
233

Chapter 8
Schedulability Analysis and
Bus Access Optimization for

Multi-Cluster Systems

THIS CHAPTER PRESENTS an approach to schedulability analy-
sis and bus access optimization for multi-cluster distributed
embedded systems consisting of time-triggered and event-triggered
clusters, interconnected via gateways, as introduced in Section 3.5.

On the time-triggered clusters (TTC) the processes are sched-
uled based on a non-preemptive static cyclic scheduling policy,
and messages are sent using the TTP, while on the event-trig-
gered clusters (ETC) we use a fixed-priority preemptive schedul-
ing policy for processes, and messages are sent via the CAN bus.

We have proposed a schedulability analysis for multi-cluster
systems, including a buffer size and worst case queuing delay
analysis for the gateways, responsible for routing inter-cluster
traffic. Optimization heuristics for the priority assignment and
synthesis of bus access parameters aimed at producing a sched-
ulable system with minimal buffer needs have also been devel-
oped.

CHAPTER 8

234

This chapter is organized in five sections. The next section
introduces the problems that we are addressing in this chapter.
Section 8.2 presents our proposed schedulability analysis for
multi-cluster systems, and Section 8.3 uses this analysis to
drive the optimization heuristics used for system synthesis. The
last section present the experimental results.

8.1 Problem Formulation
As input to our problem we have an application Γ given as a set
of conditional process graphs mapped on an architecture consist-
ing of a TTC and an ETC interconnected through a gateway node.
The set of nodes on the TTC is denoted with NT, the ETC consists
of the set of nodes NE, and the gateway node is denoted with NG.

We are interested first to find a system configuration denoted
by a 3-tuple ψ = <φ, β, π> such that the application Γ is schedula-
ble. Determining a system configuration ψ means deciding on:

 • The set φ of the offsets corresponding to each process and
message in the system (see Section 6.2). The offsets of pro-
cesses and messages on the TTC practically represent the
local schedule tables and MEDLs.

 • The TTC bus configuration β, indicating the sequence and
size of the slots in a TDMA round on the TTC.

 • The priorities of the processes and messages on the ETC, cap-
tured by π.

Once a configuration leading to a schedulable application is
found, we are interested to find a system configuration that min-
imizes the total queue sizes needed to run a schedulable applica-
tion. The approach presented in this chapter can be extended to
cluster configurations where there are several ETCs and TTCs
interconnected by gateways.

Example 8.1: Let us consider the example in Figure 8.1
where we the application G1 mapped on the a two-cluster

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

235

Figure 8.1: Scheduling Examples for Multi-Clusters

P1(C1) P4(C4)

P2(C2)

P3(C3)

m1 m2(Cm1
=Cm2

=S1)

m1 m2 m3

m3(Cm3
=SG)

N1

TTP

NG

CAN

N2

SG S1

Round

O2

O3

I2

r2

r3

rΓ1

TΓ1

wm2

wm3

DΓ1

Deadline missed!

SG S1

T

P1 P4

P2

P3

m1m2

m1 m2 m3

m3

T

S1 SG

rΓ1
Deadline met!

S1 SG

T

P1 P4

P2

P3

m1m2

m1 m2 m3

m3

T

SG S1

rΓ1
Deadline met!

S1 SG

T

a) G1 misses its deadline

b) S1 is the first slot, m1, m2 are sent sooner, G1 meets its deadline

c) P2 is the high priority process on N2, G1 meets its deadline

O4

0 50 100 150 200 240

bus

bus

N1

TTP

NG

CAN

N2

bus

bus

N1

TTP

NG

CAN

N2

bus

bus

CAN
TTP

(Cm1
=Cm2

=Cm3
)

T(CT)

P1

P2 P3

P4

m1 m2

m3

Application G1

CHAPTER 8

236

system as illustrated in Figure 3.8 on page 60. In the system
configuration of Figure 8.1 we consider that, on the TTP bus,
the gateway transmits in the first slot (SG) of the TDMA
round, while node N1 transmits in the second slot (S1). The
priorities inside the ETC have been set such that prioritym1 >
prioritym2

 and priorityP3
> priorityP2.

