
ABSTRACT
In this paper we present an approach to mapping and scheduling
of distributed embedded systems for hard real-time applications,
aiming at minimizing the system modification cost. We consider an
incremental design process that starts from an already existing sys-
tem running a set of applications. We are interested to implement
new functionality so that the already running applications are dis-
turbed as little as possible and there is a good chance that, later,
new functionality can easily be added to the resulted system. The
mapping and scheduling problem are considered in the context of a
realistic communication model based on a TDMA protocol.
Keywords: design space exploration, design reuse, distributed
real-time systems, process mapping and scheduling, methodology.

1. INTRODUCTION
Distributed embedded systems with multiple processing elements
are becoming common in various application areas [4]. In [12], for
example, allocation of processing elements, as well as process map-
ping and scheduling for distributed systems are formulated as a
mixed integer linear programming (MILP) problem. A disadvantage
of this approach is the complexity of solving the MILP problem.
Therefore, alternative problem formulations and solutions based on
efficient heuristics have been proposed [1, 2, 8, 14].

Although much of the above work is dedicated to specific
aspects of distributed systems, researchers have often ignored or
very much simplified issues concerning the communication infra-
structure. One notable exception is [13], in which system synthesis
is discussed in the context of a distributed architecture based on
arbitrated busses. Many efforts dedicated to communication syn-
thesis have concentrated on the synthesis support for the communi-
cation infrastructure but without considering hard real-time
constraints and system level scheduling aspects [6, 10, 9].

Another characteristic of research efforts concerning the code-
sign of embedded systems is that authors concentrate on the
design, from scratch, of a new system optimized for a particular
application. For many application areas, however, such a situation
is extremely uncommon and only rarely appears in design practice.
It is much more likely that one has to start from an already existing
system running a certain application and the design problem is to
implement new functionality (including also upgrades to the exist-
ing one) on this system. In such a context it is very important to
make as few as possible modifications to the already running appli-
cations. The main reason for this is to avoid unnecessarily large
design and testing times. Performing modifications on the (poten-
tially large) existing applications increases design time and, even
more, testing time (instead of only testing the newly implemented
functionality, the old application, or at least a part of it, has also to
be retested). However, this is not the only aspect to be considered.
Such an incremental design process, in which a design is periodi-
cally upgraded with new features, is going through several itera-
tions. Therefore, after new functionality has been implemented, the
resulting system has to be structured such that additional function-
ality, later to be mapped, can easily be accommodated.

We consider mapping and scheduling for hard real-time
embedded systems in the context of a realistic communication
model. Because our focus is on hard real-time safety critical sys-
tems, communication is based on a time division multiple access
(TDMA) protocol as recommended for applications in areas like,
for example, automotive electronics [7]. For the same reason we
use a non-preemptive static task scheduling scheme.

In this paper, we have considered the design of distributed embed-
ded systems in the context of an incremental design process as out-
lined above. This implies that we perform mapping and scheduling of
new functionality so that certain design constraints are satisfied and:

a. already running applications are disturbed as little as possible;
b. there is a good chance that new functionality can, later, easily

be mapped on the resulted system.
In [11] we have discussed an incremental design strategy

which excludes any modifications on already running applications.
In this paper we extend our approach in the sense that remapping
and scheduling of currently implemented applications are allowed,
if they are needed in order to accommodate the new functionality.
In this context, we propose a heuristic which finds the set of old
applications which have to be remapped together with the new one
such that the disturbance on the running system (expressed as the
total cost implied by the modifications) is minimized. Once this set
of applications has been determined, mapping and scheduling is
performed according to the requirements stated above.

Supporting such a design process is of critical importance for
current and future industrial practice, as the time interval between
successive generations of a product is continuously decreasing,
while the complexity due to increased sophistication of new func-
tionality is growing rapidly.

The paper is divided into 6 sections. The next section presents
some preliminary discussion. Section 3 introduces the detailed prob-
lem formulation and the quality metrics we have defined. Our map-
ping and scheduling strategies are outlined in Section 4, and the
experimental results are presented in Section 5. The last section pre-
sents our conclusions.

2. PRELIMINARIES
2.1 System Architecture
We consider architectures consisting of processing nodes connected
by a broadcast communication channel. Communication between
nodes is based on a TDMA protocol such as the TTP [7] which inte-
grates a set of services necessary for fault-tolerant real-time systems.
The communication channel is a broadcast channel, so a message
sent by a node is received by all the other nodes. Each nodeNi can
transmit only during a predetermined time interval, the so called
TDMA slot Si (Figure 1). In such a slot, a node can send several
messages packaged in a frame. A sequence of slots corresponding to
all the nodes in the architecture is called a TDMA round. A node can
have only one slot in a TDMA round. Several TDMA rounds can be
combined together in a cycle that is repeated periodically.

We have designed a software architecture which runs on the
CPU in each node, and which has a real-time kernel as its main
component. Each kernel has a schedule table that contains all the
information needed to take decisions on activation of processes and
transmission of messages, based on the current value of time [3].

