
General Purpose Computing on Low-Power
Embedded GPUs: Has It Come of Age?

Arian Maghazeh Unmesh D. Bordoloi Petru Eles Zebo Peng
Department of Computer and Information Science, Linköpings Universitet, Sweden

E-mail: {arian.maghazeh, unmesh.bordoloi, petru.eles, zebo.peng}@liu.se

Abstract—In this paper we evaluate the promise held by low-
power GPUs for non-graphic workloads that arise in embedded
systems. Towards this, we map and implement 5 benchmarks,
that find utility in very different application domains, to an
embedded GPU. Our results show that apart from accelerated
performance, embedded GPUs are promising also because of
their energy efficiency which is an important design goal for
battery-driven mobile devices. We show that adopting the same
optimization strategies as those used for programming high-end
GPUs might lead to worse performance on embedded GPUs. This
is due to restricted features of embedded GPUs, such as, limited
or no user-defined memory, small instruction-set, limited number
of registers, among others. We propose techniques to overcome
such challenges, e.g., by distributing the workload between GPUs
and multi-core CPUs, similar to the spirit of heterogeneous
computation.

I. INTRODUCTION
Over the span of the last decade, researchers have re-

engineered sequential algorithms from a wide spectrum of ap-
plications to harness the parallelism offered by GPUs (Graphics
Processing Units) and demonstrated tremendous performance
benefits [14]. In fact, brisk successes from early endeavors
meant that GPGPU (General Purpose computing on Graphics
Processing Units) was established as a specialization on its
own. It is not uncommon, nowadays, to find commercial
GPGPU applications in electronic design, scientific computing
and defense, among others. As GPGPU research has matured,
the emerging trend for future is “heterogeneous computation”,
where multi-cores, GPUs and other units are utilized syner-
gistically to accelerate computationally expensive problems.
Heterogeneous computation is well-poised to become the de-
facto computational paradigm in the realm of servers and
desktops [3].

Yet, in embedded devices, the role of GPUs has been
limited, until recently. Over the last 18 months, programmable
GPUs have penetrated embedded platforms providing graphics
software designers with a powerful programmable engine.
Typically, such embedded GPUs are programmed with
OpenGL, Renderscript and other similar tools that require
prior experience in graphics programming and, in some cases,
even expertise on the underlying graphics pipeline hardware
[14]. However, today, the stage seems to be set for a change
as several industrial players, either, already have, or are on
the verge of releasing embedded platforms with low-power
GPUs that are programmable by OpenCL. OpenCL is a
framework for coding that enables seamless programming
across heterogeneous units including multi-cores, GPUs and
other processors. Vivante’s embedded graphics cores [17],
ARM’s Mali [12] graphics processors, the StemCell Processor
[18] from ZiiLabs (Creative) are some examples of low-power
embedded GPUs targeted for mobile devices.

Our contributions: We believe that the arrival of OpenCL-
enabled GPUs gives us an opportunity to usher in the era
of heterogeneous computation for embedded devices as well.
However, unless GPGPU on low-power embedded platforms
can be unleashed, heterogeneous computation will remain
debilitated. The question has remained open whether (and what
kind of) non-graphics workloads may benefit from embedded
GPUs given that powerful multi-core CPUs on the same chip
are already a promising choice. Towards this, we mapped and
implemented 5 benchmarks — Rijndael algorithm, bitcount,
genetic programming, convolution and pattern matching —
to an embedded GPU from Vivante. These algorithms are
deployed in numerous potential applications including automo-
tive (bitcount, convolution, security), radar or flight tracking
(pattern matching) and image processing/augmented reality
(convolution). Our choice was also driven by a desire to inves-
tigate whether computationally heavy optimization algorithms
(genetic programming), typically not suitable on embedded
platforms, may become feasible with the advent of low power
GPUs. Our results show that embedded GPUs are indeed,
sometimes, attractive alternatives for non-graphics computation
but, at the same time, intelligent tradeoffs/choices must be
considered for each application between its GPU, multi-core
and hybrid (heterogeneous) implementations. To the best of
our knowledge, ours is the first paper to implement such non-
graphic workloads on embedded GPUs and compare against
sequential and multi-core implementations.

In the last 10 years, several hundred papers have been
published on GPGPU but they were almost exclusively con-
cerned about high-end GPUs where maximizing the speedup
has been the sole overarching aim. Our experiments reveal
that adopting the same optimization strategies as those used
for high-performance GPU computing might lead to worse
performance on embedded GPUs. This is due to restricted
features of embedded GPUs like limited or no user-defined
memory, limited size of cache, among several others. Moreover,
embedded GPUs share the same physical memory with the
CPUs, which implies higher contention for memory, imposing
new demands on programmers. We discuss techniques, such
as distribution of the workload between GPUs and multi-core
CPUs, similar to the spirit of heterogeneous computation to
overcome some of the challenges.

II. RELATED WORK

Major strides have been made in GPGPU [14] programming
over the years. Almost all threads of work, however, singularly
focused on improving performance without discussing other
concerns that arise specifically in embedded GPUs. Hence, the

existing body of work does not provide any insight into oppor-
tunities and challenges of embedded GPGPU programming. Of
late, few attempts have been made to bridge this gap, however,
almost all of them evaluated their work on high-end GPUs.

In a recent paper, Gupta and Owens [4], discussed strategies
for memory optimizations for a speech recognition application.
However, they did not discuss the impact of their algorithm
on power or energy consumption. In fact, they evaluated their
performance results on a 9400M Nvidia GPU which is not
targeted towards low-power devices such as hand-held smart
phones. Yet, we refer the interested reader to their paper for
an excellent discussion on limitations that arise out of (i) on-
chip memory sharing between GPU and CPU and (ii) limited
or no L2 cache. These two characteristics are among several
restrictions in embedded GPUs that we target in this paper.

We also note that Mu et al. [13] implemented the bench-
marks from High Performance Embedded Computing Chal-
lenge Benchmark from MIT [15] on a GPU. However, their
paper suffers from two significant drawbacks. First and fore-
most, they did not study power or energy consumption which is
crucial for embedded devices. In fact, all the experiments were
performed on the power-hungry Fermi machine from Nvidia.
Second, their reported speedups do not include the overheads
of data transfer between the CPU and GPU.

There has been some prior work [1], [6], [11], [16] related
to modeling power and energy consumption on GPUs. Again,
this thread of work has focused on high performance GPU
computing and desktop/server workloads, shedding no light on
their suitability for low-power applications.

