted in Figure 3.8) or 13 (Figure 3.b) misses its dead-
line. If, however, 13 is moved into the ET domain (Figure 3.c),
all tasks are schedulable (in this case, T, will pre-empt the exe-
cution of t3).
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Figure 3. Partitioning into TT/ET domains

« Determining the optimal structure of the bus access cycle. The
configuration of the bus access cycle has a strong impact on the
global performance of the system. The parameters of this cycle
have to be optimized such that they fit the particular application
and the timing requirements. Parameters to be optimized are the
number of static and dynamic phases during a communication
cycle, aswell as the length and order of these phases. Consider-
ing the static phases, parameters to be fixed are the order,
number, and length of slots assigned to the different nodes. For
example, consider the situation in Figure 4, where task 14 is

mapped on node N4 and sends a message m to task 1, which is
mapped on node N,. In case &), task T; misses the start of the ST
Slot; and, therefore, message mwill be sent during the next bus
cycle, causing the receiver task T, to miss its deadline D,. In

case b), the order of ST dotsinside the bus cycle is changed, the
message m will be transmitted earlier and T, will meet its dead-

line. The resulted situation can be further improved, asit can be
seen in Figure 4.(c), where task T, finishes even earlier, if the

first DYN phase in the bus cycle can be eliminated without pro-

ducing intolerable delays of the DY N messages (which have been

ignored in this example).

The optimization problems identified above can be approached
once we have solved the holistic scheduling problem outlined in
Section 3 and presented in[13]. In thefollowing section, we discuss
aheuristic aiming at such a global optimization.

5. Design Heuristic

We consider a system specification and an architecture as described
in Section 2. We aso consider that some of the tasks are already
mapped to nodes and their domain (TT or ET) isfixed. This can be
the result of decisions already taken by the designer or/and because
part of the functionality isinherited from previous generations of the
product. However, we assume that there are tasks which are not
mapped yet and some of the task graphs are not yet partitioned be-
tween the two domains. We denote with WP the set of all taskswhich
arenot yet assigned to any of the ET or TT domains and with WM the
set of al tasks which are not mapped to any node. Note that
WPAWM may be not-empty, which means that some tasks have nei-
ther afixed domain, nor are they mapped on any node. The tasksin
the set WP M are those to which we refer in the rest of this paper
when we discuss mapping and partitioning. None of the other tasks
is affected, in terms of partitioning and mapping, by any of the de-
sign decisions. Our goal isthreefold:
1. to partition the task set WP among the ET and TT domains;
2. to map the tasksin the set WM onto the nodes in the architecture;
3. to optimize the parameters of the communication protocol.

The above design tasks have to be performed with the overall
goal that the timing constraints of the resulted system are satisfied.
If thisis achieved, we say that we have obtained a schedulable im-
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Figure 4. Optimization of Bus Access Cycle



01 Gen_Part, Gen_Map, Gen_Bus Cycle
02if TT not schedulable then

03 change partitioning (TT to ET)

04 change mapping

05 changebuscycle

06 endif

07 if TT not schedulable then stop endif
08if ET not schedulable then

09 Mapping_and_Partitioning

10 if ET not schedulable then

11  Optimize Bus Access

12 endif

13 endif

Figure 5. Overview of the Design Heuristic

plementation of the system, which implies that the following two

conditions are satisfied:

1) Thetasksin the TT domain are schedulable, meaning that we
were able to build a static schedule (Section 3) for all the tasksin
the TT partition such that their deadlines are satisfied;

2) Thetasksin the ET domain are schedulable. This means that
after running the scheduling process described in Section 3, the
function DSch, expressing the schedulability degree of the ET ac-
tivities, will have avalue DSch < 0.

Before starting to discuss the actual heuristics, some further ob-
servations haveto be made. According to the application model pre-
sented in Section 2.3, all tasks in a task graph belong to the same
domain. Thus, the task set WP contains complete task graphs and,
by deciding on the partitioning of a certain task, the whole task
graph is assigned to either the TT or ET domain.