Figure 1. Buss Access Scheme

TDMA Round
Cycle of two rounds

Slot

S0 S1 S2 S3 S0 S1 S2 S3
Frames

Minimizing System Modification in an
Incremental Design Approach

Paul Pop, Petru Eles, Traian Pop, Zebo Peng
Dept. of Computer and Information Science, Linköping University

{paupo, petel, trapo, zebpe}@ida.liu.se

2.2 The Process Graph
As an abstract model for system representation we use a directed, acy-
clic, polar graphG(V, E). Each nodePi∈V represents oneprocess. An
edgeeij∈E from Pi to Pj indicates that the output ofPi is the input of
Pj. A process can be activated after all its inputs have arrived and it
issues its outputs when it terminates. Once activated, a process exe-
cutes until it completes. Each process graphG is characterized by
its periodTG and its deadlineDG ≤ TG. The functionality of an
application is described as a set of process graphs.
2.3 Application Mapping and Scheduling
Considering a system architecture like the one presented in section
2.1, the mapping of a process graphG(V, E) is given by a function
M: V→PE, wherePE={N1, N2, ..,Nnpe} is the set of nodes (processing
elements). For aprocessPi∈V, M(Pi) is the node to whichPi is
assigned for execution. Each processPi can potentially be mapped
on several nodes. LetNPi⊆PE be the set of nodes to whichPi can
potentially be mapped. For eachNi∈NPi, we know the worst case
execution timetPi

Ni of processPi, when executed onNi.
In order to implement an application, represented as a set of

process graphs, the designer has to map the processes to the system
nodes and to derive a schedule such that all deadlines are satisfied.
However, finding a valid schedule is not always possible, either
because there are not enough available hardware resources, or the
resources are not intelligently allocated to the already running
applications. Thus, in order to produce a valid solution, the
resources have to be reallocated through rescheduling and remap-
ping of some of the already running applications or, in the worst
case, the architecture has to be modified by adding new resources.

In Figure 2 we consider a single processor system with three
applications,A, B and C, each with a deadlineDA, DB and DC.
ApplicationC is depicted in more detail, showing the two process-
esP1 andP2 it is composed of. Let us suppose that the already run-
ning applications areA andB, and we have to implementC as a
new application. IfA andB have been mapped and schedules like
in Figure 2a, we will not be able to map applicationC (in particu-
lar, processP2). With a mapping ofA andB like in Figure 2b and c,
we are able to map both processes ofC, but no schedule can be
produced which meets the deadlineDC. If A andB are implement-
ed like in Figure 2d, applicationC can be successfully implement-
ed. Two aspects can be highlighted based on this example:
1. If applicationsA andB are implemented like in Figure 2a (or like

in 3b or 3c), it is possible to correctly implement applicationC
only with modifying the implementation of applicationB.

2. If during implementation of applicationB we would have taken
into consideration that sometimes in the future an application
like C will have to be implemented, we could have produced a
schedule like the one in Figure 2d. In this case, applicationC
could be implemented without any modification of an existing
application.

3. PROBLEM FORMULATION
We model an applicationΓcurrent as a set of process graphs
Gi∈Γcurrent, each with a periodTGi and a deadlineDGi≤ TGi. For
each processPi in a process graph we know the setNPi of potential
nodes on which it could be mapped and its worst case execution
time on each of these nodes. The underlying architecture is as pre-
sented in section 2.1. We consider a non-preemptive static cyclic
scheduling policy for both processes and message passing.

Our goal is to map and schedule an applicationΓcurrent on a
system that already implements a setψ of applications, consider-
ing the following requirements:

Requirementa: constraints onΓcurrent are satisfied and minimal
modifications are performed to the applications inψ.
Requirementb: new applicationsΓfuture can be mapped on the
resulting system.

If it is not possible to map and scheduleΓcurrentwithout modi-
fying the already running applications, we have to change the
scheduling and mapping of some applications inψ. However, even
with serious modifications performed onψ, it is still possible that
certain constraints are not satisfied. In this case the hardware archi-
tecture has to be changed by, for example, adding a new processor.
In this paper we will not discuss this last case, but will concentrate
on the situation where a possible mapping and scheduling which
satisfies requirement a) can be found, and this solution has to be
further improved by considering requirement b).

In order to achieve our goals we need certain information to be
available concerning the set of applicationsψ as well as the possible
future applicationsΓfuture. We consider thatΓcurrent can interact
with the previously mapped applicationsψ by reading messages
generated on the bus by processes inψ. In this case, the reading pro-
cess has to be synchronized with the arrival of the message on the
bus, which is easy to solve during scheduling ofΓcurrent.
3.1 Characterizing Existing Applications
To perform the mapping and scheduling ofΓcurrent, the minimum
information needed on the existing applicationsψ consists of the
local schedule tables for each node. Thus, we know the activation
time for each process on the respective node and its worst case
execution time. As for messages, their length as well as their place
in the particular TDMA frame are known. However, if the initial
attempt to schedule and mapΓcurrentdoes not succeed, we have to
modify the schedule and, possibly, the mapping of applications
belonging toψ, in the hope to find a valid solution forΓcurrent.

