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ABSTRACT
With the advent of low-power programmable compute cores based
on GPUs, GPU-equipped heterogeneous platforms are becoming
common in a wide spectrum of industries including safety-critical
domains like the automotive industry. While the suitability of GPUs
for throughput oriented applications is well-accepted, their appli-
cability for real-time applications remains an open issue. More-
over, in mobile/embedded systems, energy-efficient computing is a
major concern and yet, there has been no systematic study on the
energy savings that GPUs may potentially provide. In this paper,
we propose an approach to utilize both the GPU and the CPU in
a heterogeneous fashion to meet the deadlines of a real-time ap-
plication while ensuring that we maximize the energy savings. We
note that GPUs are inherently built to maximize the throughput and
this poses a major challenge when deadlines must be satisfied. The
problem becomes more acute when we consider the fact that GPUs
are more energy efficient than CPUs and thus, a naive approach
that is based on maximizing GPU utilization might easily lead to
infeasible solutions from a deadline perspective.

1. INTRODUCTION
Over the last 24 months, programmable GPUs have penetrated

mobile platforms providing embedded software designers with a
powerful programmable GPU engine. Vivante’s embedded graph-
ics cores, ARM’s Mali graphics processors, the StemCell Proces-
sor from ZiiLabs (Creative) are some examples of low-power em-
bedded GPUs targeted for mobile and embedded devices. In fact,
the arrival of embedded GPUs has given the software industry an
opportunity to usher in the era of heterogeneous computation for
embedded devices as well [1]. Applications to benefit from this
include image processing (e.g., convolution), pattern matching and
cryptography [2] that are common in embedded systems like intelli-
gent cars [3], augmented reality in wearable glasses and unmanned
aerial vehicles. However, many of these embedded systems involve
real-time deadlines where temporal constraints must be satisfied.
Several questions — on how to systematically distribute compu-
tation between the heterogeneous cores, such as scalar CPU cores
and throughput oriented GPUs, so that real-time software can be
run in a timely fashion — remain un-answered. As we will show in
Section 5, the problem becomes even more challenging if minimiz-
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Figure 1: A high-level schematic of a multi-camera based
driver assistance system on a heterogeneous platform.

ing energy consumption is one of the design goals. The overarching
goal of our work is to bridge this gap and this paper is an attempt
in this direction.

1.1 Overview of our problem
We consider the following set-up that is evident in a wide va-

riety of application scenarios. There are multiple sources of data
that periodically stream items of data. The period of each stream
depends on the characteristics of the source, among other factors
such as the communication infrastructure, and thus, periods of two
different streams need not be identical.

Each data item must be processed within a pre-specified dead-
line relative to the arrival of the data-item. All data items from
all streams need to be processed with exactly the same function-
ality and the relative deadline is the same for all data-items. The
set-up described above is very typical for several applications that
are targeted towards computation on GPUs. In the following, we
highlight two such scenarios.
Scenario 1: Several computationally intensive applications in in-
telligent cars, and in Advanced Driver Assistance Systems (ADAS),
in particular, are amenable for computation on GPUs [4] as well as
CPU cores. Some examples of such applications like pedestrian
detection, collision-avoidance, blind spot detection and rear lane
departure warning are based on a set-up where multiple cameras
stream data for sensing the surroundings and environment charac-
terization [5]. The rates at which the camera captures images and
streams the frames vary from camera to camera due to a variety
of factors like device characteristics of the camera, criticality of
the camera position relative to the movement of the car, and so on.
Figure 1 shows a high-level overview of such a system.

Each of the frames then goes through a common application such
as Image Capture and Transform, Motion Estimation, Object De-
tection and Classification, among others. It is critical that the sys-
tem responds to the input frame captured by a camera within a pre-
specified deadline. This deadline and periods typically vary for
different modes of the system. For example, if it is a brake-by-wire
application in an autonomous car, the deadline and periods are dif-
ferent speed slabs. Thus, several such pre-defined modes might be



given and the approach laid out in this paper is targeted towards
each of the modes.
Scenario 2: Another scenario arises in the context of secured ve-
hicular communication. The key idea in vehicular networks is to
allow vehicles to connect to each other and to a roadside infras-
tructure to form a vehicular ad-hoc network [6]. The nodes of
such an ad-hoc network are commonly divided into two categories.
First, there are On-Board Units (OBU), that are radio enabled de-
vices installed on vehicles. Second, we have the Road Side Units
(RSU), that constitute the network infrastructure and are placed by
the roadside. Such vehicular communication is expected to enable
the support of several services like traffic information diffusion, di-
agnostic services for vehicular health and automatic tolling.

The On-Board Units or OBU, thus, typically need to transmit in-
formation from various sub-systems of the car out to the roadside
infrastructure or the cloud. Moreover, owing to security reasons,
all transmissions from OBU must be encrypted. In fact, OBU is
similar to a centralized unit that is connected to all existing bus
sub-systems and receives frames (messages) from all of them at
different rates. These rates vary due to a wide variety of reasons
such as the bandwidth of the underlying bus protocol, speed of pro-
cessors on the sub-system, characteristics of the host applications
and so on. Once OBU receives a frame, it must encrypt it and then
transmit it via the radio within a pre-defined time interval relative
to the arrival of a frame. In this scenario, note that the same appli-
cation (i.e., encryption) is processing all message streams coming
from multiple sources.

2. RELATED WORK AND OUR CONTRI-
BUTIONS

Over the last few years, GPUs have started to gain attention in the
real-time community [7, 8, 9, 10, 11]. Approaches to specific appli-
cations such as medical imaging have also been proposed [12]. Off-
the-shelf commercial drivers for GPUs provide no support for real-
time scheduling. These papers have taken commendable strides
in addressing this issue, both theoretically and in practice. They
are on the verge of building robust frameworks that would allow
scheduling of GPU memory transfers and GPU computations in a
predictable manner. In their perspective, GPU is treated as a shared
resource in the context of a multi-tasking environment where some
tasks have higher priority than others. A few of the papers intro-
duced the principles of managing the GPU in light of this and oth-
ers built the required infrastructure based on those principles. The
ground-work built by them serves well to complement our proposed
approach in the sense that it might be possible to adapt these tools
for an embedded GPU that is scheduled according to the scheme
proposed in our paper.

