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Abstract—FlexRay, developed by a consortium of over hundred
automotive companies, is a real-time communication protocol for
automotive networks. In this paper, we propose a new approach
for timing analysis of the event-triggered component of FlexRay,
known as the dynamic segment. Our technique accounts for the
fact that the FlexRay standard allows slot multiplexing, i.e., the
same priority can be assigned to more than one message. Existing
techniques have either ignored slot multiplexing in their analysis
or made simplifying assumptions that severely limit achieving
high bandwidth utilization. Moreover, we show that our technique
returns less pessimistic results compared to previously known
techniques even in the case where slot multiplexing is ignored.

I. INTRODUCTION

FlexRay is a hybrid communication protocol for automotive
networks, i.e., it allows the sharing of the bus between
both time-triggered and event-triggered messages. The time-
triggered component is the static (ST) segment and the event-
triggered component is known as the dynamic (DYN) segment.
The FlexRay bus protocol has garnered widespread support
as a vehicular communication network. Its popularity has
been driven by the fact that it was developed by a wide
consortium [3] of automotive companies. In fact, cars equipped
with FlexRay are already in the streets or in production [4].
As the cost associated with FlexRay deployment is expected
to go down over the next few years, more and more x-by-wire
applications are expected to communicate over FlexRay.

A. Our contributions and related work

Timing analysis of the DYN segment is NP-hard in the
strong sense [11] and hence, efficient heuristics [11], [16]
have been constructed towards providing upper bounds on the
worst-case delays suffered by the messages on DYN segment.
However, these methods were limited to the case where slot
multiplexing is not permitted on the DYN segment. Zeng
et al. have proposed a heuristic [16] that outperforms the
heuristic proposed by Pop et al. [11] with respect to the
degree of pessimism. Our experiments show that, in practice,
the results obtained by our scheme are significantly better
than the method by Zeng et al. [16]. Other techniques have
limitations like relying on ILP-solvers. They also lack rigorous
experimental results because they study only one case study.

Even more importantly, our analysis is more general than
existing methods in the sense that it can analyze worst-case
delays of messages for those FlexRay configurations where
slot multiplexing is allowed, i.e., the same priority can be
assigned to multiple messages. While timing analysis of the

FlexRay dynamic segment has generated significant research
interest in recent years, almost all the known approaches [6],
[16], [11], [12] have ignored slot multiplexing. This is inspite
of the fact that the FlexRay specification [3] allows slot
multiplexing. Schneider et. al. [13], [14] did propose the
use of slot multiplexing in the context of FlexRay DYN
segment. However, their approach severely restricts the scope
of multiplexing because they consider only those messages
that are not displaced more than two FlexRay cycles. All
other messages are assigned infinite delay. As we illustrate
in Section III, such a method [13], [14] is very pessimistic
and returns negative results even for simple setups where the
bandwidth demand from messages is quite small. In contrast,
our technique is quite general and can estimate message delays
that span over multiple cycles.

Finally, our result is significant because it paves the way
to design approaches that optimizes the delays by configuring
parameters that were not in play before. A small example to
illustrate this will be discussed in Section X.

B. Overview of the proposed scheme

In the case where slot multiplexing is ignored, Pop et al. [11]
have shown that the core problem of computing the worst-case
delays of messages transmitted on the DYN segment can be
transformed into the bin covering problem [10]. The objective
of the bin covering problem is to maximize the number of bins
that can be filled to a minimum capacity with a set of items
whose weights have been specified. Our algorithm, described
in Section VI is directly inspired by recent theoretical advances
in approximating the upper bounds on the optimal solution for
the bin covering problem that were reported by Jansen and
Solis-Oba [7].

However, for the case of slot multiplexing, the problem can
not be transformed into the traditional bin covering problem.
Rather, the problem becomes what we call as the bin covering
problem with conflicts in this paper. The approach proposed
by Jansen and Solis-Oba was meant for the traditional bin
packing problem. Hence, we need to suitably adapt their
technique to the problem of bin covering with conflicts when
slot multiplexing is allowed in the DYN segment of FlexRay.
This will be discussed in detail in Section VII.

II. THE FLEXRAY DYNAMIC SEGMENT

The FlexRay Communication protocol [3] is organized as a
periodic sequence of communication cycles with fixed length,
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Fig. 1: Example 1: Messages m1 and m2 are multiplexed in
FlexRay DYN segment.

lFC . Each communication cycle is further subdivided into
two a ST and a DYN segment. In this paper, we propose a
timing analysis scheme for the DYN segment and hence, in
the following we discuss the DYN segment.

