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Abstract—In this paper we evaluate the promise held by low- Our contributions: We believe that the arrival of OpenCL-
power GPUs for non-graphic workloads that arise in embedded enabled GPUs gives us an opportunity to usher in the era
systems. Towards this, we map and implement 5 benchmarks, ot peterogeneous computation for embedded devices as well.

that find utility in very different application domains, to an
embedded GPU. Our results show that apart from accelerated However, unless GPGPU dow-power embeddeglatforms

performance, embedded GPUs are promising also because ofan be unleashed, heterogeneous computation will remain
their energy efficiency which is an important design goal for debilitated. The question has remained open whether (aatl wh
battery-driven mobile devices. We show that adopting the samekind of) non-graphics workloads may benefit from embedded

optimization strategies as those used for programming high-end ; N ;
GPUs might lead to worse performance on embedded GPUs. ThisGPUS given that powerful multi-core CPUs on the same chip

is due to restricted features of embedded GPUs, such as, Iimited,are already a promising choice. Tquards this, vye mapped and
or no user-defined memory, small instruction-set, limited number implemented 5 benchmarks — Rijndael algorithm, bitcount,
of registers, among others. We propose techniques to overcomeyenetic programming, convolution and pattern matching —
such challenges, e.g., by distributing the workload between GPUstg an embedded GPU from Vivante. These algorithms are
and muIt_l-core CPUs, similar to the spirit of heterogeneous deployed in numerous potential applications includingeg-
computation. l. INTRODUCTION tive (bitcount, qonvolutior), security), rad_ar or flight ¢cking _
(pattern matching) and image processing/augmented yrealit
{)Fﬁvolution). Our choice was also driven by a desire tosave
ate whether computationally heavy optimization altioris
netic programming), typically not suitable on embedded
H¥orms, may become feasible with the advent of low power
. gogﬁJs. Our results show that embedded GPUs are indeed,
Graphics Processing Units) was established as a spediaﬁza%gt' eat'ltmtﬁz’ 22:7?;“;;2'} eimzltlli\éisnfto':rgggogfgllt):ugif::‘sl a:nmwr;t b

%np'é;sp%wn' Itl.'s T.Ot ur!corr|1th)n, no;vadays, o f|r:'cfi' commertc nsidered for each application between its GPU, multgcor
appiications in €lectronic design, SCIENtiTc Conmaut ., y hybrid (heterogeneous) implementations. To the best of

and defen_se, among others. '.A‘S“GPGPU research has m"’_‘t'tﬂ'i?rdknowledge, ours is the first paper to implement such non-
the emerging trend for future is “heterogeneous computatio

) ) o raphic workloads orembeddedGPUs and compare against
where multi-cores, GPUs and other units are utilized Syng&quential and multi-core implementations
gistically to accelerate cqmp_utationally expensive peoid. In the last 10 years, several hundred papers have been
Heterogeneous computation is well-poised to become the slished on GPGPU but they were almost exclusively con-

facto computational paradigm in the realm of servers a@&ned about high-end GPUs where maximizing the speedup

desktops [3]. h ; . i
. . as been the sole overarching aim. Our experiments reveal
Yet, in embedded devices, the role of GPUs has b%ﬁﬁt adopting the same optimization strategies as thoskfase

limited, until recently. Over the last 18 months, prograrbiea | . . .
o igh-performance GPU computing might lead to worse perfor-
GPUs have penetrated embedded platforms providing grsp gnce on embedded GPUs. This is due to restricted features of

software designers with a powerful programmable engi

Tvpicall h bedded GPU d % bedded GPUs like limited or no user-defined memory, lim-
ypically, such embedde S are programmed Wiy qize of cache, among several others. Moreover, embedde

OpenGL, Renderscript and other similar tools that reqUESS s share the same physical memory with the CPUs, which

prior experience in graphics programming and, in some Casi‘ﬁﬁ)lies higher contention for memory, imposing new demands

even expertise on the underlying graphics pipeline harelwgh rogrammers. We discuss techniques, such as distributio

[14]. However, today, the stage seems to be set for a cha&gé:e workload between GPUs and multi-core CPUs, similar

as several mdustrla_l players, either, already h"?“’e’ Oroar€, the spirit of heterogeneous computation to overcome some
the verge of releasing embedded platforms with Iow-powoq,rthe challenges
GPUs that are programmable by OpenCL. OpenCL is a '
framework for coding that enables seamless programming

across heterogeneous units including multi-cores, GPUks an

other processors. Vivante’s embedded graphics cores [17Major strides have been made in GPGPU [14] programming
ARM'’s Mali [12] graphics processors, the StemCell Processyer the years. Almost all threads of work, however, sindyla
[18] from ZiiLabs (Creative) are some examples of low-pow#cused on improving performance without discussing other
embedded GPUs targeted for mobile devices. concerns that arise specifically in embedded GPUs. Henee, th

Over the span of last decade, researchers have re-engin
sequential algorithms from a wide spectrum of applicatio
in order to harness the inherent parallelism offered by GP.
(Graphics Processing Units) and demonstrated tremen
performance benefits [14]. In fact, brisk successes frorty e