A smilar partitioning problem, as formulated above for tasks,
could be aso defined at the level of messages: considering a set of
messages, for each message it has to be decided if it should be trans-
mitted in an ST phase (statically scheduled) or in a DY N phase (dy-
namically scheduled). In order to keep the presentation reasonably
simple and given the space limitations, in this paper we consider that
all messages are preassigned as ST or DY N. For the same reason, we
also consider that all tasks in the set W° have a pre-assigned priority
which isused if the task is assigned to the ET domain.

The design problem outlined above is a combination of subprob-
lems, each of exponential complexity. Therefore, we have elaborated
adesign space exploration strategy based on the application of sever-
al heuristicsin three successive steps, as shown in Figure 5:

1. The first step (lines 01-06) starts by generating an initial map-
ping, partitioning and bus structure, using several basic criteria
(line 01). If this initial solution is not schedulable, successive
transformations are applied to the partitioning, mapping, and the
bus cycle, with the aim of finding a solution such that the TT
tasks are schedulable. This is performed by generating configu-
rations (in terms of partitioning, mapping and bus cycle) which
are more and more favourable to the TT partition.

The first step is stopped once a solution with a schedulable TT

partition has been reached. If at the end of the first step no such

solution has been found, we conclude that, given the amount of
available resources, no correct implementation of the system can
be generated. This decision is justified by the fact that, if under
the most favorable conditions no static schedule could be gener-
ated for the TT tasks, no further design transformations could
lead to a globally schedulable solution, except for modifications
of the underlying system architecture (e.g adding anew node, re-
placing a node with a faster one or a similar replacement of the
bus). If the configuration generated after the first step is not glo-
bally schedulable, but a correct schedule of the TT tasks and ST
messages has been found, the heuristic moves into the second

step.

2. During the second step (line 09), a partitioning and mapping
algorithm tries to produce a solution such that not only the TT
static scheduleis correct, but also the degree of schedulability of
the ET partition is as good as possible. The cost function driving
the design space exploration during this step is DSch (see Sec-
tion 3). Simultaneously with each partitioning and mapping
decision, also the bus cycle is modified in order to fit the new
configuration.

3. If the second step did not succeed in producing a schedulable ET
partition, the third step (line 11) tries to further improve the
degree of schedulability by an aggressive optimization of the bus
cycle.

In the following subsections we further elaborate on the optimi-
zation steps outlined above.

5.1 Thefirst step: Building an initial configuration

Thefirst step starts with generating, based on avery simple and fast
heuristic, a mapping and partitioning of the tasks, as well as a bus
cycle (line0lin Figure 5):

* The partitioning is performed with the only constraint to evenly
distribute the load between the TT and the ET domains.

» Themapping isbased on avery fast heuristic aimed at minimising
inter-processor communication while keeping a balanced proces-
sor |oad.

« Theinitia bus cycleis constructed in the following two steps:

1. The ST dots are assigned in order to the nodes such that
Node transmits during Sot; (Figure 1). The length of Sot; is set
to avalue which isequal to the length of the largest ST message
generated by atask mapped on Node,. Considering an architec-
ture of 4 nodes, a structure like the one in Figure 6.(a) is pro-
duced &fter this step.

2. Dynamic phases are introduced in order to generate a mixed
ST/DY N bus cycle. We start from the rough assumption that the
total length of the dynamic phases over a period Tgg (Tsgisthe
length of the static schedule, see Section 3) is equal to the total
length of the DY N messages transmitted over the same period,

whichis: T
5,70
m; 0 DYNdomain ~ ! )

where T; and L; are the period and the length (expressed in time
units) of the DY N message my;. We set the length of aDY N phase
to the length of the largest DY N message LT The number
n of dynamic phases in each cycle can be determined from the
following eguation:

T T
SS max _ SS

Lo+ DLmax L |:l’DYN - % T ‘I'i‘
sT T pyN m; 0 DYNdomain ~ 1

where Lgr isthe total length of the static slots in a bus cycle and

Lgr + n LIS isthe length of the bus cycle. Finaly, the dy-

namic phases are evenly distributed inside the bus cycle. Figure

6.(b) illustrates such an initial bus configuration.