Our goal in this paper is to find that minimal modification to the
existing system that leads to a correct implementation ofΓcurrent. In
our context, such a minimal modification means remapping and
rescheduling a subset of old applicationsΩ ⊆ ψ so that the total
cost of reimplementingΩ is minimized. We represent a set of
applications as a directed acyclic graphG(V, E), where each node
Γi ∈ V represents an application. An edgeeij ∈ E from Γi to Γj
indicates that any modification toΓi would trigger the need to also
remap and scheduleΓj. Such a relation can be imposed by certain
interactions between applications1. In Figure 3 we present the
graph corresponding to a set of ten applications. ApplicationsΓ6,
Γ8, Γ9 andΓ10, depicted in black, are frozen: no modifications are
possible to them. The rest of the applications have the remapping
costRi depicted on their left.Γ7 can be remapped with a cost of 20.
If Γ4 is to be reimplemented, this also requires the modification of
Γ7, with a total cost of 90. In the case ofΓ5, although not frozen, no
remapping is possible as it would trigger the need to remapΓ6
which is frozen. Given a subset of applicationsΩ ⊆ ψ, the total cost
of modifying the applications inΩ is .

To each applicationΓi ∈ V the designer has associated a cost
Ri of reimplementingΓi. Such a cost can typically be expressed in
hours needed to perform retesting ofΓi and other tasks connected
to the remapping and rescheduling of the application. Remapping
of Γi and the associated rescheduling can only be performed if the

c)
b)
a)

A
B

C
P1
P2

Figure 2. Example for the First Design Criterion

Slack
d)

DC DA=DB

1 If a set of applications have a circular dependence, such that the modifi-
cation of any one implies the remapping of all the others in that set, the
set will be represented as a single node in the graph.

Figure 3. Characterizing the Set of Existing Applications

Γ1 Γ2

Γ3

Γ4 Γ5

Γ6

Γ7
Γ8 Γ9 Γ10

150 70

50

70 50

20

R Ω() Ri
Γi Ω∈
∑=

process graphs that capture the applications and their deadlines are
available. However, this is not always the case, and in such situa-
tions the application is considered frozen.
3.2 Characterizing Future Applications
What do we suppose to know about the familyΓfuture of applica-
tions which do not exist yet? Given a certain limited application
area (e.g. automotive electronics), it is not unreasonable to assume
that, based on the designers’ previous experience, the nature of ex-
pected futurefunctions to be implemented, profiling of previous ap-
plications, available uncomplete designs for future versions of the
product, etc., it is possible to characterize the family of applica-
tions which could possibly be added to the current implementation.
This is an assumption which is basic for the concept of incremental
design. Thus, we consider that, concerning the future applications,
we know the setSt={ tmin,...ti,...tmax} of possible worst case execu-
tion times for processes, and the setSb={ bmin,...bi,...bmax} of pos-
sible message sizes. We also assume that over these sets we know
the distributions of probabilityfSt(t) for t∈St and fSb(b) for b∈Sb.
For example, we might have worst case execution timesSt={50,
100, 200, 300, 500 ms}. Ifthere is a higher probability of having
processes of 100 ms, and a very lowprobability of having processes
of 300 ms and 500 ms, then our distribution functionfSt(t) could
look like this: fSt(50)=0.20, fSt(100)=0.50, fSt(200)=0.20,
fSt(300)=0.05, andfSt(500)=0.05.

Another information is related to the period of process graphs
which could be part of future applications. In particular, the small-
est expected periodTmin is assumed to be given, together with the
expected necessary processor timetneed, and bus bandwidthbneed,
inside such a periodTmin. As will be shown later, this information
is used in order to provide a fair distribution of slacks.

The execution times inSt as well astneedare considered rela-
tive to the slowest node in the system. All the other nodes are char-
acterized by a speedup factor relative to this slowest node.
3.3 Quality Metrics
A designer will be able to map and schedule an applicationΓfuture
on top of a system implementingψ andΓcurrent, only if there are
sufficient resources available. In our case, the resources are proces-
sor time and the bandwidth on the bus. In the context of a non-pre-
emptive static scheduling policy, having free resources translates
into having free time slots on the processors and having space left
for messages in the bus slots. We call these free slots of available
time on the processor or on the bus,slack. It is the size and distri-
bution of the slacks that characterizes the quality of a certain
design alternative from the point of view of its potential to accom-
modate future applications. In this section we introduce two crite-
ria in order to reflect the degree to which one design alternative
meets the requirement b) presented at the beginning of section 3.

The first criterion reflects how well the resulted slack sizes fit
to a future application. The slack sizes resulted after implementa-
tion of Γcurrenton top ofψ should be such that they best accommo-
date a given family of applicationsΓfuture, characterized by the sets
St, Sb and the probability distributionsfSt and fSb, as outlined
before. Let us consider the example in Figure 2, where we have a
single processor with the applicationsA andB implemented and a
future applicationC which consists of the two processes,P1 and
P2. It can be observed that the best configuration, taking in consid-
eration only slack sizes, is to have a contiguous slack. Such a slack,
as depicted in Figure 2c and d, will best accommodate any future
application. However, in reality, it is almost impossible to map and
schedule the current application such that a contiguous slack is
obtained. Not only is it impossible, but it is also undesirable from
the point of view of the second design criterion, discussed below.