Researchers from Nokia published results [10] that they
obtained from OpenCL programming of an embedded GPU.
Unfortunately, this work was limited to an image processing
algorithm and hence, unlike our paper, it does not provide in-
sight into the applicability of GPUs for any wider range of non-
graphic workloads. In contrast to them, we do not restrict our
evaluation to one compute intensive GPU algorithm. Rather, we
study a set of applications, with varying characteristics, from a
wide range of application domains. Also, they did not discuss
the differences in optimization strategies between embedded
and high-end GPUs while we include a comparative study with
results obtained from implementing the same algorithms on a
high-end GPU.

III. METHODOLOGY

This section describes our benchmarks, the hardware (GPU)
platform, operating system, programming languages, and mea-
surement methodologies.
A. Choice of Benchmarks

GPUs have been architected to be amenable for programs
that present high degree of data parallelism. Unlike CPUs,
GPUs devote less resources (like cache hierarchies) to hide
memory latencies and put more emphasis on computational
resources. Thus, applications with higher ratios of compute-
to-memory access are known to extract higher performance
benefits from GPUs. However, unlike graphics programs, non-
graphics applications might not exhibit this property even
if they are computationally intensive. As such, our primary
consideration for choosing the benchmarks was to ensure that

some benchmarks have a high ratio of compute-to-memory
access while others have a low ratio of compute-to-memory
access. Second, we believe that the benchmarks should cover
a wide application range. As mentioned in Section I, the 5
benchmarks that we implemented may be utilized in automotive
software, radar/flight tracking, image processing, augmented
reality and optimization tools. We hope that our work will spur
the embedded systems community to explore other potential
applications on embedded GPUs. With these methodological
choices in mind, we chose 5 benchmarks. The characteristics
for each benchmark is individually discussed below.

We chose the Rijndael algorithm [2] that is specified in the
Advanced Encryption Standard. Data security is increasingly
becoming more important as mobile and hand-held devices
are beginning to host e-commerce activities. In fact, it is also
gaining significance in vehicular systems as the internet con-
tinues to penetrate the automotive applications. Moreover, the
characteristics of the version we chose to implement inherently
makes it an excellent candidate to stress and test the memory
bandwidth of the GPU because the algorithm relies heavily
on look-up tables. It essentially has a low compute-to-memory
access ratio.

Second, we selected the bitcount application from the Au-
tomotive and Industrial Control suite of MiBench [5]. The bit-
count is an important benchmark because low-level embedded
control applications often require bit manipulation and basic
math functionalities. It counts the total number of bits set
to 1 in an array of integers. Thus, it needs to sum several
integers, thereby stressing the integer datapath of the GPU. The
bit count algorithm is also interesting because it involves two
typical GPGPU algorithmic paradigms (i) “synchronization”
across the threads in the GPU and (ii) “reduction” in order to
perform the summation. Thus, it is an excellent example to
study the impact of conventional GPGPU programming tricks
on embedded GPUs. Bitcount has a low compute-to-memory
access ratio.

Third, we selected a genetic programming algorithm [8]
and this choice was driven by a desire to investigate whether
computationally heavy optimization algorithms (genetic pro-
gramming), typically not suitable on embedded platforms, may
become feasible with the advent of low power GPUs. We chose
the problem of Intertwined Spirals to be solved with genetic
programming because it is a classic classification problem and
has been extensively studied [7]. The chosen algorithm is very
interesting because it also involves a “reduction” component
apart from floating point operations. This application has a very
high compute-to-memory access ratio.

We also selected convolution, a widely used image pro-
cessing algorithm, for implementation on the GPU because
optimization of convolution on GPU using CUDA and OpenCL
has been extensively studied [3]. The convolution code has a
very high compute-to-memory access ratio. For our implemen-
tation, we selected a standard algorithm [3]. The main goal
of the convolution algorithm is to modify each pixel in an
image based on a filter that uses information from adjacent
pixels. The filter is essentially the kernel to be implemented
on the GPU and is the compute intensive component of the
convolution algorithm. Various effects such as sharpening,

blurring, edge enhancing, and embossing are produced by
altering only the filter. Such image processing functions play
a vital role in medical devices, automotive applications, and
augmented reality.

Finally, we selected a pattern matching algorithm from
the High Performance Embedded Computing Challenge Bench-
mark from MIT [15]. This algorithm is used by the Feature-
Aided Tracker, in radar applications, where the goal is to
use high resolution information about the characteristics of
a target to aid the identification and tracking of targets. In
essence, the pattern matching algorithm considers two vectors
of same length and computes a metric that quantifies the
degree to which the two vectors match. Apart from their
conventional application in avionics, such applications are
expected to penetrate intelligent cars very soon. The pattern
matching algorithm also has a high compute-to-memory access
ratio. However, compared to the other benchmarks, it has a
substantially large kernel to be implemented on the GPU. Given
the limited memory on GPUs, this makes for another interesting
case study.

B. Hardware Platform

All our experiments were performed on the i.MX6 Sabre Lite
development board that is targeted for portable computing on
battery-powered devices. The board includes four ARM Cortex
A9 cores running at 1.2 GHz per core. The chip includes a
Vivante GC2000 GPU with 4 SIMD cores, each running at
500MHz. The GPU has a limited hardware cache of only 4KB.
Vivante GC2000 has a register size of 2KB in each core (with 4
cores in total). Its instruction cache can accommodate up to 512
instructions in total. Vivante’s embedded GPUs are designed
for very low power consumption.

It is important to note here that, at the time of the writing
of this paper, OpenCL/CUDA drivers for other boards with
embedded GPUs are not available in the public realm. As
and when such GPU platforms, with their respective software
drivers, become openly available, it will be worthwhile to
conduct a comparative study between different embedded GPU
architectures.

For a comparative study we implemented our benchmarks
on the Nvidia Fermi machine with a Tesla M2050 GPU. It has
14 streaming multi-processors which together have 448 cores
running at 1147MHz. The host contains 2 Intel CPUs Xeon
E5520, with 8 cores in total and each clocked at 2.27 GHz.

C. Operating System

We utilized the Freescale version of Linux 2.6 package along
with a supporting ARM tool-chain.

D. Programming Languages

The GPU kernels were written in OpenCL supported by
Vivante’s software development kit. The GC2000 GPU, that
we study, is supported by OpenCL Embedded Profile 1.1.