In such a setting, G1 will miss its deadline, which was set
at 200 ms. However, changing the system configuration as in
Figure 8.1b, so that slot S1 of N1 comes first, we are able to
send m1 and m2 sooner, and thus reduce the response time
and meet the deadline. The response times and resource
usage do not, of course, depend only on the TDMA configura-
tion. In Figure 8.1c, for example, we have modified the prior-
ities of P2 and P3 so that P2 is the higher priority process. In
such a situation, P2 is not interrupted when the delivery of
message m2 was supposed to activate P3 and, thus, eliminat-
ing the interference, we are able to meet the deadline, even
with the TTP bus configuration of Figure 8.1a.

8.2 Multi-Cluster Scheduling
In this section we propose an analysis for hard real-time appli-
cations mapped on multi-cluster systems. The aim of such an
analysis is to find out if a system is schedulable, i.e., all the tim-
ing constraints are met. In addition to this, we are also inter-
ested to bound the queue sizes needed to run a schedulable
applications.

On the TTC, an application is schedulable if it is possible to
build a schedule table such that the timing requirements are
satisfied. On the ETC, the answer whether or not a system is
schedulable is given by a schedulability analysis, and we use the
schedulability analysis outlined in Section 6.4.1.

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

237

In Section 6.4.1 the release jitter of a destination process D
depends on the communication delay between sending and
receiving an incoming message m: JD(m) = rm. However, in the
case of a multi-cluster system, we will use offsets to capture the
communication delays, and not the release jitter. Thus, the offset
of a process will be determined such that it contains the commu-
nication delay due to the incoming message. For example, the
offset O2 of process P2 in Figure 8.1a has been set such that it
accounts for the delay due to message m1 sent from the gateway
transfer process T to the process P2 via the CAN bus.

Moreover, determining the schedulability of an application
mapped on a multi-cluster system cannot be addressed sepa-
rately for each type of cluster, since the inter-cluster communi-
cation creates a circular dependency: the static schedules
determined for the TTC influence through the offsets the
response times of the processes on the ETC, which on their turn
influence the schedule table construction on the TTC.

Example 8.2: In Figure 8.1a, placing m1 and m2 in the
same slot leads to equal offsets for P2 and P3. Because of this,
P3 will interfere with P2 (which would not be the case if m2
sent to P3 would be scheduled in Round 4) and thus the
placement of P4 in the schedule table has to be accordingly
delayed to guarantee the arrival of m3.

In our response time analysis we consider the influence
between the two clusters by making the following observations:

 • The start time of process Pi in a schedule table on the TTC is
its offset Oi.

 • The worst-case response time ri of a TT process is its worst-
case execution time, i.e. ri = Ci (TT processes are not preempt-
able).

 • The worst-case response times of the messages exchanged
between two clusters have to be calculated according to the
schedulability analysis to be described in Section 8.2.1.

CHAPTER 8

238

 • The offsets have to be set by a scheduling algorithm such
that the precedence relationships are preserved. This means
that, if process Pj depends on process Pi, the following condi-
tion must hold: Oj ≥ Oi + ri. Note that for the processes on a
TTC receiving messages from the ETC this translates to set-
ting the start times of the processes such that a process is
not activated before the worst-case arrival time of the mes-
sage from the ETC. In general, offsets on the TTC are set such
that all the necessary messages are present at the process
invocation.

The MultiClusterScheduling algorithm in Figure 8.2 receives as
input the application Γ, the mapping M, the system configura-
tion ψ, and produces the offsets φ and worst-case response times
ρ.

The algorithm sets initially all the offsets to 0 (line 2). Then,
the worst-case response times are calculated using the Response-

TimeAnalysis function (line 5) using the feasible analysis provided
in [Tin94b]. The fixed-point iterations that calculate the
response times at line 4 will converge if processor and bus loads
are smaller than 100% [Tin94b]. Based on these worst-case
response times, we determine new values φnew for the offsets
using a list scheduling algorithm (line 7).

The multi-cluster scheduling algorithm loops until the degree
of schedulability δΓ of the application Γ cannot be further
reduced (lines 9–22). In each loop iteration, we select a new off-
set Oi from the set of φnew offsets (line 10), and run the response
time analysis (line 12) to see if the degree of schedulability has
improved (line 13). That offset Oi is selected, which corresponds
to the unschedulable process Pi (i.e., its worst-case response
time ri is greater than its deadline Di) with the largest difference
ri – Di. If δΓ has not improved, we continue with the next offset in
φnew.