The secondcriterion expresses how well the slack is distrib-
uted in time. LetPi be a process with periodTPi that belongs to a
future application, andM(Pi) the node on whichPi will be
mapped. The worst case execution time ofPi is tPi

M(Pi) . In order to
schedulePi we need a slack of sizetPi

M(Pi) that is available period-
ically, within a periodTPi, on processorM(Pi). If we consider a

group of processes with periodT, which are part ofΓfuture, in order
to implement them, a certain amount of slack is needed which is
available periodically, with a periodT, on the nodes implementing
the respective processes. During implementation ofΓcurrentwe aim
for a slack distribution such that the future application with the
smallest expected periodTmin and with the expected necessary
processor timetneed, and bandwidthbneed, can be accommodated.

We have defined two metrics,C1 andC2, which quantify the
degree to which the first and second criterion, respectively, are
met. A detailed discussion about these metrics is given in [11].
3.4 Cost Function and Exact Problem Formulation
In order to capture how well a certain design alternative meets the
requirement b) stated in section 3, the metrics discussed before are
combined in an objective function, as follows:

C1
P andC2

P are those components of the two metrics that capture
the slack properties on processors, whileC1

m andC2
m are calcu-

lated for the slacks on the bus. Our mapping and scheduling strat-
egy will try to minimize this function.

The first two terms measure how well the resulted slack sizes
fit to a future application (first criterion), while the second two
terms reflect the distribution of slacks (second criterion). We call a
valid solutionthat mapping and scheduling which satisfies all the
design constraints (in our case the deadlines) and meets the second
criterion (C2

P ≥ tneed andC2
m ≥ bneed)

1.
At this point we can give an exact formulation to our problem.

Given an existing set of applicationsψ which are already mapped
and scheduled, and an applicationΓcurrent to be implemented on
top of ψ, we are interested to find the subsetΩ ⊆ ψ of old applica-
tions to be remapped and rescheduled such that we produce a valid
solution forΓcurrent∪ Ω and the total cost of modificationR(Ω) is
minimized. Once such anΩ is found, we areinterested to minimize
the objective functionC for the setΓcurrent∪ Ω, considering a fam-
ily of future applications characterized by the setsSt andSb, the
functionsfStandfSbas well as the parametersTmin, tneed, andbneed.

4. MAPPING AND SCHEDULING STRATEGY
As shown in Figure 4, our mapping and scheduling strategy (MS)
has two steps. In the first step we try to obtain a valid solution for
Γcurrent∪ Ω so thatR(Ω) is minimized.Starting from such a solu-
tion, a second step iteratively improves on the design in order to
minimize the objective functionC.
4.1 The Initial Mapping and Scheduling
The first step of MS consists of an iteration that tries subsetsΩ ⊆ ψ
with the intention to find that subsetΩ=Ωminwhich produces a valid
solution forΓcurrent∪ Ω such thatR(Ω) is minimized. Given a sub-
set Ω, the InitialMappingScheduling function (IMS) constructs a
mapping and schedule forΓcurrent ∪ Ω that meets the deadlines,
without worrying about the two criteria in section 3.3. For IMS we
used as a starting point the Heterogeneous Critical Path (HCP) algo-
rithm, introduced in [5]. HCP is based on a list scheduling algo-
rithm. We have modified the HCP algorithm to consider, during
mapping and scheduling, a set of previous applications that have
already occupied parts of the schedule table, and to schedule the
messages according to the TDMA protocol. Furthermore, for the
selection of processes we have used, instead of the CP (critical path)
priority function, the (modified partial critical path) MPCP priority
function introduced by us in [3]. MPCP takes into consideration the
particularities of the communication protocol for calculation of
communication delays. These delays are not estimated based only
on the message length, but also on the time when slots assigned to
the particular node which generates the message, will be available.

However, before using the IMS algorithm, two aspects have to

1 This definition of a valid solution can be relaxed by imposing only the sat-
isfaction of deadlines. In this case, the algorithm in Figure 4 will look af-
ter a solution which satisfies the deadlines and R(Ω) is minimized; the two
additional criteria are only considered optionally.

C w1
P

C1
P()

2
w1

m
C1

m()
2

w2
P
max 0 tneed, C2

P
–() w2

m
max 0 bneed, C2

m
–()+ + +=

be addressed. First, the process graphsGi∈Γcurrent∪ Ω are merged
into a single graphGcurrent, by unrolling of process graphs and inser-
tion of dummy nodes [11]. In addition, we have to consider during
scheduling the mismatch between the periods of the already exist-
ing system and those of the current application. The schedule table
into which we would like to scheduleGcurrent has a length ofTψ\Ω
which is theglobal period of the systemψ after extraction of the ap-
plications inΩ. However, the periodTcurrent of Gcurrent can be dif-
ferent fromTψ\Ω. Thus, before schedulingGcurrent into the existing
schedule table, the schedule table is expanded to the least common
multiplier of the two periods. A similar procedure is followed in the
caseTcurrent > Tψ\Ω.
4.2 The Basic Strategy
If IMS succeeds in finding a mapping and schedule which meet the
deadlines, this is not yet a valid solution. In order to produce a valid
solution we iteratively try to satisfy the second design criterion. In
terms of our metrics, that means a mapping and scheduling such that
C2

P ≥ tneedandC2
m ≥ bneed. Potential moves can be the shifting of

processes inside their [ASAP, ALAP] interval in order to improve the
periodic slack. The move can be performed on the same node or to
other nodes. Similar moves are considered for messages.
SelectMoveC2 evaluates these moves with regard to the second
design criterion and selects the best one to be performed. Any viola-
tion of the data dependency constraints is rectified by moving pro-
cesses or messages concerned in an appropriate way.