II. RELATED WORK



existing body of work does not provide any insight into oppaf they are computationally intensive. As such, our primary
tunities and challenges of embedded GPGPU programmingc@fsideration for choosing the benchmarks was to ensute tha
late, few initial attempts have been made to bridge this gapme benchmarks have a high ratio of compute-to-memory
however, almost all of them evaluated their work on high-eadcess while others have a low ratio of compute-to-memory
GPUs. access. Second, we believe that the benchmarks shouldaover
In a recent paper, Gupta and Owens [4], discussed strategiiele application range. As mentioned in Section |, the 5 henc
for memory optimizations for a speech recognition appi@cat marks that we implemented may be utilized in automotive
However, they did not discuss the impact of their algorithsoftware, radar/flight tracking, image processing, augeten
on power or energy consumption. In fact, they evaluated thaality and optimization tools. We hope that our work willsp
performance results on a 9400M Nvidia GPU which is ntite embedded systems community to explore other potential
targeted towards low-power devices such as hand-held srapplications on embedded GPUs. With these methodological
phones. Yet, we refer the interested reader to their paperdooices in mind, we chose 5 benchmarks. The characteristics
an excellent discussion on limitations that arise out ob(i) for each benchmark is individually discussed below.
chip memory sharing between GPU and CPU and (ii) limitedWe chose thdRijndael algorithm [2] that is specified in the
or no L2 cache. These two characteristics are among sevAcblanced Encryption Standard. Data security is incredging
restrictions in embedded GPUs that we target in this papebecoming more important as mobile and hand-held devices
We also note that Mu et al. [13] implemented the benchre beginning to host e-commerce activities. In fact, it is
marks from High Performance Embedded Computing Chalso gaining significance in vehicular systems as the ietern
lenge Benchmark from MIT [15] on a GPU. However, thegontinues to penetrate the automotive applications. M@ngo
paper suffers from two significant drawbacks. First and-fote characteristics of the version we chose to implement
most, they did not study power or energy consumption whichingerently makes it an excellent candidate to stress andhes
crucial for embedded devices. In fact, all the experimergeewmemory bandwidth of the GPU because the algorithm relies
performed on the power-hungry Fermi machine from Nvidiaeavily on look-up tables. It essentially has a low compate-
Second, their reported speedups do not include the ovesheadmory access ratio.
of data transfer between the CPU and GPU. Second, we selected thieitcount application from the
There has been some prior work [1], [6], [11], [16] relatelutomotive and Industrial Control suite of MiBench [5].
to modeling power and energy consumption on GPUs. Agaithe bitcount is an important benchmark because low-level
this thread of work has focused on high performance Glebhbedded control applications often require bit maniputat
computing and desktop/server workloads, shedding no lighid basic math functionalities. It counts the total numliits
on their suitability for low-power applications. set to 1 in an array of integers. Thus, it needs to sum several
Researchers from Nokia published results [10] that thigyegers, thereby stressing the integer datapath of the. GR&J
obtained from OpenCL programming of an embedded GRiit count algorithm is also interesting because it involties
Unfortunately, this work was limited to an image processimgpical GPGPU algorithmic paradigms (i) “synchronization
algorithm and hence, unlike our paper, it does not provide #tross the threads in the GPU and (ii) “reduction” in order to
sight into the applicability of GPUs for any wider range ofino perform the summation. Thus, it is an excellent example to
graphic workloads. In contrast to them, we do not restrict atudy the impact of conventional GPGPU programming tricks
evaluation to one compute intensive GPU algorithm. Rather, embedded GPU®itcount has a low compute-to-memory
we study a set of applications, with varying charactersstiaiccess ratio.
from a wide range of application domains. Also, they did Third, we selected @enetic programming algorithm [8]
not discuss the differences in optimization strategiesveeh and this choice was driven by a desire to investigate whether
embedded and high-end GPUs while we include a compay@mputationally heavy optimization algorithms (genetio-p
tive study with results obtained from implementing the sargeamming), typically not suitable on embedded platformaym

algorithms on a high-end GPU. become feasible with the advent of low power GPUs. We chose
the problem of Intertwined Spirals to be solved with genetic
I1l. M ETHODOLOGY programming because it is a classic classification probled a

This section describes our benchmarks, the hardware (GR&Y been extensively studied [7]. The chosen algorithmrig ve
platform, operating system, programming languages, arat materesting because it also involves a “reduction” commpone

surement methodologies. apart from floating point operations. This application has a
very high compute-to-memory access ratio.
A. Choice of Benchmarks We also selecteaonvolution, a widely used image pro-

GPUs have been architected to be amenable for progr&®gsing algorithm, for implementation on the GPU because
that present high degree of data parallelism. Unlike CP\@gtimization of convolution on GPU using CUDA and OpenCL
GPUs devote less resources (like cache hierarchies) to #ig been extensively studied [3]. The convolution code has a
memory latencies and put more emphasis on computatioffiy high compute-to-memory access ratio. For our |mplemen
resources. Thus, applications with higher ratios of compufation, we selected a standard algorithm [3]. The main goal
to-memory access are known to extract higher performa@éethe convolution algorithm is to modify each pixel in an
benefits from GPUs. However, unlike graphics programs, ndfage based on élter that uses information from adjacent
graphics applications might not exhibit this property evdlixels. The filter is essentially the kernel to be implemdnte



on the GPU and is the compute intensive component of tike GPUSs), plus application programming interfaces (APIls
convolution algorithm. Various effects such as sharpenitigat are used to define and then control the platforms. The
blurring, edge enhancing, and embossing are producedubg of OpenCL to program GPUs is popular because it has
altering only the filter. Such image processing functiorsyplbeen adopted by Intel, AMD, and Nvidia, among others. It
a vital role in medical devices, automotive applicationsgd ahas also been extensively used to program GPUs for non-
augmented reality. graphics workload. Finally, OpenCL also provides support f
Finally, we selected pattern matching algorithm from the writing programs that execute across heterogeneous piafo
High Performance Embedded Computing Challenge Bencbnsisting of CPUs, GPUs, and other processing units. In
mark from MIT [15]. This algorithm is used by the Featurduture, as OpenCL drivers for embedded CPU and GPU cores
Aided Tracker, in radar applications, where the goal is ¢ém the same platform become available, OpenCL is likely to
use high resolution information about the characteristits lend itself as one of the common frameworks for heterogesieou
a target to aid the identification and tracking of targets. pmogramming.
essence, the pattern matching algorithm considers twmngect
of same Ieng;h and computes a metric that quantifies ﬁ_‘.eMeasuring the Running Times
degree to which the two vectors match. Apart from their
conventional application in avionics, such applications a

expected to penetrate intelligent cars very soon. The r]matl%p O . . .
matching algorithm also has a high compute-to-memory scchach application, we compare running times of its kernels on

ratio. However, compared to the other benchmarks, it ha& aingle-core, du'al-core and 'quad-core CPU im'plemenmt.ion
substantially large kernel to be implemented on the cpgainst the GPU implementations. We perform this compariso