When a new offset Oi
new leads to an improved δΓ, we exit the

for-each loop 10–21 that examines offsets from φnew. The loop

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

239

iteration 9–22 continues with a new set of offsets, determined by
ListScheduling at line 16, based on the worst-case response times
ρnew corresponding to the previously accepted offset.

In the multi-cluster scheduling algorithm, the calculation of
offsets is performed by the list scheduling algorithm presented
in Figure 8.3. In each iteration, the algorithm visists the pro-
cesses and messages in the ReadyList. A process or a message in
the application is placed in the ReadyList if all its predecessors
have been already scheduled. The list is ordered based on the pri-
orities presented in Section 4.3.2. The algorithm terminats when
all processes and messages have been visited.

Figure 8.2: The MultiClusterScheduling Algorithm

MultiClusterScheduling(Γ , M, ψ)
1 -- determines the set of offsets φ and worst-case response times ρ
2 for each Oi ∈ φ do Oi = 0 end for -- initially all offsets are zero
3 -- determine initial values for the worst-case response times
4 -- according to the analysis in Section 8.2.1
5 ρ = ResponseTimeAnalysis(Γ , M, ψ, φ)
6 -- determine new values for the offsets, based on ρ
7 φnew = ListScheduling(Γ , M, ψ, ρ)
8 δΓ = ∞ -- consider the system unschedulable initially
9 repeat -- iteratively improve the degree of schedulability δΓ
10 for each Oi

new ∈ φnew do -- for each newly calculated offset
11 Oi

old = φ.Oi; φ.Oi = φnew.Oi
new -- set the new offset, remember old

12 ρnew = ResponseTimeAnalysis(Γ , M, ψ, φ)
13 δΓ

new = SchedulabilityDegree(Γ , ρ)
14 if δΓ

new < δΓ then -- the schedulability has improved
15 -- offsets are recalculated using ρnew

16 φnew = ListScheduling(Γ , M, ψ, ρnew)
17 break -- exit the for-each loop
18 else -- the schedulability has not improved
19 φ.Oi = Oi

old-- restore the old offset
20 end if
21 end for
22 until δΓ has not changed or a limit is reached
23 return ρ, φ, δΓ
end MultiClusterScheduling

CHAPTER 8

240

In each loop iteration, the algorithm calculates the earliest
time moment offset when the process or message nodei in the
application graph Γ can start (lines 5–7). There are four situa-
tions:

1. The visited node in the application graph is an ET message.
In this case, the offset of message mi is updated to offset.

2. The node is a TT message. In this case, the message is sched-

Figure 8.3: ListScheduling Algorithm

ListScheduling(Γ , M, ψ, ρ) -- determines the set of offsets φ
1 ReadyList = source nodes of all process graphs in the application
2 while ReadyList ≠ ∅ do
3 nodei = Head(ReadyList)
4 offset = 0 -- determine the earliest time when an activity can start
5 for each direct predecessor nodej of nodei do
6 offset = max(offset, Oj + rj)
7 end for
8 if nodei is a message mi then
9 if mi is an ET message then
10 Oi =offset -- update the message offset
11 else -- mi is a TT message
12 <round, slot> = ScheduleMessage(offset, smi

, M(S(mi)))
13 -- set the TT message offset based on the round and slot
14 Oi = round * TTDMA+ Oslot
15 endif
16 endif
17 else -- nodei is a process Pi
18 if M(Pi) ∈ NE then -- process Pi is mapped on the ETC

19 Oi = offset -- the ETC process can start immediately
20 else -- process Pi is mapped on the TTC

21 -- Pi has to wait for processor M(Pi) to become available
22 Oi = max(offset, ProcessorAvailable(M(Pi)))
23 end if
24 end if
25 Update(ReadyList)
26 end while
27 return offsets φ
end ListScheduling

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

241

uled using the ScheduleMessage function from Section 4.3.1,
which returns the round and the slot where the frame has
been placed (line 12 in Figure 8.3). Once the message has
been scheduled, we can determine its offset and worst-case
response time (Figure 8.3, line 14). Thus, the offset is equal
to the start of the slot in the TDMA round, and the worst-case
response time is the slot length.