Once we have decided on the above configuration, we can run the
holistic scheduling algorithm, which will lead to one of the follow-

ing outcomes:
a) the system is found schedulable;
Lgr—>
728 % léL 728
a) |2 2[& &
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Figure 6. Initial Bus Configuration



b) the TT activities are schedulable but the ET onesare not (aval-
id static schedule has been built but the analysis has identified at
least one ET activity for which R; > Dy);

c¢) the ET activities are schedul able but the TT ones are not;

d) both ET and TT activities are not schedulable.

Inthefirst case, the design goal has been achieved and, therefore,
no further optimizations are performed. In the cases c) and d), we
perform the following successive operations, aimed at achieving a
schedulable TT domain (lines 03-05 in Figure 5):

1) Task graphs are moved, one by one, fromthe TT to the ET do-
main, until either the remaining TT activities are schedulable or
there are no more task graphs to be moved (whole task graphs are
moved and not individual tasks, because, as mentioned earlier, all
tasks in a task graph belong to the same domain). The order in
which task graphs are moved is based on a priority function that
captures the mobility of tasksin the graph:

| _ o D;—ASAP,
ReldvgMob(T')) = — DZ J
o
where nj is the number of tasks in the task graph I, and ASAP;; is
the earliest possible start time for task T;;. Task graphs with a Iow
averagerelative mobility are moved first, i)ecause in principle, they
are the most difficult to be scheduled statically.

2) If the TT domain till is unschedulable, TT tasks are remapped
with the goal of avoiding unbalanced node utilization by TT tasks.

3) If no schedulable TT domain has been yet produced, transfor-
mations of the bus cycles are performed such that the delays pro-
duced by ST messages are reduced. In this step, asimpler and faster
version of the heuristic presented in Section 5.3 is used.

If no schedulable TT domain has been produced by the above
transformations, no correct implementation can be obtained with
our heuristic given the available resources. If both the TT and ET
domains are schedulable, we have achieved our design goal, while
in the case of an unschedulable ET domain, the heuristic is contin-
ued with the second step.

5.2 The second step: Mapping and Partitioning

The mapping and partitioning step (line 09 in Figure 5) receives as
an input a configuration in which the TT activities are schedulable
and the ET ones are not. The algorlthm isillustrated in Figure 7. It
selects iteratively tasks T;; W Py M (line 03) in order to be
remapped and/or repartitioned. The order in which tasks are pro-
cessed is defined by the following two rules, similar to those used
inlist scheduling:

1.7;; isselected only after al its predecessorsin the task graph I';
have already been processed (these tasks are called ready).

2. Among the ready tasks, the selection is based on a priority func-
tion PF similar to the one proposed by usin [14] (line 03). This
function is based on a critical path metric and it also takes into
consideration the delay introduced by message passing consid-
ering the particular communication protocol, as well as the
nature of the messages (ST or DY N).

Once atask 1; ; has been selected, |ts mapplng and domain will
be decided in agreedy fashion. If 7; ; (¥ M (thetask mapping isnot
fixed), it will be successively mapped to each node (lines 06-15)
and for each alternative, the schedulability analysis (Section 3,
[13]) returns the cost DSch, which captures the degree of schedula-
bility of the produced configuration. If thedomain, ET or TT, isalso
to be decided (t; j LW P) both alternatives are evaluated (line 08).
Thisis performed using the function parti ti on (lines 25-29).
Finally, that node and domain are selected for t; ; which produce
the smallest value for DSch. If only the domain o+ T;j isto bede-
cided, but the mapping isfixed, the best of thetwo alternativesis se-
lected (line 19). It should be mentioned that a mapping or