Given the limited memory on GPUs, this makes for anotl*hl,(rith on the Fermi (Te_sla GPU versus Xeon CPUs) and the
. . y Sabre Lite platforms (Vivante GPU versus the ARM CPUS). It
interesting case study.

should be noted that in some cases, we propose heterogeneous
implementations and report results for them. By heterogesie
) ) implementations, we mean that the kernel runs on both the

.AII our experiments Were.performed on the |.MX6.Sabr\ﬁvante GPU and the ARM cores (respectively, Tesla GPU
Lite development board that is targeted for portable comput,g the Xeon CPU).
on battery-powered de_wces. The board includes four AR_MBroadIy, we conducted experiments to investigate the in-
Cortex A9 cores running at 1.2 GHz per core. The chipence of the following architectural and software design
includes a Vivante GC2000 GPU with 4 SIMD cores, eagfcisions. First, note that the Vivante GC2000 GPU does not
running at 5S00MHz. The GPU has a limited hardware caghg e hardware support for local memory, i.e., there is no “on
of only 4KB. Vivante GC2000 has a register size of 2KB Bhip” user-defined memory that can be used to share data
each core (with 4 cores in total). Its instruction cache &n fetween GPU cores. However, the OpenCL embedded profile
commodate up to 512 instructions in total. Vivante's emieelld) 1 mandates software support for local memory in order to
GPUs are designed for very low power consumption.  gnforce consistency of the standard with respect to othérsGP

It is important to note here thgt, at the time of the W”t'_”@lat might, in future, support local memory. We conducted a
of this paper, OpenCL/CUDA drivers for other boards witlt of experiments where we compared two implementations
embedded GPUs are not available in the public realm. As i and without the use of local memory — to understand
and when such GPU platforms, with their respective Softwafg, jmplications on performance when a programmer uses loca
drivers, become openly available, it vy|ll be worthwhile chemory in embedded GPUs (like Vivante GC2000) expecting
conduct a comparative study between different embedded Gfetkormance benefits as is the practice in conventional GPGP
architectures. programming with high-end GPUs.

For a comparative study we also implemented our benChgecong note that any GPU execution consists of data
marks on the Nvidia Fermi machine with a Tesla M2050 GPlnsfer to the GPU before kernel launch, the execution of

It has 14 streaming multi-processors which together ha# 4de yernel in the GPU and data transfer from the GPU after

cores running at 1147MHz. The host contains 2 Intel CPYS, \armel execution. As such, we can imagine that there
Xeon E5520, with 8 cores in total and each clocked at 2.24 .0 major phases (i) kernel execution and (ii) the data

The running time reported in this paper, for each of the
plication, is an average of 5 runs of the application. For

B. Hardware Platform

GHz. transfer. It is interesting to study which of these phasdbes
) bottleneck on the Vivante GPU and the Nvidia Tesla GPU. This
C. Operating System is interesting to study because an embedded GPU has a very
We utilized the Freescale version of Linux 2.6 package alodifferent system-on-chip based interconnect with the ké%y
with a supporting ARM tool-chain. when compared to high-end GPUs that typically communicate
with the CPU via PCI Express bus. Hence, all our experiments
D. Programming Languages also focused on quantifying the overhead of GPU-CPU data

The GPU kernels were written in OpenCL supported Bnsfer. We would like to note that we have, deliberatedy, n
Vivante’s software development kit. The GC2000 GPU, tryerlapped the data transfer and the GPU execution phases in

we study, is supported by OpenCL Embedded Profile 1.1. either the Fermi or the Vivante GPU because of our goal to
OpenCL includes a language (based on C99) for writinggasure them separately.

kernels (functions that execute on OpenCL compatible @svic
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F. Measuring the Energy Consumption The energy consumed on by a CPU-only (e.g., dual-core) is

To study energy and power consumption, we first meas8t@ilarly given by:
the average current cpnsumed by the whole system (the board) V x Jdual-core . dual—core ®)
In fact, in mobile devices where such platforms will be used, enehmar enchmar
it is very desirable to measure the impact of the GPU/CM\E take the ratio of Equation 1 and Equation 3 or the ratio of
implementation on the complete system. It is important e n&quation 2 and Equation 3 depending on our implementation,
that peripherals not used in our benchmarks such as disptayguantify the relative energy efficiency between the CPt an
have been disabled during all our experiments. We took the GPU-based implementations. As the voltage V cancels out
following two steps to reduce inaccuracies in estimating tin the ratio, and since we know the current (see Section V)
current consumed by the GPU and the CPU while running @nd the execution times ((see Section 1V)) of these ternma fro
implementations. measurement, it is straightforward to compute the ratice Th

First, we attempt to isolate the current drawn by the benehsults in the next section are based on the above calaulatio
marks from the current drawn by other system programs such
as operating system routines as well as other hardware com- IV. GPU IMPLEMENTATION AND RESULTS
ponents. Towards this, after booting up the board, we measur . i ) . .
its stable current without running any application program In this section, we descrlk_Je our GPU |mplementat|.0n s'Frate-
This measurement gives us the idle currépt, consumption gies as well as the experimental res_ults on running times,
by the board. Thereafter, we execute each benchmark”mv'qua!ly’ for_ each benchmark. Section V provides a more
different devices (GPU, CPU or both) and measure the curr8AStic viewpoint of the results.