Our work has significant differences compared to the above pa-
pers. First, we focus on a set-up where the same functionality or
task needs to serve streams of data arriving from multiple sources.
The key challenge here is to decide which set of data items must be
batched together and sent to the GPU for computation. This is very
different from the above thread of work where jobs sent to GPUs
were assumed to be always of a fixed size. Second, we consider a
mobile platform where energy efficiency is paramount. None of the
papers above addressed concerns related to energy. Third, our sys-
tem model does not assume a priority-based scheduler and rather,
we propose to build a static schedule which is one of the common
approaches in the context of periodic streaming applications.

A second set of papers [13, 14], also address the problem of real-
time scheduling of parallel data streams on GPUs. However, these
works target high performance computing and they completely ig-
nore the energy factor. Also, the underlying assumption on CPU-
GPU architecture is different because in their set-up there is a sig-
nificant overhead in data-transfers between CPU and GPU. In con-

trast, we target mobile GPUs that share a common memory with
the CPU cores where it has been shown that data-transfer overhead
is negligible compared to execution time on the GPU [15]. In fact,
in future heterogeneous computation architectures, the data trans-
fer overhead between GPU and CPU is expected to be further re-
duced [1]. This is significant because it implies that a fine-grained
scheduling approach, such as the one that we propose, is now feasi-
ble without a debilitating interference from data transfer overheads.

There is an emerging line of work [16, 17] that attempts to esti-
mate the wost-case execution time of a task/application running on
a GPU. We would like to clarify that we do not focus on comput-
ing the worst-case execution time (WCET) which is an orthogonal
issue relative to our research. Rather, we assume that the WCET
of an application on the GPU is provided to us as an input. As ac-
knowledged in the papers [16, 17] and in their assumptions, it is
still difficult to formally provide a tight upper bound on the WCET
owing to a variety of factors. Rather, they only provide an estimate
of the WCET. As our work assumes that WCET is known, we also
recommend that the reader bears this in mind. However, if safe
guarantees on WCET may be provided in future, the heuristic pro-
posed in our paper guarantee that the resulting schedule will be a
safe one from the perspective of meeting deadlines.

Finally, recently it has been shown that GPUs are potentially
more energy-efficient compared to CPU cores [18, 19] despite the
fact that GPUs have a higher power rating. Very recently, analyti-
cal and simulation models to quantify GPU’s energy consumption
have been developed [20, 21, 22]. This line of work has been lim-
ited to high-end GPUs. Recent papers on general purpose compu-
tation on mobile GPUs have shown that GPUs do outperform CPU
based computations [15] both on performance and energy dimen-
sions. Concluding, to the best of our knowledge, there has been
no prior work that proposed an approach to schedule hard real-time
jobs from data parallel streams with the objective of minimizing
energy on mobile GPU-based heterogeneous platforms.

It should be noted that we do not propose algorithmic or architecture-
specific optimizations for the GPU code. As is common in GPU
compute programming, we assume that code has already been writ-
ten or generated [23, 24, 25] and that parameters like size of thread
blocks, size of thread groups and other GPU-specific parameters
are optimized based on the specific architecture of the GPU.

3. SYSTEM AND APPLICATION MODEL
As discussed in Section 1, we consider a set-up where an appli-

cation needs to process several real-time data streams and it runs
on a mobile GPU-based heterogeneous system.

3.1 System platform
Our heterogeneous platform consists of identical scalar cores,

running with same frequencies, on the CPU(s) (henceforth, referred
to as cores in this paper) and an embedded/mobile GPU. Formally,
we say that the platform is composed of a set of processors P =⋃

i=1,...,m

{CPUcorei}
⋃

GPU .

3.2 Data stream model
Our system is composed of a set of streams, and each stream

generates an infinite sequence of items with a particular period.
The set of input streams is denoted by S =

⋃

i=1,...,|S|

{Si}. Each

stream Si has a period hi and generates a new item Iki at each
time moment khi, where k = {0, 1, 2, . . .}. I is the set of all items
I =

⋃

i,k

{Iki }. We assume that this is a synchronous system meaning

that all items are initially released at the same time instant when the
system starts. The items have to be processed within a deadline D.
It is a data parallel system and there is no precedence constraint



Figure 2: Plots to validate our hypothesis regarding energy
consumption per item as the size of the job on GPU increases.

that is imposed between the processing of any two items. Note
that this kind of data parallelism is very typical for GPU compute
applications.

Each item must be processed either on a core or on the GPU.
Each execution on a core or the GPU is called a job. In a core, an
item is always processed in a scalar fashion and hence each core job
processes a single item. In this paper, we will say that a job on a
core is always of size one. On the other hand, items must be packed
into a batch of appropriate size and then sent to the GPU that will
simultaneously process all the items. If s items are in the batch
sent to the GPU, we say that the GPU job is of size s. It follows
from our system model that all jobs in the system are identical from
functionality point of view but they process different input data.
The set of jobs is denoted by J =

⋃

i=1,...,|J|

{Ji}.

Items are ready to be processed from the time they are released
until they start execution or miss their deadline. Each ready item
can be assigned either to one of the cores or the GPU. We assume
that jobs are non-preemptive, i.e., once execution starts, it goes to
completion until all items in that job have been processed.
Tcore is the worst case execution time and Ecore is the energy

consumed by a job running on any one of the identical cores. For
GPU, however, we have different worst-case execution times and
energy consumptions corresponding to different job sizes. T s

GPU

denotes the WCET and Es
GPU denotes the energy consumption for

a GPU job of size s (including data-transfer for both). We assume
that job size s varies from smin to smax and we discuss how the
bounds may be obtained in Section 7.1.

4. GPU ENERGY MODEL
As discussed in Section 2, several studies have shown that high-

end GPUs, despite being power hungry, are very efficient in terms
of throughput per watt. This implies that as the job size increases
(until the point where throughput does not increase any further),
one may expect better energy efficiency per item. If true, such an
insight will help us in designing a schedule for GPU jobs. This
needs to be validated, in particular for low-power embedded GPUs.