OpenCL includes a language (based on C99) for writing
kernels (functions that execute on OpenCL compatible devices
like GPUs), plus application programming interfaces (APIs)
that are used to define and then control the platforms. The
use of OpenCL to program GPUs is popular because it has
been adopted by Intel, AMD, and Nvidia, among others. It

has also been extensively used to program GPUs for non-
graphics workload. Finally, OpenCL also provides support for
writing programs that execute across heterogeneous platforms
consisting of CPUs, GPUs, and other processing units. In
future, as OpenCL drivers for embedded CPU and GPU cores
on the same platform become available, OpenCL is likely to
lend itself as one of the common frameworks for heterogeneous
programming.
E. Measuring the Running Times

The running time reported in this paper, for each of the
application, is an average of 5 runs of the application. For
each application, we compare running times of its kernels on
a single-core, dual-core and quad-core CPU implementations
against the GPU implementations. We perform this comparison
both on the Fermi (Tesla GPU versus Xeon CPUs) and the
Sabre Lite platforms (Vivante GPU versus the ARM CPUs). It
should be noted that in some cases, we propose heterogeneous
implementations and report results for them. By heterogeneous
implementations, we mean that the kernel runs on both the
Vivante GPU and the ARM cores (respectively, Tesla GPU
and the Xeon CPU).

Broadly, we conducted experiments to investigate the in-
fluence of the following architectural and software design
decisions. First, note that the Vivante GC2000 GPU does not
have hardware support for local memory, i.e., there is no “on-
chip” user-defined memory that can be used to share data
between GPU cores. However, the OpenCL embedded profile
1.1 mandates software support for local memory in order to
enforce consistency of the standard with respect to other GPUs
that might, in future, support local memory. We conducted a
set of experiments where we compared two implementations
— with and without the use of local memory — to understand
the implications on performance when a programmer uses local
memory in embedded GPUs (like Vivante GC2000) expecting
performance benefits as is the practice in conventional GPGPU
programming with high-end GPUs.

Second, note that any GPU execution consists of data
transfer to the GPU before kernel launch, the execution of
the kernel in the GPU and data transfer from the GPU after
the kernel execution. As such, we can imagine that there
are two major phases (i) kernel execution and (ii) the data
transfer. It is interesting to study which of these phases is the
bottleneck on the Vivante GPU and the Nvidia Tesla GPU. This
is interesting to study because an embedded GPU has a very
different system-on-chip based interconnect with the host CPU
when compared to high-end GPUs that typically communicate
with the CPU via PCI Express bus. Hence, all our experiments
also focused on quantifying the overhead of GPU-CPU data
transfer. We would like to note that we have, deliberately, not
overlapped the data transfer and the GPU execution phases in
either the Fermi or the Vivante GPU because of our goal to
measure them separately.
F. Measuring the Energy Consumption

To study energy and power consumption, we first measure
the average current consumed by the whole system (the board).
In fact, in mobile devices where such platforms will be used,
it is very desirable to measure the impact of the GPU/CPU

implementation on the complete system. It is important to note
that peripherals not used in our benchmarks such as displays
have been disabled during all our experiments. We took the
following two steps to reduce inaccuracies in estimating the
current consumed by the GPU and the CPU while running our
implementations.

First, we attempt to isolate the current drawn by the bench-
marks from the current drawn by other system programs such
as operating system routines as well as other hardware compo-
nents. Towards this, after booting up the board, we measure
its stable current without running any application program.
This measurement gives us the idle current Ibase consumption
by the board. Thereafter, we execute each benchmark on
different devices (GPU, CPU or both) and measure the current
Idevicebenchmark+base. The difference between Idevicebenchmark+base and
Ibase gives us the “extra” current consumed by the program
when implemented on that device. This is the current that we
are interested in because it reflects the current consumed by
the system due to the implementation of the benchmark on
a particular device (i.e., GPU or CPU) and we denote it by
Idevicebenchmark.

Second, we measure Idevicebenchmark by executing, only the
fraction of the algorithm for which we measure execution time,
in a while loop with a large number of iterations, such that
the impact of execution overheads is reduced to the minimum.
This allows us to measure the average value of the current and
eliminates, partially, further inaccuracies. Thus, we measured
the average current drawn by the GPU and CPU for each
program for comparison. For the purpose of this study, where
we compare the GPU versus the CPU, energy estimation based
on the average current is desirable. This is because the goal
of our study is to compare the relative energy efficiency
between the CPU (sequential, dual-core, multi-core) and the
GPU implementations.

It would be certainly interesting to study (i) how
optimizations of the GPU code lead to variations in power and
energy consumption within a program and (ii) the influence
of different components of a program on the current. For this,
it would be important to study the current measurement at
different instants during the run of the program rather than an
average value and is not the focus of this paper.

Calculations: With the measured value of current on GPU,
IGPU
benchmark, the voltage V, and execution time on the GPU

denoted by TGPU
benchmark, we compute the energy consumed as

the following :

V × IGPU
benchmark × TGPU

benchmark (1)

In the case where our application is implemented in a heteroge-
neous fashion between the GPU and the CPU, IHetero.CPU

benchmark and
THetero.CPU
benchmark refer to the current consumed and the running

time required on the CPU.

V ×IGPU
benchmark×TGPU

benchmark+V ×IHetero.CPU
benchmark ×THetero.CPU

benchmark

(2)
The energy consumed on by a CPU-only (e.g., dual-core) is
similarly given by:

V × Idual−core
benchmark × T dual−core

benchmark (3)

We take the ratio of Equation 1 and Equation 3 or the ratio of
Equation 2 and Equation 3 depending on our implementation,
to quantify the relative energy efficiency between the CPU and
the GPU-based implementations. As the voltage V cancels out
in the ratio, and since we know the current (see Section V)
and the execution times ((see Section IV)) of these terms from
measurement, it is straightforward to compute the ratio. The
results in the next section are based on the above calculation.

IV. GPU IMPLEMENTATION AND RESULTS

In this section, we describe our GPU implementation strate-
gies as well as the experimental results on running times,
individually, for each benchmark. Section V provides a more
holistic viewpoint of the results.

A. Rijndael Algorithm
1) Implementation: There are several different implemen-

tations for the Rijndael algorithm based on different “block
cipher modes”. Among them, we chose ECB (Electronic
Codebook) because it is considered amenable for parallel
implementation [9]. Our implementation is based on 256-bit
keys with 14 cycles of repetition. Any Rijndael implementation,
including ECB, consists of two major phases. The first phase
is the key expansion step which is invoked only once at the
beginning of the algorithm. It is an inherently serial process
and hence, it is performed on the CPU.