device R evice

I The difference betweeff. and , Rijndael Algorithm

benchm.arkhkbase' enchmark+base

Iyase gives us the “extra” current consumed by the program ) ) )
when implemented on that device. This is the current that wet) Implementation:There are several different implemen-

are interested in because it reflects the current consumed@§@ns for the Rijndael algorithm based on different “ioc

the system due to the implementation of the benchmark @pher modes”. Among them, we chose ECB (Electronic
a particular device (i.e., GPU or CPU) and we denote it fypdebook) because it is considered amenable for paraliel im

device plementation [9]. Our implementation is based on 256-bjske
benchmark* . . ith 14 | f titi Al Rijndael i | tati
Second, we measurélcvice by executing, only the Wit cycles of repeution. Any Rindael implementation,

fraction of the algorithm for which we measure executidicluding ECB, consists of two major phases. The first phase
time, in an infinite while loop. This allows us to measure tie the key expansion step which is invoked only once at the
average value of the current and eliminates, partiallythier P€ginning of the algorithm. It is an inherently serial prsse
inaccuracies. Thus, we measured theragecurrent drawn and hence, it is performed on the CPU. o

by the GPU and CPU for each program for comparison. ForThe second phase of the Rijndael implementation is the
the purpose of this study, where we compare the GPU Ve@g@putational bottleneck and hence, it is often chosen as th
the CPU, energy estimation based on the average curredfi@n kernel for any acceleration. Generally, there are two
desirable. This is because the goal of our study is to comp#ays to implement this phase [9]. One is based on lookup

the relative energy efficiency between the CPU (sequentifbles and the other relies on computations to calculataell
dual-core, multi-core) and the GPU implementations. required values. We implemented the Rijndael algorithnedas

It would be certainly interesting to study (i) how?n the lookup tables because we wanted to stress the memory
Optimizations of the GPU code lead to variations in pow@SOUrceS of the embedded GPUs, as discussed in our choice

and energy consumption within a program and (i) t#¥ benchmarks in Section IlI-A.

influence of different Components of a program on theAS motivated in Section II-E, to Study the impact of local
current. For this, it would be important to study the curreftemory on the overall performance, we ran two versions of
measurement at different instants during the run of tHte lookup table based program on the Vivante GPU as well as

program rather than an average value and is not the focughgfNvidia Tesla. In the first version with local memory (LM),
this paper. we utilized the LM to store the lookup table, which would be

Calculations: With the measured value of current on GP§ conventional GPGPU programming style. The other version

were . the voltage V, and execution time on the GPE]'r;Ctg accltteils_ﬁd the ?tIOb?I memory fo; the lookup t?ﬁlei
denoted byr,¢PU ., we compute the energy consumed as ) Results:The results of running each program on the two
the following - PUs were quite different and are shown in Figure 1(a). On

- GrU the Tesla GPU, relinquishing the local memory meant that the
V X Lytnchmark % Loenchmark (1) execution time of the kernel increased to 10.5 milliseconds

In the case where our application is implemented in a hetef®s) (by almost 7 times) compared to the 1.7 ms in the
geneous fashion between the GPU and the CRgtero-CPU - case when local memory was being utilized. On the contrary,
and THetero.CPU refer to the current consumed and th@n the Vivante GPU, usage of the local memory led to a

benchmark

running time required for the component implemented on th@formance deterioration by 1.5 times (464 ms with LM
CPU. compared to 301 ms without LM). This can be explained

V% JGPU (TGPU LV x [Hetero.CPU  pHetero.CPU by the fact that the compiler creates an abstraction for the
benchmark == benchmark benchmark benchmarlzz) programmer giving an illusion of “on-chip” local memory &th



Rijndael
Rijndael

= Execution times

Vivante GC2000 Nvidia Tesla M2050 5 -~ Energy consumption

Time (ms) with LM without LM with LM without LM g 2 Baseline

GPU kernel 464 301 1.7 10.5 g

Data transfer 78 6.5 E

Total (GPU) 542 I 379 8.2 | 17 g !

Total (CPU) 915 157 i:|
Speedup nr ’ = et | D2 Single-core Dual-core Quad-core

(@) (b)

Fig. 1. (a) Execution times (in milliseconds) are listed, baith and without utilizing LM (local memory)In all tables shown in this paper, for the
embedded platform, the speedup over ARM Cortex A9 single-ae (respectively, for the Fermi platform, speedup over Inté Xeon single-core) is
shown. (b) Plots showing the relative performance of both executiores and energyin all graphs shown in this paper, the red horizontal line at 1
(y-axis) marks the baseline performance by the Vivante GPU aupared to the ARM Cortex A9 multi-cores. A graph above this baseline implies
lower execution times (or lower energy consumption) by the GB. For comparison with the CPU, the best GPU-based implementin is chosen.