Recent papers have shown that mobile GPUs outperform CPUs
for certain applications [15] both along performance and energy
dimensions. However, these studies were limited to an input work-
load of a fixed-size. It is not known, however, to what extent the
GPU will outperform the CPU core as the job size increases. This
question is significant in the context of our work where our goal is
to schedule launches of different job sizes (that essentially defines
the workload) on the GPU. In other words, we ask, what is the
impact of job size on a GPU with respect to its energy efficiency?

Towards this, we use energy consumed per item as a metric to

quantify the energy efficiency. For CPU cores where items are pro-
cessed sequentially, job size is always one and this metric has a
fixed value. For GPUs, however, we believe that the energy con-
sumption per item varies according to the following hypothesis.

Hypothesis: With an increase of the GPU job size, the energy con-
sumption per item decreases down to a certain level.

The intuition behind this hypothesis comes from the fact that
GPUs are throughput-oriented machines. Thus, the execution time
on the GPU is not expected to increase linearly with the job size.
This phenomenon inherently should lead to better energy efficient
per item for larger job sizes on the GPU.

Validation of the hypothesis: We proceeded to test our hypothesis
via a set of experiments on a real platform with a mobile GPU. The
specification of the mobile GPU is provided in Section 8. More-
over, We selected two GPGPU applications - convolution and Ri-
jndael (from Advanced Encryption Standard) algorithms.

For the convolution kernel, we define an image size of 20x20
pixels as an item while for AES we define an item to be a text file
of size 10 KB. We iterated our experiment by varying the job size
from 1 item up to 100 items. For each job size, we measured the
average current drawn by connecting an ammeter in series to the
Arndale board. We followed a standard methodology to measure
the currents the details of which are described in [15]. Thereafter,
we measured the execution time of the kernel. Having the current,
voltage and the execution time, we can easily estimate the energy
consumption of a given job size that will directly give us the energy
consumption per item.

The results for both AES and convolution are shown in Figure
2. They validate our hypothesis that energy consumption per item
decreases as the job size increases. Note that in both cases the
gain saturates after the workload surpasses a certain threshold. For
convolution, we can observe that after job size increases beyond 25
items, the energy per item does not decrease any further. Similarly,
for AES we observe that there is almost no gain in energy per item
if we increase the job size beyond 50 items. This phenomenon
occurs because after a threshold all computational resources of the
GPU are fully utilized and any further increase does not enhance
the throughput on the GPU.

The graphs also show the energy consumption for processing one
job on a core. In both cases, we can observe that the energy con-
sumed for one item on a core is relatively far worse off than on the
GPU even when the energy efficiency offered by the GPU has not
reached its saturation point (except when job size on GPU is only
2 items). This implies that, from an energy perspective, it might be
worthwhile to send items to the GPU even when we know that the
GPU might be under-utilized.

5. THE CHALLENGE
The above discussion on the energy model of mobile GPUs might

lead us to conclude that launching as larger jobs as possible, would
result in the best schedule in terms of energy consumption. How-
ever, this is not trivial at all and in this section, we use three mo-
tivating examples to highlight the challenges. For these examples
we assume a platform with one GPU and one core.

Example: In the first example, we illustrate that scheduling large
jobs on GPU might lead to deadline violation. As shown in Figure
3, we have 3 streams with periods of 1, 2 and 3 time units. Let us
consider items released in a time interval equal to the length of the
hyperperiod. For simplicity, let us assume that we have one GPU
where we may launch jobs of size 8 and size 4 only. GPU jobs
of size 8 have WCET T 8

GPU = 7 while GPU jobs of size 4 have
WCET T 4

GPU = 4. In Figure 3(a), we show a schedule where a
GPU job of size 8 is launched. The first item in this job has to wait
too long until all the items in the job are ready and hence misses



its deadline (d = 9). In Figure 3(b), we show another schedule for
the same set of items where only jobs of size 4 are being launched.
In this figure, the first items in all jobs meet their deadlines. It fol-
lows that all other items will also meet their deadlines (since they
arrive later but finish at the same time). The two items not sent to
the GPU are sent to the core and it may be verified that they also
meet their deadlines. To conclude this example, note that selecting
GPU jobs of larger sizes might mean that some items have to wait
longer before they are sent to the GPU and thus may violate their
deadlines. On the other hand, we know that larger GPU jobs are
more energy efficient and this conflicting tradeoff makes our prob-
lem challenging.

Example: In the second example, we show that even from the per-
spective of saving energy, launching larger GPU jobs might not
necessarily be the best choice. Let us consider a scenario in which
we have to pack 16 items into jobs. We assume that deadlines are
such that the following two alternatives always meet the deadlines.
In the first alternative, we may launch a GPU job of size 12 and
send the remaining 4 items to the core. From our experiments for
the convolution kernel described in Section 4, we know that for
GPU jobs of size 12, our platform consumed 75× 10−6 Joules per
item while for a job on a core it consumed 720 × 10−6 Joules per
item. Thus, the total energy consumption in the first alternative is
(12× 75 + 4× 720 = 3780)× 10−6 Joules.

In the second case, we consider launching two GPU jobs of size
8 each. Again, from our experiments we know that these jobs con-
sume 110×10−6 Joules per item. Thus, the total energy consump-
tion in this alternative is (2 × 8 × 110 = 1760) × 10−6 Joules.
From this example, we observe that having larger GPU jobs might
not always be beneficial because the items that are left over for the
cores might deteriorate the overall energy consumption.

Example: The third example is similar to the second example de-
scribed above except that we change the first alternative to consider
a GPU job of size 12 and another GPU job of size 4 (instead of
sending the 4 items to the core). Again, with our calculations, we
observe that the total energy consumed is (12 × 75 + 4 × 380 =
2420) × 10−6 Joules. Compared to alternative two, this is still
worse. This example shows that choosing a large job and a small
job on GPU might be worse than choosing two medium sized jobs
given that both alternatives satisfy deadlines. Overall, all these ex-
amples highlight the fact that it is not trivial to schedule jobs on
mobile GPUs.