Dynamic Segment: In FlexRay a set of CCmax communica-
tion cycles constitute a pattern which is repeated. Each cycle is
indexed by a cycle counter. The cycle counter is incremented
from 0 to CCmax − 1 after which the cycle counter is reset
to 0. Figure 1(a) illustrates a FlexRay communication pattern
with CCmax = 4. Each message to be transmitted over the
FlexRay DYN segment is assigned two attributes that define
the set of cycles between 0 and CCmax−1 where the message
is allowed to be transmitted. These attributes for a message
mi are (i) the base cycle or the starting cycle Bi within
CCmax communication cycles, and (ii) the cycle repetition
rate Ri which indicates the minimum length (in terms of the
number of FlexRay cycles) between two consecutive allowable
transmissions. As an example, let us consider three messages
m1, m2 and m3 to be transmitted over the FlexRay cycles in
Figure 1(a). Let the base cycles be B1 = B2 = 0 and B3 = 1
and let the repetition rates be set to R1 = R2 = R3 = 2.
Figure 1(a) shows the cycles where m1, m2 and m3 can be
transmitted with these properties. In this example, m2 and
m3 can be transmitted in cycle 0 and cycle 1 respectively.
Thereafter, they can be transmitted every alternate cycle. The
same priority is assigned to m2 and m3 and they are said to
be slot multiplexed. According to the FlexRay standard, the
base cycle Bi ∈ [0...CCmax − 1], and Bi < Ri. The relation
Bi ∈ [0...CCmax − 1] holds true by definition. The relation
Bi < Ri is also enforced by the specification to ensure the
definition of Ri when it straddles two adjacent FlexRay cycles.

Conflicts between messages to be sent in the same cycle
are resolved using priorities as each message is assigned a
fixed priority. Each DYN segment in FlexRay is partitioned
into equal-length slots which are referred to as “minislots”.
At the beginning of each DYN segment, the highest priority
message gets access to the bus and it occupies the required
number of minislots on the bus according to its size. However,
if the message is not ready for transmission or the size of the
message does not fit into the remaining portion of the DYN
segment, then only one minislot goes empty. In either case, the
bus is then given to the next highest-priority message and the
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Fig. 2: Example 2: Messages m1 and m3 are never transmitted
in same cycles, yet m1 influences the transmission of m3

indirectly.

same process is repeated until the end of the DYN segment.
Further, at most one instance of each message is only allowed
to be transmitted in each FlexRay cycle. In Figure 1(b), the
DYN segment in each FlexRay cycle consists of 8 minislots.
m1 is the highest priority message (priority 1) in cycle 2 and
hence, occupies 5 minislots corresponding to its size. In cycle
3, however, there is no message with priority 1 that is ready
and hence, one minislot is wasted before m3 with priority 2
is transmitted.

III. MOTIVATIONAL EXAMPLES

With the help of two examples, we shall illustrate the need
for new techniques, as proposed in this paper, for timing anal-
ysis of the DYN segment when slot multiplexing is allowed.
First let us consider the example shown in Figure 1(a). The size
of the messages in terms of the minislots is 5MS (minislots)
for m1, 6 MS for m2 and 3 MS for m3. Let us consider the
worst-case delay scenario for message m2. Consider that m2

is ready just after minislot 2 in cycle 0 and hence, it cannot be
transmitted in cycle 0. With B2 = 0 and R2 = 2, m2 cannot
be transmitted in cycle 1. Let us assume that m1 is ready now
and is transmitted in cycle 2. Thereafter, m1 occupies 5 MS the
DYN segment has 3 MS left. Thus, m2 cannot fit into cycle 2.
Again, m2 is not allowed to be transmitted in cycle 3. Finally,
m2 is transmitted in cycle 0 in the next round. Thus, m2 is
delayed more than 4 FlexRay cycles but less than 5 FlexRay
cycles. On the other hand, in the worst-case scenario, m3 just
misses its minislot in cycle 1 and is transmitted in cycle 3.
Thus, m3 is delayed less than 2 FlexRay cycles.

From the above example, first, we note that both m2 and m3

have the same priority and yet they have completely different
worst-case delays. Secondly, we emphasize that the approach
proposed by Schneider et. al. [13], [14] would report that m2

and m3 would suffer from infinite delays because they are
delayed more than one FlexRay cycle. Thus, their approach
would report that the given message set is unschedulable.
However, as we have seen in this example, m2 and m3 have
finite delays and are actually schedulable for any values of
deadlines that span more than the length of 5 and 2 FlexRay
cycles.

Let us now consider a second example as shown in Fig-
ure 2(a). Compared to Figure 1(a), m3’s priority is now 3
and m2 now has R2 = 1. Thus, m2 and m3 now have



conflicts in cycles 1 and 3. Rest of the values remain the
same as in Figure 1(a). Note that m1 and m3 have no cycles
in common. However, m1 might delay m2 and that might lead
to delaying of m3. Hence, techniques that have not considered
slot multiplexing [6], [16], [11], [12], will not be able to
report accurate results. In order to provide safe results, such
techniques would have to assume that the message m1 is
allowed to be transmitted in every cycle and this would lead
to very pessimistic results.

IV. SYSTEM MODEL

We assume that the set of messages Γ that will be trans-
mitted on the FlexRay DYN segment is known. Any message
mi ∈ Γ, is associated with the following properties.

1) The period Ti that denotes the rate at which mi is being
produced.

2) The deadline Di, of a message mi is the relative time
since the production of Mi until the time by which the
transmission of mi must end.

3) The repetition rate Ri, and the base cycle Bi for each
message mi, as defined in Section II, is assumed to be
known.

4) The size of the message Wi in terms of the number
of minislots that the message mi would occupy when
transmitted on the DYN segment.

5) The priority IDi of each message mi that is used to
resolve bus access contentions as discussed in Section
II, is assumed to be known. A higher value of the priority
implies a lower priority.