does not exist physically). Local memory is, in fact, emedat To compute relative energy consumption, we need execution
in the global memory which is the system memory. This meaimae and the current drawn (see Section llI-F). The exeautio
that by moving data from global memory to local memoriimes are shown in Figure 1(a) while the current drawn igdist
the programmer does not move data nearer to the GPU éorEigure 7.
and instead it only creates a software overhead. As such,
programmers used to conventional GPGPU programming nBedBitcount
to be aware of such subtle differences with embedded GPUsl) Implementation:Given a set of integers in an array as an
As discussed in Section II-E, it is also very interesting iaput, thebitcountalgorithm gives the total number of set bits
study the differences between high-end and embedded GRUshe array as an output. For our GPU implementation, we
with regards to the impact on the data transfer times betwegBse what is known as the Sparse algorithm. For each integer
the CPU and GPU. Towards this, let us compare the optimizeéh the array, in Step | this algorithm counts the number of
versions from both platforms, i.e., with LM on the Nvidia esiterations of the followingwhile loop: while ((x = z&(z —
GPU and without LM on the Vivante GPU. For Tesla, the ratig)! = 0), which gives the number of set bits in In Step
of data transfer time to the kernel execution time is 3.825( 6, the algorithm computes the sum of such set bits for all the
ms/1.7 ms ). While for the embedded GPU, the ratio of dai#egers in the given array. Both Step | and Step Il of this GPU
transfer time to the kernel execution time is 0.26 (78 ms/3Pdplementation has interesting features as explainedabelo
ms). Thus, for the optimized version on the Tesla GPU, theThere is a limiting factor in Step | which prevents the
data transfer phase is the bottleneck while for the Vivarf&G application from reaching high speedups. This factor issane
the kernel execution time remains the bottleneck. This isdigtribution of workload between different threads withan
result of the fact that a system-on-chip embedded GPU likgead group. A Vivante thread group is conceptually sinda
the Vivante GC2000 and its host CPU share the same physigalves” on AMD GPUs and “warps” on NVIDIA GPUs and
system memory and communicate via a interconnecting bgsessentially the set of threads (work-items in OpenCL term
On the other hand, the Tesla GPU and its host CPUs hagtogy) that are run in parallel by the underlying hardware.
separate DRAMs as main memory and communicate throyghthreads in the thread group must complete their exeautio
a bus like the PCI Express. before the GPU computational resources may be allocated to
For all our benchmarks, we also measured the energy c@rseparate thread group. This is because at a given moment
sumption by following the method described in Section lll-lof time, only one thread group can be running on one GPU
Figure 1(b) illustrates the energy consumed by the seqlentompute unit.
dual-core, quad-core implementations (for the ARM cores) a For bitcount threads within a thread group may not com-
a ratio over the energy consumed by the Vivante GPU iglete execution at the same time, thereby leading to under-
plementations. For the Rijndael algorithm, the GPU conslimgilization of computational resources. In Step |, the peab
marginally more energy. Recall that the Rijndael algorithat arises from the fact that threads which work on integers
we chose to implement was very memory intensive becausevih relatively less number of set bits, would go through
extensive use of look-up tables. As global DRAM memofgss number of repetitions in the while loop. Thus, they will
is known to contribute adversely to power consumption finish earlier than other threads working on integers witgea
embedded systems, this is not totally unexpected. FigHtgnber of set bits. However, the threads that complete their
1(b) also juxtaposes the relative performance results ti bjgb earlier have to stay idle and wait for the other threads in
execution times and the energy consumption with respebetothe same thread group to finish.

GPU and CPU implementations. This is in order to visualizeRecall that Step Il ofbitcount is to sum up the result
the tradeoffs between the energy and execution times. Héism each thread. This may be implemented using a common
it may be observed that in dual-core and single-core settiggncept in data parallelism known as reduction. In such an
the GPU presents conflicting tradeoffs as it beats the CPUniiplementation, the programmer must enforce synchrooizat
performance but performs just poorly with regards to energyints which means that some threads must idle while other
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Bitcount

Bitcount

Vivante GC2000 Nvidia Tesla M2050 3
N Hetero. |Hetero.| . . . . - ® Execution times
Time (ms) A with LM without LM | Hetero. | with LM without LM o Energy consumption
GPU kernel1 (step 1) 467 467 6.1 6.1 g
GPU kernel2 (step 2) NA 260 165 NA 21 3.7 £ 2
= o
s % CPU to GPU 104 104 9 9 °
S c 2
ers GPU to CPU 106 £—>0 5.2 £—>0 £
E —
CPU (step 2) 140 42 NA 28.8 NA by
Total (GPU) 817 719 831 736 49.1 17.2 18.8 E
Total (CPU) 1876 552
SIPEEET 20 | A6 I 2248 =3 i B2 < Single-core Dual-core Quad-core
(@) (b)

Fig. 2. (a) Execution times (in milliseconds) for bitcount wimofor both, with and without utilizing LM (local memory) as wels two heterogeneous
implementations. Speedup over single-core is shown. NA stéord'not applicable”. (b) Plots showing the relative penfiance of both execution times and
energy.

threads reach the same synchronization point. This sitmatiigh-end GPUs, GPGPU programming on embedded GPUs
can get worse in the case of embedded GPUs where theliavislves more intricate optimization strategies.

no or very little local memory to store intermediate data. Toln contrast, offloading reduction from Tesla GPU to the
deal with reduction, we propose the use of a heterogene@BJ led to a dramatic performance deterioration. With a
implementation by executing the Step Il with reduction dreterogeneous implementation (on Tesla GPU and singke-cor
the CPU. Towards this, we implemented two versions [ijtel Xeon CPU), the speedup over sequential implememtatio
Heterogeneous A implementation on single-core CPU amd Xeon CPU was 1%. With GPU-only implementation, the

(i) Heterogeneous B implementation on quad-core CPU. Fast speedup over the Xeon CPU implementation was 32 times
comparison, we also implemented GPU-only versions whéobtained with LM). In fact, just the data transfer time (f18)

the reduction process was performed on the GPU, as in condeam Tesla GPU to the Xeon CPU in the heterogeneous version
tional GPGPU programming. We implemented two GPU-ortigok longer than the execution time (2.1 ms) of the reduction
versions — (i) with LM (ii) without LM. In these two methods,on the Tesla GPU.