The second phase of the Rijndael implementation is the
computational bottleneck and hence, it is often chosen as the
main kernel for any acceleration. Generally, there are two
ways to implement this phase [9]. One is based on lookup
tables and the other relies on computations to calculate all the
required values. We implemented the Rijndael algorithm based
on the lookup tables because we wanted to stress the memory
resources of the embedded GPUs, as discussed in our choice
of benchmarks in Section III-A.

As motivated in Section III-E, to study the impact of local
memory on the overall performance, we ran two versions of
the lookup table based program on the Vivante GPU as well as
the Nvidia Tesla. In the first version with local memory (LM),
we utilized the LM to store the lookup table, which would be
a conventional GPGPU programming style. The other version
directly accessed the global memory for the lookup table.

2) Results: The results of running each program on the two
GPUs were quite different and are shown in Figure 1(a). On
the Tesla GPU, relinquishing the local memory meant that the
execution time of the kernel increased to 10.5 milliseconds
(ms) (by almost 7 times) compared to the 1.7 ms in the
case when local memory was being utilized. On the contrary,
on the Vivante GPU, usage of the local memory led to a
performance deterioration by 1.5 times (464 ms with LM
compared to 301 ms without LM). This can be explained
by the fact that the compiler creates an abstraction for the
programmer giving an illusion of “on-chip” local memory (that
does not exist physically). Local memory is, in fact, emulated in
the global memory which is the system memory. This means
that by moving data from global memory to local memory,
the programmer does not move data nearer to the GPU core
and instead it only creates a software overhead. As such,

Vivante GC2000 Nvidia Tesla M2050

Rijndael

Time (ms) with LM without LM with LM without LM

GPU kernel 464 301 1.7 10.5

Data transfer 78 6.5

Total (GPU) 542 379 8.2 17

Total (CPU) 915 157Total (CPU) 915 157

Speedup 1.7 2.4 19.1 9.2

Rijndael
3

Execution times
Energy consumption

PU
)

3

GPU

tiv
e

to
 G

P

2

GPU
Baseline

R
at

io
 (r

el
a

1

R

Single-core Dual-core Quad-core

(a) (b)

Fig. 1. (a) Execution times (in milliseconds) are listed, both with and without utilizing LM (local memory). In all tables shown in this paper, for the
embedded platform, the speedup over ARM Cortex A9 single-core (respectively, for the Fermi platform, speedup over Intel Xeon single-core) is
shown. (b) Plots showing the relative performance of both execution times and energy. In all graphs shown in this paper, the red horizontal line at 1
(y-axis) marks the baseline performance by the Vivante GPU compared to the ARM Cortex A9 multi-cores. A graph above this baseline implies
lower execution times (or lower energy consumption) by the GPU. For comparison with the CPU, the best GPU-based implementation is chosen.

programmers used to conventional GPGPU programming need
to be aware of such subtle differences with embedded GPUs.

As discussed in Section III-E, it is also very interesting to
study the differences between high-end and embedded GPUs
with regards to the impact on the data transfer times between
the CPU and GPU. Towards this, let us compare the optimized
versions from both platforms, i.e., with LM on the Nvidia Tesla
GPU and without LM on the Vivante GPU. For Tesla, the ratio
of data transfer time to the kernel execution time is 3.82 (6.5
ms/1.7 ms). While for the embedded GPU, the ratio of data
transfer time to the kernel execution time is 0.26 (78 ms/301
ms). Thus, for the optimized version on the Tesla GPU, the
data transfer phase is the bottleneck while for the Vivante GPU
the kernel execution time remains the bottleneck. This is a
result of the fact that a system-on-chip embedded GPU like
the Vivante GC2000 and its host CPU share the same physical
system memory and communicate via a interconnecting bus.
On the other hand, the Tesla GPU and its host CPUs have
separate DRAMs as main memory and communicate through
a bus like the PCI Express.

For all our benchmarks, we also measured the energy con-
sumption by following the method described in Section III-F.
Figure 1(b) illustrates the energy consumed by the sequential,
dual-core, quad-core implementations (for the ARM cores) as
a ratio over the energy consumed by the Vivante GPU im-
plementations. For the Rijndael algorithm, the GPU consumed
marginally more energy. Recall that the Rijndael algorithm that
we chose to implement was very memory intensive because
of extensive use of look-up tables. As global DRAM mem-
ory is known to contribute adversely to power consumption
in embedded systems, this is not totally unexpected. Figure
1(b) also juxtaposes the relative performance results of both
execution times and the energy consumption with respect to the
GPU and CPU implementations. This is in order to visualize
the tradeoffs between the energy and execution times. Here,
it may be observed that in dual-core and single-core settings
the GPU presents conflicting tradeoffs as it beats the CPU in
performance but performs just poorly with regards to energy.

To compute relative energy consumption, we need execution
time and the current drawn (see Section III-F). The execution
times are shown in Figure 1(a) while the current drawn is listed
in Figure 7.

B. Bitcount
1) Implementation: Given a set of integers in an array as

an input, the bitcount algorithm gives the total number of set
bits in the array as an output. For our GPU implementation, we
chose what is known as the Sparse algorithm. For each integer
x in the array, in Step I this algorithm counts the number of
iterations of the following while loop: while ((x = x&(x −
1))! = 0), which gives the number of set bits in x. In Step
II, the algorithm computes the sum of such set bits for all the
integers in the given array. Both Step I and Step II of this GPU
implementation has interesting features as explained below.

There is a limiting factor in Step I which prevents the
application from reaching high speedups. This factor is uneven
distribution of workload between different threads within a
thread group. A Vivante thread group is conceptually similar to
“waves” on AMD GPUs and “warps” on NVIDIA GPUs and
is essentially the set of threads (work-items in OpenCL termi-
nology) that are run in parallel by the underlying hardware.
All threads in the thread group must complete their execution
before the GPU computational resources may be allocated to
a separate thread group. This is because at a given moment
of time, only one thread group can be running on one GPU
compute unit.

For bitcount, threads within a thread group may not complete
execution at the same time, thereby leading to under-utilization
of computational resources. In Step I, the problem arises from
the fact that threads which work on integers with relatively
less number of set bits, would go through less number of
repetitions in the while loop. Thus, they will finish earlier than
other threads working on integers with larger number of set
bits. However, the threads that complete their job earlier have
to stay idle and wait for the other threads in the same thread
group to finish.