We assume that the FlexRay cycle length is lFC . The
length of one minislot is denoted lMS , and the total number
of minislots NMS is considered to be given. The length of
the DYN segment is thus lDYN = lMS × NMS . Assuming
that the length of the ST is lST , FlexRay cycle length is
lFC = lST + lDYN .

V. PRELIMINARIES

Our schedulability analysis technique relies on computing
the worst-case response time of each message. If the worst-
case response time of any message is greater than its deadline,
we declare the given set of messages to be unschedulable;
otherwise we report the worst-case response time.

Computing the worst-case response time of a message trans-
mitted on the FlexRay bus consists of several components [11],
[16]. For simplicity of exposition, we assume that Di ≤ Ti.
However, this is not a restriction on our proposed method and
in Section VIII, we will discuss how our proposed algorithm
can be extended to the case where Di > Ti. Similarly, it is easy
to accomodate jitter suffered by messages into our framework
and this will be accounted for in Section VIII.

The worst-case response time WCRT i of a message mi

consists of the following components.

WCRT i = σi + wi + Ci (1)

The first component σi is the worst-case delay that a message
can suffer during the first FlexRay cycle where the message

mi is generated. To compute WCRT i, we are interested in
the scenario where σi is maximum. Let the set of high priority
messages be denoted as hp(mi) = {m1,m2, · · · ,mN}. Now
the worst-case, scenario occurs if mi arrives just after the
corresponding minislot starts and no higher priority message
hp(mi), was transmitted in this FlexRay cycle. The value of
σi can be computed as follows:

σi = lFC − (lST + (IDi − 1)lMS) (2)

Note here that σi can be computed with the straightforward
algebraic equation from the system model.

The second component, wi is essentially the delay caused
to mi by the higher priority messages. wi is the summation
of two terms:

wi = busCyclesi + lastCyclei (3)

In the above equation, busCyclesi is the total number of
cycles message mi has to wait due to interference by higher
priority messages and lastCyclei is the time interval from
the start of the last cycle to the beginning of the transmission
in that cycle. The value of lastCyclei can be bounded by
considering the last possible moment when mi can be sent in
the FlexRay cycle which is defined by the value of pLatestTx.
pLatestTx is specified as a part of the FlexRay configuration
in the system model. The computation of busCyclesi will be
detailed in the following section. Let us denote the minimum
amount of communication φmi

(in minislots) that needs to
exists in a cycle l such that the message mi is delayed into
the next cycle l+ 1. φmi can be computed based on the value
of pLatestTx. For instance, if pLatestTx is equal to NMS ,
then φmi

can be computed as follows.

φmi
= NMS + 2− (Wmi

+ IDmi
) (4)

The last component Ci ofWCRT i, as shown in Equation 1,
is the time needed by the message to be transmitted completed
when, finally, it gains access to the bus and this can be
computed as Ci = lMS ×Wi.

VI. TIMING ANALYSIS: WITHOUT SLOT MULTIPLEXING

In the above discussion, busCyclesi is the only component
for which we have not presented the computation technique.
This will be detailed in this section. For clarity of exposition,
we will first assume that slot multiplexing is not allowed by
FlexRay. However, subsequently, we describe how busCyclesi
can be computed by our proposed approach assuming slot
multiplexing is allowed on the DYN segment. Note that the
calculation of the rest of the components of WCRT i remain
exactly same as described in Equations 1 to 3 in both cases
— with and without slot multiplexing.

As mentioned before, busCyclesi is the maximum number
of cycles that a message mi can be delayed by the higher
priority messages. An outline of our algorithm to compute
busCyclesi for each message mi is listed in Algorithm 1.
Starting with the first cycle, i.e., l = 1, the algorithm iteratively
tries to fill cycle l with instances of higher priority messages
and if it succeeds the algorithm will try to fill cycle l+ 1 and
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Fig. 3: Logical transformation of the problem of computing busCyclesi.

so on (lines 4 to 9). If the algorithm cannot fit all the instances
within dCyclei cycles for any message mi, then it terminates
and declares that the given message set Γ is not schedulable
(lines 9 to 17). dCyclei is computed directly from the deadline
as an upper bound the relative number of cycles based on the
lenght of the deadline (line 3). Otherwise, if l ≤ dCyclei and
the algorithm can fill completely l − 1 cycles but not the lth
cycle, the Algorithm 1 will report that the value of busCyclesi
is l − 1.

The largest number of cycles that can be filled to the
minimum level φmi

by higher priority messages from the set
hp(mi) is essentially the value of busCyclei. Let klh be the
number of instances of message mh (mh ∈ hp(mi)) that
are generated during l consecutive cycles. If the algorithm
manages to fill l cycles, then the number of higher priority
messages that need to be packed first needs to be recomputed
as kl+1

h (line 6) in the next iteration.