reduction was performed by launching a separate GPU kerndllote that performing reduction without LM on Tesla has
(denoted as GPU kernel 2) immediately after the completiexactly an opposite effect compared to the embedded GPU.
of the first kernel which executes Step |. The first methddn the Tesla GPU, without LM, there 8% performance
however, utilized local memory and the second did not.  deterioration (from 2.1 ms to 3.7 ms) compared to the case

) . . with LM while the embedded GPU implementation without
2) Results: For either GPU-only or heterogeneous |mplt?_-|vI performs abouB0% better (from 260 ms to 165 ms).

mentations, Step | is performed on the GPU and hence, aEinaII to study the impact of synchronization in Step |, we
seen in Figure 2(a), this step takes the same amount of time Y. y P y P,

for all of them generated a special set of inputs where all the bits were set

Let us focus on the results about Step 11 on the Vivante GF{EJ.L In this case, there will be no idling for the threads and

In Figure 2(a), the Heterogeneous A and the HeterogenexP#s?’ there will be no performance loss due to synchrominati

. . . e resulting kernel execution time on the Vivante GPU (GPU
B implementations complete Step Il in 140 ms and 42 ms 3
. . . . rnel 1) was faster compared even to the quad-core. Thés run
respectively on the CPU whereas the implementation with L

on GPU takes 260 ms and implementation without LM tak %::iﬁ;tong_%i?:g!g?ﬁfs\gzteef ?ﬁ:%%?;g?};i%hzggs:
165 ms. This clearly shows that, in this case, tbenputation q

of reduction on the CPU is more efficient compared to 50n synchronization on GPUs.

embedded GPU. Yet, executing Step Il on the CPU did notF|gure 2(b) shows the relative energy and execution times of

actually improve the overall performance for Heterogesstu our Heterogeneous B implementation with respect to various

CPU settings. Even if our proposed implementation involves
because data computed after Step | must be transferred to bﬁaed-core in Step II, it beats the CPU-only solution in afies

CPU memory. This leads to an additional overhead of 106 9 an it comes o eneray consumption. This shows the ener
as shown in Figure 2(a). Hence, Heterogeneous A takes e;@ gy pron. gy

ms for Step Il which is slower than the GPU implementatio iciency delivered by the GPU in Step I. The other important
without LM that takes 165 ms Observation is that, there arises a tradeoff when compating

The Heterogeneous B implementation, however, can Col-r%e_terogeneous B implementation with quad-core CPU. The

. quad—core implementation outperforms the GPU in running
pensate for the data transfer latencies by sheer accelerat .
of the execution time which is only 42 ms by using 4 cpynes but consumes marginally more energy.
cores. As such, Heterogeneous B implementation takes £48Genetic Programming
ms for Step Il which is the be_st amonggt all. Thus, the1) Implementation:We have chosen the Intertwined Spiral
best overall performance was delivered, neither by the qu blem to be solved using genetic programming. Among the
core CPU nor the embedded GPU but, by the Heterogene f) involved in genetic programming, fithess measuremwfent

B i?[ﬂgmdergation_rﬁfsing both (tjhe.”quad-coreh CPU and Wividuals in the population is known to be the computadion
embeade U. This case study illustrates that, compare &Hleneck and we chose this as the kernel to be accelerated.
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Genetic Programming (GP) Genetic Programming (GP)

Optimized for Vivante | 5 40000y m 6 . Eﬁzﬁ;y%r;rgm?nsption
Time (ms) Hetero. A | Hetero. B | for Tesla g
GPU kernel 700 17.6 3°
€| cPutocPu 15 27 24
8 § GPU to CPU 55 6.8 g 3
CPU 140 52 NA %’ 2
Total (GPU) 910 822 27.2 E 1
Total (CPU) 5020 7150
Speedup 5.5 l 6.1 260 Single-core Dual-core Quad-core
(@) (b)

Fig. 3. (a) Execution times (in milliseconds) for genetic peagming. Speedup over single-core is shown. NA stands for&ppticable”. (b) Plots showing
the relative improvements of both execution time and energy.