3. The algorithm visits a process Pi mapped on an ETC node. A
process on the ETC can start as soon as its predecessors have
finished and its inputs have arrived, hence Oi = offset (line
19). However, Pi might, later on, experience interference
from higher priority processes.

4. Process Pi is mapped on a TTC node. In this case, besides
waiting for the predecessors to finish executing, Pi will also
have to wait for its processor M(Pi) to become available
(line 22). The earliest time when the processor is available is
returned by the ProcessorAvailable function.

Let us now turn the attention back to the multi-cluster sched-
uling algorithm in Figure 8.2. The algorithm stops when the δΓ
of the application Γ is no longer improved, or when a limit
imposed on the number of iterations has been reached. Since in
a loop iteration we do not accept a solution with a larger δΓ, the
algorithm will terminate when in a loop iteration we are no
longer able to improve δΓ by modifying the offsets.

8.2.1 SCHEDULABILITY AND RESOURCE ANALYSIS

The analysis in this section is used in the ResponseTimeAnalysis

function in order to determine the response times for processes
and messages on the ETC. It receives as input the application Γ,
the offsets φ and the priorities π, and it produces the set ρ of
worst case response times.

We have used the response time analysis outlined in
Section 6.4.1 for the CAN bus (Equations 6.6, 6.9, 6.10, and 6.11).
However, the worst-case queuing delay for a message

CHAPTER 8

242

(Equation 6.9) is calculated differently depending on the type of
message passing employed:

1. From an ETC node to another ETC node (in which case Wm
Ni

represents the worst-case time a message m has to spend in
the OutNi queue on ETC node Ni). An example of such a
message is m3 in Figure 8.1, which is sent from the ETC node
N3 to the gateway node NG.

2. From a TTC node to an ETC node (Wm
CAN is the worst-case time

a message m has to spend in the OutCAN queue). In
Figure 8.1, message m1 is sent from the TTC node N1 to the
ETC node N2.

3. From an ETC node to a TTC node (where Wm
TTP captures the

time m has to spend in the OutTTP queue). Such a message
passing happens in Figure 8.1, where message m3 is sent
from the ETC node N3 to the TTC node N1 through the
gateway node NG where it has to wait for a time Wm

TTP in the
OutTTP queue.

The messages sent from a TTC node to another TTC node are
taken into account when determining the offsets (ListScheduling,
Figure 8.2), and thus are not involved directly in the ETC analy-
sis.

The next sections show how the worst-queuing delays and the
bounds on the queue sizes are calculated for each of the previous
three cases.

From ETC to ETC and from TTC to ETC

The analyses for Wm
Ni and Wm

CAN are similar. Once m is the high-
est priority message in the OutCAN queue, it will be sent by the
gateway’s CAN controller as a regular CAN message, therefore the
same equation for Wm can be used:

(8.1)Wm q() wm q() qTm–=

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

243

where q is the number of busy periods being examined, and
wm(q) is the width of the level-m busy period starting at time
qTm:

. (8.2)

The intuition is that m has to wait, in the worst case, first for
the largest lower priority message that is just being transmitted
(Bm) as well as for the higher priority mj ∈ hp(m) messages that
have to be transmitted ahead of m (the second term). In the
worst case, the time it takes for the largest lower priority mes-
sage mk ∈ lp(m) to be transmitted to its destination is:

. (8.3)

Note that in our case, lp(m) and hp(m) also include messages
produced by the gateway node, transferred from the TTC to the ETC.

We are also interested to bound the size sm
CAN of the OutCAN and

sm
Ni of the OutNi queue. In the worst case, message m, and all the

messages with higher priority than m will be in the queue,
awaiting transmission. Summing up their sizes, and finding out
what is the most critical instant we get the worst-case queue
size:

(8.4)

where sm and sj are the sizes of message m and mj, respectively.