At any iteration, the problem of filling l cycles is essentially
a bin covering problem. Bin covering tries to maximize the
number of bins that can be filled to a fixed minimum capacity
using a given set of items. In our case, the instances of

the higher priority messages that are produced during the l
consecutive bus cycles are the items and the DYN segment is
the bin where φmi is the bin size that must be filled. Each
message is considered as a separate item and the number
of instances that are ready is considered as the number of
copies of the same item. The minimum capacity of the bin
that must be filled is φmi as discussed in the previous section.
Note, however, that in contrast to the traditional bin covering
problem, in our case only one copy of each type of item
is allowed to be packed in the same bin. This follows from
the FlexRay protocol specification (see Section II) that allows
only one instance of each message to be transmitted in each
DYN segment cycle. Finally, the objective of this bin covering
problem is to maximize the total number of bins that can be
covered. Note that we are solving a decision version of this
problem because we want to know whether the l bins can be
filled or not.

We solve the resulting bin covering problem based on the
technique presented by Jansen and Solis-Oba [7]. Following
their approach, a high-level scheme of our technique is illus-
trated in Figure 3. As shown in this figure, we first transform



the bin covering problem into a convex block angular resource
sharing problem (see Section VI-A). This problem is solved by
the price directive decomposition method which, in turn, must
solve a knapsack like problem at its heart. This is discussed
in Section VI-B.

Algorithm 1 Computing the busCyclesi for message mi for
the case of no Slot Multiplexing

Require: The message mi (mi ∈ Γ), the set hp(mi)
(hp(mi) ⊆ Γ), and system parameters of messages in
the set Γ

1: for all mi ∈ Γ do
2: schedulable = false
3: dCyclei =

⌈
D

lFC

⌉
4: for l = 1→ dCyclei do
5: for all mh ∈ hp(mi) do

6: klh =

⌈
l
lFC
Th

⌉
7: end for
8: Solve the bin covering problem using the logical

transformation presented in Figure 3
9: Let P (ε) be the approximate solution of the bin

covering problem
10: if P (ε) < l then
11: schedulable = true
12: return l − 1 as the value of busCyclesi
13: end if
14: end for
15: if schedulable == false then
16: return the set Γis not schedulable
17: end if
18: end for

A. Step I

As a first step, we formulate the bin covering problem as a
Integer Linear Program (ILP). Without any loss of generality,
we drop the subscript i from mi but the interpretation remains
same if the subsript is used. The set of high priority messages
is hp(m) and let N = |hp(m)|. Considering the messages
instances in hp(m) as items, we define a bin configuration C to
be any subset of items from the set hp(m) such that the items
in C can cover the bin. Let the set of all possible bin configu-
rations be ζ = {C1, C2, . . . , C|ζ|}. For any configuration Cc, let
there be a set of boolean variables,

{
q1,c, q2,c, · · · , q|C|,c

}
that

are appropriately set to 1 in order to represent the messages
that are in the set Cc. Note that N = |C|. Given the above, a
bin is covered if:

|C|∑
n=1

qn,c × (Wn − 1) ≥ φm (5)

Thus, by definition, any Cc consists of items that satisfy the
above equation.

Let there be an integer value xc associated with each con-
figuration Cc that denotes how many times the configuration

Cc occurs in the final solution. Let M = |ζ|. The optimization
goal of the ILP formulation is to maximize the sum of the
integer variables xc. We note that formulating the problem in
this manner relies on the brute-force construction of the M
configurations as discussed above. In the worst case M = 2N

and hence, generating all such feasible bin configurations
grows exponentially with the value of N . However, as we
will discuss later only a few bin configurations need to be
generated in order to achieve an approximate upper bound on
the solution to the bin covering problem. These configurations
must be generated while adhering to FlexRay standard as will
be discussed in Section VI-B.

The ILP problem is formulated below:

maximize:
M∑
c=1

xc

subject to:
M∑
c=1

qn,cxc ≤ kln, ∀n ∈ {1, 2, · · · , N}

xc ∈ N+, ∀c ∈ {1, 2, · · · ,M}

(6)

Recall that in our problem, the bin covering problem
manifests itself in the form of a decision problem, i.e., in
each iteration of the Algorithm 1, we check whether l bins
can be covered before moving to the next iteration where we
check whether l + 1 bins can be filled. We also relax the
integrality constraint on the variables xc to obtain a linear
program. Hence, we can re-write the problem in Equation 6
in a new form as presented below:

λ∗ = min

λ
∣∣∣∣

M∑
c=1

qn,c
kln

xc ≤ λ, ∀n ∈ {1, 2, · · · , N}
M∑
c=1

xc = l

 (7)

Note that an optimal solution of this problem with λ∗ = 1
is an optimal solution of the LP relaxation obtained from
Equation 6. As noticed in [7] this new problem (Equation
7) is a convex block-angular resource sharing problem and
the price directive decomposition method [8] can be used to
solve it with any given precision ε > 0. In fact, the algorithm
presented in [8] has been proved to return a solution with
a bound (1 + ε)λ∗. In this paper, we will deploy the same
algorithm to solve our bin covering problem. In the following,
we provide a brief description on how this algorithm [8] works.

Background: Let us define with X the set of all possible vec-

tors such that X =

{
(x1, x2, · · · , xM ) ∈ RM+

∣∣∣∣ M∑
c=1

xm = l

}
.