6. PROBLEM FORMULATION
Before presenting a solution, we now formulate the problem out-

lined in the previous sections.
As an input, we are given the system and application model that

was presented in Section 3 and, as an output, the goal is to generate
a schedule table which guides the static cyclic execution of the sys-
tem such that the total energy consumption is minimized and the
deadline D is satisfied for each item. Producing the schedule table
implies generating the following:

• The function Π : I → J, that, for each item, determines
the job it belongs to; Π(Iki ) is the job to which Iki has been
assigned.

• The function Θ : J → P , that, for each job, determines the
processor it is mapped to for execution; for a job Ji ∈ J,
Θ(Ji) is the processor it is executed on. If Θ(Ji) = GPU ,
the size of the job, smin ≤ |Ji| ≤ smax. If Θ(Ji) ∈⋃

i=1,...,m

{CPUcorei}, then |Ji| = 1.

• The start time bi of each job Ji.

(a)

(b)

Figure 3: For the same example (a) a GPU job of size of 8 is
infeasible but (b) three smaller jobs of size 4 lead to a feasible
solution. The arrival of items are shown with downward point-
ing arrows (in black) while the upward pointing arrows (in red)
show the deadlines. In both figures, two items are not part of
any GPU job and are sent to cores.

Optimally mapping and scheduling tasks has been shown to be
NP-complete even in simple contexts than the one presented above
[26, 27, 28]. Therefore, in the following section, we will present a
heuristic to address the above optimization problem.

7. HEURISTIC
In this paper, we propose an approach that systematically ex-

plores the design space of possible schedules so that a feasible
schedule is obtained and the overall energy consumption is mini-
mized at the same time.

7.1 Overview and Preliminaries
As described in Section 3, GPU job size s is bounded between

smin to smax. First, we explain how smin and smax may be com-
puted. smin is the smallest job size (i) with lower energy per item
than a single core, i.e., (Esmin

GPU /smin) < Ecore and (ii) higher
throughput than a single core, i.e., (T smin

GPU /smin) < Tcore. In our
example of the convolution application in Figure 2(b), smin is 3.

Moreover, smax is the largest job size that can be launched on
the GPU and still meet all the deadlines of its items. Thus, smax is
dependent on the relation between T s

GPU and the deadline d. As an
example, let us consider two scenarios with deadlines D1 = 2ms
and D2 = 3ms. For convolution, we have T 30

GPU = 2.3, and hence
D1 < T 30

GPU and D2 > T 30

GPU . Therefore, smax1 must be smaller
than 30 while smax2 may be larger than 30.

Prior to describing our heuristic, it is important to define the
term simulation interval which is the time interval considered by
our heuristic to build the static schedule. The method to select the
proper simulation interval will be described later in Section 7.4.



Figure 4: Overview of the proposed heuristic.

The interval starts with the critical instant or the moment where all
streams synchronously release their items at t = 0. Given a simu-
lation interval and the periods of the streams, the number of items
that will be released in this interval by each stream can be trivially
computed. For clarity, we assume that each item in this interval is
identified by a unique identifier, as shown in Figure 3.

The overview of the heuristic is shown in Figure 4. In the first
step, the heuristic intelligently transforms the search space of the
static schedules in the given SI into a acyclic directed graph. This
includes a novel strategy to prune paths that will less likely lead
to optimized schedules. Second, the heuristic traverses the graph
to find the optimized schedule (shortest path). Thereafter, heuristic
iterates over the above two steps by increasing the simulation inter-
val until no more improvements in the solutions can be obtained or
a designer specified time-out is reached. As shown in Figure 4, the
details for each step are discussed in the following sections.

7.2 Step I: Transforming into a graph
In the first step, we convert the problem of finding the energy-

optimized static schedule to a problem of finding the shortest path
in a directed acyclic graph. The basic idea is as follows. Any sched-
ule, feasible or not, is essentially a path that consists of some nodes
and edges in the graph. A path in the graph represents a particular
static schedule which includes the launch times of the jobs on the
GPU and the cores. Each edge is weighted based on the energy con-
sumed for the given job(s). Thus, the shortest path in the weighted
graph will yield the best schedule in terms of energy consumption.
The deadlines also have to be verified, but this is relatively straight-
forward once the path, i.e., the schedule is known.

Defining the graph: In the following, we describe the significance
of our graph in terms of nodes, edges and path and their relation to
the original problem.

Nodes: A node n in the graph represents a GPU job that is defined
by a tuple (t, l, s). Here, t is the launch time of the GPU job relative
to the starting time of the simulation interval (t = 0). l is the iden-
tifier of the last item in the job and s is the size of the job. In Figure
3(b), the corresponding node for GPU job1 is na = (1, 3, 4).

We also consider two dummy nodes ns and nd to be the source
and the destination nodes respectively. These nodes do not corre-

spond to any actual GPU launches, rather they are terminal nodes
used to cover the total duration of the schedule. For any given prob-
lem we have ns = (0, 0, 0) and nd = (tend, idlast, 0) where tend

is the length of the simulation interval and idlast is the last item
within the simulation interval.

Moreover, the set of items to be dispatched in any GPU job is
uniquely identified with l and s. This follows immediately from the
fact that given the last item, our heuristic always packs s items into
a job in a particular order. This order can be maintained because
all items have the same relative deadline and hence, without loss
of generality we can enforce an order based on the release times
of the items. For our sample node na, the job size is 4 and the
identifier of the last item is 3 and there is one unique set of items as
shown in Figure 3(b). This observation is important because it can
dramatically reduce the size of the graph to be constructed.