If Step 1 has succeeded, a mapping and scheduling of
Γcurrent∪ Ω has been produced which corresponds to a valid solu-
tion. In addition,Ω is such that the total modification cost is as small
as possible. Starting from this valid solution, the second step of the
MS strategy, presented in Figure 4, tries to improve on the design in
order to minimize the objective functionC. In a similar way as dur-
ing Step 1, we iteratively improve the design by successive moves.

In [11] we introduced a heuristic with the goal of guiding the
moves discussed above. Its intelligence lies in how the moves are se-
lected. For each iteration a set of potential moves is selected by thePo-
tentialMove function. SelectMove then evaluates these moves with
regard to the respective metrics and selects the best one to perform.
4.3 Minimizing the Modification Cost
The first step of our mapping strategy described in Figure 4 iterates
on subsetsΩ searching for a valid solution which also minimizes
the total modification costR(Ω). As a first attempt, the algorithm
searches for a valid implementation ofΓcurrent without disturbing
the existing applications(Ω=∅). If no valid solution is found succes-
sive subsetsΩ produced by the functionNextSubset are considered,
until a terminating condition is met. The performance of the algo-
rithm, in terms of runtime and quality of the solutions produced, is
strongly influenced by the implementation of the functionNextSub-
set and the termination condition. They determine how the design
space is explored while testing different subsetsΩ of applications.
4.3.1 Exhaustive Search (ES)
In order to findΩmin, the simplest solution is to try successively all
the possible subsetsΩ ⊆ ψ. These subsets are generated in the
ascending order of the total modification cost, starting from∅. The
termination condition is fulfilled when the first valid solution is
generated. Since the subsets are generated in ascending order,
according to their cost, the subsetΩ that first produces a valid solu-
tion is also the subset with the minimum modification cost.

The generation of subsets is performed according to the graph
G that characterizes the existing applications (see section 3.1).
Finding the next subsetΩ, starting from the current one, is
achieved by a branch and bound algorithm that in the worst case
grows exponentially in time with the number of applications. For
the example in Figure 3, the call toNextSubset(∅) will generate
{ Γ7} which has the smallest nonzero modification cost. The next
generated subsets, in order, together with their corresponding total
modification cost are:R({ Γ3})=50, R({ Γ3, Γ7})=70, R({ Γ4,

Γ7})=90 (the inclusion ofΓ4 triggers the inclusion ofΓ7), R({ Γ2,
Γ3})=120,R({ Γ3, Γ4, Γ7})=140,R({ Γ1})=150, and so on. The total
number of possible subsets according to the graphG is 16.

This approach, while finding the optimal subsetΩ, requires a
large amount of computation time and can be used only with a
small number of applications.
4.3.2 Ad-hoc Solution (AH)
If the number of applications is larger, a possible ad-hoc solution
could be based on a greedy strategy which, starting fromΩ=∅,
progressively enlarges the subset until a valid solution is produced.
The algorithm looks at all the non-frozen applications and picks
that one which, together with its dependencies, has the smallest
modification cost. If the new subset does not produce a valid solu-
tion, it is enlarged by including, in the same fashion, the next
application with its dependencies. This greedy expansion of the
subset is continued until the set is large enough to lead to a valid
solution or no application is left. For the example in Figure 3 the
call toNextSubset(∅) will produceR({ Γ7})=20, and will be succes-
sively enlarged toR({ Γ7, Γ3})=70,R({ Γ7, Γ3, Γ2})=140 (Γ4 could
have been picked as well in this step because it has the same modi-
fication cost of 70 asΓ2 and its dependenceΓ7 is already in the
subset),R({ Γ7, Γ3, Γ2, Γ4})=210, and so on.

While this approach finds very quickly a valid solution, if one
exists, it is possible that the total modification cost is much higher
than the optimal one.
4.3.3 Subset Selection Heuristic (SH)
An intelligent selection heuristic should be able to identify the reasons
due to which a valid solution has not been found. Such a failure can
have two possible causes: an initial mapping which meets the dead-
lines has not been produced, or the second criterion is not satisfied.

Let us investigate the first reason. If an applicationΓi is to meet its
deadlineDi, all its processesPj∈Γi have to be scheduled inside their
[ASAP, ALAP] intervals. InitialMappingScheduling (IMS) fails to
schedule a process inside its [ASAP, ALAP] interval if there is not
enough slack available on any processor, due to other processes
scheduled in the same interval. In this situation we say that there is a

Figure 4. MS Strategy to Support Iterative Design

MappingSchedulingStrategy
Ω=∅
-- Step 1: try to find a valid schedule forΓcurrent that minimizesR(Ω)
repeat

succeeded=InitialMappingScheduling(ψ \ Ω, Γcurrent∪Ω)
-- compute ASAP-ALAP intervals
ASAP(Γcurrent∪Ω); ALAP(Γcurrent∪Ω)
if succeeded then

repeat -- try to satisfy the second design criterion
-- find moves with highest potential to maximize C2
move_set=PotentialMoveC2(Γcurrent∪Ω)
-- select and perform move which improves mostC2
move = SelectMoveC2(move_set); Perform(move)
succeeded = C2