Note that X is a simplex by construction. We introduce the
following notations for a vector X = (x1, x2, · · · , xM ) ∈ X :

fn(X) =

M∑
c=1

qn,c
kln

xc and λ(X) =
N

max
n=1

fn(X) (8)

Let F = (f1, f2, · · · , fN ). The algorithm in [8] computes
a solution X ∈ X such that:

Primalε: F(X) ≤ (1 + ε)λ∗ × I (9)
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Fig. 4: The knapsack problem has a constraint corresponding to each higher priority message.

where I = (1, 1, · · · , 1) (the unit vector with N elements).
The approach is based on the Lagrangian duality relation:

λ∗ = min
X∈X

max
P∈P

PTF(X) = max
P∈P

min
X∈X

PTF(X) (10)

where P =

{
(p1, p2, · · · , pN ) ∈ RN+

∣∣∣∣ N∑
n=1

pn = 1

}
is the unit

simplex. Denoting Λ(P ) = min
X∈X

PTF(X) a pair X ∈ X
and P ∈ P is optimal if and only if λ(X) = Λ(P ). The
corresponding ε-approximation dual problem has the form:

Dualε: Λ(P ) ≥ (1− ε)λ∗ (11)

The price-directive decomposition method is an iterative strat-
egy that solves the primal problem Primalε and its dual
problem Dualε by computing a sequence of pairs X and
P to approximate the exact solution from above and below,
respectively. In [5] it has been shown that the primal and the
dual problem can be solved with a t-approximate block solver
that solves the block problem a given tolerance t. The block
problem is:

min
Y ∈X

PTF(Y ) (12)

Our problem: In our case we choose t = ε and the block
problem has the following form:

min
Y ∈X

M∑
c=1

yc ×

(
N∑
n=1

qn,c
kln

pn

)
(13)

We solve the above block problem in our context as the
described in the following.

B. Step II

The minimization problem obtained above in Equation 13
still contains a large number of variables because it assumes
that the M feasible bin configurations have been generated in
a brute-force fashion. However, we overcome this problem by
transforming this problem into a knapsack problem which, as
mentioned before, is the final step in our algorithm. The set X
is a simplex. Using the linear programming theory, we know
that for the case when the integrality constraints are removed
a minimization problem always has its optimum in one of the
corners of the simplex. The corners of the simplex X have
only one variable xc = l and all the others are equal with 0.
Therefore the minimization problem in Equation 13 transforms
into:

l ×
M

min
c=1

(
N∑
n=1

qn,c
kln

pn

)
(14)

This problem has M variables where M can be 2N in the
worst-case. Hence, we will now approximate the problem,
using the algorithm by Jansen and Zhang [8]. By doing this
we decrease the number of variables to a polynomial number
N . The algorithm by Zhang takes as an input an ε value
and generates a number of columns which leads to a solution
with the desired quality. A higher value of ε would imply
that less columns will have to be generated leading to fast
running times. On the other hand, the pessimism in the solution
increases. The opposite argument holds true when ε is assigned
small values. Since our algorithm is based on this approach,
a designer using our scheme can also choose an appropriate
value of ε according to her/his desired quality.

This problem is a variation of the knapsack problem with
additional constraints and the variables qn,c are now the
optimization variables. Note that now we have only N op-
timization variables compared with the initial number - M .
What we have to solve is:

minimize:
N∑
n=1

qn,c
kln

pn

such that:
N∑
n=1

qn,c(Wn − 1) ≥ φm
n−1∑
i=1

qi,c(Wi − 1) ≤ φmn − 1 + (1− qi,n)R,

∀n ∈ {2, 3, · · · , N}
qn,c ∈ {0, 1}

(15)
This is a multiple-constraint knapsack problem and has several
constraints that correspond to FlexRay specific details. As
mentioned in the beginning of this section the problem of
computing the worst case delay of a message m is solved by
doing a logical transformation into the bin covering problem.
The core idea is that cycles can be logically transformed into
bins. The constraints regarding how items should be packed
into bins are given by the FlexRay specifications. In order
to make the transformation reversible we have to take into
consideration all such constraints. The first constraints ensures
that the message under analysis will be displaced. The second
constraint represents a set of N − 1 constraints which ensures
that each message mh ∈ hp(m) will not be displaced by its
own set of high priority messages (R represents a large enough
constant). The last constraint ensures that at the maximum
only one instance of a given message will be transmitted in
one cycle.

We will explain the significance of the second set of con-
straints with the help of one example. In our example presented



in Figure 4 we show 4 messages. We are interested in the
worst-case delay of message m4. The figure shows 2 scenarios.
The first case presents a bin covered with copies of m1,m2

and m3. We can see that this bin configuration cannot be
transformed back into a FlexRay cycle because message m3 is
displaced by message m1 and m2 and this violates the FlexRay
constraints. Note that m3 is not the message under analysis but
it is still important to encapsulate such FlexRay constraints.
On the other hand, the configuration which corresponds to
case 2 is a reversible one because message m2 and m3 are
not displaced beyond φm2

and φm3
respectively.

Discussion: The overall complexity of the Algorithm 1 is:

O
(
N ×

(
1

ε2
+ logN

)
× Ω(N)

)
(16)

where Ω(N) is the complexity of solving the above knapsack
problem with N elements where the knapsack has a capacity
value equal with φm. Note that this multiple-constraint knap-
sack problem, that appears at the heart of the overall problem,
is solved optimally by a dynamic programming algorithm
that runs in pseudo-polynomial time [9]. Note that we can
bound the number of such knapsack problems to be solve with

O
(
N ×

(
1

ε2
+ logN

))
.