From ETC to TTC

The time a message m has to spend in the OutTTP queue in the
worst case depends on the total size of messages queued ahead
of m (OutTTP is a FIFO queue), the size SG of the gateway slot
responsible for carrying the CAN messages on the TTP bus, and

wm q() Bm
wm q() Jj+

Tj
------------------------------ Cj

mj∀ hp m()∈
∑+=

Bm
max

mk∀ lp m()∈
Ck()=

sOut
max

m∀
sm

wm q() Jj+

Tj
------------------------------ Cj

mj∀ hp m()∈
∑+

 
 
 
 

=

CHAPTER 8

244

the frequency TTDMA with which this slot SG is circulating on the
bus, and thus, the width of the level-m busy period starting at
time qTm is:

, (8.5)

where Im is the total size of the messages queued ahead of m.
Those messages mj ∈ hp(m) are ahead of m, which have been
sent from the ETC to the TTC, and have higher priority than m:

(8.6)

where the message jitter Jm is in the worst case the response
time of the sender process, Jm = rS(m).

The blocking term Bm is the time interval in which m cannot
be transmitted because the slot SG of the TDMA round has not
arrived yet. In the worst case (i.e., the message m has just
missed the slot SG), the frame has to wait an entire round TTDMA

for the slot SG in the next TDMA round.
Determining the size of the queue needed to accommodate the

worst case burst of messages sent from the CAN cluster is done
by finding out the worst instant of the following sum:

. (8.7)

8.3 Scheduling and Optimization Strategy
Once we have a technique to determine if a system is schedula-
ble, we can concentrate on optimizing the total queue sizes. Our
problem is to synthesize a system configuration ψ such that the
application is schedulable, i.e., the condition1

rGj
 ≤ DGj, ∀ Gj ∈ Γ i, (8.8)

wm
TTP

q() Bm
q 1+()Sm Im wm q()()+

SG
--- TTDMA+=

If wm q()()
wm q() Jj+

Tj

mj∀ hp f()∈
∑ Sj=

sOut
TTP max

m∀
Sm Im+()=

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

245

holds, and the total queue size stotal is minimized1:

. (8.9)

In the next section, we propose a resource optimization strat-
egy based on a hill-climb heuristic that uses an intelligent set of
initial solutions in order to efficiently explore the design space.

8.3.1 SCHEDULING AND BUFFER OPTIMIZATION HEURISTIC

The basic idea of our buffer optimization heuristic is to find, as a
first step, a solution with the smallest possible response times,
without considering the buffer sizes, in the hope of finding a
schedulable system. This is achieved through the
OptimizeSchedule function, outlined in Figure 8.4. Then, a hill-
climbing heuristic [Ree93] iteratively performs moves intended
to minimize the total buffer size while keeping the resulted sys-
tem schedulable.

The OptimizeSchedule function is a greedy approach which
determines an ordering of the slots and their lengths, as well as
priorities of messages and processes in the ETC, such that the
degree of schedulability δΓ (see Section 6.6.1) of the application
is maximized.

As an initial TTC bus configuration β, OptimizeSchedule assigns
in order nodes to the slots and fixes the slot length to the
minimal allowed value, which is equal to the length of the
largest message generated by a process assigned to Ni, Si = <Ni,

1. The worst-case response time of a process graph Gi is calculated based
on its sink node as rGi

 = Osink + rsink. If local deadlines are imposed,
they will also have to be tested in the schedulability condition.

1. On the TTC, the synchronization between processes and the TDMA bus
configuration is solved through the proper synthesis of schedule tables,
thus no output queues are needed. Input buffers on both TTC and ETC
nodes are local to processes. There is one buffer per input message and
each buffer can store one message instance (see explanation to
Figure 3.8 on page 60).

stotal sOut
CAN

sOut
TTP

sOut
Ni

Ni ETC∈∀
∑+ +=

CHAPTER 8

246

sizesmallest> (line 5 in Figure 8.4). Then, the algorithm starts with
the first slot (line 8) and tries to find the node which, when
transmitting in this slot, will maximize the degree of
schedulability δΓ (lines 9–37).

Simultaneously with searching for the right node to be
assigned to the slot, the algorithm looks for the optimal slot
length (lines 14–32). Once a node is selected for the first slot and
a slot length fixed (Si = Sbest, line 36), the algorithm continues
with the next slots, trying to assign nodes (and to fix slot
lengths) from those nodes which have not yet been assigned.