Our model to solve the genetic programming consisted of thén Heterogeneous-B, to further increase the speedup we
following. The program population consisted of 500 indiwid utilized the potential parallelism from using multiple esrto
als. Each individual, based on a mathematical express@in teduce the execution time of the second component of the
is initially generated randomly, computes whether a givan Xitness function (reduction as well as some other selectbd su
co-ordinate belongs to one of the two spirals. The exprassiasks). Thus, in Heterogeneous-B, we have truly distribute
comprises of arithmetic functions of addition, subtragtimul- the kernel workload across the GPU as well as all the CPU
tiplication, division as well as two trigonometric funatis, sine cores. The Heterogeneous-B version on the Vivante GPU was
and cosine. The maximum size of the expression (individuta$ter than the Heterogeneous-A implementatior @ (822
was allowed to be 200. ms compared to 910 ms). It delivered &.lpeedup over a
It is important to note two important differences betweesingle-core CPU implementation.
our Nvidia Tesla and our Vivante GPU implementations. ForFigure 3(b) juxtaposes the relative energy and execution
the Tesla GPU, we developed a version of the genetic prograimes between our Heterogeneous-B implementation and CPU
ming application based on conventional optimization f@hhi implementations. It may be noted that Heterogeneous-B ob-
end GPUs, e.g., we used local memory to reduce the memaigs 1.65< speedup even over a quad-core implementation
bandwidth bottleneck as much as possible. However, asgireand beats the CPU with respect to energy consumption in all
described in Rijndael anditcount implementations, usagethe settings.
of local memory on the Vivante GPU leads to performance )
deterioration. This holds true for the genetic programntage D Convolution
study as well. Instead of reproducing similar results faralo 1) Implementation:We implemented a standard code for
memory here, we want to focus on other issues. Hence, b convolution [3]. As it has been widely discussed in the
implementation of genetic programming on the Vivante GPlijerature, we only provide a high-level sketch in the faling.
that is discussed below, is the one without local memory. The code [3] includes four nestédr loops. The convolution
Second, for the Tesla GPU, the entire fitness function, wa&snel is a natural candidate for GPU parallelism because it
implemented on GPU. However, on the Vivante GPU it turngrks by iterating over each pixel in the source image. The
out that the size of the kernel was larger than the size of the outer loops iterate over each source pixel in the source
GPU instruction memory. Hence, we propose a heterogeneiowgge. The filter is applied to the neighboring pixel of each
solution by splitting the kernel into two components. Thstfirsource pixel in the two inner loops. The values of the filter
component runs on the Vivante GPU while the second one ramgtiply the pixel values that they overlay and then a sum of
on the CPU. For the second component on the CPU, we pisducts is taken to produce a new pixel value.
veloped two versions — (i) Heterogeneous-A implementation2) Results:The results for convolution are shown in Figure
on single-core and (ii) Heterogeneous-B implementation 4{@). These results are in line with expectations for aniegpl
quad-core. It is interesting to note that the second comporign with high compute-to-memory access ratio. In fact, @ w
involves a code fragment that performs reduction. observe in Figure 4(b), the implementation on the embedded
2) Results: On the Tesla GPU, our application achieve@PU (that is a GPU-only solution) outperforms even the quad-
over 250« speedup compared to an Intel Xeon singleere implementation. With respect to energy consumptiom, t
core. On the i.MX6 platform, our proposed implementatidBPU is better than CPU in all cases.
Heterogeneous-A (on Vivante GPU and a single core ARMWe note that similar to the results from the Rijndael imple-
CPU), gave us 5% speedup over a sequential single-coreentationbitcountand genetic programming, the data-transfer
ARM CPU implementation (Figure 3(a)). We would like tis a relatively larger bottleneck on the high-end Tesla GPU
point out that, on the Fermi, for a similar version heteragmrs compared to the Vivante GPU. With 13.5 ms + 29 ms, for
implementation (on Tesla GPU and single-core Xeon CPthe Tesla GPU, data transfer contributes t§:86f the overall
the performance acceleration is reduced toc @rom 250< execution time (53 ms). In contrast, for the Vivante GPUhwit
achieved in the original the Tesla-only optimized versidijis 143 ms + 594 ms, data transfers contributes to onl{ 2f

example, again, illustrates that different optimizatiomsst be the overall execution time (2703 ms).
adopted for high-end and embedded GPUs.



Convolution

Convolution
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Fig. 4. (a) Execution times (in milliseconds) for convolutid®peedup over single-core is shown. (b) Plots showing tlaive improvements of both
execution time and energy.

Pattern Matching (PM)

Vivante |[Nvidia Tesla
Time (ms) GC2000 M2050 Pattern Matching (PM)
GPU kernelt 2.03 0.03 6 * Execution fimes
Energy consumption
GPU kernel2 5.59 0.03 5 5
)
GPU kernel3 1.18 0.02 o4
= (3
s$| CPUtoGPU 1.73 0.37 23
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Total (GPU) 10.94 0.49 s
1
Total (CPU) 58.91 3.4
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Fig. 5. (a) Execution times (in milliseconds) for pattern matgh Speedup over single-core is shown. (b) Plots showieg¢hative improvements of both
execution time and energy over GPU.

E. Pattern Matching We would like to point out that, unlike the previous four

1) Implementation:We selected a pattern matching algdenchmarks where the Tesla GPU implementations obtained
rithm from High Performance Embedded Computing Chatound an order of magnitude speedup, in this case the Tesla
lenge Benchmark from MIT [15]. In essence, the patteffiPlementation obtained a speedup of aroundx6.9his is
matching algorithm considers two vectors of the same len§ifPlained by the fact that the experiments were performéld wi
and computes a metric that quantifies the degree to which{} data set available with the High Performance Embedded
two vectors match. Computing Challenge Benchmark [15]. The size of this data se

This benchmark is different from other applications in th#as not large enough to keep all the Tesla GPU computational
sense that there are several distinct sub-componentawitai resources busy, leading to under-utilization. Howevee, dhta
computationally heavy part where each component comprig@was large enough for the Vivante GPU cores to be fully
of several nested loops. Implementing this large code int€rgaged and hence, we observe that the results for the ¥ivant
GPU kernel has several problems. First, the size of the kerffigblementations are quite good compared to the other four
is large and for embedded GPUs, it is important to splitdgnchmarks.
into several fragments such that each of them may fit in thd-inally, we would like to mention that the first two kernels
GPU instruction memory. Hence, we split the code into thriethis implementation also involve a GPU fragment that iseed
different kernels which were launched consecutively. 8dgoto perform reduction. However, our experiments showed that
given the distinct nature of the different nested loops heafloading this to the CPU (similar to thbitcount and the
one would perform optimally with a unique number of threadgénetic programming implementations) actually led to seve
Third, we did some optimization to save the extra overheadPgfformance deterioration. This is because, unlieount
data transfer between CPU and GPU due to multiple kerné@gd the genetic programming, the output from reduction in
Our kernels exchanged the required arguments with each of@€h of these kernels are subsequently used by the GPU. If
in a way that the outputs of one kernel were stored in onei@pPlemented in the CPU, this creates an extra overhead of
the arguments and then passed to the subsequent kernel. transferring data from GPU to CPU plus executing it on the

2) Results: The results for pattern matching are shown BPU plus writing back the results from CPU to GPU. This
Figure 5(a). In terms of the speedup obtained on the Vivaawerhead turned out to be substantially more than having it
GPU, the results are similar to convolution and the GRwocessed locally on the GPU. Hence, we propose not to have a
outperforms the quad-core Figure 5(b). heterogeneous implementation in the case of pattern nmatchi
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Fig. 6. Graphs illustrating (a) the execution times of thedmemarks as well as (b) the energy consumed by the benchmarke ddRYs relative to the
GPU implementation.