As a detail in our algorithm we would like to note that for

each simplex
M∑
c=1

xc = l a column reduction process is con-

ducted because each simplex has exactly N linear constraints.
Therefore the maximum number of non-zero components (the
maximum number of variables xlc 6= 0) cannot exceed the
value of N . A way to transform a solution of the simplex into
a one with at most N non-zero components can be done using
the Singular Value Decomposition - SVD algorithm [15].

Finally, note that our analysis will provide a safe result
from the point of view that the actual worst-case delay of
a message mi will always be smaller or equal compared with
the results provided by our analysis. Broadly, allowing xc to
have non-integral values and thereafter, not generating all the
bin configurations are the only approximation schemes in our
approach. The first, i.e., an LP relaxation that we perform
always leads to pessimistic results. It is known from the theory
of linear programming that for a maximization problem if one
removes the integrality constraints will always get a solution
which is an upper bound for the integral solution of the same
problem [1]. Secondly, even if we generate only a few bin
configurations, we follow the price decomposition method that
guarantees upper bounds as proved previously [8].

VII. TIMING ANALYSIS: WITH SLOT MULTIPLEXING

In the previous section, we transformed the problem of
computing busCyclesi into the bin covering problem [10].
However, for the case of slot multiplexing, the computation
of busCyclesi can not be transformed into the traditional
bin covering problem. Rather, the computation of busCyclesi
becomes a problem that we call as the bin covering problem
with conflicts. This is a direct consequence of the fact that

the repetition rates of messages (see Section IV) allow each
message to be transmitted only in certain FlexRay cycles
within the repeating pattern of CCmax cycles where the
messages (items) have no conflicts with the cycles (bins).

To solve this problem, we need to suitably adapt the tech-
nique by Jansen and Solis-Oba [7]. First, we must transform
this problem into a bin covering problem with conflicts. The
transformation of messages and cycles into items and bins
remains similar to the one in Section VI. In the context of
slot multiplexing, this constraint becomes a conflict between
an item (message) and a bin (cycle). In this sense, all bins are
not of the same type — unlike the bins in the traditional case.
Thus, there are conflicts between items and bin types, and it is
under this condition that the number of bins that can be filled
must be maximized.

Let us consider an example with 5 messages. The values of
the relevant parameters for these 5 messages are presented in
Table I. Following these parameters Figure 6 shows the cycles
where the 5 messages may be submitted. We are interested in
computing the value of busCycles5, i.e., we want to compute
the number of cycles that message m5 can be delayed in the
worst-case by higher priority messages. Let us consider that
the length of the FlexRay cycle is lFC = 4 ms, and that in the
present iteration of our algorithm, we want to check whether
m5 will be delayed for 9 cycles, i.e., l = 9.

We start by observing that an instance of m5 can be sent
on the bus only in cycles 0, 2, 4, and 6. This follows from
the specifications in Table I. Secondly, we observe that the
cycles with same counter that appear in two different DYN
segments are similar. For instance, cycle 0 in both DYN cycles
in the figure are similar from the point of view that only
instances of messages m1,m2,m3 and m4 are allowed to be
sent. Similarly, we see that cycles 2 and 6 are similar from
the perspective that only instances of messages m1 and m3

are allowed to be sent. Finally, in cycle 4 only instances of
messages m1,m2 and m3 will be sent.

When connecting this observations to the bin covering
problem with conflicts we have the following: cycles 0 will
be identified as bin type 1, cycles 2 and 6 will represent the
bin type 2 while cycle 4 will be of bin type 3. In the case
without slot multiplexing, the decision problem of whether the
message will be displaced by 9 cycles was same as whether
9 bins can be filled. In case of slot multiplexing, the question
whether the message will be displaced by 9 cycles can be filled
is equivalent to the question of whether different types of bins
can be filled up to a minimum number or not. To understand
this, let us look at Figure 5. Starting from cycle 0 (where m5

is allowed) till cycle 0 in the next DYN segment, the message
m5 can be displaced for 9 cycles. Within this time interval,
there are 2 bins of type 1, 2 bins of type 2 and one bin of
type 3. However, m5 displacement might also starting from
cycle 2. In this case, we need to see if 3 bins of type 2 and
one bin of type 1 and type 3 can be filled in order for the
displacement to span 9 cycles. Hence, the decision problem
must be solved for m5 considering that the worst-case might
occur while starting from any of the types of bin where m5
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Fig. 5: The cycles where messages are allowed to be transmitted.

is allowed. or each of these three cases the number of each
type of bins that occur is not same. For example, If in any of
these three cases the bins can be covered, we say that m5 can
be delayed for 9 cycles by higher priority messages.

We emphasize that the number of types of bin is limited
by a constant number because the FlexRay standard limits
the number of cycles allowed within a repeating pattern i.e.,
CCmax. This constant can never be more than 64 [3]. More-
over, extracting the minimum number of bins to be covered
for each type is straightforward given the system model.