When calculating the length of a certain slot we consider the
feedback from the MultiClusterScheduling algorithm which recom-
mends slot sizes to be tried out. Before starting the actual opti-
mization process for the bus access scheme, a scheduling of the
initial solution is performed which generates the recommended
slot lengths. We refer the reader to Section 4.4.1 for details con-
cerning the generation of the recommended slot lengths.

In the OptimizeSchedule function the degree of schedulability δΓ
is calculated based on the response times produced by the
MultiClusterScheduling algorithm (line 21). For the priorities used
in the response time calculation we use the “heuristic optimized
priority assignment” (HOPA) approach (line 16) from [Gut95],
where priorities for processes and messages in a distributed
real-time system are determined, using knowledge of the factors
that influence the timing behavior, such that the degree of
schedulability is improved.

The OptimizeSchedule function also records the best solutions in
terms of δΓ and stotal in the seed_solutions list in order to be used
as the starting point for the second step of our OptimizeResources

heuristic.
In the first step of our buffer size optimization heuristic

OptimizeResources, outlined in Figure 8.5, we have tried to obtain
a bus configuration that improves the degree of schedulability of
the application. Once a schedulable system is obtained, our goal
in the second step is to minimize the buffer space. Our design

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

247

Figure 8.4: The OptimizeSchedule Algorithm

OptimizeSchedule(Γ , M)
1 -- given an application Γ produces the configuration ψ = <φ β π>
2 -- leading to the smallest δΓ
3

4 -- start by determining an initial TTC bus configuration β
5 for each slot Si ∈ β do Si = <Ni, sizesmallest> end for
6

7 -- find the best allocation of slots, the TDMA slot sequence
8 for each slot Si ∈ β do
9 for each node Nj ∈TTC do
10 -- allocate Nj tentatively to Si, Ni gets slot Sj
11 Si = <Nj, sizeSj>
12 Sj = <Ni, sizeSi>
13 -- determine best size for slot Si
14 for each slot size ∈ recomended_lengths(Si) do
15 -- calculate the priorities according to HOPA heuristic
16 π = HOPA
17 -- determine the offsets φ,
18 -- thus obtaining a complete system configuration ψ
19 Si = <Nj, size>
20 ψcurrent = <φ β π>
21 φ = MultiClusterScheduling(Γ, M, ψcurrent)
22 -- remember the best configuration so far,
23 -- add it to the seed configurations
24 if δΓ(ψcurrent) is best so far then
25 ψbest = ψcurrent
26 Sbest = Si;
27 add ψbest to seed_solutions
28 end if
29 determine stotal for ψcurrent
30 if stotal is best so far and Γ is schedulable
31 then add ψcurrent to seed_solutions end if
32 end for
33 end for
34 -- make binding permanent, use the Sbest corresponding to ψbest
35 if a Sbest exists
36 then Si = Sbest end if
37 end for
38

39 return ψbest, δΓ(ψbest) , seed_solutions
end OptimizeSchedule

CHAPTER 8

248

space exploration in the second step of OptimizeResources (lines
12–22) is based on successive design transformations (generat-
ing the neighbors of a solution) called moves. For our heuristics,
we consider the following types of moves:

 • moving a process or a message belonging to the TTC inside its
[ASAP, ALAP] interval calculated based on the current values
for the offsets and response times;

 • swapping the priorities of two messages transmitted on the
ETC, or of two processes mapped on the ETC;

Figure 8.5: The OptimizeResources Algorithm

OptimizeResources(Γ)
1

2 -- Step 1: try to find a schedulable system
3 seed_solutions = OptimizeSchedule(Γ , M)
4 -- if no schedulable configuration has been found,
5 -- modify mapping and/or architecture
6 if Γ is not schedulable for ψbest then
7 modify mapping
8 go to Step 1
9 end if
10

11

12 -- Step 2: try to reduce the resource need, minimize stotal
13 for each ψ in seed_solutions do
14 repeat
15 -- find moves with highest potential to minimize stotal
16 move_set = GenerateNeighbors(ψ)
17 -- select move which minimizes stotal
18 -- and does not result in an un-schedulable system
19 move = SelectMove(move_set)
20 Perform(move)
21 until stotal has not changed or limit reached
22 end for
23