01 while (WP Mz O and BestCost > 0) do
02 update priority functlon PF

03  select task T;;(¥ P M with highest PF

04 B&GtCOSt )

05 if T; 0¥ Mthen

06 for (p 1to NrNodes)do

on Node, and adjust bus access cycle

-- task T;; is not mapped

08 |f Tjj ElJ then Cost,d = partition(t;;) -- Tj; is not partitioned
09 els8 Cogt = DSch; d = domain of Tj;

10 endif

11 if BestCost > Cost then

12 BestCost = Cost; BestDomain = d;

13 BestNode = p; BestCycle = BusCycle;

14 endif

15 endfor

16 else

17 BestNode = Node on which tj; is mapped
18 BestCycle = BusCycle;

19 BestCost, BestDomain = partition(t;;);

20 endif

21  Tj.node = BestNode; BusCycle=BestCycle;
22 set domain(l) to BestDomain

23 yh=yk \{r} WM = M {1}

24 end while

25 function partition(t;;)

26 1j.domain = ET. Costl = DSch; d; =ET;
27 tj.domain=TT; Cost2 = DSch; d, = ET;
28  return min(Costl, Cost2) and assouated d;
29 end partition

Figure 7. Mapping and Partitioning algorithm

partitioning alternative is considered only if, with the resulted con-
figuration, the TT domainisstill schedulable (this aspect is not cap-
tured in Figure 7).

Whenever the mapping of atask is modified, the bus cycle has to
be adjusted so that it can ensure the minimum requirements for
transmitting the messages (for example, in line 07). Such an adjust-
ment of the bus access cycleisillustrated in Figure 8, where 4 TT
tasks aremapped on 3 nodes (N1, N, and N3). The number at the side
of each message represents its length. Tasks mapped on different
nodes communicate through ST messages and an ST dot should be
able to accommodate the longest message transmitted by the associ-
ated node. The figure shows how the lengths of the dlots associated
with N4 and N, are modified after atask has been remapped. In one
case, task T, ismoved from N, to N;and therefore, the messagem;
will disappesr (11 and 1, are both mapped on N,), while message
my, 4 will be transmitted in Slot; instead of Slot,. In the second case,
Tzismoved from N to N4, which meansthat m 5 disappears, while
M 4 is transmitted in Slot;.

5.3 Thethird step: Optimization of the bus cycle

It may be the case that even after the mapping and partitioning step,
some ET activities are still not schedulable. In the third step (lines
10-12, Figure 5), our algorithm tries to remedy this problem by
changing the parameters of the bus cycle, like ST slot lengths and
order, as well as the number, length and order of the ST and DYN
phases. The goal isto generate abus access scheme which is adapt-

Ty N1 N3 N3
2 1 51 12:13 Ty
- . [ | [
Initial slot lengths:
4 3 Slot; = max gz 1; 2
T4 Slot; = max (4, 3
Remap 1, from N, to N4 Remap 15 from N, to N4
Slot; =max (1,4) =4 Slot; =max (2, 3) =
Slot, = max (3) =3 Slot, =max (4) =4

Figure 8. Adjustment of the Bus Access Cycle




ed to the particular task configuration. The heuristicisillustrated in
Figure 9. The agorithm iteratively looksfor the right place and size
of Slot; used for transmission of ST messages from Node; (outer-
most two loops). Slot; is swapped with all the slots of higher order
(line03), and dl dternative lengths (lines 04-05) of Slot; larger than
itsminimal allowed length (which is equal to the length of the larg-
est ST message generated by a task mapped on Node)) are consid-
ered. For any particular length and position of Slot;, aternative
lengths of the adjacent ET phase Ph; are considered (innermost
loop). For each alternative, the schedulability analysis evaluates
cost DSch, and the solution with the lowest cost is selected. If DSch
< 0, the system is schedul able and the heuristic is stopped..