To formally denote the distinct types of bins based
on the repetition rates of the higher priority messages
let us denote the set of the types of different bins with
G. Thus, G = {g1, g2, · · · , gP } assuming there are
P types of bins. Each element gi ∈ G is associated
with a value hl,i denoting for how many times this bin
needs to be covered in order to have a total delay of
l cycles. As discussed, this is easily computed from
the system model. For the previous example we have G =
{g1 = {m1,m2,m3,m4} , g2 = {m1,m3} , g3 = {m1,m2,m3}}
with the associated variables hl,1 = 2, hl,2 = 2 and hl,3 = 1.
The previous values correspond to the case when the worst
case delay of message m5 is assumed to start with cycle
1. At the same time if we want to see if the message can
experience an higher worst case delay we will have to check
for example the situation when we have as a starting point
cycle 3. For this case, assuming that we want to answer the
same question which is if 9 cycles can be filled the number
of different types of bins is the same but how many bins
of each type we have changes. In this case we will have
hl,1 = 1, hl,2 = 3 and hl,3 = 1.

Once we have the problem reformulated as a bin covering
problem, the first step of our algorithm is similar to the Step
1 as discussed in Section VI. Thus, the corresponding convex
block-angular resource sharing problem has the following
structure:

λ∗ = min


λ|

P∑
p=1

M∑
c=1

qpn,c
kn

xpm ≤ λ,∀n ∈ {1, 2, · · · , N}
M∑
m=1

x1m = hl,1

M∑
m=1

x2m = hl,2

· · ·
M∑
m=1

xPm = hl,P


(17)

Similar to Section VI this problem can be solved using the
parallel price directive decomposition. Step 2 in Section VI,
however, solves only one knapsack which is not the case any

Period Repetition Rate Base Cycle
m1 10 ms 2 cycles 1
m2 18 ms 4 cycles 1
m3 8 ms 1 cycle 1
m4 48 ms 8 cycle 1
m5 12 ms 2 cycle 1

TABLE I: Message Parameters
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Fig. 6: In the case of slot multiplexing there are types of bins
that influence the knapsack problems that need to solved.

more in the context of slot multiplexing. In contrast, in this
case, we now need to solve P knapsack problems where P is
number of the types of bins as shown in the Figure 6.

VIII. DISCUSSION

We presented a schedulability analysis for messages on the
DYN segment of FlexRay based on response time analysis.
For the simplicity of exposition we assumed that the deadline
of each message is less than its period. However, our analysis
can be extended to the general case as well. This is similar to
the analysis of delays of CAN bus messages [2] and previous
papers on analyzing messages on DYN segment have followed
this approach as well.

Towards this, we note that the response time analysis of
the DYN segment messages is based on the calculation of the
level-i busy period. The busy period is the worst-case time
in which the bus is always busy transmitting messages with
priority higher than or equal to mi. The busy period starts
from the critical instant for an instance of when mi is queued
at t=0 with jitter Ji. The busy period ends when all instances
of messages with priority higher than or equal to mi that were
queued during the busy period have been transmitted. The



number of instances Qi, of message mi that become ready
for transmission before the end of busy period is given by

Qi =
⌈ ti + Ji

Ti

⌉
(18)

The worst-case response time of the message mi is the
maximum value from among the response time of each of
these Qi instances of mi. The first instance in the busy period
be q = 0 and the last instance is q = Qi − 1. If the response
time of instance q is given by

WCRT i = max
q=0...Q−1

(WCRT i(q)) (19)

The response time, WCRT i(q) of the qth instance is given
by:

WCRT i(q) = wi(q)− (qTi − Ji) + C (20)

In the above equation, wi(q) is the longest time from the
start of busy period to the time when the instance q begins it
transmission on the bus. qTi − Ji is the time interval relative
to the start of the busy period after which the qth instance
starts transmission. Thus, wi(q)− (qTi−Ji) denotes the time
that the qth instance is queued before transmission. Ci− lMS

denotes the transmission time of the message on the bus. In
this equation, q is the instance number and Ti, Ji, Ci and C
are components of the system model and hence, these values
are known to us. The computation of the busy period and the
computation of wi(q) essentially follows the same approach
as listed in Algorithm 1. A complete description of the details
is out of scope of this paper.

IX. EXPERIMENTAL RESULTS

Experimental setup: We implemented our proposed frame-
work in Matlab. All the experiments were conducted on a
Windows XP machine running a 4-core Xeon(R) 2.67 GHz
processor. The test cases have been randomly generated by
varying the message parameters like the periods, lengths,
repetitions rates and base cycles in order to cover a wide range
of possible scenarios. In all experiments we have assumed that
the deadlines are equal with the periods. The length of the ST
segment was set to be equal to 2 ms, while the number of
minislots inside the dynamic segment was varied between 50
and 150 minislots. These values are in conformance with the
FlexRay specification. We have assumed that the length of
one minislot is equal to 12 µs. The repetitions rate have been
generated such that the values represent a power of 2.

Broadly, we conducted two sets of experiments. For the first
set, we compare the quality of results of our method and in
the second set of experiments we evaluate the running times
of our algorithm.

A. Quality of our results

As discussed in Section I, the best known results on timing
analyis of DYN segment were reported by Zeng et al. [16].
Hence, we compare our results with the framework presented
by Zeng et al. [16]. Note, however, our scheme can yield
results with varying degree of pessimism based on the input ε.