P ≥tneed and C2
m ≥bneed

until succeeded or limit reached
end if
if succeeded and R(Ω) smallest so far then

Ωvalid=Ω; solutionvalid=solutioncurrent
end if
-- try another subset
Ω=NextSubset(Ω)

until termination condition
if not succeeded then modify architecture; go to step 1; end if
-- Step 2: try to improve the cost function C
solutioncurrent=solutionvalid; Ωmin=Ωvalid
repeat

-- find moves with highest potential to minimize C
move_set=PotentialMoveC(Γcurrent∪Ωmin)
-- select move which improvesC
-- and does not invalidate the second design criterion
move = SelectMoveC(move_set); Perform(move)

until C1 has not changed or limit reached
end MappingSchedulingStrategy

conflictwith processes belonging to other applications. We are in-
terested to find out which applications are responsible for conflicts
encountered by ourΓcurrent, and not only that, but also which ones
areflexible enough to move away in order to avoid these conflicts.

IMS determines a metric∆i that characterizes the degree of con-
flict and the flexibility of applicationΓi in relation toΓcurrent. A set
of applicationsΩ will be characterized, in relation toΓcurrent, by

. The metric∆(Ω) will be used by our subset selec-

tion heuristic if IMS has failed to produce a solution which satisfies
the deadlines. An application with a larger∆i is more likely to lead
to a valid schedule if included inΩ. In Figure 5 we illustrate how
this metric is calculated. ApplicationsA, B andC are scheduled on
three processorsP1, P2 andP3, and our goal is to implement the
current applicationD. At a certain moment IMS comes to the point
to place processD1 ∈ D. However, it is not able to placeD1 inside
its [ASAP, ALAP] interval I, because there is not enough free slack
available insideI on any of the processors. We are interested to
determine which of the applicationsA, B andC are more likely to
lend free slack forD1 if remapped. Therefore, we calculate the
slack resulted after we move away processes from the intervalI.
For example, the resulted slack available after remapping applica-
tion C (moving processC1∈C either to the left or to the right
inside its own [ASAP, ALAP] interval) is of size|I| - min(|C1

L|,
|C1

R|) . Thus, we increment∆C with δC = |I| - min(|C1
L|, |C1

R|) -
|D 1| . The incrementsδB andδA to be added to∆B and∆A respec-

tively, are also presented in Figure 5. IMS continues with the other
processes of application D (after assuming that processD1 has been
scheduled at the beginning of intervalI). As result of the failed
attempt to mapD, IMS will produce the metrics∆A, ∆B, and∆C.

If the initial mapping was successful, the first step of MS could
fail during the attempt to satisfy the second criterion. In this case,
the metric∆i is computed in a different way. It will capture the po-
tential of an applicationΓi to improve the metricC2 if remapped
together withΓcurrent. Thus, for the improvement ofC2 we consid-
er a totalnumber of moves from all the non-frozen applications (de-
termined usingPotential-MoveC2(ψ)). For each move that has as
subjectPj∈Γi, we increment the metric∆i with the predicted im-
provement onC2.

MS starts by trying an implementation ofΓcurrent with Ω=∅. If
this attempt fails, because of one of the two reasons mentioned
above, the corresponding metrics∆i are computed for allΓi∈ψ.
Our heuristic SH will then start by finding the ad-hoc solutionΩAH
produced by the AH algorithm (this will succeed if there exists any
solution) with a corresponding cost RAH=R(ΩAH) and a
∆AH=∆(ΩAH). SH now continues by trying to find a solution with a
more favorableΩ (a smaller total cost R). Therefore, the thresholds
Rmax=RAH and ∆min=∆AH/n (for our experiments we considered
n=2) are set. For generating new subsetsΩ, the functionNextSub-
set now follows a similar approach like ES but in a reverse direc-
tion, towards smallersubsets, and it will consider only subsets with a
smaller total cost then Rmax and a larger∆ then ∆min (a small∆
means a reduced potential to eliminate the cause of the initial fail-
ure). Each time a valid solution is found, the current values of
Rmax and ∆min are updated in order to further restrict the search
space. The heuristic stops when no subset can be found with
∆>∆min, or a certain imposed limit has been reached (e.g. on the to-
tal number of attempts to find new sets).

5. EXPERIMENTAL RESULTS
For evaluation of the proposed strategies we first used process graphs
of 80, 160, 240, 320 and 400 processes, representing the application
Γcurrent, generated for experimental purpose. 30 graphs were gener-
ated for each graph dimension, resulting in a total of 150 graphs. We
considered an architecture consisting of 10 nodes. For the communi-
cation channel we considered a transmission speed of 256 kbps and a
length below 20 meters. The maximum length of the data field in a
bus slot was 8 bytes. Experiments were run on a SUN Ultra 10.