Edges: An edge exists between two nodes ni and nj , if and only
if the GPU jobs represented by these nodes may be executed con-
secutively without any other GPU launch in between. Note that
nj corresponds to a GPU job that consists of items in the range of
[lj − sj +1, lj ]. Other items in the range of (li, lj − sj ] will be as-
signed to the first available core immediately after their release. For
example, in Figure 3(b), nodes nb = (5, 7, 4) and nc = (9, 13, 4)
corresponding to GPU job2 and job3, are two adjacent nodes. In
this example, items 4 to 7 belong to nb and items 10 to 13 belong
to nc. The remaining items between the two nodes, items 8 and 9,
are then assigned to the core immediately after their release time at
t = 4. Note that the processing of item 9 starts at t = 7 after the
processing of item 8.

An edge connecting two adjacent nodes ni and nj , is further as-
sociated a weight representing the total amount of energy required
to process the items in the range of [li + 1, lj ], that is E

sj
GPU +

Ecore× (lj − li−sj). In our example of Figure 3(b), the weight of
the edge between nb and nc is then equal to the energy needed for
the corresponding GPU job of nc and the core jobs, i.e., E4

GPU +
Ecore × 2 = 1520 + 1440 = 2960 × 10−6 Joules (based on the
values obtained from our experiments for the convolution kernel).

Path: Any schedule may then be considered as a path of nodes
p = {ns, np1, np2, ..., nd}, where ns and nd are, respectively, the
source and the destination nodes and the rest npi, pi �= s, d define
GPU launches in the static schedule. Moreover, the order of nodes
in a path defines the order of the corresponding GPU launches in
the static schedule.

Constructing the graph: In the following, we describe several
steps of constructing the graph.

Launch points: The first step of construction is to compute all pos-
sible GPU launch points within the simulation interval for all job
sizes in the range of smin and smax. For a job size s, the ith launch
point lpsi is defined by the pair (ti, li) where t and l have exactly
the same meaning as they do in a node. In fact, the nodes of the
graph are a subset of GPU launch points and they are incremen-
tally added to the graph as it is being built. For example, in Figure
3(b), lp4i = (1, 3) is the launch point corresponding to node na.

Any launch point, by construction, satisfies the following condi-
tion: all items in the corresponding GPU launch will be processed
(i) before their deadlines have passed and (ii) before the end of the
simulation interval. Formally, for any launch point lpsi and any
item j in the set of items, ti + T s

GPU ≤ min(Dj , tend) where Dj

is the absolute deadline of item j and tend is the last time unit in the
simulation interval. Therefore, in the example of Figure 3, there is
no launch point of size 8.

Furthermore, the same set of items can belong to more than one
GPU launch point. For example in Figure 3(b), assuming the length
of the simulation interval is larger than D = 9, the same set of
items in job1 can belong to any of the launch points lp41 = (1, 3),
lp42 = (2, 3), lp43 = (3, 3), lp44 = (4, 3), lp45 = (5, 3).



Adding nodes: In the second step, the heuristic starts building the
graph from the source node ns. Our heuristic always starts with
the largest GPU job. One reason for doing this is that in a syn-
chronous system (like ours), the minimum time required to collect
any number of items is achieved when the collection starts at t = 0.
Thus, it is always possible to find a launch point with the largest
size (smax) at the beginning of the simulation interval. The other
reason is related to a phenomenon known as hyperperiod spill that
we will explain in more detail in Section 7.4. Therefore, we first
identify the launch points of size smax. Among them, we select
ones with the smallest launch time. Note that it is possible to have
multiple launch points with similar size (s) and launch time (t) but
with different set of items (l). The corresponding nodes of these
launch points are then added to the graph to become neighbours
of the source node ns. In Figure 3(b), na = (1, 3, 4) is the only
neighbour of ns.

Next, successive nodes are added according to the following pol-
icy. Let us assume that node npre = (tpre, lpre, spre) was the last
node created. Then, we know that the end time of the GPU launch
corresponding to this node is tnow = tpre + T

spre
GPU . To create next

nodes from tnow, we have to identify the appropriate launch points
that would compose the neighbouring nodes of npre. Towards this,
the heuristic starts from size smax and continues in decreasing or-
der of size until it finds the largest size which has a launch point.
The found job size might be smaller than smax. The reason is that
as the size increases, the number of launch points decreases. Thus,
there might be no launch point of size smax available from tnow

onwards. Moreover, any job size below the found size will have
at least one launch point that may potentially be converted to its
corresponding node and later be added to the graph.

However, by adding the nodes of all possible GPU job sizes, the
size of the graph might become intractable. Therefore, we propose
a tunable parameter ub that may be used by the designer to strike
the right balance between the quality of the solution and the running
time of the heuristic based on his/her preferences. Essentially, ub
is an upper bound on the number of largest GPU job sizes that the
newly created nodes can have. Finding the proper value of ub that
offers a good trade off between the result and the running time of
the heuristic is problem specific.

Next, for each size s ∈ {s1, s2, . . . , sub}, we select only those
launch point(s) that have the closest launch time to tnow. For
each of these launch points lpsi , if the number of items which have
been accumulated since the previous launch is enough to create a
new GPU launch, i.e. li − lpre ≥ s, then a new node nnew =
(tnew, lnew, snew) is created from this launch point. However, the
same node may already be created earlier. Therefore, to prevent
increasing the size of the graph with duplicate nodes, a new node
is only added when it does not exist in the graph.

We continue with Figure 3(b) as an example. Let us assume that
na = (1, 3, 4) is the last created node and this gives us tnow =
1 + 4 = 5. At this point, there are eight launch points of size 4
including (5, 3), (5, 4),..., (5, 10). The first four launch points can-
not be converted to a node in the graph because enough number of
items has not been accumulated since the previous launch at node
na, i.e., (3, 4, 5, 6) − 3 � 4. For the next four, however, a new
node is created and added to the graph. In the schedule shown in
Figure 3(b), node (5, 7, 4) is selected.

Adding edges: A new edge is created between npre and nnew. The
weight of this edge is obtained as already discussed with regards to
the definition of an edge.

Termination: Moreover, at tnow it may happen that no other new
node can be created from the available launch points. This means
that the current path cannot continue further and npre should be
connected to the terminal node nd. Finally, the remaining items
are considered to be processed on the cores. The corresponding

energy of these items are integrated in the weight of the edge which
connects the last node to nd.