Recall that Step II of bitcount is to sum up the result
from each thread. This may be implemented using a common
concept in data parallelism known as reduction. In such an
implementation, the programmer must enforce synchronization
points which means that some threads must idle while other
threads reach the same synchronization point. This situation
can get worse in the case of embedded GPUs where there is
no or very little local memory to store intermediate data. To
deal with reduction, we propose the use of a heterogeneous

Vivante GC2000 Nvidia Tesla M2050

Bitcount

Time (ms) Hetero.
A

Hetero.
B with LM without LM Hetero. with LM without LM

GPU kernel1 (step 1) 467 467 6.1 6.1

GPU kernel2 (step 2) NA 260 165 NA 2.1 3.7

CPU to GPU 104 104 9 9

஁ 0 ஁ 0D
at

a
an

sf
er

GPU to CPU 106 ஁ 0 5.2 ஁ 0

CPU (step 2) 140 42 NA 28.8 NA

Total (GPU) 817 719 831 736 49.1 17.2 18.8

D
Tr

a

Total (GPU) 817 719 831 736 49.1 17.2 18.8

Total (CPU) 1876 552

Speedup 2.30 2.61 2.26 2.55 11 32 30

Bitcount

Execution times
Energy consumption

er
o.

 B
)

3

ve
 to

 H
et

e

2

io
 (r

el
at

iv

1

R
at

i

Single-core Dual-core Quad-core

(a) (b)
Fig. 2. (a) Execution times (in milliseconds) for bitcount shown for both, with and without utilizing LM (local memory) as well as two heterogeneous
implementations. Speedup over single-core is shown. NA stands for “not applicable”. (b) Plots showing the relative performance on GPU and CPUs with
regards to both execution times and energy.
implementation by executing the Step II with reduction on
the CPU. Towards this, we implemented two versions (i)
Heterogeneous A implementation on single-core CPU and
(ii) Heterogeneous B implementation on quad-core CPU. For
comparison, we also implemented GPU-only versions where
the reduction process was performed on the GPU, as in conven-
tional GPGPU programming. We implemented two GPU-only
versions — (i) with LM (ii) without LM. In these two methods,
reduction was performed by launching a separate GPU kernel
(denoted as GPU kernel 2) immediately after the completion
of the first kernel which executes Step I. The first method,
however, utilized local memory and the second did not.

2) Results: For either GPU-only or heterogeneous imple-
mentations, Step I is performed on the GPU and hence, as
seen in Figure 2(a), this step takes the same amount of time
for all of them.

Let us focus on the results about Step II on the Vivante GPU.
In Figure 2(a), the Heterogeneous A and the Heterogeneous
B implementations complete Step II in 140 ms and 42 ms
respectively on the CPU whereas the implementation with LM
on GPU takes 260 ms and implementation without LM takes
165 ms. This clearly shows that, in this case, the computation
of reduction on the CPU is more efficient compared to an
embedded GPU. Yet, executing Step II on the CPU did not
actually improve the overall performance for Heterogeneous A
because data computed after Step I must be transferred to the
CPU memory. This leads to an additional overhead of 106 ms,
as shown in Figure 2(a). Hence, Heterogeneous A takes 246
ms for Step II which is slower than the GPU implementation
without LM that takes 165 ms.

The Heterogeneous B implementation, however, can com-
pensate for the data transfer latencies by sheer acceleration
of the execution time which is only 42 ms by using 4 CPU
cores. As such, Heterogeneous B implementation takes 148
ms for Step II which is the best amongst all. Thus, the
best overall performance was delivered, neither by the quad-
core CPU nor the embedded GPU but, by the Heterogeneous
B implementation using both the quad-core CPU and the
embedded GPU. This case study illustrates that, compared to
high-end GPUs, GPGPU programming on embedded GPUs
involves more intricate optimization strategies.

In contrast, offloading reduction from Tesla GPU to the
CPU led to a dramatic performance deterioration. With a

heterogeneous implementation (on Tesla GPU and single-core
Intel Xeon CPU), the speedup over sequential implementation
on Xeon CPU was 11×. With GPU-only implementation, the
best speedup over the Xeon CPU implementation was 32 times
(obtained with LM). In fact, just the data transfer time (5.2 ms)
from Tesla GPU to the Xeon CPU in the heterogeneous version
took longer than the execution time (2.1 ms) of the reduction
on the Tesla GPU.

Note that performing reduction without LM on Tesla has
exactly an opposite effect compared to the embedded GPU.
On the Tesla GPU, without LM, there is 75% performance
deterioration (from 2.1 ms to 3.7 ms) compared to the case
with LM while the embedded GPU implementation without
LM performs about 60% better (from 260 ms to 165 ms).

Finally, to study the impact of synchronization in Step I, we
generated a special set of inputs where all the bits were set
to 1. In this case, there will be no idling for the threads and
thus, there will be no performance loss due to synchronization.
The resulting kernel execution time on the Vivante GPU (GPU
kernel 1) was faster compared even to the quad-core. This runs
counter to the general case where the bitcount on GPU is worse
than the quad-core and illustrates the bottleneck that arises due
to synchronization on GPUs.

Figure 2(b) shows the relative energy and execution times of
our Heterogeneous B implementation with respect to various
CPU settings. Even if our proposed implementation involves
quad-core in Step II, it beats the CPU-only solution in all cases
when it comes to energy consumption. This shows the energy
efficiency delivered by the GPU in Step I. The other important
observation is that, there arises a tradeoff when comparing our
Heterogeneous B implementation with quad-core CPU. The
quad-core implementation outperforms the GPU in running
times but consumes marginally more energy.
C. Genetic Programming

1) Implementation: We have chosen the Intertwined Spiral
problem to be solved using genetic programming. Among the
step, involved in genetic programming, fitness measurement of
individuals in the population is known to be the computational
bottleneck and we chose this as the kernel to be accelerated.

Our model to solve the genetic programming consisted of the
following. The program population consisted of 500 individu-
als. Each individual, based on a mathematical expression that
is initially generated randomly, computes whether a given x-y

Optimized for Vivante Optimized

Genetic Programming (GP)

Optimized
for TeslaTime (ms) Hetero. A Hetero. B

GPU kernel 700 17.6

r

CPU to GPU 15 2.7

GPU to CPU 55 6.8

CPU 140 52 NA
D

at
a

Tr
an

sf
e r

CPU 140 52 NA

Total (GPU) 910 822 27.2

Total (CPU) 5020 7150

Speedup 5.5 6.1 260

Genetic Programming (GP)
7

Execution times
Energy consumption

er
o.