20 Messages Minislots Our scheme Previous work [16]
90 4 7
100 4 8
110 3 4
120 2 3

25 Messages Minislots Our scheme Previous work [16]
90 7 Inf
100 6 Inf
110 6 12
120 5 7

30 Messages Minislots Our scheme Previous work [16]
90 9 Inf
100 9 Inf
110 8 Inf
120 7 Inf
130 7 15
140 5 7
150 3 5

35 Messages Minislots Our scheme Previous work [16]
90 Inf Inf
100 9 Inf
110 9 Inf
120 7 Inf
150 7 14

TABLE II: In order to evaluate the quality of the results
obtained by our framework, we compare the results with
an existing method. The values shown in columns 3 and 4
represent the delay in FlexRay cycles.

For large values of ε, our algorithm returns more pessimistic
values although it can run faster. On the other hand, for smaller
values of ε, the results are more accurate but it incurs longer
running times. We consider this to be a significant advantage
over existing techniques for timing analysis for FlexRay DYN
segment.

For comparing the quality of the resuts we choose ε =
1/16. The rationale behind this is that for this value of ε,
our algorithm can run within a matter of few minutes and
is scalable. Further experimental results on the running times
will be reported in the next section.

Since the computation of the busCyclesi is the most
important component in the timing analysis of FlexRay DYN
segment for our technique and the one by Zeng et al. [16],
we compare busCyclesi for both techniques. Note that for
comparison with previous work we assume no slot multiplex-
ing for these experiments. In Table II, we report the worst-case
delays reported by both the frameworks for the lowest priority
message in 4 different message sets whose sizes ranged from
10 to 35. The first observation from the table is that our
scheme always performs better than the previous algorithm.
Secondly, note that for each message set, as we increase
the bandwidth, i.e., the number of minislots that are in the
DYN segment, both methods report lesser worst case delay. In
particular, the existing method reports infinite worst-case delay
for several instances of the problem. However, in such cases,
our algorithm returns a finite number. These results show that
as the problem becomes tight, our algorithm will be able to
find solutions while previous algorithms will be pessimistic
and return non-schedulable solutions.

As discussed in Section I, the only known work to analyze
delay in presence of slot multiplexing has been reported by



Schneider et al. [13], [14]. However, their technique is severely
limited because they cannot compute delays for messages that
are displaced over multiple cycles and report such messages to
be unschedulable. For example, all the results that we reported
above had displacements of over one cycle and the technique
proposed by Schneider et al. [13], [14] would have reported
negative results. Note that the case of no slot multiplexing
is essentially a special case of slot multiplexing where the
repetition rate for each message is one and the base cycle is
the first cycle in the FlexRay communication cycle.

We note that the focus of their papers [13], [14] is on syn-
thesizing message schedules and evaluating other properties
and they use a simplistic delay analysis model within such
a framework. In future, it will be interesting to integrate the
framework proposed by our paper into such existing schemes
that rely on a pessimistic analysis.

B. Running times

As mentioned in the previous section, our algorithm takes ε
as an input from the system designer and that different values
of ε would lead to different running times. In this section,
we increase the value of ε from 1/32 to 1/2 with 3 other
values in between and show how the running times decrease.
In this case we need no comparison and hence we consider
slot multiplexing. These running times are shown in Figure 7.
As clearly observed here values of ε values of 1/8, 1/4 and
1/2 scale quite well with the problem size.

Note that, for the value of 1/32 for ε, our technique will
yield even better results than the ones we presented in the
previous section (with ε = 1/16), in terms of the quality of
the results. On the other hand, from our experiments we know
that when ε is set to 1/2, 1/4 or 1/8, our results are, in general,
pessimistic compared to the known heuristic [16]. However, as
we have noted above, our algorithm runs very efficiently with
ε = 1/16 and hence, from our experiments, we believe that
an ε value of 1/16 strikes the right balance between efficiency
and quality. We emphasize once again that in contrast to the
existing technique [16], our proposed scheme provides a knob
in the form of ε to the designer that allows him/her to tune
the running times and the quality of solutions.

X. CONCLUDING REMARKS

In this paper, we deployed new theoretical results and
applied it to perform schedulability analysis for the DYN
segment of FlexRay. Our proposed scheme now allows us
to perform schedulability analysis in presence of slot mul-
tiplexing and this opens up the possibility of configuring new
parameters like the repetition rate. This gives the designer
more flexibility to optimize his design. For illustration, let us
consider the second example that was shown in Figure 2(a). In
this example, if we change the repetition rate of m2 from 1 to
2, m2 is not allowed to be transmitted in cycle 1 and cycle 3.
Other parameters in the example remain the same. Now, let us
consider the worst-case response time of message m3. Unlike
the scenario in Figure 2(b), m2 now cannot be transmitted in
cycle 3. Thus, m3 will be transmitted in cycle 3 thus suffering
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Fig. 7: The running times of our proposed algorithm for
various values of ε.

less delay compared to the case where m2 had the repetition
rate of 1. Of course, this also means that m3 but it shows that
the designer has more flexibility of configuring the delays of
the messages.
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