The first results concern the quality of the solution obtained with
our mapping strategy MS using the search heuristic SH compared to
the case when the ad-hoc approach AH and the exhaustive search ES
are used. For each of the five graph dimensions forΓcurrent we have
considered a set of existing applicationsψ consisting of 320, 400,
480, 560 and 640 processes, respectively. The sets contained 6, 8,
10, 12 and 14 applications, each application with an associated
modification cost assigned manually in the range 10 to 100. The
available slack is of about 50% of the total schedule size. The
dependencies between applications were such that the total number
of possible subsetsΩ resulted for each setψ were 32, 128, 256, 1024
and 4096. We have considered that the future applicationsΓfuture
consist of a process graph of 80 processes, randomly generated
according to the following specifications:St={20, 50, 100, 150, 200
ms}, ft(St)={10, 25, 45, 15, 5%},Sb={2, 4, 6, 8 bytes},fb(Sb)={20,
50, 20, 10%},Tmin=250 ms,tneed=100 ms andbneed=20 ms.

MS has been used to produce a valid solution for each of the 150
process graphs representingΓcurrenton the target systemψ using the
ES, AH and SH approaches to subset selection. Figure 6a compares
the three approaches based on the total modification cost needed in
order to obtain a valid solution. The exhaustive approach ES is able
to obtain valid solutions with an optimal (smallest) modification
cost, while the ad-hoc approach AH produces in average 3.12 times
more costly modifications in order to obtain valid solutions. Howev-
er, in order to find the optimal solution ES needs large computation
times, as shown in Figure 6b. For example, it can take more than 2
hours in average to find the smallest cost subset to be remapped that
leads to a valid solution in the case of 14 applications (640 process-
es). We can see that the proposed heuristic SH performs well, pro-
ducing close to optimal results with a good scaling for large
application sets. For the results in Figure 6 we have eliminated those
situations in which no valid solution could be produced by MS.

Another important aspect to be proven by experiments is the
extent to which the mapping strategy proposed in the paper really
facilitates the implementation offuture applications. For these
experiments we have considered that no modifications are allowed
to the applications inψ. We have used an existing set of applica-
tionsψ consisting of 400 processes, with a schedule table of 6s on
each processor, and a slack of about 50% of the total schedule size.
Then, we have mapped graphs of 40, 80, 160 and 240 nodes repre-
senting theΓcurrentapplication on top of ψ.

After mapping and scheduling each of these graphs we have
tried to add a new applicationΓfuture to the resulted system (for
Γfuturewe used the same experimental set as presented before). The
experiments have been performed two times, using first MS* (we
call MS* the version of MS in which no modification of
applications in ψ is allowed), and then anad-hoc mapping
approach (AM), for mappingΓcurrent. In both cases we were
interested if it is possible to find a valid implementation forΓfuture
on top of Γcurrent, using the initial mapping algorithm IMS. The
AM approach is a simple, straight-forward solution to produce
designs which, to a certain degree, support an incremental process.
Starting from the initial valid schedule of lengthSobtained by IMS
for the graphG with N processes, AH uses a simple scheme to
redistribute the processes inside the [0,D] interval, whereD is the
deadline of the process graphG. AH starts by considering the first
process in topological order, let it beP1. It introduces afterP1 a slack
of size min(smallest process size ofΓfuture, (D-S)/N), thus shifting
all P1’s descendants to the right. The insertion of slacks is repeated

∆ Ω() ∆i
Γi Ω∈
∑=

A1 B1

C1

A3A2

D1

δA = max(|I| - |B1| - min(|A1
L|, |A1

R|), |I| -

δC = |I| - min(|C1
L|, |C1

R|) - |D1 |

δB = |I| - |A1| - min(|B1
L|, |B1

R|) - |D1 |

ASAP(D1) ALAP(D1)

|I| = ALAP(D1) - ASAP(D1)

ALAP(C1)ASAP(C1)

C1
RC1

L

P1

P3

Figure 5. Metric for the Subset Selection Heuristic

P2

 min(|A2
L|, |A2

R|) - min(|A3
L|, |A3

R|)) - |D1 |

0

200

400

600

800

1000

1200

320 400 480 560 640

AH

SH

ES

0

20

40

60

80

100

120

140

320 400 480 560 640

AH

SH

ES

A
ve

ra
ge

 M
od

ifi
ca

tio
n

C
os

tR
(Ω

)

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

[m
in

]

Figure 6. Average Modification Cost (a) and Execution Time (b) for MS with the AH, SH and ES Approaches to Subset Selection
a) Number of processes (applications) inψ

320(6) 400(8) 480(10) 560(12) 640(14) 320(6) 400(8) 480(10) 560(12) 640(14)

b) Number of processes (applications) inψ

for the next process, with the current larger value ofS, as long as the
resulted schedule has anS≤ D.

Figure 7 shows the number of successful implementations in
the two cases. In the caseΓcurrent has been mapped with MS*, this
means using the design criteria and metrics proposed in the paper,
we were able to find a valid solution for 65% of the total process
graphs considered. However, using AM to mapΓcurrenthas led to a
situation where IMS is able to find schedules which satisfy the
deadlines for only 27.5% cases. WhenΓcurrent grows to 160 pro-
cesses, only MS* is able to find a mapping ofΓcurrent that supports
an incremental design process, accommodating more that 60% of
the future applications. If the remaining slack is very small, after
we map aΓcurrentof 240, it becomes practically impossible to map
new applications without modifying the current system.