It isimportant to notice that the possible length Ttof an ET phase
(line 6) includes also the value 0. Therefore, in the final bus cycle,
it is not needed that each static slot is followed by adynamic phase
(see aso Figure 1). Dynamic phasesintroduced as result of the pre-
vious steps can be eliminated by setting the length to =0 (such a
transformation is illustrated in Figure 4.c). It should be also men-
tioned that enlarging a slot/phase can increase the schedul ability by
alowing several ST/DYN messages to be transmitted quickly im-
mediately one after another. At the same time, the following slots
are delayed, which means that ST messages transmitted by nodes
assigned to upcoming slots will arrive later. Therefore, the optimal
schedulability will be obtained for slot and phase lengths which are
not tending towards the maximum. The number of alternative slot
and phase lengthsto be considered by the heuristicin Figure9islim-
ited by the following two factors:

1. The maximum length of a static slot or dynamic phase is fixed
by the technology (e.g. 32 or 64 hits).

2. Only frames consisting of entire messages can be transmitted,
which excludes several aternatives.

6. Experimental Results

In order to evaluate the proposed heuristic, we have generated a
large set of applications with different characteristics. All experi-
ments were run on an AMD Athlon 850 MHz PC. For our first ex-
periments we considered an architecture consisting of 6 nodes. We
have generated 4 sets of applications composed of 60, 75, 90, and
120 tasks respectively. Each set consists of 40 applications. The
number of unmapped tasks was between 10 and the total number of
tasks in the application. 10 task graphs are considered to be unas-
signed to any of thetwo domains (ET and TT). The average load on
the processorsis 60%. Figure 10 shows the percentage of schedula-
ble applications obtained after the successive steps of our heuristic.
By straight forward configuration we mean the mapping, partition-
ing and bus cycle generated at the start of step 1 (line 01 in Figure
5).This is a configuration which, in principle, could be elaborated
by a careful designer without the aid of optimization tools like the
one proposed in the paper. Out of the total number of applications

01 for i = 1to NrNodes

02  for j =itoNrNodes

03 swap Slot; with Slot;

04 for all slot lengths A > min_len(Slot;)

05 len(Slot)) = A

06 for al DYN phase lengths Ttdo

07 len(Ph) =Tt

08 if DSch < Othen stop endif

09 keep solution with smallest DSch
10 end for

11 end for

12 swap back Slot; and Slot

13 end for

14 bind best position and length of Slot;
15  bindlength of Ph
16 end for

Figure 9. Bus Access Optimization
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Figure 10. Percentage of Schedulable Applications

consisting of 60 tasks, for example, only 10% were schedulable
with the straight-forward configuration and 90% continued the op-
timization process. 9% of the total number of tasks have been found
schedulable with the configuration generated by step 1. As expect-
ed, the mapping, partitioning and bus cycle adjustment performed
instep 2 areleading to ahugeimprovement, adding 61% of the total
number of applications to the group of schedulable ones. An addi-
tional 4% of the total number of applications is found schedulable
after performing the bus optimization in step 3. A similar trend can
be followed in the experiments with 75, 90 and 120 tasks. It is easy
to observethat by performing the proposed optimizations, huge im-
provements over the straight-forward configuration could be pro-
duced.

An interesting question is to what extent the partitioning of tasks
into the ET and TT domains is contributing to the results illustrated
in Figure 10. Or, ar these results mostly due to the optimized map-
ping? The same question can aso be put relative to the bus cycle op-
timization. In order to answer these questions, we considered a
second set of applications consisting of 60, 80 and 100 tasks grouped
into 12, 15, 18 or 20 task graphs and mapped on 4 or 6 nodes. We
have run our heuristic for each of these applications considering four
cases. First, with a subset of tasks that have to be partitioned but no
tasks to be mapped (|llJM| =0). Second, with the same subset of tasks
open for mapping but not for partitioning (|lPP| =0). The third case
does not alow any bus access optimization, so we switched off the
optimizationsin lines 5 and 11 in Figure 5 (however, we keep the
bus cycle adjustment which isneeded in Step 2, line 7 in Figure 7).
The fourth case represents the reference, the complete heuristic.
The results are presented in Figure 11, which shows the percentage
of schedulable applications (relative to the total number of applica
tions) that have been produced by each optimization step. For ex-
ample, after step 2, 45% additional applicationswere schedulableif
weonly allow to perform re-mapping (|WP| =0), asopposed to 74%
in the case when both optimizations are performed. The same num-
ber is 40% if we only alow to perform re-partitioning (|lPM| =0).
The percentage of unschedulable tasks after the three stepsis 34%
when |W7| = 0, 44% for |¥M| = 0, and 24% when no bus optimiza-
tion was performed, as compared to 7% in the case of the complete
heuristic. The conclusions which we can draw are the following:

1. An efficient partitioning into the ET and TT domains is con-
tributing essentially to the overall optimization, to an extent compa-
rable to the mapping.
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So [ After Step 2
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Figure 11. Partial Optimization
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2. When applied together, the three techniques provide much bet-
ter results than the ones obtained when any of the techniques is
eliminated.

Concerning the runtime needed for the optimization process, we
have analyzed each of the three steps separately. For the examples
leading to the results in Figure 10, the average run time for step 1
was 11.7s (60 tasks), 40.1s (75 tasks), 73.2s (90 tasks), and 150s
(120 tasks).

The execution timefor step 2 is presented in moredetail in Figure
12 and Figure 13. Figure 12 illustrates the time needed for step 2 as
afunction of the total number of task graphs to be partitioned (the
characteristics of the applications and the number of nodes are
shown in thefigure). The upper curveillustrates the average execu-
tion times for those applications which are running through step 2
without reaching a system configuration which makes them sched-
ulable. This curve can be considered as an upper bound for the ex-
ecution time in step 2. The second curve in Figure 12 gives the
average execution times of those applications that have been found
schedulable during step 2.

In Figure 13, we show, inasimilar way, the average execution times
as afunction of the number of unmapped tasks. The execution times
needed for the third optimization step are given in Figure 14. Asthis
step is concentrating only on the communication aspect, the average
execution timeis given as afunction of the number of nodes.

Finally, we considered a rea-life example from the automotive
area, implementing a vehicle cruise controller and a control appli-
cation related to the Anti Blocking System (ABS) on an architec-
ture consisting of 5 nodes. The cruise controller consists of 42 tasks
organized in 11 task graphs. One of these task graphsis fixed into
the TT domain, and the other 10 are unpartitioned. 10 out of the 42
tasks are unmapped. The ABS system consists of 35 tasks already
mapped over the 5 nodes and assigned to the ET domain. Running
our optimization heuristic, step 1 was ableto generate acorrect stat-
ic schedule for the TT domain, but without producing a globally
schedulable system. Step 2 manages to improve the degree of
schedulability of the system (function DSch) by two orders of mag-
nitude without, however, producing a schedul able system. A correct
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600 e

Step 2 succeeds ©— P

500 epStep 2fails4— -

40t 00, _ ___-- +

300F ©

1
"o 2 No. of Unr%%pped Tasks 40 0
Figure 13. Runtime of step 2 function of |WM|

Time(s)
\

200} 40 tasks P
60%avg. processor utilization e
e
150 Step 3 succeeded o e
% Step 3 failed 44— e
£100 o+ 4
= -
50 -7
_______ +
0
2 4 No.of Nodes 6 8

Figure 14. Runtime of step 3

implementation has been produced after the bus optimization in
step 3. It isinteresting to mention that for the final schedulable so-
lution, out of the 10 unpartitioned task graphs, 2 were assigned to
the ET and 8tothe TT partition. The run timesfor the three optimi-
zation steps were 5.3s, 708s and 164s respectively.

7. Conclusions

Distributed embedded systems based on mixed static/dynamic
communication protocols are becoming the new standard for auto-
motive applications. Such systems typically run applications con-
sisting of both ET and TT tasks. We have identified a new class of
system optimization issues typical for the heterogeneous systems
considered in the paper: partitioning of the system functionality
into TT and ET domains and the optimization of the bus access
scheme. Both problems were considered in the context of a heuris-
tic which performs the mapping and scheduling of the system func-
tionality. We have shown that the quality of the system
implementation can be significantly improved by the proposed op-
timization heuristics.
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