 B
)

6

7

ve
 to

 H
et

e

4

5

io
 (r

el
at

iv

2

3

R
at

i

1

Single-core Dual-core Quad-core

(a) (b)
Fig. 3. (a) Execution times (in milliseconds) for genetic programming. Speedup over single-core is shown. NA stands for “not applicable”. (b) Plots showing
the relative improvements of both execution time and energy.

co-ordinate belongs to one of the two spirals. The expression
comprises of arithmetic functions of addition, subtraction, mul-
tiplication, division as well as two trigonometric functions, sine
and cosine. The maximum size of the expression (individual)
was allowed to be 200.

It is important to note two important differences between our
Nvidia Tesla and our Vivante GPU implementations. For the
Tesla GPU, we developed a version of the genetic programming
application based on conventional optimization for high-end
GPUs, e.g., we used local memory to reduce the memory
bandwidth bottleneck as much as possible. However, as already
described in Rijndael and bitcount implementations, usage
of local memory on the Vivante GPU leads to performance
deterioration. This holds true for the genetic programming case
study as well. Instead of reproducing similar results for local
memory here, we want to focus on other issues. Hence, our
implementation of genetic programming on the Vivante GPU,
that is discussed below, is the one without local memory.

Second, for the Tesla GPU, the entire fitness function, was
implemented on GPU. However, on the Vivante GPU it turned
out that the size of the kernel was larger than the size of the
GPU instruction memory. Hence, we propose a heterogeneous
solution by splitting the kernel into two components. The first
component runs on the Vivante GPU while the second one runs
on the CPU. For the second component on the CPU, we de-
veloped two versions — (i) Heterogeneous-A implementation
on single-core and (ii) Heterogeneous-B implementation on
quad-core. It is interesting to note that the second component
involves a code fragment that performs reduction.

2) Results: On the Tesla GPU, our application achieved over
250× speedup compared to an Intel Xeon single-core. On the
i.MX6 platform, our proposed implementation Heterogeneous-
A (on Vivante GPU and a single core ARM CPU), gave us 5.5×
speedup over a sequential single-core ARM CPU implementa-
tion (Figure 3(a)). We would like to point out that, on the Fermi,
for a similar version heterogeneous implementation (on Tesla
GPU and single-core Xeon CPU), the performance acceleration
is reduced to 60× (from 250× achieved in the original the
Tesla-only optimized version). This example, again, illustrates
that different optimizations must be adopted for high-end and
embedded GPUs.

In Heterogeneous-B, to further increase the speedup we
utilized the potential parallelism from using multiple cores to
reduce the execution time of the second component of the

fitness function (reduction as well as some other selected sub-
tasks). Thus, in Heterogeneous-B, we have truly distributed
the kernel workload across the GPU as well as all the CPU
cores. The Heterogeneous-B version on the Vivante GPU was
faster than the Heterogeneous-A implementation by 10% (822
ms compared to 910 ms). It delivered 6.1× speedup over a
single-core CPU implementation.

Figure 3(b) juxtaposes the relative energy and execution
times between our Heterogeneous-B implementation and CPU
implementations. It may be noted that Heterogeneous-B obtains
1.65× speedup even over a quad-core implementation and beats
the CPU with respect to energy consumption in all the settings.
D. Convolution

1) Implementation: We implemented a standard code for
the convolution [3]. As it has been widely discussed in the
literature, we only provide a high-level sketch in the following.
The code [3] includes four nested for loops. The convolution
kernel is a natural candidate for GPU parallelism because it
works by iterating over each pixel in the source image. The
two outer loops iterate over each source pixel in the source
image. The filter is applied to the neighboring pixel of each
source pixel in the two inner loops. The values of the filter
multiply the pixel values that they overlay and then a sum of
products is taken to produce a new pixel value.

2) Results: The results for convolution are shown in Figure
4(a). These results are in line with expectations for an applica-
tion with high compute-to-memory access ratio. In fact, as we
observe in Figure 4(b), the implementation on the embedded
GPU (that is a GPU-only solution) outperforms even the quad-
core implementation. With respect to energy consumption, the
GPU is better than CPU in all cases.

We note that similar to the results from the Rijndael imple-
mentation, bitcount and genetic programming, the data-transfer
is a relatively larger bottleneck on the high-end Tesla GPU
compared to the Vivante GPU. With 13.5 ms + 29 ms, for
the Tesla GPU, data transfer contributes to 80% of the overall
execution time (53 ms). In contrast, for the Vivante GPU, with
143 ms + 594 ms, data transfers contributes to only 27% of
the overall execution time (2703 ms).
E. Pattern Matching

1) Implementation: We selected a pattern matching algo-
rithm from High Performance Embedded Computing Challenge
Benchmark from MIT [15]. In essence, the pattern matching al-
gorithm considers two vectors of the same length and computes

Convolution

Vivante
GC2000

Nvidia Tesla
M2050Time (ms)

GPU k l 1966 10 2GPU kernel 1966 10.2

CPU to GPU 143 13.5

GPU to CPU 594 29D
at

a
Tr

an
sf

er
G U to C U 59 9

Total (GPU) 2703 53

Total (CPU) 14780 2166

T

Speedup 5.45 40

Convolution
6

Execution times
Energy consumption

PU
)

6

5

tiv
e

to
 G

P

3

4

R
at

io
 (r

el
a

2

3

R

1

Single-core Dual-core Quad-core

(a) (b)

Fig. 4. (a) Execution times (in milliseconds) for convolution. Speedup over single-core is shown. (b) Plots showing the relative improvements of both execution
time and energy.

Pattern Matching (PM)

Vivante
GC2000

Nvidia Tesla
M2050Time (ms)

GPU k l1 2 03 0 03GPU kernel1 2.03 0.03

GPU kernel2 5.59 0.03

GPU kernel3 1.18 0.02G U e e 3 8 0 0

CPU to GPU 1.73 0.37

GPU to CPU 0.41 0.04D
at

a
Tr

an
sf

er

Total (GPU) 10.94 0.49

Total (CPU) 58.91 3.4

Speedup 5.38 6.9

Pattern Matching (PM)
6

Execution times
Energy consumption

PU
)

6

5

tiv
e

to
 G

P

3

4

R
at

io
 (r

el
a

2

3

R
1

Single-core Dual-core Quad-core

(a) (b)
Fig. 5. (a) Execution times (in milliseconds) for pattern matching. Speedup over single-core is shown. (b) Plots showing the relative improvements of both
execution time and energy over GPU.

a metric that quantifies the degree to which the two vectors
match.