To conclude, we consider a graph of a relatively more complex
example, the nodes of which are shown in Figure 5. To avoid a
crowded figure, only a subset of the edges are shown. The red
arrows show a typical path between the source and the destination
nodes including the intermediate nodes n2, n6, n13, n9. Each node
is placed at the same time unit as its corresponding GPU launch
point. The blue and the black lines, respectively, highlight the GPU
and the core execution intervals. Consider the nodes n2 and n6. At
t = 4, the job of n2 with size 12 is launched and by the time it
ends, 10 items (21− 11) have been released. Given that n6 allows
a job of size 8, the remaining 2 items are then left for the cores.

7.3 Step II: Finding the optimized schedule
Once the graph is built, the heuristic finds the path p∗ (repre-

senting a schedule) with the smallest total weight (representing to-
tal energy consumption). Then, it verifies the feasibility of p∗ by
checking that all the items in the corresponding schedule will (i)
meet their deadlines and (ii) be processed before the end of the sim-
ulation interval. This is straightforward because the path already
contains the information about the launch times of all the jobs. If
the schedule is not feasible, the next shortest path is selected.

Note that each path, by definition, encodes Π (the function that
maps items to jobs), Θ (the function that maps jobs to processors)
and the start time, b, of each job. Thus, the shortest feasible path
yields the output desired by our problem formulation (Section 6).

As an example, let us assume that in Figure 5, D = 14 and the
shown path is a shortest path. None of the items misses its deadline.
However, the processing of the last two items on the core needs to
be continued beyond the simulation interval which is 38 time units.
Therefore, this path does not produce a feasible schedule and the
next shortest path must be investigated.

The process of finding the next shortest path continues until the
first feasible schedule is found or K shortest paths have been ex-
amined. Our experiments validate that typically a small value of
K is sufficient. In other words, if no feasible schedule was found,
increasing K to very large values will not help. This follows intu-
itively from the nature of our heuristic. The shortest path, typically,
provides the schedule with fewer jobs on the cores. Thus, as we
increase K, we find paths where more and more items are sent to
the cores and this quickly leads to infeasible solutions.

To find the shortest paths, we use Yen’s K-shortest paths routing
algorithm [29]. Their algorithm starts by finding the shortest path.
For this, we use Dijkstra’s algorithm [30].

7.4 Step III: Simulation interval
The above process of finding the optimized schedule was com-

pleted assuming a fixed simulation interval (SI). A natural choice
for SI is the hyperperiod H . However, SI = H might mean that
we are ignoring many feasible and/or optimized solutions. This is
because we assume arbitrary deadlines which may lead to what is
known as hyperperiod spill [31]. Spilling occurs when the items of
a hyperperiod are not serviced within their own hyperperiod and are
delayed to the subsequent one. Thus, SI would ideally be a time
interval such that the schedule is guaranteed to repeat itself after
this interval without any spill-over. Below, we provide the back-
ground on some work on arbitrary deadlines followed by examples
to explain the challenges that arise in our context and finally, our
technique for selecting SI in light of these challenges.

Background: Studying the periodicity of the schedules in real-
time systems has attracted significant attention in the past. For
any feasible schedule generated by a deterministic and memoryless
scheduler, the following results are found. In constrained deadline
systems on uniform multiple processor systems, if the tasks are syn-
chronous, the schedule will repeat after one hyperperiod [32]. An-



Figure 5: This example illustrates a path in a sample graph. The points are representing the nodes in the graph and the arrows are
representing the edges between two consecutive nodes in the path. There are one GPU and one core in this setup and the execution
times are T 12

GPU = 9, T 8

GPU = 7, T 5

GPU = 5 and TCore = 4.

other study shows that in the case of arbitrary deadlines systems on
identical multiple processors, the schedule is finally periodic [33].
In a recent work [34], authors propose an upper bound for such a
schedule to reach a cycle. All these results hold for dynamic sched-
ulers like earliest deadline first and fixed priority. In contrast, we
focus on building static schedule and hence the above results are
not applicable.

Challenges: We use the example in Figure 6 to show the chal-
lenges with respect to finding the optimal SI in our setting. Figure
6(a) shows a schedule with SI = H , where a job of size 12 is
launched on GPU. The GPU is busy serving this job until the end
of the hyperperiod. Thus, as seen in Figure 6(a), at the end of the
hyperperiod, there are many items left which could not be sent to
the GPU. These items may be scheduled to run on the cores but then
their execution times spill over SI . However, if we set SI to 2H ,
more of these items will be processed by the GPU and less items
are left for the cores. This is shown in Figure 6(b). However, even
in this case, the execution on both the GPU and the cores go beyond
SI . This might potentially be in conflict with the next iteration of
the schedule. We propose to solve this problem by introducing a
spill-over time (Tspill) as explained below.

Solution: The goal is to avoid conflict on resource usage across
two cycles. Cycles here refer to repetitive invocations of the static
schedule. Note that the spill from one cycle into the subsequent
cycle, only causes a problem when there is a conflict of resources
between two cycles. In other words, the GPU or the cores may be
used by one cycle as long as they are not needed in the next cycle.

Thus, the key idea is that the first use of a resource in a cy-
cle should be delayed as much as possible without jeopardizing
schedulability. Towards this, we always launch the GPU with the
largest possible size at the start of the schedule. This way, it takes
more time to collect items to create the first GPU job in the "spilled-
over" cycle. Meanwhile, the GPU job(s) from previous cycle may
continue to execute. We denote this overlapping time interval as
Tspill. As shown in Figure 6(b), Tspill = 5 time units. During this
time, items 38-49 from Cycle 1 are being processed by the GPU
and this overlaps with the collection of items 56-67 which belong
to Cycle 2. With this, Figure 6(b) now illustrates a feasible sched-
ule. Note that any job invocation on the core will occur only after
the first invocation of the GPU. This is because the items collected
during Tspill are always sent to the GPU. As a consequence, any
conflict due to the utilization of the same cores by two consecutive
cycles is resolved.