If the mapping heuristic is allowed to modify the existing system,
as discussed in this paper, then we are able to increase the total num-
ber of successfully mapped applicationsΓfuture from 65% with MS*

to 77.5% with MS. For aΓcurrent with 160 processes the increase is
from 60% to 92%. Such an increase is, of course, expected. The im-
portant aspect, however, is that it is obtained not by randomly select-
ing old applications to be remapped, but by performing this selection
such that the total modification cost is minimized.

Finally, we considered an example implementing a vehicle
cruise controller (CC) modeled using one process graph. The
graph has 32 processes and it was to be mapped on an architecture
consisting of 4 nodes, namely: Anti Blocking System, Transmis-
sion Control Module, Engine Control Module and Electronic
Throttle Module. The period was 300 ms, equal to the deadline. In
order to validate our approach, we have considered the following
setting. The systemψ consists of 80 processes generated random-
ly, with a schedule table of 300 ms and about 40% slack. The CC
is theΓcurrentapplication to be mapped. We have also generated 30
future applications of 40 processes each with the characteristics of
the CC, which are typical for automotive applications. By mapping
the CC using MS* we were able to later map 21 of the future appli-
cations, while using AM only 4 of the future applications could be
mapped. When modifications of the current system were allowed,
using MS, we are able to map 24 of the 30 future applications.

6. CONCLUSIONS
We have presented an approach to the incremental design of dis-
tributed hard real-time embedded systems. Such a design process

satisfies two main requirements when adding new functionality: al-
ready running applications are disturbed as little as possible, andthere
is a good chance that, later, new functionality can easily be
mapped on the resulted system. Our approach assumes a non-pre-
emptive static cyclic scheduling policy and a realistic communica-
tion model based on a TDMA scheme.

We have introduced two design criteria with their correspond-
ing metrics that drive our mapping strategy to solutions supporting
an incremental design process. Three algorithms have been pro-
posed to produce a minimal subset of applications which have to
be remapped and scheduled in order to implement the new func-
tionality. ES is based on a, potentially slow, branch and bound
strategy which finds an optimal solution. AH is very fast but pro-
duces solutions that could be of too high cost, while SH isable to
quickly produce good quality results. Theapproach has been vali-
dated through several experiments.

REFERENCES
[1] T. Blicke, J. Teich, L. Thiele, “System-Level Synthesis Using

Evolutionary Algorithms”, Des. Aut. for Emb. Syst., V4, N1,
1998, 23-58.

[2] B.P. Dave, G. Lakshminarayana, N.K. Jha, “COSYN: Hard-
ware-Software Co-Synthesis of Heterogeneous Distributed
Embedded Systems”, IEEE Trans. on VLSI Systems, March
1999, 92 -104.

[3] P. Eles, A. Doboli, P. Pop, Z. Peng, “Scheduling with Bus
Access Optimization for Distributed Embedded Systems”,
IEEE Transactions on VLSI Systems, October 2000.

[4] R. Ernst, "Codesign of Embedded Systems: Status and Trends",
IEEE Design&Test of Comp., April-June, 1998, 45-54.

[5] P. B. Jorgensen, J. Madsen, “Critical Path Driven Cosynthesis
for Heterogeneous Target Architectures,” Proc. Int. Workshop
on Hardware-Software Co-design, 1997, 15-19.

[6] P.V. Knudsen, J. Madsen, "Integrating Communication Proto-
col Selection with Hardware/Software Codesign", IEEE
Trans. on CAD, V18, N8, 1999, 1077-1095.

[7] H. Kopetz, G. Grünsteidl, “TTP-A Protocol for Fault-Tolerant
Real-Time Systems,” IEEE Computer, 27(1), 1994, 14-23.

[8] C. Lee, M. Potkonjak, W. Wolf, "Synthesis of Hard Real-Time
Application Specific Systems", Des. Aut. for Emb. Syst., V4, N4,
1999, 215-241.

[9] S. Narayan, D.D. Gajski, "Synthesis of System-Level Bus
Interfaces", Proc. Europ. Des. & Test Conf, 1994, 395-399.

[10] R.B. Ortega, G. Borriello, "Communication Synthesis for Dis-
tributed Embedded Systems", Proc. Int. Conf. on CAD, 1998,
437-444.

[11] P. Pop, P. Eles, T. Pop, Z. Peng, “An Approach to Incremental
Design of Distributed Embedded Systems,” Submitted to the
Design Automation Conference, 2001.

[12] S. Prakash, A. Parker, “SOS: Synthesis of Application-Spe-
cific Heterogeneous Multiprocessor Systems”, Journal of Par-
allel and Distrib. Comp., V16, 1992, 338-351.

[13] D. L. Rhodes, Wayne Wolf, “Co-Synthesis of Heterogeneous
Multiprocessor Systems using Arbitrated Communication”,
Proceeding of the 1999 International Conference on CAD,
1999, 339 - 342.

[14] T. Y. Yen, W. Wolf, "Hardware-Software Co-Synthesis of Dis-
tributed Embedded Systems", Kluwer Academic Publ., 1997.

0

20

40

60

80

100

120

40 80 160 240

MH

AM

P
er

c.
 o

fΓ
fu

tu
re
 A

pp
lic

at
io

ns
 [%

]

Figure 7. Percentage ofΓfuture Apps. Successfully Mapped
Number of processes inΓcurrent

2401608040

MS*