This benchmark is different from other applications in the
sense that there are several distinct sub-components within the
computationally heavy part where each component comprises
of several nested loops. Implementing this large code into a
GPU kernel has several problems. First, the size of the kernel
is large and for embedded GPUs, it is important to split it
into several fragments such that each of them may fit in the
GPU instruction memory. Hence, we split the code into three
different kernels which were launched consecutively. Second,
given the distinct nature of the different nested loops, each one
would perform optimally with a unique number of threads.
Third, we did some optimization to save the extra overhead of
data transfer between CPU and GPU due to multiple kernels.
Our kernels exchanged the required arguments with each other
in a way that the outputs of one kernel were stored in one of
the arguments and then passed to the subsequent kernel.

2) Results: The results for pattern matching are shown in
Figure 5(a). In terms of the speedup obtained on the Vivante
GPU, the results are similar to convolution and the GPU
outperforms the quad-core Figure 5(b).

We would like to point out that, unlike the previous four
benchmarks where the Tesla GPU implementations obtained
around an order of magnitude speedup, in this case the Tesla
implementation obtained a speedup of around 6.9×. This is
explained by the fact that the experiments were performed with

the data set available with the High Performance Embedded
Computing Challenge Benchmark [15]. The size of this data set
was not large enough to keep all the Tesla GPU computational
resources busy, leading to under-utilization. However, the data
set was large enough for the Vivante GPU cores to be fully
engaged and hence, we observe that the results for the Vivante
implementations are quite good compared to the other four
benchmarks.

Finally, we would like to mention that the first two kernels
in this implementation also involve a GPU fragment that needs
to perform reduction. However, our experiments showed that
offloading this to the CPU (similar to the bitcount and the
genetic programming implementations) actually led to severe
performance deterioration. This is because, unlike bitcount
and the genetic programming, the output from reduction in
each of these kernels are subsequently used by the GPU. If
implemented in the CPU, this creates an extra overhead of
transferring data from GPU to CPU plus executing it on the
CPU plus writing back the results from CPU to GPU. This
overhead turned out to be substantially more than having it
processed locally on the GPU. Hence, we propose not to have a
heterogeneous implementation in the case of pattern matching.

V. DISCUSSION

This paper attempted to answer the following question: given
that resource-constrained embedded GPUs co-exist on the same
chip with powerful multi-core platforms, are they suitable

Execution Times
7

Rijndael Bitcount GP Convolution PM
PU

) 6

7

tiv
e

to
 G

P

4

5

R
at

io
 (r

el
a

2

3

R

1

Single-core Dual-core Quad-core

Energy Consumption
4

Rijndael Bitcount GP Convolution PM

PU
)

3

4

tiv
e

to
 G

P

2

3

R
at

io
 (r

el
a

1

2

R 1

Single-core Dual-core Quad-core

(a) (b)
Fig. 6. Graphs illustrating (a) the execution times of the benchmarks as well as (b) the energy consumed by the benchmarks on the CPUs relative to the GPU
implementation.
for non-graphics workloads? The results, summarized with a
holistic view in the next two sections, lead us to conclude
that embedded GPUs deliver performance benefits as well
as energy efficient solutions. However, our study leads us to
the conclusion that embedded GPUs have several constraints
and designers must make intelligent tradeoffs to extract the
maximum performance benefits. Based on our experience and
results, in Section V-C we describe few challenges that arise
due to these constraints.

A. Execution Times
Figure 6(a) illustrates the execution times of the single-core,

dual-core, quad-core implementations as a ratio over the exe-
cution time taken by our GPU/heterogeneous implementation.
The results (Figure 6(a)) show that for all applications, our
implementation ran faster than the single-core and the dual-core
implementations. In fact, for convolution, pattern matching and
genetic programming, our GPU-based implementation achieves
more than (i) 5 times speedup over single-core, (ii) 3 times
over dual-core. Recall that convolution, pattern matching and
genetic programming are all compute intensive kernels.

Even for the quad-core comparison, our GPU-based imple-
mentation is better for three of the applications. Only bitcount
and Rijndael ran in shorter time in a quad-core setting than
our GPU implementation. Also, the severe memory limitations,
including a small cache, in the embedded GPU may cause fre-
quent accesses to global memory leading to poor performance
for Rijndael. Bitcount has relatively less memory accesses than
Rijndael yet, it suffers on GPUs because of delays in hardware
synchronization within threads of a thread group. It is important
also to note that the Vivante GPU (GC2000) has only one
integer pipeline per core, but it has 4 floating point pipelines
per core. As such, bitcount and Rijndael, with their integer
calculations, cannot benefit from this hardware feature.

Also, we would like to note that for the 5 benchmarks, the
acceleration over single-core achieved on the optimized Tesla
code was up to couple of orders of magnitude (up to 260×).
Not unexpectedly, embedded GPUs may not yet deliver similar
speedups as high-end GPUs. Finally, note that as opposed to the
Tesla GPU where CPU-GPU data transfer is a big bottleneck,
on embedded GPU platforms the bottleneck might be GPU

Current (mA)

Bit t 360 650 160 300 650

I benchmark
GPU

I benchmark
single-core

I benchmark
dual-core

I benchmark
quad-core

I benchmark
Heter. quad

Bitcount 360 650 160 300 650

Convolution 390 NA 165 305 650

Rijndael 395 NA 155 295 600j dae 395 55 95 600

GP 270 650 160 300 650

PM 300 NA 160 300 650

Fig. 7. Measured current for all benchmarks in milliamperes.
computational power, particularly observed in the Rijndael,
pattern matching and convolution.
B. Energy Consumption

Figure 6(b) illustrates that our GPU-based implementations
delivered more energy efficient solutions in most cases. GPUs
consume less energy inspite of the fact that they draw larger
currents (Figure 7). This is because applications on GPUs
complete much faster. Recall from Equation 1, that energy
is the product of the current and the execution times. Hence,
relatively longer running times (due to less speedups) (Figure
6(a)), bitcount and Rijndael implementations on the GPU did
not show significant energy savings.

It may be observed that with increasing number of cores,
the energy consumption does not increase substantially. With
increasing number of cores, higher amounts of current are
drawn which is shown in Figure 7. Yet, the execution times
decrease with increasing number of cores thereby stabilizing
the rate of increase of energy consumption. Along this line,
note that the GPU implementation typically draws more current
(Figure 7) than dual-core or single-core but it is sill more
energy efficient.
C. Challenges for GPGPU Programmers
Towards heterogeneous computation: It is not straightfor-
ward to take the mapping decision of a given application to
a GPU or a multi-core CPU while optimizing performance.
Some applications, like Rijndael, are faster on GPUs compared
to single-core or dual-core implementations but are slower than
quad-core implementation (Figure 6(a)). On the other hand, ap-
plications like pattern matching and convolution were better on
GPUs even when compared to the quad-core implementation.
Furthermore, our case studies with the Rijndael algorithm and

bitcount showed that there are settings where the GPU and the
CPU present conflicting tradeoffs between optimizing energy
and execution times. Thus, going forward, heterogeneous plat-
forms with GPUs and CPUs seem an attractive solution for
different kinds of applications.