24 return system configuration ψ, queue sizes
end OptimizeResources

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

249

 • increasing or decreasing the size of a TDMA slot with a cer-
tain value;

 • swapping two slots inside a TDMA round.
The second step of the OptimizeResources heuristic starts from

the seed solutions (line 13) produced in the previous step, and
iteratively preforms moves in order to reduce the total buffer
size, stotal (Equation 8.9). The heuristic tries to improve on the
total queue sizes, without producing un-schedulable systems.
The neighbors of the current solution are generated in the
GenerateNeighbours function (line 16), and the move with the
smallest stotal is selected using the SelectMove function (line 19).
Finally, the move is performed, and the loop reiterates. The
iterative process ends when there is no improvement achieved
on stotal, or a limit imposed on the number of iterations has been
reached (line 21).

The general limitation of a hill-climbing heuristic is that it
can get stuck into a local optimum. In order to improve the
chances to find good values for stotal, the algorithm has to be exe-
cuted several times, starting with a different initial solution.
The intelligence of our OptimizeResources heuristic lies in the
selection of the initial solutions, recorded in the seed_solutions

list. The list is generated by the OptimizeSchedule function which
records the best solutions in terms of δΓ and stotal.

Seeding the hill climbing heuristic with several solutions of
small stotal will guarantee that the local optima are quickly
found. However, during our experiments, we have observed that
another good set of seed solutions are those that have high
degree of schedulability δΓ. Starting from a highly schedulable
system will permit more iterations until the system degrades to
an un-schedulable configuration, thus the exploration of the
design space is more efficient.

CHAPTER 8

250

8.4 Experimental Evaluation
For evaluation of our algorithms we first used applications gen-
erated for experimental purpose. We considered two-cluster
architectures consisting of 2, 4, 6, 8 and 10 nodes, half on the TTC

and the other half on the ETC, interconnected by a gateway.
Forty processes were assigned to each node, resulting in applica-
tions of 80, 160, 240, 320 and 400 processes. Message sizes were
randomly chosen between 8 and 32 bytes. Thirty examples were
generated for each application dimension, thus a total of 150
applications were used for experimental evaluation. Worst-case
execution times and message lengths were assigned randomly
using both uniform and exponential distribution. All experi-
ments were run on a SUN Ultra 10.

In order to provide a basis for the evaluation of our heuristics
we have developed two simulated annealing (SA) based algo-
rithms (see Appendix A). Both are based on the moves presented
in the previous section. The first one, named SA Schedule (SAS),
was set to preform moves such that δΓ is minimized. The second
one, SA Resources (SAR), uses stotal as the cost function to be min-
imized. Very long and expensive runs have been performed with
each of the SA algorithms, and the best ever solution produced
has been considered as close to the optimum value.

8.4.1 SCHEDULING AND BUS ACCESS OPTIMIZATION HEURISTICS

The first experimental result concerns the ability of our heuris-
tics to produce schedulable solutions. We have compared the
degree of schedulability δΓ obtained from our OptimizeSchedule

(OS) heuristic (Figure 8.4) with the near-optimal values obtained
by SAS. Figure 8.6 presents the average percentage deviation of
the degree of schedulability produced by OS from the near-opti-
mal values obtained with SAS. Together with OS, a straightfor-
ward approach (SF) is presented. For SF we considered a TTC bus
configuration consisting of a straightforward ascending order of

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

251

allocation of the nodes to the TDMA slots; the slot lengths were
selected to accommodate the largest message sent by the respec-
tive node, and the scheduling has been performed by the
MultiClusterScheduling algorithm in Figure 8.2.

Figure 8.6 shows that when considering the optimization of
the access to the communication channel, and of priorities, the
degree of schedulability improves dramatically compared to the
straightforward approach. The greedy heuristic OptimizeSchedule

performs well for all the dimensions, having run-times which
are more than two orders of magnitude smaller than with SAS.
In the figure, only the examples where all the algorithms have
obtained schedulable systems were presented. The SF approach
failed to find a schedulable system in 26 out of the total 150
applications.