It should also be noted that, increasing SI (to include multiple
Hs), does not necessarily lead to a more optimized schedule. For
instance, in Figure 6, having SI = 3H + Tspill will result in the
following schedule. The first two hyperperiods will have a sched-
ule as shown in Figure 6(b) and the third hyperperiod will have a
schedule as shown in Figure 6(a). Here it turns out that even the ex-
tended SI is not enough to avoid the resource conflict between the

two consecutive cycles and, eventually, the execution on the cores
spill into the next cycle.

To summarize the solution, our heuristic starts with SI = H +
Tspill. Then it iterates and in each iteration SI is increased by H .
This process goes on as long as (i) the heuristic is able to find a
feasible schedule for the current iteration and (ii) an improvement
(or a minimum threshold for an improvement) is obtained over the
previous iteration. Otherwise, the heuristic stops and reports the
last found schedule as the final solution. For instance, in the above
example, our heuristic stops after two iterations.

Figure 6: Example to show the importance of the length of SI.
Here, there are one GPU and four identical cores. For a system
with periods P = {1, 3, 5, 3}, deadline D = 15, T 12

GPU = 10
and Tcore = 4 (a) leads to an infeasible schedule while (b) pro-
duces a feasible schedule.

8. EXPERIMENTS

8.1 Experimental setup
We generated 16 problem sets, for which the execution times

on the core and on the GPU, as well as the energy consumptions
were based on real measurements (Section 4). For this, we selected
Samsung Exynos Dual Arndale platform running at 5 volts. The
board includes two Cortex A15 cores running at 1.7 GHz and Mali
T604 GPU with 4 cores running at 533 MHz. The periods were
varied between 0.5 and 8 milliseconds (ms) and the deadline was



(a)

(b)

Figure 7: Impact of ub on the energy consumption of the prob-
lem sets with (a) same deadline and varying periods, (b) same
periods and varying deadline.

varied between 2 and 5.5 ms. The number of streams was set to
10. We set the number of cores to be 4. The upper bound on the
number of iterations of the heuristic was set to 5. In the following,
we report the results obtained for the convolution application only.
We got similar results for the AES application, but omit them due
to space limit.

Our heuristic was implemented in C++. All simulations were
conducted on a Ubuntu 12.04 64-bit machine with a quad-core Intel
Xeon processor running at 2.67 GHz and with 8 GB of RAM.

8.2 Results
In our heuristic, we proposed ub as a knob to obtain higher qual-

ity results at the expense of increased running times. We conducted
a set of experiments to demonstrate the impact of increasing ub on
energy savings. Figure 7(a) shows the results for 8 problem sets
where all of them had the same deadline but varying periods. Fig-
ure 7(b) shows the results for 8 problem sets where all of them had
same set of periods but varying deadlines. Problem set 4 (PS4) is
common in both figures.

All the above problem sets were ran with k = 10 and only one
(PS9) was reported to be infeasible from the point of view of dead-
lines. PS9 remained infeasible even when k was increased to 100.
This is expected as discussed in Section 7.3.

Most of the problem sets in both figures show savings in en-
ergy with larger ub except three of them in Figure 7(a). This is
expected because for these three, the number of items in one hyper-
period was considerably lower than the others (e.g., 200 compared
to around 1100). This implies that finding an optimized solution for
these problem sets is relatively easier (design space to be searched
is limited) and even with ub = 1 the heuristic is able to find a very
optimized schedule.

For all 15 problem sets discussed above, we have also plotted the
average improvement on energy consumption delivered by ub = 8
over ub = 1, 2, 3 to 7. As seen in Figure 8, we obtain more than
100% improvement over ub = 1, 2 and the improvement almost
saturates as we reach ub = 6.

Of course, the running times of the heuristic increases with larger

Figure 8: Improvement obtained with ub = 8

Figure 9: The execution time (in seconds) increases with ub.

ub. This is shown is Figure 9. To make a fair comparison, here
we consider only the first iteration of the heuristic by isolating the
impact of ub on the running times. For ub values smaller than 6
(which is the saturation point), it can be observed that the heuristic
runs in less than five minutes for all problem sets. Moreover, ub =
8 led to significantly longer running times (exceeding 10 hours).

8.3 On-board measurements
To further study the performance of the heuristic in terms of en-

ergy consumption, we conducted experiments on a real platform
(the Arndale board mentioned above). We selected three of the
problem sets—PS4, PS5 and PS14. For each experiment, we im-
plemented a job dispatcher on the target board. This dispatcher
batches the items generated by the streams into jobs and assigns
them to the processors based on the pre-computed scheduling ta-
ble. For each cycle, we measured the overall energy consumption
on the board following the methodology in [15].

The key insight exploited by the heuristic is that it leverages
CPU-GPU processors in a heterogeneous fashion. To evaluate the
energy efficiency of the schedules proposed by our heuristic, we
compared the results with a non-GPU version where all items are
processed on the cores. The non-GPU version utilizes only one
core that sequentially processes the items. The reason to select one
core was that the overhead of launching multiple threads on several
cores was tremendous and this would give an unfair advantage to
our heuristic. It should be noted that the overhead may be compen-
sated if the workload on the core is relatively significant.

Figure 10 reports the average energy consumptions over 10 schedul-
ing cycles, for the proposed schedules and their sequential versions.

Figure 10: On-board energy measurements



Figure 11: Energy consumption of heuristic vs. ILP (with a
time limit of one hour).

It also compares the energy improvements for different values of ub
over the sequential schedule. Here, ub1 and ub4 indicate the lowest
and the highest quality schedules, respectively. As we expected, for
each problem set, energy efficiency improves as ub increases. As
the best case, in PS14 with ub4—where all the items are processed
on the GPU—we get an improvement factor of 14.6. These results
show the static schedules generated analytically by our heuristic
indeed deliver the expected improvements on real-life applications.

8.4 Comparison with optimal
We also formulated our problem as an ILP (Integer Linear Pro-

gramming) model and used ILOG CPLEX optimization software
to solve the resulting model [35]. In Appendix, we provide an ILP
formulation of the problem. We do not discuss several optimiza-
tions that we implemented in CPLEX.