ePu Heter. quad| _singi duai quac hardware synchronization within threads of a thread grdup.
Current (ma)| | ! ! ! ! is important also to note that the Vivante GPU (GC2000) has
Bitcount 360 650 160 300 650 only one integer pipeline per core, but it has 4 floating point
Convolution| 390 NA 165 305 650 pipelines per core. As such, bitcount and Rijndael, withirthe
Rijndael 395 NA 155 295 600 integer calculations, cannot benefit from this hardwaréufea
s 270 650 160 300 650 Also, we would like to note that for the 5 benchmarks,
M 300 NA 160 300 650 the acceleration over single-core achieved on the optiize
. R Tesla code was up to couple of orders of magnitude (up
Fig. 7. Measured current for all benchmarks in milliamperes. to 260><). Not unexpectedly, embedded GPUs may not yet
V. DISCUSSION deliver similar speedups as high-end GPUs. Finally, naé th

This paper attempted to answer the following questics opposed to the Tesla GPU where CPU-GPU data transfer is
given that resource-constrained embedded GPUs co-exisBdHg bottleneck, on embedded GPU platforms the bottleneck
the same chip with powerful multi-core platforms, are thégight be GPU computational power, particularly observed in
suitable for non-graphics workloads? The results, sunmedrithe Rijndael, pattern matching and convolution.
with a holistic view in the next two sections, lead us to
conclude that embedded GPUs deliver performance benefitg agnergy Consumption
well as energy efficient solutions. However, our study leasls

to the conclusion that embedded GPUs have several coristrgj Figure 6(b) illustrates that our GPU-based implementation

. . . Blivered more energy efficient solutions in most cases. SPU
and designers must make intelligent tradeoffs to extraet 9y

. ; benefits. Based ) nﬁsume less energy inspite of the fact that they draw larger
maximum performance benetits. based on our experience giydle (Figure 7). This is because applications on GPUs

results, in Section V-C we describe few challenges thaEar&%m

. lete much faster. Recall from Equation 1, that ener
due to these constraints. P N gy

is the product of the current and the execution times. Hence,
relatively longer running times (due to less speedups)ufieig
6(a)), bitcountand Rijndael implementations on the GPU did
Figure 6(a) illustrates the execution times of the singlee¢ not show significant energy savings.
dual-core, quad-core implementations as a ratio over tee ex |t may be observed that with increasing number of cores,
cution time taken by our GPU/heterogeneous implementatigie energy consumption does not increase substantialty Wi
The results (Figure 6(a)) show that fafl applications, our increasing number of cores, higher amounts of current are
implementation ran faster than the single-core and the-dgghwn which is shown in Figure 7. Yet, the execution times
core implementations. In fact, for convolution, patternttha decrease with increasing number of cores thereby stattjlizi
ing and genetic programming, our GPU-based implementatigg rate of increase of energy consumption. Along this line,
achieves more than (i) 5 times speedup over single-co)€] (ihote that the GPU implementation typically draws more autrre
times over dual-core. Recall that convolution, patternamiaiy (Figure 7) than dual-core or single-core but it is sill more
and genetic programming are all compute intensive kernelgnergy efficient.
Even for the quad-core comparison, our GPU-based imple-
mentaqon is better for three qf thg applications. Olmltycqunt C. Challenges for GPGPU Programmers
and Rijndael ran in shorter time in a quad-core setting than
our GPU implementation. Also, the severe memory limitatjonfowards heterogeneous computationit is not straightfor-
including a small cache, in the embedded GPU may cause Ward to take the mapping decision of a given application to
quent accesses to global memory leading to poor performadcdePU or a multi-core CPU while optimizing performance.
for Rijndael. Bitcount has relatively less memory accesse@me applications, like Rijndael, are faster on GPUs com-
than Rijndael yet, it suffers on GPUs because of delaysPied to single-core or dual-core implementations but are

A. Execution Times



slower than quad-core implementation (Figure 6(a)). On fhike other alternative would be to split the kernel between
other hand, applications like pattern matching and coriaiu the CPU and the GPU. Recall that our implementation of the
were better on GPUs even when compared to the qupdttern matching algorithm and genetic programming besefit
core implementation. Furthermore, our case studies wigh ttom these ideas, respectively.
Rijndael algorithm andbitcountshowed that there are settings
where the GPU and the CPU present conflicting tradeoffs VI. CONCLUSION
between optimizing energy and execution times. Thus, going\s far as we are aware, this is the first paper to quantitgtivel
forward, heterogeneous platforms with GPUs and CPUs seaaluate both energy and execution times for a range of non-
an attractive solution for different kinds of applications graphics workloads on an embedded GPU. As architecture for
Furthermore, our results on genetic programming aechbedded GPUs evolve in future, we imagine a new wave of
bitcount illustrate that for some applications a GPU-onlglgorithms that was not possible so far. Consider, for imga
or a multi-core-only solution might be sub-optimal. Faromputationally heavy meta-heuristics like evolutionaty
instance, in parallelizing “reduction”, high-end GPUs caorithms, simulated annealing and tabu search. The use of
deliver superior performance compared to CPUs. Yet, duch methods is not popular in online optimization methods
contrast, for certain applications on embedded GPUs, ihmifecause it will take unacceptable amount of time to complete
be that the “reduction” should be performed on the CRbe algorithms. However, this assumes the use of singlke-cor
while the rest of the data parallel code should run on GRPUs or at most a handful of cores. The encouraging results
for best performance (as we showedkhitcount and genetic we achieved on genetic programming is only a small step in
programming). this direction and lot of work must be done before this can be
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