Figure 8.6: Comparison of the Scheduling
Optimization Heuristics

Number of processes

A
ve

ra
ge

 p
er

ce
n

ta
ge

 d
ev

ia
ti

on
 [

%
]

SF
OS
SAS

80 160 240 320 400
0

20

40

60

80

100

120

CHAPTER 8

252

8.4.2 BUFFER OPTIMIZATION HEURISTIC

Next, we are interested to evaluate the heuristics for minimiz-
ing the buffer sizes needed to run a schedulable application.
Thus, we compare the total buffer need stotal obtained by the
OptimizeResources (OR) function with the near-optimal values
obtained when using simulated annealing, this time with the
cost function stotal. To find out how relevant the buffer optimiza-
tion problem is, we have compared these results with the stotal

obtained by the OS approach, which is interested only to obtain a
schedulable system, without any other concern. As shown in
Figure 8.7a, OR is able to find schedulable systems with a buffer
need half of that needed by the solutions produced with OS. The
quality of the solutions obtained by OR is also comparable with
the one obtained with simulated annealing (SAR).

Another important aspect of our experiments was to deter-
mine the difficulty of resource minimization as the number of
messages exchanged over the gateway increases. For this, we
have generated applications of 160 processes with 10, 20, 30, 40,
and 50 messages exchanged between the TTC and ETC clusters.
Thirty applications were generated for each number of mes-
sages. Figure 8.7b shows the average percentage deviation of
the buffer sizes obtained with OR and OS from the near-optimal
results obtained by SAR. As the number of inter-cluster messages
increases, the problem becomes more complex. The OS approach
degrades very fast, in terms of buffer sizes, while OR is able to
find good quality results even for intense inter-cluster traffic.

When deciding on which heuristic to use for design space
exploration or system synthesis, an important issue is the execu-
tion time. In average, our optimization heuristics needed a cou-
ple of minutes to produce results, while the simulated annealing
approaches (SAS and SAR) had an execution time of up to three
hours.

SCHEDULABILITY ANALYSIS AND OPTIMIZATION FOR MULTI-CLUSTERS

253

Number of messages

A
ve

ra
ge

 p
er

ce
n

ta
ge

 d
ev

ia
ti

on
 [

%
]

OS
OR
SAR

10 20 30 40 50
0

10

20

30

40

50

Figure 8.7: Comparison of the Buffer Size
Minimization Heuristics

Number of processes

A
ve

ra
ge

 t
ot

al
 b

u
ff

er
 s

iz
e

s t
ot

al

OS
OR
SAR

80 160 240 320 400

1k

2k

3k

4k

5k

6k

7k

8k

9k

10k

0k

a) Bounds on total buffer size obtained
with OS, OR, SAS

b) Percentage deviations for
OS, OR from SAR

CHAPTER 8

254

8.4.3 THE VEHICLE CRUISE CONTROLLER

Finally, we considered a real-life example implementing a vehi-
cle cruise controller introduced in Section 2.3.3:

 • The conditional process graph that models the cruise control-
ler has 32 processes, and is presented in Figure 2.9 on
page 40,

 • and it was mapped on an architecture consisting of a TTC and
an ETC, each with 2 nodes, interconnected by a gateway, as in
Figure 2.7b on page 37.

 • The software architecture for multi-cluster systems, used by
the CC, is presented in Section 3.5.

 • We considered one mode of operation with a deadline of 250
ms.

The straightforward approach SF produced an end-to-end
response time of 320 ms, greater than the deadline, while both
the OS and SAS heuristics produced a schedulable system with a
worst-case response time of 185 ms. The total buffer need of the
solution determined by OS was 1020 bytes. After optimization
with OR a still schedulable solution with a buffer need reduced
by 24% has been generated, which is only 6% worse than the
solution produced with SAR.

As a conclusion, the optimization heuristics proposed are able
to increase the schedulability of the applications and reduce the
buffer size needed to run a schedulable application.

In this chapter, the main contribution was the development of
a schedulability analysis for multi-cluster systems. However, in
the case of both TTP and CAN protocols, several messages share
one frame, in the hope to utilize resources more efficiently.
Therefore, in the next chapter we propose optimization heuris-
tics for determining frame packing configurations that are able
to reduce the cost of the resources needed to run a schedulable
application.