We would like to note that the ILP model performs very poorly
in terms of scalability. In fact, it was not possible to obtain re-
sults from the ILP for the problem sets discussed so far. For most
of these problem sets, the number of items in the hyperperiod,
which impacts the size of our problem, is in the order of hun-
dreds/thousands. As such, we constructed 5 small-sized problem
sets (PSa to PSe) that allowed us to obtain some results from ILP
for comparison. The number of items in the hyperperiod varied
from 29 to 63 for these problems.

Even for such small problem sizes, the ILP did not complete
after several hours of running while all results from the heuristic
were obtained in less than one second. As such, we set a time limit
of one hour on the ILP and report the best results found within this
time. Only for PSa, the ILP was able to find the optimal solution.
Note that the heuristic also found the optimum. For PSb, the best
solution reported under one hour was 1% better than the heuristic
(see Figure 11). The reason the heuristic delivers slightly worse
results is that during the construction of the graph, the first node is
chosen greedily to be the largest node (see Section 7). For the rest,
the solution found by the ILP was actually worse (see Figure 11).
To investigate if we get optimal results without a time budget, we
let the ILP run for PSd. After 12 hours of running, it ran out of
memory and the best solution it found until then was the same as
the heuristic. These results were obtained with SI = H and, as
seen above, it was impossible to run experiments with larger SI .
To conclude, the intractability of the ILP highlights the importance
of our heuristic that runs efficiently.

9. OUTLOOK AND FUTURE WORK
To the best of our knowledge, this is the first work to address

fine-grained scheduling of items from data parallel streams on a
mobile GPU-based heterogeneous platform. This work may be ex-
tended in several directions.

First, as shown in Section 5, even in the case where the rela-
tive deadlines are the same for all items, the resulting optimization
problem is non-trivial. Our heuristic was specially customized to
the case of similar deadlines. Designing a heuristic for different

deadlines remains an open problem. Second, in this work we fo-
cused on synthesizing static schedules. Investigating the applica-
bility of other scheduling policies to the same system model might
lead to interesting insights. Third, in this work we assumed dead-
lines can be arbitrarily large and this implied that the length of
the static schedule could not be bounded by the hyperperiod. It
is worthwhile to find whether or not there exists a theoretical upper
bound on the length of the static schedule (SI) that will guaran-
tee schedulability as well as optimal energy efficiency. It will also
be worthwhile to extend our work to handle precedence constraints
that might exist between items. Finally, in near future we can ex-
pect embedded platforms to be equipped with multiple GPUs and
it will be interesting to extend our framework to such platforms.
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APPENDIX

A. INTEGER LINEAR FORMULATION
Below we provide the constraints of the ILP formulation of our

problem for one iteration. Let I = {1, 2, . . . , n} be the set of in-
dices of items in the simulation interval. Let J = {1, 2, . . . , n} be
the set of indices of jobs—either on a core or on the GPU—and let
σj , τj and εj be the size, execution time and energy consumption
of job j ∈ J , respectively. Let also M = {1, 2, . . . ,m} be the set
of indices of cores.

We define the job-type variables g = (g1, g2, . . . , gn) and cm =

(c1m, c2m, . . . , cnm), m ∈ M, where gj = 1 and cjm = 1, iff
jth job is scheduled on the GPU, and on the core m, respectively;
otherwise, gj = 0 and cjm = 0. We define item-to-job assignment
variables xij , ∀i ∈ I, ∀j ∈ J , where xij = 1, iff ith item is
assigned to jth job and xij = 0, otherwise. Let also bj denote the
start time of jth job. Without any loss of generality, let us assume
that all the variables associated with the jobs and items are non–
negative integers. Then, the model can be formulated as:

min
∑
j∈J

εj (1)

s.t.
∑
j∈J

xij = 1 i ∈ I; j ∈ J (2)

gj = 1 ⇔ smin ≤ σj ≤ smax, j ∈ J (3)
∑

m∈M

cjm = 1 ⇔ σj = 1, j ∈ J (4)

gj +
∑

m∈M

cjm = 0 ⇔ σj = 0, j ∈ J (5)

xijAi ≤ bj , i ∈ I; j ∈ J (6)

bj + τj ≤ xij(Ai + D), i ∈ I; j ∈ J (7)

(gj + gk = 2) ⇒ bj + τj ≤ bk, j, k ∈ J , j < k (8)

(cjm + ckm = 2) ⇒ bj + τj ≤ bk, j, k ∈ J , j < k;m ∈ M (9)

g1 = 1, c(m+1)m = 1, m ∈ M (10)

gj = 1 ⇒ bj + τj ≤ b1 + H, j ∈ J (11)

cjm = 1 ⇒ bj + τj ≤ bm+1 + H, j ∈ J ;m ∈ M (12)

xij ≤ 1, gj ≤ 1, cjm ≤ 1, bj ≥ 0, i ∈ I; j ∈ J ;m ∈ M (13)

where,

σj =
∑
i∈I

xij , τj =

smax∑
s=0

⎧⎪⎨
⎪⎩

Ts if σj = s

0 otherwise.

, Ts = Tcore ∪ T
s
GPU ,

εj =

smax∑
s=0

⎧⎪⎨
⎪⎩

Es if σj = s

0 otherwise.

, Es = Ecore ∪ E
s
GPU

The objective function (1) minimizes the total energy consump-
tion of the jobs. Constraint (2) imposes assignment of each item to
exactly one job. Constraints (3) and (4) ensure the size ranges of
the jobs on the GPU and on the cores, respectively, where smin and
smax are the minimum and maximum job sizes on the GPU. Con-
straint (5) makes sure that the job is empty iff it does not belong to
any job-type. Constraints (6) and (7) enforce the timeliness prop-
erty of the job, where Ai is the arrival time of ith item. Constraints
(8) and (9) ensure that there is no execution overlap between two
jobs that run on the same resource. Constraints (10), (11), (12) en-
sure that any job on a resource ends before the resource is required
in the next scheduling cycle; we assume that there is at least one
job assigned to each resource in every scheduling cycle. Relation
(13) imposes the integrality requirements for decision variables.