Furthermore, our results on genetic programming and
bitcount illustrate that for some applications a GPU-only or a
multi-core-only solution might be sub-optimal. For instance,
in parallelizing “reduction”, high-end GPUs can deliver
superior performance compared to CPUs. Yet, in contrast, for
certain applications on embedded GPUs, it might be that the
“reduction” should be performed on the CPU while the rest of
the data parallel code should run on GPU for best performance
(as we showed in bitcount and genetic programming).
Registers: Registers are at a premium in embedded GPUs,
because manufacturers can only put so much registers into
the silicon at a given cost. Vivante GC2000, for instance,
has a register size of 2KB in each core (with 4 cores in
total) in contrast to 128KB registers per multiprocessor in
Tesla M2050 (with 14 multiprocessors in total). This imposes
serious restrictions on the performance improvements that may
be achieved. First, the restrictions on registers have a strong
correlation with the number of thread groups. Ideally, each
GPU core should host a large number of thread groups. Then,
whenever the currently executing thread group is waiting for
a memory access to be completed, the scheduler can switch
to an alternative thread group that is “active” and ready to
run. Limited number of registers can limit the total number
of “active” thread groups that in turn limits the ability of
the scheduler to hide the memory latencies, thereby adversely
impacting the running times.

Second, for kernels that require more registers than available
in the hardware, the GPU compiler might instead push a
register to be used from GPU memory (global memory),
which will also make the program very slow.
Size of the kernel: The size of the kernel matters in embedded
GPUs because of limited instruction memory. For instance, the
Vivante GC2000 can accommodate up to 512 instructions only
and kernels that do not fit can not be supported at all. This
will be relaxed in the next generation of embedded GPUs.
However, limited size of instruction cache would mean that
kernel size might still impact the performance as we move
towards implementing larger portions of an application on the
GPU in future.

Secondly, larger programs will need to keep more “state”,
i.e., more registers to keep the state. As discussed above this
has a significant impact on the performance via the number
of thread group that may be launched. Finally, larger kernel
would typically mean large data sets which can easily lead to
poor performance on the limited L1 cache of embedded GPUs.
In light of the above challenges, embedded GPU programmers
must decide whether it is profitable, from a performance per-
spective, to split a large kernel into multiple kernels considering
that this will also increase kernel invocation overhead. The
other alternative would be to split the kernel between the CPU
and the GPU. Recall that our implementation of the pattern
matching algorithm and genetic programming benefited from
these ideas, respectively.

VI. CONCLUSION

As far as we are aware, this is the first paper to quantitatively
evaluate both energy and execution times for a range of non-
graphics workloads on an embedded GPU. As architecture for
embedded GPUs evolve in future, we imagine a new wave
of algorithms that was not possible so far. Consider, for in-
stance, computationally heavy meta-heuristics like evolutionary
algorithms, simulated annealing and tabu search. The use of
such methods is not popular in online optimization methods
because it will take unacceptable amount of time to complete
the algorithms. However, this assumes the use of single-core
CPUs or at most a handful of cores. The encouraging results
we achieved on genetic programming is only a small step in
this direction and lot of work must be done before this can be
realized in practice.

ACKNOWLEDGEMENT

The authors would like to thank Vivante Corporation for
providing the software tool-kit used for experiments as well as
for several valuable suggestions.

REFERENCES

[1] S. Collange, D. Defour, and A. Tisserand. Power consumption of
GPUs from a software perspective. In International Conference on
Computational Science, 2009.

[2] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the
Advanced Encryption Standard. Springer-Verlag, 2002.

[3] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa. Heterogeneous
Computing with OpenCL. Morgan Kaufman, 2011.

[4] K. Gupta and J. D. Owens. Compute and memory optimizations for high-
quality speech recognition on low-end GPU processors. In International
Conference on High Performance Computing, 2011.

[5] M. R. Guthaus, J.S. Ringenberg, and D. Ernst. Mibench: A free,
commercially representative embedded benchmark suite. In Workshop
on Workload Characterization, 2001.

[6] S. Huang, S. Xiao, and W. Feng. On the energy efficiency of graphics
processing units for scientific computing. In International Symposium on
Parallel&Distributed Processing, 2009.

[7] J. R. Koza. Genetic programming: on the programming of computers by
means of natural selection. MIT Press, 1992.

[8] J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, and G. Lanza.
Genetic Programming IV : Routine Human-Competitive Machine Intelli-
gence. Springer, 2003.

[9] D. Le, J. Chang, X. Gou, A. Zhang, and C. Lu. Parallel AES algorithm for
fast data encryption on GPU. In International Conference on Computer
Engineering and Technology, 2010.

[10] J. Leskela, J. Nikula, and M. Salmela. OpenCL embedded profile
prototype in mobile device. In Workshop on Signal Processing Systems,
2009.

[11] X. Ma, M. Dong, L. Zhong, and Z. Deng. Statistical power consumption
analysis and modeling for gpu-based computing. In Symposium on
Operating Systems Principles, 2009.

[12] Mali Graphics Hardware. /www.arm.com/products/multimedia/
mali-graphics-hardware/index.php.

[13] S. Mu, C. Wang, M. Liu, D. Li, M. Zhu, X. Chen, X. Xie, and Y. Deng.
Evaluating the potential of graphics processors for high performance
embedded computing. In DATE, 2011.

[14] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, and T. J. Purcell. A survey of general-purpose computation on
graphics hardware. Computer Graphics Forum, 26(1):80–113, 2007.

[15] J. Kepner R. Haney, T. Meuse and J. Lebak. The HPEC challenge
benchmark suite. In High-Performance Embedded Computing Workshop,
2005.

[16] J. W. Sheaffer, K. Skadron, and D. P. Luebke. Studying thermal manage-
ment for graphics-processor architectures. In International Symposium
on Performance Analysis of Systems and Software, 2005.

[17] Product Brief: Vivante Graphics Cores. www.vivantecorp.com/Product_
Brief.pdf.

[18] ZMS-40 StemCell Processor. www.ziilabs.com/products/processors/
zms40.php.

